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Manifold Shape: from Di�erential Geometryto Mathematical Morphology ?J.B.T.M. RoerdinkDepartment of Computing Science, University of Groningen, P.O. Box 800, 9700 AVGroningen, The NetherlandsAbstract. Much progress has been made in extending Euclidean mathemat-ical morphology to more complex structures such as complete lattices or spaceswith a non-commutative symmetry group. Such generalizations are importantfor practical situations such as translation and rotation invariant pattern recog-nition or shape description of patterns on spherical surfaces. Also in computervision much use is made of spherical mappings to describe the world as seenby a human or machine observer. Stimulated by these developments the ques-tion is studied here of the shape description of patterns on arbitrary (smooth)surfaces based on mathematical morphology. The primary interest in this paperis to outline the mathematical structure of this description. Some concepts ofdi�erential geometry, in particular those of parallel transport and covariant dif-ferentiation, are used to replace the more restricted concept of invariance usedso far in mathematical morphology. The corresponding morphological operatorswhich leave the geometry on the surface invariant are then constructed.Keywords: mathematicalmorphology, di�erential geometry, parallel transport,dilation, erosion, closing, opening, shape concepts, group invariance.1 IntroductionMuch progress has been made in extending Euclidean mathematical morphologyas developed by Matheron and Serra [7, 12] to more complex structures such ascomplete lattices [13, 3, 11] or spaces with a non-commutative symmetry group[9, 10]. Such generalizations are important for practical situations like transla-tion and rotation invariant pattern recognition or shape description of patternson spherical surfaces (satellite data of the earth, microscopic images of virusparticles, etc.). Also in computer vision and image understanding there is in-creasing use of group theoretical methods [4]. Stimulated by these developmentsthe question is studied here of the shape description of patterns on arbitrary(smooth) surfaces based on mathematical morphology. The primary interest in? In: Shape in Picture, Y.-L. O et al. (eds.), Springer, Berlin, 1994, pp. 209-223 (NATOASI Series F 126). Postscript version obtainable at http://www.cs.rug.nl/~roe/



2 Roerdinkthis paper is to outline the mathematical structure of this description. It is clearthat human observers are able to recognize patterns on a curved surface (say,patterns on ceramics) as `similar'. This notion is quanti�ed by introducing someconcepts of di�erential geometry, in particular those of parallel transport and co-variant di�erentiation which can be used to replace the more restricted conceptof invariance groups used so far in mathematical morphology. When using ageometric concept of shape in line with F. Klein's Erlanger Programm [6] suchinvariance concepts form an essential ingredient in shape descriptions. Next, thecorresponding morphological operators which leave the geometry on the surfaceinvariant will be constructed. In view of the fact that both di�erential geometryand mathematical morphology start from local operations it is perhaps not toosurprising that a connection between the two can be established. The presentpaper presents a �rst step in this direction.The organization of this paper is as follows. In Sect. 2 a number of pre-requisites are stated from mathematical morphology, with particular emphasison symmetry properties and their role in shape description. Then in Sect. 3the required di�erential geometric concepts are briey introduced. The study ismainly restricted to smooth (hyper)surfaces in n-dimensional Euclidean space,although most of the results carry over to more general Riemannian manifoldsas well. Finally, in Sect. 4 these di�erential geometric concepts are used to con-struct morphological operators on smooth surfaces which leave the geometry ofthe surface invariant. The results presented here are of a preliminary nature.Both the mathematical treatment and the question of the usefulness of the ap-proach outlined here require a more detailed study.2 Invariance Concepts in Mathematical MorphologyIn [10] a study was made of a homogeneous space (�;M ); that is, a set Mon which a transitive but not necessarily commutative group � of invertibletransformations is de�ned. Here transitive means that for any pair of points inthe set there is a transformation in the group which maps one point on the other.If this mapping is unique the transformation group is called simply transitive [15].Each element g 2 � is a mapping M !M : x 7! g(x), satisfying(i) gh(x) = g(h(x)); (ii) e(x) = x;where e is the unit element of � (i.e. the identity mapping x 7! x; x 2 M ),and gh denotes the product of two group elements g and h. The inverse of anelement g 2 � will be denoted by g�1. Usually we will also write gx instead ofg(x). The stabilizer of x 2 M is the subgroup �x := fg 2 � : gx = xg. Theobject space by which binary images on M are modelled is the Boolean latticeP(M ) of all subsets of M , ordered by set inclusion. A brief sketch will be givenof the construction of morphological operations on this homogeneous space withfull invariance under the acting group � .First recall the construction of dilations on P(M ) without any invarianceproperty, as given by Serra [13, Ch.2, Proposition 2.1] (a dilation/erosion is amapping commuting with unions/intersections):



Manifold shape 3Proposition1. A mapping � : P(M )! P(M ) is a dilation if and only if thereexists a function  :M ! P(M ), called a `structuring function', such that�(X) = [x2X (x): (1)This statement can be interpreted as follows. Attach to each point x of M asubset (x) ofM , that is, think ofM as being completely `covered' by a collectionof subsets of itself. Then the dilation �(X) is the union of all the subsets whichare attached to points of X. On the complete lattice L = P(M ), there exists forevery dilation � : L ! L a unique erosion " : L ! L, called the adjoint of �,such that ("; �) is an adjunction. Here a pair ("; �) of mappings on L is called anadjunction if for every X;Y 2 L the following equivalence holds:�(X) � Y () X � "(Y );see [3, 11]. It is easy to see that the erosion " associated (by adjunction) with �is given by "(X) = fy 2M : (y) � Xg: (2)Next morphological operators which possess invariance properties under atransformation group are considered. Assume that M is a homogeneous spaceunder a group � which acts transitively on M . In that case it is appropriate totake a �xed set A (the `structuring element') and attach to any x 2 M all thesets gA := fga : a 2 Ag, where g runs over the complete collection of groupelements which move a �xed point ! (called the `origin') to x. The set gA issometimes referred to as the (group) translate of A (by g).Example. The translation group on the planeConsider the plane M = IR2, acted upon by the commutative group T of trans-lations. This is the classical case [12, 7]. Here one uses translates �x(A) = fx+a :a 2 Ag of a single set A, where �x is the unique (Euclidean) translation whichmaps the origin to the point x.Example. The translation-rotation group on the planeConsider the plane M = IR2, acted upon by the group � generated by trans-lations and rotations of the plane (Euclidean motion group, group of rigid mo-tions), a noncommutative group. Let the origin ! be the point (0; 0). The sta-bilizer � is equal to the group R of rotations around the origin. The collectionof all group elements which map ! to x is the set f�xs : s 2 �g, where �x isthe unique translation which maps the origin to the point x (see the previousexample). The basic objects in de�ning morphological operations with respectto this group are formed by all translated and rotated copies of a single set A.An application which occurs in the problem of motion planning for robots hasbeen considered in great detail in [9].Example. The rotation group on the sphere ([8])Consider the unit 2-sphere M = S2, acted upon by the three-dimensional rota-tion group � = SO(3), also a noncommutative group. Let v = (x; v), v 2 S1,



4 Roerdinkbe a unit tangent vector at x 2 S2. Choose the north pole N as the origin ofthe sphere, and de�ne a base-vector b to be an arbitrary unit tangent vector atN . Then the tangent vector v represents a unique rotation, i.e. the one whichmaps b to v. The stabilizer � is the set of rotations around the north pole N .For a �xed set A � S2 the set fgxsA : x 2 S2; s 2 �g, where for each x 2 S2,gx is any particular group element (a representative) which maps ! to x, formsthe basic collection from which morphological operations are constructed.2.1 Morphological operatorsIn the classical case, one uses Euclidean translations to de�ne dilations anderosions.Minkowski addition : X � A = fx+ a : x 2 X; a 2 Ag = [a2AXa; (3)Minkowski subtraction : X 	 A = \a2AX�a; (4)where Xa = �a(X) = fx+ a : x 2 Xg:Next consider the case of a homogeneous space (�;M ). First the followingde�nition is needed.De�nition2. Let (�;M ) be a homogeneous space with � the stabilizer of theorigin ! in M . A subset X of M is called �-invariant if X = X , where X =Ss2� sX. If X is not �-invariant, X is called the �-invariant extension of X.Let A �M . Then the mapping�(X) := [x2X [fg2� :g!=xg gA (5)is a dilation � which is � -invariant; that is, �(gX) = g�(X) for all g 2 � ,X 2 P(M ). Moreover, all � -invariant dilations are of this form [10]. UsingDe�nition 2, (5) can be rewritten as�(X) = [x2X [s2� gxsA = [x2X gxA; (6)where, again for each x, gx is any particular group element which maps ! to x.The adjoint erosion of (5) is formed by associating with a subset X the collectionof points y 2 M such that gA � X for all g 2 � which move the origin to y.For a representation of this erosion as an intersection of translated sets, see [10].This shows that any � -invariant dilation on P(M ) can be reduced to a dilation��A involving a �-invariant structuring element A; the same is true for erosions.Openings by a subset A of M can be de�ned by�A(X) = [g2�fgA : gA � Xg; (7)



Manifold shape 5which is the union of all translates gA of A which are included in X. Such � -openings are generally not reducible to openings by a �-invariant structuringelement, see [10].2.2 The role of symmetry groups in shape descriptionUsually, `shape' is de�ned as referring to those properties of geometrical �gureswhich are invariant under the Euclidean similarity group [5]. Intuitively speaking,one �rst has to bring �gures to a standard location, orientation and scale beforebeing able to `compare' them. The following de�nition generalizes this.De�nition3. Let M be a set, � a group acting on M . Two subsets X;Y of Mare said to have the same shape with respect to � , or the same � -shape, if theyare � -equivalent, meaning that there is a g 2 � such that Y = gX. If no suchg 2 � exists, X and Y are said to have di�erent � -shape.In essence this de�nition goes back to F. Klein's `Erlanger Programm' (1872),which considers geometry to be the study of transformation groups and the prop-erties invariant under these groups [6]. In Euclidean morphology, all translatesof a set X by the Euclidean translation group T have the same T-shape. Afteradding rotations to obtain the Euclidean motion group M, rotated versions ofX or its translates have the same M-shape as X.This notion of shape is still too restricted in the case of sets on arbitrarysurfaces M , for in general no group � exists which acts transitively on M .Therefore a more general de�nition of shape equivalence will be sought using anumber of concepts from di�erential geometry. To motivate this whole enterprise,a simple but important example of a morphological operation on an arbitrarysurface will �rst be given.2.3 Motivating exampleLet M be a smooth surface in IR3 supplied with the induced metric. That is,lengths are measured `along the surface'. For any x 2M , let Dr(x) be the diskof radius r centred at x. Then a dilation � : P(M ) ! P(M ) can be de�ned asfollows: �(X) = [x2XDr(x): (8)That is, �(X) is the union of all points of M with distance smaller than r tosome point of X. Comparing with the cases studied above one could say that adisk of radius r is used here as the `structuring element'. In the same way onecan de�ne erosions or openings by a disk of radius r. The problem described inthe rest of the paper essentially boils down to the question of how this can begeneralized when the structuring element is not a disk.



6 Roerdink3 Elementary Concepts from Di�erential GeometryA brief outline is given here of some background material on Riemannian man-ifolds. Since it is the aim to develop in the next section some new concepts ina way which is intuitively clear, the discussion here is mainly restricted to thecase of smooth surfaces in Euclidean 3-space. Thorpe [16] is followed as far asterminology and notation is concerned. For results in a more abstract setting seeBoothby [1] or Helgason [2].A surface of dimension n, or n-surface, in IRn+1 is a non-empty subset M ofIRn+1 of the form M = f�1(c) where f : U ! IR, U open in IRn+1, is a smoothfunction with the property that rf(p) 6= 0 for all p 2 M , and c 2 IR, where ris the gradient operator. That is, M is a level set of f at height c. The gradientproperty implies that all points of M are regular. A vector at a point p 2 IRn+1is a pair v = (p; v) where v 2 IRn+1. The set of all vectors tangent to M atp equals [rf(p)]? and is called the tangent space of M at p, denoted by Mpin the following. A parameterized curve, or `curve' for short, in M is a smoothfunction � : I !M where I is some open interval in IR. The space Mp consistsof velocity vectors at p of all curves passing through p and is an n-dimensionalvector subspace of the space of all vectors at p. The disjoint union of all tangentspaces, T (M ) = [p2MMp;is called the tangent bundle of M .A geodesic in M is a parameterized curve � : I ! M whose acceleration iseverywhere orthogonal to M , that is, ��(t) 2M?�(t) for all t 2 I. Geodesics haveconstant speed, ddt k _�(t)k2 = ddt h _�; _�i = 2h _�; ��i = 0;since _� 2 M�(t) and ��(t) 2 M?�(t) (angular brackets denote inner products).Given any p 2 M and any v 2 Mp there exists a geodesic passing through pwith velocity v at p. When the domain I of � is chosen as large as possible,the resulting geodesic is called a maximal geodesic. For each p 2 M;v 2 Mp,there is a unique maximal geodesic � with �(0) = p, _�(0) = v. For example, onthe sphere S2 the geodesics are great circles (or single points); on the cylinderthey are straight lines, circles, or spirals (or points). An n-surface M is said tobe geodesically complete if every maximal geodesic in M has domain IR. Forexample, the n-sphere is geodesically complete, the n-sphere with north poledeleted is not.3.1 Parallel transportIn Euclidean space one knows how to transport vectors from one point to anotherby using the operation of translation. On an n-surface a comparable operationcan be de�ned, which is called parallel transport or parallel translation. Theconcepts are developed in a few steps.



Manifold shape 7A vector �eld X on U � IRn+1 is a function p ! X(p) = (p;X(p)) forsome function X : U ! IRn+1. A vector �eld X is smooth if the componentsof the function X : U ! IRn+1 are all smooth, that is, have continuous partialderivatives of all orders. A vector �eld along the curve � : I !M is a functiont 7! X(t) where X(t) 2 IRn+1; if X(t) 2 M�(t) for all t 2 I, the vector �eldis called tangent to M along �. If X is a tangent vector �eld along a curve� : I ! M then the derivative _X is generally not tangent to M . To obtain avector �eld tangent to M one has to project _X orthogonally onto M�(t). Thisoperation is called covariant di�erentiation and the resulting vector �eldX0(t) = _X � h _X(t);N(�(t))iN(�(t));where N(p) = rf(p)krf(p)k ; p 2M;is a unit normal vector �eld, is called the covariant derivative ofX. The covariantderivative measures the rate of change of X as seen from the surface M . A curve� : I ! M is a geodesic if and only if the covariant acceleration ( _�)0 is zeroalong �. A smooth vector �eld X tangent to M along � is called constant or(Levi-Civita) parallel if X0 = 0. If X and Y are parallel vector �elds along �,then hX;Yi0 = 0, so hX;Yi is constant along �. In particular, X and Y haveconstant length; therefore, also the angle between X and Y is constant. For anexample see Fig. 1. The velocity vector �eld along a parameterized curve in M
Fig. 1. Parallel vector �elds along geodesics in the 2-sphere.is parallel if and only if � is a geodesic. The following theorem is fundamental[16]:



8 RoerdinkTheorem4. Let M be an n-surface in IRn+1, � : I !M a parameterized curvein M , let t0 2 I and v 2 M�(t0). Then there exists a unique vector �eld V,tangent to M along �, which is parallel and has V(t0) = v.A simple characterization is possible for a 2-surface M : a vector �eld tangenttoM along a geodesic � is parallel if and only if both kXk and the angle betweenX and _� are constant along �.Parallelism can be used to transport tangent vectors from one point of ann-surface to another.De�nition5. Let p; q 2 M and let � : [a; b] ! M be a parameterized curvefrom �(a) = p to �(b) = q. For v 2Mp let V be the unique parallel vector �eldalong � with V(a) = v. The map P� :Mp !Mq determined byP�(v) = V(b)is called parallel transport from p to q, and P�(v) the parallel translate of valong � to q.Parallel transport from p to q is path dependent: if � and � are two curvesfrom p to q then, in general, P�(v) 6= P�(v) (an exception occurs for surfacesof zero curvature, such as the Euclidean plane). More precisely, P�(v) di�ersfrom P�(v) by a rotation around the normal to M at q. When a vector in Mp istransported along a closed curve beginning and ending in p, it will carry out arotation inMp. The set of such rotations ofMp generated by parallel translationalong closed curves is called the holonomy group at p. Holonomy groups atdi�erent points of M are isomorphic.The following result will be needed later [16]:Theorem6. Let M be an n-surface in IRn+1, p; q 2M and � a piecewise smoothcurve from p to q. Then parallel translation P� : Mp !Mq along � is a vectorspace isomorphism which preserves inner products:1. P� is a linear map;2. P� is 1-1 and onto;3. hP�(v); P�(w)i = hv;wi for all v;w 2Mp.To study questions concerning lengths of curves in M , it is convenient toparameterize curves by arc length, that is, choose a reparameterization suchthat � has unit speed. A well-known result concerning geodesics then assertsthat if � is a shortest unit-speed curve from p to q in M , then � is a geodesic(the reverse is in general not true, consider e.g. geodesics on a sphere).3.2 The exponential mapAbove we have seen how to transport vectors from one point of an n-surface toanother. The next question is how to map points of M to vectors in the tangentbundle T (M ). This then will enable us below to transport subsets of M fromone point to another.



Manifold shape 9De�nition7. For v in the tangent bundle T (M ), let �v denote the uniquemaximal geodesic inM with _�v(0) = v. Let U = fv 2 T (M ) : 1 2 domain �vg.The map Exp : U !M de�ned by Exp(v) = �v(1) is called the exponential mapof M .For p 2 M , we will also write Expp to denote the mapping Mp ! M : v 7!Exp(v). Since geodesics have constant speed, Expp(v) is the point on the uniquegeodesic determined by v whose distance from p along the geodesic is preciselykvk; cf. Fig. 2. The following theorem summarizes the most important properties
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MFig. 2. The exponential map maps a tangent vector v 2 Mp to the point lying at adistance kvk from p on the unique geodesic through p with initial velocity v.of the exponential map [16].Theorem8. The exponential map Exp : U ! M of an n-surface in Rn+1 hasthe following properties:1. The domain U of Exp is an open set in T (M ).2. If v 2 U then tv 2 U for 0 � t � 1.3. Exp is a smooth map.4. For each p 2 M and v 2 Mp, the maximal geodesic �v with _�v(0) = v isgiven by the formula �v(t) = Expp(tv).5. For � > 0 su�ciently small, Expp maps the �-ball B� = fv 2 Mp : kvk < �gdi�eomorphically onto an open subset U� of M containing p. For q 2 U� thecurve �v(t) = Expp(tv) (0 � t � 1) with Expp(v) = q is the unique geodesicjoining p and q; it lies in U� and has length shorter than that of any othercurve joining p and q.



10 RoerdinkThis theorem says that geodesics through p 2 M are images under Expp ofthe rays �(t) = tv inMp; see Fig. 3. In the case of the 2-sphere S2, Expp maps theball fv 2 S2p : kvk < �g di�eomorphically onto S2 n q, where q is the antipodalpoint of p. In Mp, the geodesics through p are the orthogonal trajectories of
S
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S
2
pFig. 3. The geodesics in S2 through p are the images under the exponential map ofthe rays through 0 in S2p .hypersurfaces �Expp(v) : v 2Mp; kvk = constant	 :If p 2 M , the set U�(p) of points within distance � of p is called a sphericalneighbourhood of p or a disk of radius � at p. A neighbourhood U�(p) such thatthere exists at most (at least) one geodesic segment contained in U�(p) joiningany pair of points in U�(p) is called simple (convex). For su�ciently small �, anyneighbourhood U�(p) is simple and convex [2].In general the domain and range of the exponential map is restricted. On so-called geodesically complete surfaces, such as compact surfaces, every maximalgeodesic onM has domain IR, that is, can be in�nitely extended. In that case thedomain of the exponential map is all of T (M ). In certain cases the exponentialmap on a geodesically complete surface maps Mp di�eomorphically onto M forany p 2 Mp, so that a 1-1 correspondence between points of M and pointsof Mp exists; that is, geodesics between any two points are unique. Examplesof such spaces are simply connected geodesically complete surfaces of negativecurvature; see Theorem 13.3 of Helgason [2].Example. The one-sheeted hyperboloid de�ned by the equationx2a2 + y2b2 � z2c2 = 1 (9)



Manifold shape 11has curvature K = � 1a2b2c2 �x2a4 + y2b4 + z2c4��2 ;which is everywhere negative [14]. For a sketch of this (ruled) surface, see Fig. 4.
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z

Fig. 4. Sketch of the one-sheeted hyperboloid de�ned by (9).4 Mathematical Morphology on Smooth SurfacesIn this section a sketch is given how a morphological description of binary imageson smooth surfaces can be developed. The general construction of dilations oncomplete lattices by Serra (see Prop. 1) holds also, of course, for the special caseof the lattice P(M ), where M is a smooth surface in IR3 and P(M ) denotesthe set of all subsets of M . The problem is to de�ne morphological operatorssatisfying some form of invariance. In Sect. 2 we have seen how to handle the casewhen a transitive group action on M exists. It will be shown that this theorycarries over to a large extent to the case when M is an arbitrary surface byreplacing group translations by parallel translations, which are based upon theconcept of covariant di�erentiation. The resulting morphological transformationsmay thus be referred to as `covariant' operations.The basic problem is how to `transport' subsets of M from one location toanother while preserving as many geometric properties as possible. Let X be aneighbourhood of the point p 2M . To transport this set X from the point p toanother point q 2M we perform the following steps. First mapX to the tangent



12 Roerdinkspace Mp by using the inverse of the exponential map: the image under this mapis denoted by ~X . Then use parallel translation from p to q along a curve withinitial point p and endpoint q. This maps ~X to a neighbourhood, say ~Y , of q.Finally map ~Y back to M by the exponential map, thus obtaining a subset Y ofq; see Fig. 5.
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γFig. 5. Parallel transport of subsets of a surface.To formalize this, let  = [p;q] be a curve from p to q. Then an operator �can be de�ned by Y = �(X) = ExpqPExp�1p (X); (10)where P is the parallel transport of tangent vectors from Mp to Mq along (see De�nition 5) and P( ~X) is simply the union of all translated vectorsPv when v runs over ~X = Exp�1p (X). By transporting the initial set X at a�xed point ! along all possible curves to other points of M we cover M by anin�nite collection of di�eomorphic copies ofX, which in addition preserve severalmetrical properties (lengths, angles of tangent vectors). It may be veri�ed thatthe operation (10) reduces to Euclidean translation when M is a plane, and torotation in the case of the sphere (in the latter case one has to take forX a subsetof the sphere not containing the antipodal point of ! in order for Exp�1! (X) tobe well de�ned).The following points should now be made. First, the exponential map is ingeneral only invertible (in fact, a di�eomorphism) for a su�ciently small neigh-bourhood of the origin in Mp, although on some manifolds the inverse exists forarbitrary neighbourhoods of the origin in Mp, so that there is a 1-1 correspond-ence between the neighbourhoods of a point p 2M and the neighbourhoods ofthe point 0 2Mp; see the example at the end of Sect. 3. Therefore we will takeas the basic `structuring element' a subset, not of M but of the tangent spaceat a given point ! of M . If ~A is such a subset of M!, then an operator ~� (also



Manifold shape 13referred to as `parallel translation along ') can be de�ned by~�( ~A) = ExppP( ~A); (11)where P is the parallel transport of tangent vectors along a curve  from ! top. Second, the image of the set X under parallel translation from p to q will ingeneral depend on which path is taken. This, however, is a situation which wehave already encountered when discussing mathematical morphology on spaceswith a noncommutative group action; see Sect. 2. The solution found in thatcase works here as well: simply consider all possible paths from p to q.Now it is possible to de�ne dilations and erosions. Let ~A (the `structuringelement') be a subset of the tangent space M!, ! an arbitrary but �xed pointof M . Then de�ne a mapping � : P(M )! P(M ) by� ~A(X) = [x2X[ ExpxP[!;x] ( ~A); (12)where the second union runs over all curves  = [!;x] from ! to x. This can berewritten as follows. Choose for every x 2M a particular curve (`representative')from ! to x. Let ~�x denote parallel translation along this particular curve. Then,if � is the holonomy group at !, which for the surfaces in IR3 considered hereis simply the group of rotations around the normal at !, (12) can be written as� ~A(X) = [x2X [s2� ~�x(s ~A): (13)It is obvious that this mapping is a dilation, either by direct proof or throughthe invocation of Prop. 1. Since parallel translation commutes with unions|both Expp and the vector space isomorphism P do|we also can write (13) inthe form � ~A(X) = [x2X ~�x(A); (14)where A := [s2� s ~A (15)may be called the �-invariant extension of ~A. For example, if ~A is a line segmentof length r starting at ! then A is a disk of radius r centred at !. The similarityof these expressions with the results in Sect. 2 is clear. Erosions can be de�nedin a similar way. If A is a �-invariant structuring element then the mapping"A(X) = fx 2M : ~�x(A) � Xg; (16)is an erosion which extracts all the points x ofM such that the parallel translateof A from ! to x �ts in X.
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