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Manifold Shape: from Differential Geometry
to Mathematical Morphology *

J.B.T.M. Roerdink

Department of Computing Science, University of Groningen, P.O. Box 800, 9700 AV
Groningen, The Netherlands

Abstract. Much progress has been made in extending Euclidean mathemat-
ical morphology to more complex structures such as complete lattices or spaces
with a non-commutative symmetry group. Such generalizations are important
for practical situations such as translation and rotation invariant pattern recog-
nition or shape description of patterns on spherical surfaces. Also in computer
vision much use is made of spherical mappings to describe the world as seen
by a human or machine observer. Stimulated by these developments the ques-
tion is studied here of the shape description of patterns on arbitrary (smooth)
surfaces based on mathematical morphology. The primary interest in this paper
is to outline the mathematical structure of this description. Some concepts of
differential geometry, in particular those of parallel transport and covariant dif-
ferentiation, are used to replace the more restricted concept of invariance used
so far in mathematical morphology. The corresponding morphological operators
which leave the geometry on the surface invariant are then constructed.

Keywords: mathematical morphology, differential geometry, parallel transport,
dilation, erosion, closing, opening, shape concepts, group invariance.

1 Introduction

Much progress has been made in extending Euclidean mathematical morphology
as developed by Matheron and Serra [7, 12] to more complex structures such as
complete lattices [13, 3, 11] or spaces with a non-commutative symmetry group
[9, 10]. Such generalizations are important for practical situations like transla-
tion and rotation invariant pattern recognition or shape description of patterns
on spherical surfaces (satellite data of the earth, microscopic images of virus
particles, etc.). Also in computer vision and image understanding there is in-
creasing use of group theoretical methods [4]. Stimulated by these developments
the question is studied here of the shape description of patterns on arbitrary
(smooth) surfaces based on mathematical morphology. The primary interest in

* In: Shape in Picture, Y.-L. O et al. (eds.), Springer, Berlin, 1994, pp. 209-223 (NATO
ASI Series F 126). Postscript version obtainable at http://www.cs.rug.nl/roe/
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this paper is to outline the mathematical structure of this description. It is clear
that human observers are able to recognize patterns on a curved surface (say,
patterns on ceramics) as ‘similar’. This notion is quantified by introducing some
concepts of differential geometry, in particular those of parallel transport and co-
variant differentiation which can be used to replace the more restricted concept
of invariance groups used so far in mathematical morphology. When using a
geometric concept of shape in line with F. Klein’s Erlanger Programm [6] such
invariance concepts form an essential ingredient in shape descriptions. Next, the
corresponding morphological operators which leave the geometry on the surface
invariant will be constructed. In view of the fact that both differential geometry
and mathematical morphology start from local operations it is perhaps not too
surprising that a connection between the two can be established. The present
paper presents a first step in this direction.

The organization of this paper is as follows. In Sect. 2 a number of pre-
requisites are stated from mathematical morphology, with particular emphasis
on symmetry properties and their role in shape description. Then in Sect. 3
the required differential geometric concepts are briefly introduced. The study is
mainly restricted to smooth (hyper)surfaces in n-dimensional Euclidean space,
although most of the results carry over to more general Riemannian manifolds
as well. Finally, in Sect. 4 these differential geometric concepts are used to con-
struct morphological operators on smooth surfaces which leave the geometry of
the surface invariant. The results presented here are of a preliminary nature.
Both the mathematical treatment and the question of the usefulness of the ap-
proach outlined here require a more detailed study.

2 Invariance Concepts in Mathematical Morphology

In [10] a study was made of a homogeneous space (x, M); that is, a set M
on which a transitive but not necessarily commutative group x of invertible
transformations is defined. Here transitive means that for any pair of points in
the set there is a transformation in the group which maps one point on the other.
If this mapping is unique the transformation group is called simply transitive [15].
Each element g € x is a mapping M — M : z — g(=), satisfying

(i) gh(z) =g(h(x)), (i) e(x) ==,

where e is the unit element of x (i.e. the identity mapping * — z, ¢ € M),
and gh denotes the product of two group elements g and h. The inverse of an
element g € x will be denoted by g~'. Usually we will also write gz instead of
g(z). The stabilizer of ® € M is the subgroup %, := {¢g € * : g& = x}. The
object space by which binary images on M are modelled is the Boolean lattice
P(M) of all subsets of M, ordered by set inclusion. A brief sketch will be given
of the construction of morphological operations on this homogeneous space with
full invariance under the acting group x* .

First recall the construction of dilations on P(M) without any invariance
property, as given by Serra [13, Ch.2, Proposition 2.1] (a dilation/erosion is a
mapping commuting with unions/intersections):
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Propositionl. A mapping § : P(M) — P(M) is a dilation if and only if there
erists a function v : M — P(M), called a ‘structuring function’, such that

5(X) = | (). (1)

rzeX

This statement can be interpreted as follows. Attach to each point # of M a
subset v(z) of M, that is, think of M as being completely ‘covered’ by a collection
of subsets of itself. Then the dilation §(X) is the union of all the subsets which
are attached to points of X. On the complete lattice £ = P (M), there exists for
every dilation 6 : £ — L a unique erosion ¢ : L — L, called the adjoint of §,
such that (¢,0) is an adjunction. Here a pair (¢,d) of mappings on £ is called an
adjunction if for every X,Y € L the following equivalence holds:

S(X) <Y = X <=(V);

see [3, 11]. Tt is easy to see that the erosion ¢ associated (by adjunction) with §
is given by
e(X)={ye M :y(y) C X} (2)

Next morphological operators which possess invariance properties under a
transformation group are considered. Assume that M is a homogeneous space
under a group x which acts transitively on M. In that case it is appropriate to
take a fired set A (the ‘structuring element’) and attach to any « € M all the
sets gA = {ga : a € A}, where g runs over the complete collection of group
elements which move a fixed point w (called the ‘origin’) to x. The set gA is
sometimes referred to as the (group) translate of A (by g).

Ezxample. The translation group on the plane

Consider the plane M = IR?, acted upon by the commutative group T of trans-
lations. This is the classical case [12, 7]. Here one uses translates 7,(A) = {#+a :
a € A} of a single set A, where 7, is the unique (Euclidean) translation which
maps the origin to the point .

Erample. The translation-rotation group on the plane

Consider the plane M = IR?, acted upon by the group * generated by trans-
lations and rotations of the plane (Euclidean motion group, group of rigid mo-
tions), a noncommutative group. Let the origin w be the point (0,0). The sta-
bilizer X is equal to the group R of rotations around the origin. The collection
of all group elements which map w to « is the set {r,s : s € X}, where 7 is
the unique translation which maps the origin to the point x (see the previous
example). The basic objects in defining morphological operations with respect
to this group are formed by all translated and rotated copies of a single set A.
An application which occurs in the problem of motion planning for robots has
been considered in great detail in [9].

Example. The rotation group on the sphere ([8])
Consider the unit 2-sphere M = S?, acted upon by the three-dimensional rota-
tion group x = SO(3), also a noncommutative group. Let v = (z,v), v € S',
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be a unit tangent vector at x € S?. Choose the north pole A as the origin of
the sphere, and define a base-vector b to be an arbitrary unit tangent vector at
N. Then the tangent vector v represents a unique rotation, i.e. the one which
maps b to v. The stabilizer X is the set of rotations around the north pole N.
For a fixed set A C S? the set {g,sA : z € S? s € X}, where for each x € S?,
gy is any particular group element (a representative) which maps w to x, forms
the basic collection from which morphological operations are constructed.

2.1 Morphological operators

In the classical case, one uses Euclidean translations to define dilations and
erosions.

Minkowski addition: X®A={r+a:2€X,a€ A}= U X, (3)
aEA

Minkowski subtraction : X O A= ﬂ X_g, (4)
aEA

where
Xo=m(X)={o+a:2z€ X}
Next consider the case of a homogeneous space (%, M). First the following
definition is needed.

Definition 2. Let (%, M) be a homogeneous space with X' the stabilizer of the
origin w in M. A subset X of M is called X-invarwant it X = X, where X =
Usez sX. If X i1s not Y-invariant, X is called the Y-invariant extension of X.

Let A C M. Then the mapping

5(x) = | lJ 94 (5)

reX {gelgw=zx}

is a dilation ¢ which is x-invariant; that is, §(¢X) = ¢d(X) for all ¢ € *,
X € P(M). Moreover, all x-invariant dilations are of this form [10]. Using
Definition 2, (5) can be rewritten as

(S(X) = U U JesA = U nga (6)

rzeX seX rzeX

where, again for each z, g, is any particular group element which maps w to .
The adjoint erosion of (5) is formed by associating with a subset X the collection
of points y € M such that gA C X for all ¢ € x which move the origin to y.
For a representation of this erosion as an intersection of translated sets, see [10].
This shows that any * -invariant dilation on P(M) can be reduced to a dilation
8% involving a X-invariant structuring element A; the same is true for erosions.
Openings by a subset A of M can be defined by

YA(X) = [J{gA:gaC X}, (7)
gel’
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which is the union of all translates gA of A which are included in X. Such % -
openings are generally not reducible to openings by a Y-invariant structuring
element, see [10].

2.2 The role of symmetry groups in shape description

Usually, ‘shape’ is defined as referring to those properties of geometrical figures
which are invariant under the Euclidean similarity group [5]. Intuitively speaking,
one first has to bring figures to a standard location, orientation and scale before
being able to ‘compare’ them. The following definition generalizes this.

Definition 3. Let M be a set, x a group acting on M. Two subsets X, Y of M
are said to have the same shape with respect to %, or the same % -shape, if they
are % -equivalent, meaning that there is a ¢ € x such that ¥ = ¢X. If no such
g € x exists, X and Y are said to have different x -shape.

In essence this definition goes back to F. Klein’s ‘Erlanger Programm’ (1872),
which considers geometry to be the study of transformation groups and the prop-
erties invariant under these groups [6]. In Euclidean morphology, all translates
of a set X by the Euclidean translation group T have the same T-shape. After
adding rotations to obtain the Euclidean motion group M, rotated versions of
X or its translates have the same M-shape as X.

This notion of shape is still too restricted in the case of sets on arbitrary
surfaces M, for in general no group x exists which acts transitively on M.
Therefore a more general definition of shape equivalence will be sought using a
number of concepts from differential geometry. To motivate this whole enterprise,
a simple but important example of a morphological operation on an arbitrary
surface will first be given.

2.3 Motivating example

Let M be a smooth surface in IR® supplied with the induced metric. That is,
lengths are measured ‘along the surface’. For any € M, let D, (z) be the disk
of radius r centred at z. Then a dilation ¢ : P(M) — P(M) can be defined as
follows:

§(X) = Dr(w). (8)

rzeX

That is, §(X) is the union of all points of M with distance smaller than r to
some point of X. Comparing with the cases studied above one could say that a
disk of radius r is used here as the ‘structuring element’. In the same way one
can define erosions or openings by a disk of radius 7. The problem described in
the rest of the paper essentially boils down to the question of how this can be
generalized when the structuring element is not a disk.
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3 Elementary Concepts from Differential Geometry

A brief outline is given here of some background material on Riemannian man-
ifolds. Since it is the aim to develop in the next section some new concepts in
a way which is intuitively clear, the discussion here is mainly restricted to the
case of smooth surfaces in Euclidean 3-space. Thorpe [16] is followed as far as
terminology and notation is concerned. For results in a more abstract setting see
Boothby [1] or Helgason [2].

A surface of dimension n, or n-surface, in IR is a non-empty subset M of
IR"*t of the form M = f~'(c) where f: U — IR, U open in IR**! is a smooth
function with the property that V f(p) # 0 for all p € M, and ¢ € IR, where V
is the gradient operator. That is, M is a level set of f at height ¢. The gradient
property implies that all points of M are regular. A vector at a point p € IR"+!
is a pair v = (p,v) where v € R™™!. The set of all vectors tangent to M at
p equals [Vf(p)]~ and is called the tangent space of M at p, denoted by M,
in the following. A parameterized curve, or ‘curve’ for short, in M is a smooth
function o : I = M where [ is some open interval in IR. The space M, consists
of velocity vectors at p of all curves passing through p and is an n-dimensional
vector subspace of the space of all vectors at p. The disjoint union of all tangent
spaces,

T(M) = | My,
pEM
is called the tangent bundle of M.

A geodesic in M is a parameterized curve « : I — M whose acceleration is
everywhere orthogonal to M, that is, &(t) € Moj(t) for all ¢t € I. Geodesics have
constant speed,

d d

NaO) = i) = 2 d) =0,
since & € My and a(t) € Moj(t) (angular brackets denote inner products).
Given any p € M and any v € M, there exists a geodesic passing through p
with velocity v at p. When the domain I of « is chosen as large as possible,
the resulting geodesic is called a mazimal geodesic. For each p € M,v € M,,
there is a unique maximal geodesic o with «(0) = p, &(0) = v. For example, on
the sphere S? the geodesics are great circles (or single points); on the cylinder
they are straight lines, circles, or spirals (or points). An n-surface M is said to
be geodesically complete if every maximal geodesic in M has domain IR. For
example, the n-sphere is geodesically complete, the n-sphere with north pole
deleted is not.

3.1 Parallel transport

In Euclidean space one knows how to transport vectors from one point to another
by using the operation of translation. On an n-surface a comparable operation
can be defined, which is called parallel transport or parallel translation. The
concepts are developed in a few steps.
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A vector field X on U C ™! is a function p — X(p) = (p, X(p)) for
some function X : U — IR"*'. A vector field X is smooth if the components
of the function X : U — IR"*! are all smooth, that is, have continuous partial
derivatives of all orders. A vector field along the curve o : I — M is a function
t — X(t) where X(t) € R if X(t) € My for all t € I, the vector field
is called tangent to M along . If X is a tangent vector field along a curve
a : I — M then the derivative X is generally not tangent to M. To obtain a
vector field tangent to M one has to project X orthogonally onto M ;). This
operation is called covariant differentiation and the resulting vector field

X/(t) = X — (X(t), N(a(t)))N(a(1)),

where

N(p)—L(m peEM,

IV £
1s a unit normal vector field, is called the covariant derivative of X. The covariant
derivative measures the rate of change of X as seen from the surface M. A curve
«a I = M is a geodesic if and only if the covariant acceleration (&)’ is zero
along a. A smooth vector field X tangent to M along « is called constant or
(Levi-Civita) parallel if X’ = 0. If X and Y are parallel vector fields along «,
then (X, Y)Y = 0, so (X,Y) is constant along a. In particular, X and Y have
constant length; therefore, also the angle between X and Y is constant. For an
example see Fig. 1. The velocity vector field along a parameterized curve in M

Fig. 1. Parallel vector fields along geodesics in the 2-sphere.

is parallel if and only if « i1s a geodesic. The following theorem is fundamental

[16]:
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Theorem4. Let M be an n-surface in R™™', o : I — M a parameterized curve
in M, let to € I and v € My,). Then there exists a unique vector field V,
tangent to M along «, which is parallel and has V() = v.

A simple characterization is possible for a 2-surface M: a vector field tangent
to M along a geodesic « is parallel if and only if both ||X]| and the angle between
X and & are constant along «.

Parallelism can be used to transport tangent vectors from one point of an
n-surface to another.

Definition5. Let p,¢g € M and let « : [a,b] — M be a parameterized curve
from a(a) = p to «(b) = ¢. For v € M, let V be the unique parallel vector field
along o with V(a) = v. The map P, : M, — M, determined by

Pa(v) =V(b)

is called parallel transport from p to ¢, and P,(v) the parallel translate of v
along « to q.

Parallel transport from p to ¢ is path dependent: if o and § are two curves
from p to ¢ then, in general, P,(v) # Ps(v) (an exception occurs for surfaces
of zero curvature, such as the Euclidean plane). More precisely, Pg(v) differs
from P,(v) by a rotation around the normal to M at ¢. When a vector in M, is
transported along a closed curve beginning and ending in p, it will carry out a
rotation in M. The set of such rotations of M, generated by parallel translation
along closed curves is called the holonomy group at p. Holonomy groups at
different points of M are isomorphic.

The following result will be needed later [16]:

Theorem 6. Let M be an n-surface in IR™ !, p g € M and o a piecewise smooth
curve from p to q. Then parallel translation P, : M, — M, along o is a vector
space isomorphism which preserves inner products:

1. P, is a linear map;
2. P, 1s 1-1 and onto;
3. (Pa(v), Po(w)) = (v,w) for all v,w € M,.

To study questions concerning lengths of curves in M, it is convenient to
parameterize curves by arc length, that is, choose a reparameterization such
that o has unit speed. A well-known result concerning geodesics then asserts
that if « 1s a shortest unit-speed curve from p to ¢ in M, then « is a geodesic
(the reverse is in general not true, consider e.g. geodesics on a sphere).

3.2 The exponential map

Above we have seen how to transport vectors from one point of an n-surface to
another. The next question is how to map points of M to vectors in the tangent
bundle T'(M). This then will enable us below to transport subsets of M from
one point to another.
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Definition 7. For v in the tangent bundle T(M), let v denote the unique
maximal geodesic in M with év(0) = v.Let U = {v € T(M) : 1 € domain av}.
The map Exp : U — M defined by Exp(v) = av(1) is called the exponential map
of M.

For p € M, we will also write Exp, to denote the mapping M, — M : v
Exp(v). Since geodesics have constant speed, Exp,(v) is the point on the unique
geodesic determined by v whose distance from p along the geodesic is precisely
[[v]]; cf. Fig. 2. The following theorem summarizes the most important properties

Fig.2. The exponential map maps a tangent vector v € M, to the point lying at a
distance ||v|| from p on the unique geodesic through p with initial velocity v.

of the exponential map [16].

Theorem 8. The exponential map Exp : U — M of an n-surface in R*t! has
the following properties:

. The domain U of Exp is an open set in T(M).

L IfvelU thentvelU for0<t<1.

. Exp s a smooth map.

. For each p € M and v € M,, the mazimal geodesic ay with av(0) = v is
given by the formula av(t) = Exp,(tv).

5. For € > 0 sufficiently small, Exp, maps the e¢-ball Be = {v € M, : [|v]| < ¢}

diffeomorphically onto an open subset U, of M containing p. For q € U, the

curve ay(t) = Exp, (tv) (0 <t < 1) with Exp,(v) = ¢ is the unique geodesic

joining p and q; it lies in Ue and has length shorter than that of any other

curve jowning p and q.

s o DO M~
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This theorem says that geodesics through p € M are images under Exp,, of
the rays «(t) = tv in M,; see Fig. 3. In the case of the 2-sphere S?, Exp, maps the
ball {v € Sg . |v|| < =} diffeomorphically onto S? \ ¢, where ¢ is the antipodal
point of p. In M, the geodesics through p are the orthogonal trajectories of

Fig. 3. The geodesics in S? through p are the images under the exponential map of
the rays through 0 in Sf,.

hypersurfaces
{Exp, (v) : v € M, ||[v]| = constant} .

If p € M, the set Us(p) of points within distance § of p is called a spherical
neighbourhood of p or a disk of radius § at p. A neighbourhood Us(p) such that
there exists at most (at least) one geodesic segment contained in Us(p) joining
any pair of points in Us(p) is called simple (convez). For sufficiently small §, any
neighbourhood Us(p) is simple and convex [2].

In general the domain and range of the exponential map is restricted. On so-
called geodesically complete surfaces, such as compact surfaces, every maximal
geodesic on M has domain IR, that is, can be infinitely extended. In that case the
domain of the exponential map is all of T(M). In certain cases the exponential
map on a geodesically complete surface maps M, diffeomorphically onto M for
any p € Mp, so that a 1-1 correspondence between points of M and points
of M, exists; that is, geodesics between any two points are unique. Examples
of such spaces are simply connected geodesically complete surfaces of negative
curvature; see Theorem 13.3 of Helgason [2].

FEzrample. The one-sheeted hyperboloid defined by the equation
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1 2 2 2\ —2
K= —<$—+y—+z—) ,

has curvature

a?b?c? \ gt bt

which is everywhere negative [14]. For a sketch of this (ruled) surface, see Fig. 4.

Fig.4. Sketch of the one-sheeted hyperboloid defined by (9).

4 Mathematical Morphology on Smooth Surfaces

In this section a sketch is given how a morphological description of binary images
on smooth surfaces can be developed. The general construction of dilations on
complete lattices by Serra (see Prop. 1) holds also, of course, for the special case
of the lattice P(M), where M is a smooth surface in IR® and P(M) denotes
the set of all subsets of M. The problem is to define morphological operators
satisfying some form of invariance. In Sect. 2 we have seen how to handle the case
when a transitive group action on M exists. It will be shown that this theory
carries over to a large extent to the case when M is an arbitrary surface by
replacing group translations by parallel translations, which are based upon the
concept of covariant differentiation. The resulting morphological transformations
may thus be referred to as ‘covariant’ operations.

The basic problem is how to ‘transport’ subsets of M from one location to
another while preserving as many geometric properties as possible. Let X be a
neighbourhood of the point p € M. To transport this set X from the point p to
another point ¢ € M we perform the following steps. First map X to the tangent
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space M, by using the inverse of the exponential map: the image under this map
1s denoted by X. Then use parallel translation from p to ¢ along a curve with
initial point p and endpoint ¢. This maps X to a neighbourhood, say f/, of q.
Finally map Y back to M by the exponential map, thus obtaining a subset Y of
q; see Fig. 5.

Fig. 5. Parallel transport of subsets of a surface.

To formalize this, let vy =, 4] be a curve from p to q. Then an operator 7

can be defined by
Y =r(X)= EquPWEpojl(X), (10)

where P, is the parallel transport of tangent vectors from M, to M, along
v (see Definition 5) and PW()N() is simply the union of all translated vectors
P,v when v runs over X = Expgl(X). By transporting the initial set X at a
fixed point w along all possible curves to other points of M we cover M by an
infinite collection of diffeomorphic copies of X, which in addition preserve several
metrical properties (lengths, angles of tangent vectors). It may be verified that
the operation (10) reduces to Euclidean translation when M is a plane, and to
rotation in the case of the sphere (in the latter case one has to take for X a subset
of the sphere not containing the antipodal point of w in order for Expgl(X) to
be well defined).

The following points should now be made. First, the exponential map is in
general only invertible (in fact, a diffeomorphism) for a sufficiently small neigh-
bourhood of the origin in M,, although on some manifolds the inverse exists for
arbitrary neighbourhoods of the origin in M,, so that there is a 1-1 correspond-
ence between the neighbourhoods of a point p € M and the neighbourhoods of
the point 0 € M,; see the example at the end of Sect. 3. Therefore we will take
as the basic ‘structuring element’ a subset, not of M but of the tangent space
at a given point w of M. If A is such a subset of M,,, then an operator 7, (also
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referred to as ‘parallel translation along v’) can be defined by

#,(A) = Exp, P, (A), (1)

where P, is the parallel transport of tangent vectors along a curve v from w to
p.

Second, the image of the set X under parallel translation from p to ¢ will in
general depend on which path is taken. This, however, 1s a situation which we
have already encountered when discussing mathematical morphology on spaces
with a noncommutative group action; see Sect. 2. The solution found in that
case works here as well: simply consider all possible paths from p to g.

Now it is possible to define dilations and erosions. Let A (the ‘structuring
element’) be a subset of the tangent space M, w an arbitrary but fixed point

of M. Then define a mapping 6 : P(M) = P(M) by

i (X) = U U Exp([/‘P’Y[w,z] (A)’ (12)

reX v

where the second union runs over all curves 5 = 5[, ;] from w to x. This can be
rewritten as follows. Choose for every « € M a particular curve (‘representative’)
from w to z. Let 7, denote parallel translation along this particular curve. Then,
if ¥ is the holonomy group at w, which for the surfaces in IR® considered here
is simply the group of rotations around the normal at w, (12) can be written as

5i(x)={J U #(sA). (13)

rzeX seXy

It is obvious that this mapping is a dilation, either by direct proof or through
the invocation of Prop. 1. Since parallel translation commutes with unions—
both Exp, and the vector space isomorphism P, do—we also can write (13) in
the form

05(X) = |J (), (14)

where

A= U sA (15)

sexy

may be called the X-invariant extension of A. For example, if Ais aline segment
of length r starting at w then A is a disk of radius r centred at w. The similarity
of these expressions with the results in Sect. 2 is clear. Erosions can be defined
in a similar way. If A is a Y-invariant structuring element then the mapping

ex(X) = {z € M : 7 (A) C X}, (16)

1s an erosion which extracts all the points « of M such that the parallel translate
of A from w to z fits in X.
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Openings can also be easily defined, where one does not have to restrict
oneself to Y-invariant structuring elements. For any neighbourhood A in M,
let

ai(X) = (J{R)  7(4) € X} (17)
zeM

be the union of all parallel translates of A along curves starting at w which are
included in X. It is obvious that this is an opening. Closings can be defined
similarly.

Ezample. This example was already discussed in Sect. 2. Take for A a disc of
radius r centred at the origin in M,. Then the parallel translate ?x(ﬁ) 1s a
spherical neighbourhood at # € M. The dilation ¢ ;(X) by A is the union of
all points of distance smaller than r to some point of X, and the opening by A

extracts from X all spherical neighbourhoods of radius r which fit into X.

Ezample. Take for A a straight line segment of length L through the origin in
M,,. Then the parallel translates of A are geodesic segments and the opening by
A extracts from X all geodesic segments of length L which fit into X.

5 Discussion

In this paper the study of shape description of patterns on arbitrary (smooth)
surfaces based on mathematical morphology has been initiated. The main aim
has been to give an outline of the mathematical structure of this description
based on concepts of differential geometry, in particular those of parallel trans-
port and covariant differentiation which can be used to replace the more re-
stricted concept of invariance groups used so far in mathematical morphology.
Various morphological operators have been constructed on a surface M which
are defined in terms of neighbourhoods of M which are obtained by parallel
translation of a single set A C M (the ‘structuring element’). If M is Euclidean
space or a sphere then these morphological operations reduce to the known ones
which are invariant under the appropriate group (translations, rotations). What
has not been discussed here is a precise formulation—in algebraic terms—of the
invariance properties satisfied by the operators introduced here for arbitrary
surfaces. This is an open problem which requires a more detailed study.
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