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The Implementation of a Parallel Watershed Algorithm �A. Meijster and J.B.T.M. RoerdinkUniversity of Groningen,Institute for Mathematics and Computing ScienceP.O. Box 800, 9700 AV Groningen, The NetherlandsEmail: arnold@cs.rug.nl roe@cs.rug.nlTel. +31-50-633931, Fax. +31-50-633800AbstractIn this paper the implementation of a parallel watershed algorithm is described. The algorithm isimplemented on a multiple instruction multiple data (MIMD) ring-architecture using a single programmultiple data (SPMD) approach using an asynchronous message passing interface and simulatedshared memory via the Linda tuple space. The watershed transform is generally considered to beinherently sequential. This paper shows that it is possible to exploit parallelism by splitting thecomputation of the watersheds of an image into three stages that can be executed in parallel. Thispaper is an extended version of [4].Keywords: watershed algorithm, parallel implementation, image segmentation.1 IntroductionIn the �eld of image processing and more particularly in grey scale Mathematical Morphology [5, 6]the watershed transform [2, 3, 8] is frequently used as one of the stages in a chain of image processingalgorithms. Unfortunately, the computation of the watershed transform of a grey scale image is a relativelytime consuming task and therefore usually one of the slowest steps in this chain. A common solution forsuch computationally expensive algorithms is to search for implicit parallelism in the algorithm and usethis to implement the algorithm on a parallel computer. Unfortunately this technique does not apply tothe watershed algorithm, since the basic watershed algorithm is inherently sequential.The watershed algorithm can easily be extended to graphs, as shown in [8]. This fact is used to derivean alternative algorithm which enables a parallel implementation. We �rst transform the image into agraph in which each vertex represents a connected component at a certain grey level h. Then we computethe watershed of this graph and transform the result back to the image domain. The computation of askeleton of plateau regions is performed as a post-processing step.2 The Watershed TransformIn [8] an algorithmic de�nition of the watershed of a digital grey scale image is given. In this section wewill give a short summary of this de�nition.A digital grey scale image is a function f : D �! N, where D � Z2 is the domain of the image (pixelcoordinates) and for some p 2 D the value f(p) denotes the grey value of this pixel. Grey scale imagesare looked upon as topographic reliefs where f(p) denotes the altitude of the surface at location p. LetG denote the underlying grid, i.e. G is a subset of Z2 � Z2. A path P of length l between two pixels pand q is an l + 1-tuple (p0; p1; :::; pl�1; pl) such that p0 = p, pl = q and 8i 2 [0; l) : (pi; pi+1) 2 G. For aset of pixels M the predicate conn(M ) holds if and only if for every pair of pixels p; q 2M there exists apath between p and q which only passes through pixels of M . The set M is called connected if conn(M )holds. A connected component is a nonempty maximal connected set of pixels. A regional minimum(minimum, for short) of f at altitude h is a connected component of pixels p with f(p) = h from which�In: Proc. Computing Science in the Netherlands, 27-28 november, Utrecht, 1995, pp. 134-142. Postscript versionobtainable at http://www.cs.rug.nl/~roe/



it is impossible to reach a point of lower altitude without having to climb. Now, suppose that pinholesare pierced in each minimum of the topographic surface and the surface is slowly immersed into a lake.Water will �ll up the valleys of the surface creating basins. At the pixels where two or more basins wouldmerge we build a `dam'. The set of dams obtained at the end of this immersion process, that is when theentire surface is 
ooded, is called the watershed transform of the image f .Before going to the algorithm for computing watersheds, we need a few more de�nitions.De�nition 1. Let A be a set, and a; b two points in A. The geodesic distance dA(a; b) withinA is the in�mum of the lengths of all paths from a to b in A. If B is a subset of A, we de�nedA(a;B) := infb2B(dA(a; b)). In the digital case one uses an appropriate distance, such as the city-block distance function.Now we will give the de�nition of in
uence zones. Let A be some set of pixels. Let B � A bepartitioned in k connected components Bi, i.e. B = Ski=1Bi.De�nition 2. The geodesic in
uence zone of the set Bi within A is de�ned as izA(Bi) = fp 2 A j8j 2 [1::k]nfig : dA(p;Bi) < dA(p;Bj)g.The set IZA(B) is de�ned as the union of the in
uence zones of the connected components of B, i.e.IZA(B) = k[i=1 izA(Bi) (1)De�nition 3. The complement of the set IZA(B) within A is called the skeleton by in
uence zones of A:SKIZA(B) = AnIZA(B) (2)3 The Classical AlgorithmA digital algorithm for computing the watershed transform was developed in [7, 8].De�nition 4. Let f be a grey level function. The setTh = fp 2 D j f(p) � hg (3)is called the threshold set of f at level h.Let hmin and hmax respectively be the minimum and maximumgrey level of the digital image. Let Minhdenote the union of all regional minima at the altitude h.De�nition 5. (Watershed algorithm) De�ne the following recurrence:Xhmin = fp 2 D j f(p) = hmingXh+1 = Xh [Minh+1 [ (IZTh+1 (Xh)nTh); h 2 [hmin; hmax) (4)The watershed transform of the image f is the complement of Xhmax in D:Wshed = DnXhmax (5)Intuitively, one could interpret Xh as the set of pixels p, satisfying f(p) � h, that lie in some basin.The recursion above is based upon the following case analysis [8], which is explained here in somedetail in preparation of the parallel algorithm to follow.For the recursive relation between Xh and Xh+1 the threshold set Th+1 is considered. It is obviousthat Xh � Xh+1 � Th+1. Let Y be a connected component of Th+1. There are three possible relationsbetween Y and Xh:1. Y \Xh = ;. In this case Y is a new minimum at level h+ 1 and thus (after piercing a hole in it)the starting set of a new basin. Clearly Y � Xh+1.2. Y \Xh 6= ; and is connected. Clearly Y is an extension of the basin Xh, and thus Y � Xh+1.



3. Y \Xh 6= ; and is not connected. In this case Y contains two or more distinct minima of f . LetZ1; : : : ; Zk be these minima. Then the basin Xh is expanded by computing the geodesic in
uencezone of Zi within Y .Most implementations of algorithms that compute the watershed of a digital grey scale function aredirect translations of the recursive relation (4). The basic structure of these algorithms is a main loop inwhich h ranges from hmin to hmax. In every iteration the basins belonging to the minima are extendedwith their in
uence zones within the set Th+1. The fact that Xh is needed to compute Xh+1 clearlyexpresses the sequential nature of this algorithm.Computing in
uence zones is a costly operation, while it is a waste of time in the �rst two cases of theabove case analysis. Also, the SKIZ is not necessarily connected, and may also be a `thick' one, meaningthat a set of pixels equally distant from two connected components may be thicker than one pixel.The watershed algorithm as given above can easily be extended to graphs, as shown in [8]. Thisfact is used in the next section where we propose an alternative algorithm which enables a parallelimplementation of this algorithm. We �rst transform the image into a graph in which each vertexrepresents a connected component at a certain grey level h. Then we compute the watershed of thisgraph and transform the result back to the image domain. The computation of a skeleton of plateauregions is performed as a post-processing step.4 An Alternative AlgorithmIn the algorithm described in the previous section in
uence zones were computed during every iterationof the algorithm. There is the problem of plateaus which may result in thick watersheds. Now, supposethat the image f does not contain plateaus, i.e. 8(p; q 2 D : (p; q) 2 G) f(p) 6= f(q)). In this case every'plateau' consists of exactly one pixel. This observation leads us to an alternative watershed algorithm,which consist of 3 stages:1. Transform the image f into a directed valued graph f� = (F;E), called the components graph of f .2. Compute the watershed of the directed components graph.3. Transform the labeled graph into a binary image, and compute a skeleton of the watershed plateausto get thin watersheds.
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Figure 1: (a) arti�cially generated image. (b) labeled level sets. (c) components graph.4.1 Stage 1The �rst stage of this algorithm transforms the image f into a directed valued graph f� = (F;E), calledthe components graph of f . Here F denotes the set of vertices of the graph and E the set of edges.



The vertices of this graph are maximal connected sets of pixels which have the same grey values. In theremainder of this paper these sets are called level components. The set of level components at level h isde�ned as Lh = fC � ThnTh�1 : C is a connected component of ThnTh�1g (6)The set of vertices of the graph f� is the collection of level components of f , i.e.F = hmax[h=hmin Lh (7)A pair of level components (v; w) is an element of the edge set E if and only if 9(p 2 v; q 2 w : (p; q) 2G ^ f(p) < f(q)). By de�nition every directed path through this graph increases in altitude. With alittle abuse of notation we denote the grey-value of a level component w by f(w), which is the value f(p)for some p 2 w.4.2 Stage 2The second stage of the algorithm computes the watershed of the directed graph. The structure of thisstage is very similar to the original watershed algorithm described in the previous section. The basic ideais to assign a colour (label) to each minimum and its associated basin by iteratively 
ooding the graphusing a breadth �rst algorithm. If some node v can be assigned two or more di�erent labels, i.e. the nodecan be reached from two di�erent basins along an increasing path, the node is marked to be a watershednode. If the node can only be reached from nodes which have the same label the node is assigned thissame label, i.e. the node is merged with the corresponding basin. A pseudo-code of this algorithm isgiven in Fig. 2.4.3 Stage 3In the third, and last, stage of the algorithm the labeled graph is transformed back into an image. Thepixels belonging to a watershed node are coloured white while pixels belonging to non-watershed nodesare coloured black. After this transformation we end up with a binary image, in which the watershedsare plateaus. If we want thin watersheds we need to compute a skeleton of this image, for example theskeleton by in
uence zones as described in section 2. But also di�erent types of skeletons can be used,which gives us more freedom than in the original watershed algorithm. If node v is a watershed node, wecompute the skeleton of the set v by computing the in
uence zones of the non-watershed components.5 Parallelization of the Second AlgorithmThe runtime performance of the sequential algorithm proposed in the previous section turns out to beapproximately the same as the performance of the algorithm described in [8]. For images containingmany small level components the graph algorithm performs less well, since the components graph of suchimages is very large and thus it takes a relatively large time to build the graph. On the other hand, ifthe image contains larger level components the size of the graph decreases, taking less time to build thegraph. Now the algorithm starts to outperform the classical algorithm, since we only have to computethe skeletons of watershed nodes. So, at �rst sight it appears we hardly gained anything using the graphalgorithm.However, since we clustered all the pixels which are in the same level component in one single nodeof the components graph, we can decide whether a node is a watershed node based on local arguments,i.e. we only have to look at the lower neighbours of the node in the graph. In the traditional watershedalgorithm it is not possible to make this decision based on the altitude of neighbouring pixels since thesepixels can be part of (very large) plateaus. Because of this fact it is hard to make a parallel version of thetraditional watershed algorithm, since there will be substantial communication between the processors.In contrast to the traditional algorithm, the graph algorithm can be parallelized. In the rest of this paperwe assume that we have a ring network of N processors. Each processor is identi�ed by an identi�er calledmyproc, which represents the number of the processor in the network. Each processor can communicatedirectly with both its neighbouring processors, using an asynchronous message passing interface. Each



processor has its own local memory for storing the program it executes and for storage of data. Also,there is a simulated piece of shared memory called the Linda tuple space [1].MASK := -1; WSHED := 0; lab := 1;for h := hmin to hmax dobegin (� mask all nodes at level h �)forall v 2 F with f(v) = h dowsh[v] := MASK;(� extend basins �)forall v 2 F with f(v) = h dobegin iswshed := false;forall w 2 F with (w; v) 2 E doif :iswshedthen if wsh[v] = MASKthen wsh[v] := wsh[w]else if wsh[w] > 0then if wsh[v] = WSHEDthen wsh[v] := wsh[w]else if wsh[v] 6= wsh[w]then begin wsh[v] := WSHED;iswshed := trueendend;(� process newly discovered minima �)forall v 2 F with wsh[v] = MASK dobegin wsh[v] := lab;lab := lab + 1endend; Figure 2: Watershed algorithm on a components graph.
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L6Figure 4: (a) data distribution for four processors. (b) labeling of the distributed image.tuple (a; b) in the tuple space using the command out (a; b). It can read and delete a tuple from thetuple space using the command in (a; b). A tuple can be read from the tuple space without deleting itusing the command read (a; b). For either of both reading operations, a must have an initialized valuebefore the read operation. When the read operation is performed the runtime system tries to �nd a tuplein the tuple space which matches this value of a. If it �nds such a tuple, let us say (a; c), the value c isassigned to b. If a processor performs two consecutive reading operations trying to �nd the same matchingtuple, two distinct tuples result. If the runtime system cannot �nd a matching tuple the processor thatcalled the read operation is blocked until some processor places a matching tuple in the tuple space.1The programming style we use is called SPMD (single program multiple data), which means that everyprocessor runs exactly the same program, performing operations on its own data space.5.1 Data Distribution and Level Components LabelingThe parallel implementation of the watershed algorithm consists of the same three stages as describedin the previous section. The �rst stage concerns the labeling of the level components. This stage isperformed by only one processor, let us say processor 0, on the entire image. After labeling this processordistributes the input image and the labeled image over the processors using the ring network. Let Hand W respectively be the height and width of the input image. We assume that H is a multiple ofN . If this is not the case the image is augmented with a few extra scanlines. The value of the pixels ofthese extra scanlines is set to hmax in order to avoid that new basins are introduced. Every processoris assigned a slice of H=N consecutive scanlines, while consecutive slices are assigned to neighbouringprocessors. Each processor also has one scanline overlap with its neighbouring processors, so that it candecide whether level components are shared with neighbouring processors. During the distribution ofthe image slices processor 0 builds up an integer valued table which is indexed by label numbers. Thistable, called shared in the program, denotes the number of processors that have at least one pixel of thecorresponding component in its image slice. After distribution every processor receives a local copy ofthis table. This table is extensively used in the second stage of the algorithm.The fact that the labeling is performed by only one processor instead of N processors is just a matterof implementation. It is possible to label the image in parallel, however labeling is a fast operation whichis hardly worth the burden of parallelization.1Full Linda implementations are more general than described here, but this subset of the semantics of the Linda tuplespace su�ces for our needs.
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LFigure 5: (a)-(d) local components graph on processors P0, P1, P2 and P35.2 Parallel Watershed Transform of a GraphAfter the labeling stage every processor builds a local components graph for its own slice of the image.Since some level components are shared between several processors the graphs on the processors are notdisjoint. In Fig. 5 the local graphs for the example image are shown. Shared vertices are drawn as arectangular node while non-shared vertices are drawn as circular nodes. Note that a processor can easilydetermine whether a node v is shared, since in that case shared[v] > 1.After building the local components graphs every processor performs an adapted version of the 
oodingalgorithm. One of the problems to be solved is that a new minimum which is shared between two ormore processors must be given the same new label. This is solved by introducing an integer array ownerwhich is indexed by label numbers, just like the table shared. If owner[v] = i for some minimum v thenprocessor Pi, which has at least one pixel belonging to vertex v in its image slice, assigns a new label tothis minimum, and stores this value in the tuple space. After putting this tuple in the tuple space everyother processor sharing this vertex can read this newly created label and assign it to its local vertex v.A similar method is used for expansion of basins. After performing local 
ooding for level h eachprocessor puts the local colour of every shared vertex, which can be MASK, WSHED or some positivelabel, in the tuple space. After that, every processor retrieves these values from the tuple space andcompares these values. If all these values are the same positive label number, the corresponding localcopy of the vertex is coloured this label number. If not, the corresponding vertex is a watershed node.At the end of the 
ooding process each processor transforms its local components graph back into animage slice, like in the sequential case. The result is a slice of the watershed transform of the input image.Since the watersheds in these slices can be thick plateaus we could decide to perform a skeletonization, likethe skeleton by in
uence zones. This skeleton can be computed using a parallel or a sequential algorithm.In both cases, if we want to compute the skeleton of some level component v, we only need the pixels ofthe component v and its lower neighbours, which are easily accessible from the graph representation.6 ConclusionsIn this paper we have shown that it is possible to compute the watershed transform of a grey scale imagein parallel by splitting the computation in three consecutive stages. In theory all these stages can beimplemented in parallel, but in practice it is only worthy to implement the second stage in parallel.In the �rst stage of the algorithm the input image is transformed into a directed components graph. Inthe second stage of the algorithm the watershed of this graph is computed by a breadth �rst coloringalgorithm. The decision which colour to assign to a certain node can be made by examining the colorsassigned to its neighbouring nodes. This locality property makes it possible to perform this stage inparallel, in contrast with the classical watershed algorithm. In the �nal stage of the algorithm the
ooded graph is transformed back into the image domain. Pixels belonging to watershed nodes of thegraph are coloured white, while pixels belonging to non-watershed nodes are coloured black. The resultingwatersheds are `thick'. `Thin' watersheds can be obtained by performing some skeletonization algorithm



LAB := -2; MASK := -1; WSHED := 0;if myproc = 0 then out (LAB; 1);for h := hmin to hmax dobegin (� mask all nodes at level h �)forall v 2 F with f(v) = h dowsh[v] := MASK;(� extend basins �)forall v 2 F with f(v) = h dobegin iswshed := false;forall w 2 F with (w; v) 2 E doif :iswshedthen if wsh[v] = MASKthen wsh[v] := wsh[w]else if wsh[w] > 0then if wsh[v] = WSHEDthen wsh[v] := wsh[w]else if wsh[v] 6= wsh[w]then begin wsh[v] := WSHED;iswshed := trueendend;(� put labels of shared level components in tuple space �)forall v 2 F with f(v) = h ^ shared[v] > 1 doout (v; wsh[v]);(� read tuples from tuple space, determining whether v is watershed node �)forall v 2 F with f(v) = h ^ shared[v] > 1 dobegin i := 0;while i 6= shared[v] ^ wshed[v] 6= WSHED dobegin read (v; tmp);if wsh[v] = MASKthen wsh[v] := tmpelse if tmp 6= MASK ^ wsh[v] 6= tmpthen wsh[v] := WSHED;i := i+ 1end;end;(� process newly discovered minima �)forall v 2 F with wsh[v] = MASK doif owner[v] = myprocthen begin in (LAB,lab);wsh[v] := lab;lab := lab + 1;out (LAB,lab)endelse read(v; wsh[v])end;Figure 6: Each processor performs the above code in the parallel version of the watershed algorithm.



on the output image. The choice which skeletonization algorithm to use is arbitrary.References[1] H. Bal, Programming Distributed Systems. Prentice Hall, 1990.[2] S. Beucher and F. Meyer. The morphological approach to segmentation: The watershed transform-ation. In E.R. Dougherty, editor, Mathematical Morphology in Image Processing. Marcel Dekker,New York, 1993. Chapter 12, pp. 433{481.[3] F. Meyer and S. Beucher. Morphological segmentation. Journal of Visual Communications andImage Representation, 1(1):21{45, 1990.[4] A. Meijster and J.B.T.M. Roerdink. A Proposal for the Implementation of a Parallel WatershedAlgorithm. In: Proceedings of Computer Analysis of Images and Patterns (CAIP'95), SpringerVerlag, 1995.[5] J. Serra, Image Analysis and Mathematical Morphology. Academic Press, 1982.[6] S.R. Sternberg, Grayscale Morphology. Computer Vision, Graphics, Image Processing, 35, pp. 333-355, 1986.[7] L. Vincent. Algorithmes Morphologiques a Base de Files d'Attente et de Lacets. Extension auxGraphes. PhD thesis, Ecole Nationale Superieure des Mines de Paris, Fontainebleau, 1990.[8] L. Vincent and P. Soille, Watersheds in Digital Spaces: An E�cient Algorithm Based on ImmersionSimulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, no. 6, pp. 583-598, june 1991.


