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The slope-slope correlation function N(r) is investigated for self-affine 
rough surfaces. Calculations of N(r) are performed in terms of analytic 
phenomenological height-height correlation functions, which however 
compare well to real data. It is found that N(r) behaves as: N(r) CC r2(*-l) 
for 0 < r < 5, N(r) c 0 for r > t and N(r)-+O- for r --r+m. The parameters 
5 and H (0 c H c 1) are respectively the in-plene roughness correlation 
length, and the roughness exponent. Moreover, connection of the results to 
model predictions describing stable and unstable growth is attempted. 
Copyright 0 1996 Published by Elsevier Science Ltd 

Orientation correlation functions have been widely used 
to describe the fluctuations of membrane-like surfaces 
[l] and surfaces grown under non-equilibrium conditions 
[2,3]. In the latter case, for growth dominated by surface 
diffusion in the harmonic approximation (absence of 
non-linearities), the orientation correlation function 
scales as -In(r) (r is the in-plane position vector) in 
(2 + 1)-dimensions [2]. The presence of non-Iinearities 
during growth (depending on the dimensionality) can 
cause power law scaling of the orientation correlation 
functions [2]. 

Furthermore, during growth by means of Molecular 
Beam Epitaxy (MBE) in the presence of step-edge 
(Schwoebel) barriers, there is selection of a critical 
slope (m = IVz(r)], where z(r) is the surface height and 
the in-plane position vector) that leads to unstable growth 
with the formation of large-scale mounds over a singular 
surface (i.e. a low index crystal face), or to stable growth 
of a vicinal surface with a miscut above a certain value 
[3]. In fact, growth instabilities manifest themselves as 
pyramid-like structures [4]. It has been suggested that the 
classification of the growth law can be determined from 
the temporal evolution of the first zero of the slope-slope 
correlation function N(r) - C,PI c m@)m(r +p) > [4]. 

This functional was also used to determine the scaling 
behaviour of the domain size in the XI’-model [5]. 

The non-equilibrium process besides the instabilities, 
however, leads in many cases to scale invariance of the 
correlation functions which is manifested as self-affine 
fractal scaling [6]. Natural examples of self-affine 

topology are the nanometer scale topology of vapour 
deposited films [7], the spatial fluctuations of liquid-gas 
interfaces [8], the kilometer-scale structures of mountain 
terrain [6], etc. Physical processes which produce such a 
topology are fracture, erosion and MBE, as well as fluid 
invasion of porous media [9]. 

A thorough study of properties of the slope-slope 
correlations for self-affine fractals is still missing. In our 
study, we shall examine properties of slope-slope corre- 
lations in terms of phenomenological height-height 
correlation models which, however, can describe real 
data significantly well. 

All rough surfaces exhibit perpendicular fluctuations 
which are characterised by a mean-square roughness 
u = c [z(r)]* >l’*; < z(r) > = 0, where < . , . > is an aver- 
age over the whole planar reference surface. For an 
isotropic rough surface, the height-difference correlation 
function g(r) is written as g(r) = < [z(r) - z(0)12 >. For 
any physical self-affine surface g(r) will saturate at large 
length scales to the value 22. Thus, it is characterised by 
a finite correlation length ,$ [lo, 111 such that g(r) - r2H if 
r < [ and g(r) = 2a2 if r > 4. H(0 CH < 1) is the 
roughness exponent which characterises the degree of 
surface irregularity [12]. Small values of H - 0 corre- 
spond to extremely jagged or irregular surfaces, while 
large values of H - 1 to surfaces with smooth hills and 
valleys [lo]. The function g(r) is related to the height- 
height correlation function C(r) = c z(r)z(O) > by means 
of g(r) = 2a2 - 2C(r). 

As mentioned earlier, the fluctuations of membrane 
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Fig. 1. Schematics for the slope-slope correlation with (I = 0.7 nm, and 5 = 100 nm. N,(r) solid line; Nk(r), dot- 
dashes. 

surfaces are more conveniently characterised by the 
orientation correlation function G(r) = < [Vz(r”)- 
Vz(r’)]’ > (r = r” - r’) [l, 21. The slope-slope correla- 
tion function N(r) = < Vz(r”)Vz(r’) > is related to G(r) 
by means of G(r) = 2 c [Vz(r)12 > -m(r). For an orien- 
tationally disordered surface G(m) diverges, while for an 
asymptotically flat surface G(m) is a constant [l, 21. Let 
us denote the average macroscopic sample surface by A. 
We define C(r) by C(r) = l/A f c z@ + r)z(p) > d$, 
and N(r) by N(r) = l/A I< Vz(p + r)Vz@) > d2p. The 
symbol < . . . > denotes an ensemble average over possi- 
ble roughness configurations. A simple relation exists in 
between C(r) and N(r), namely N(r) = -V2C(r). Alter- 
natively for isotropic surfaces, if we define by C(k) the 
Fourier transform of C(r)[C(r) = JC(k)e’k’d2k], we 
obtain 

kc 

N(r) = -V2C(r) e N(r) = 27r 
J 

k3C(k).J,(kr)dk, 

0 

(1) 

where Jo(x) is the zero-order Bessel function. k, = n/u0 
with a0 the atomic spacing. The upper cut-off is related 
with the fact that any notion of fractal scaling at length 
scales below aa ceases to exist. 

We will perform explicit calculations of N(r) for two 
correlation models. The first one is the &o-called 
stretched exponential [ll, 131 C,(r) = ~~6’~) , which 
has been used in a wide range of relaxation phenomena 

studies [13] and can be utilised to study the limiting case 
H = 1 (observed in unstable MBE-growth of pyramid- 
like structures) explicitly. The second model is the 
so-called k-correlation function which has an analytic 
Fourier transform Ck(k) = (02E2/27r)[1 + ak2!j2]-‘-H 
with a = (1/2H)[l - (1 + &&*I if 0 < H < 1 and 
a = l/2 In (1 + &t2) if I-Z = 0. This model can be 
used also to investigate the case of logarithmic roughness 
(H = 0) as a limiting case of self-affine roughness [14]. 
The logarithmic roughness (H = 0) is related to predic- 
tions of various growth models of the non-equilibrium 
analogue [15] of the equilibrium roughening transition 

WI. 
In both cases from equation (l), we obtain 

CS(r)($2(“S1)[1 - ($“I: 

k 

0 

(2) 

Nk(‘-) = u2;;:,, (&rK2-H (&) 

x (Z-Z > 1/4Ar, t >> uo), 

where k&+,(x) is the (2 - H)-order second kind Bessel 
function. 

Plots of Ns,k(T) are shown in Fig. 1, where it can be 
observed that the slope-slope correlation function 
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reveals significant structure in the regime of length scales 
r-E (minimum). This is explained by the fact that for 
length scales r < -4 the slopes repel each other leading to 
disorder and for r > t are attracted leading to an ordered 
structure in such a way that the surface is asymptotically 
flat (for r > f). The depth of the well for N&) (Fig. 1) 
increases as H decreases, which implies that the smaller 
the H the larger is the attraction of the slopes for length 
scales -[. For N,(r), the apparent opposite behaviour as a 
function of H is related with the fact that the correlation 
function C,(r) inverts its decay rate at I 2 5 (see first of 
[13]) and for small H(H - 0) shows a completely 
unphysical behaviour [14]. The minimum (Rmin) is a 
function of H and E, and increases with increasing H. 
In fact, for Ns(r) is given explicitly by R,,/s$ = 
[(6H - 2 + [20H2 - 8H + 4])/2H]“? 

Furthermore, we have N,(O,H c 1) = w and 
N,(O,H = 1) = 4a2/t2. Moreover, at a0 < r << ,$! we 
have N,(r) -(r/t) *(“-‘) On the other hand for Nk(r), . 
we have Nk(0) = ($,$*/2u*)([l/(l -H)] [l+ akc* 
t2)leH - l] - 2~) if 0 5 H c 1 and Nk(0) =(a2~2/2u2) 
{ln(l+ak~~2)-2.u)ifH=1.Forao<<r<<~wehave 
Nk(r) - (r/f>2’H-” and for r >> E we have the asymptotic 
behaviour Ni(r) - (r/~)H-“2 exp (-r/E). Therefore from 
the previous, the general behaviour of N(r) for 0 5 H < 1 
can be described briefly from the following scheme. 

N(r) 03 
a’& if r - 0; rzcHpl) if r < ,$ 

<Oif t<r<+m; *O-if r++a. 
(3) 

,_ 

l- 

0.0 

The apparent divergence at r - 0 is a result of the non- 
existence of a lower continuum limit which for the case 
of Nk(r) has been taken into account and from the fact 
that H < 1. Scaling behaviour similar to power law 
-r2(H-1) has also been observed for G(r) in studies of 
surface diffusion models (where depending on the 
dimensionality) we have; G(r) - r2(H-1) [2]. 

In Fig. 2, we present N(r) Scanning-Tunneling- 
Microscopy (STM) data from an Ag-film deposited (at 
rate 0.03 nm s-‘) by means of thermal evaporation on a 
Quartz crystal substrate kept at room temperature 
(-300K). The topographic images acquired with scan 
size 500 nm (BE). The data are averages from four STM 
images acquired on different surface locations. The inset 
shows the corresponding height-height correlation func- 
tion which is well fitted by the C,(X) function for r S 2l 
with 4 = 12.3nm and H = 0.72 (first of [13]). 

The formation of pyramid like structures observed in 
experimental studies of unstable growth possesses rough- 
ness exponent H = 1 [3,4,18]. The theory suggested 
recently by Siegert and Plischke [4] predicts that there is 
not any wavelength-selection: in an infinite system the 
pyramids would continue to grow, whereas in a finite 
system the surface profile saturates when only one 
pyramid remains. Similarly according to Johnson et al. 
[3], the mounds grow by keeping the angle the sloping 
sides make with the terraces constant, and further as the 
growth continues the mounds coalesce until only one of 
the order of the system size remains. At this point finite 
size effects cause the surface to saturate. 

The case H = 1 can be treated in a simple way as 
a limiting case of self-affine structure by means of 
the correlation function C,(r) = a2 e-(r’s)zH. In this 
case, N,(r,H = 1) is given by N,(r,H = 1) = 4(a*/ 
$2)e-(r’e)2 [l - (r/&*1 with well-minimum at Rmin = 
2l”t and zero at R = 5. In fact the function 
N,(r,H = 1) suggests that the length scale [ still 
remains the length scale, where its temporal evolution 
(i.e. by increasing film thickness during deposition) 
will define the growth law of the system [4]. Despite 
the fact that this conclusion is drawn from isotropic 
surfaces in the v-plane, its validity is plausible to be 
extended to anisotropic surfaces. 

The existence of a zero (R) of N(r) [N(R) = 0] 
occurs for length scales -,$j (see Fig. 1) with an exact 
value that depends on the particular model under inves- 
tigation. In fact, for N,(r) the zero occurs exactly at 
R = 4 independently of the value of H. While for N&) 
as H decreases, R also decreases. Nevertheless, it should 
also be pointed out that the slope-slope correlation 
function possesses only one zero which is a function of 

Differences in the behaviour of the slope-slope 
correlations arise in (1 + l)-dimensions. This can be 
seen easily if we calculate N,(x) from C,(x) correlation. 
From eauation (1) we obtain N,(x) = (W)*(XIF)~-* . \ , 

Fig. 2. N(r)-correlation data vs r/t for the room-tem- 
perature Ag-film with H = 0.72. The inset depicts the 
corresponding correlation data C(r) vs r/E. 

H and 4. This point is important since in the case of 
H = 1 (unstable growth) the growth law can be deduced 
from the temporal dependence of this zero; R - tl” with 
3 5 z 5 4 [4]. 
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Fig. 3. Schematics for N,(X) vs x/t for I-Z = 0.3: Squares, 
H = 0.5: Circles, H = 0.8: Up-triangle. The inset shows 
N,(x) vs x/s for H = 0, Squares; H = 0.5, Circles; 
H = 1, Up-triangle. 

[(x/,$)~ - (1 - ~/W)]C,(X)/[~ (see Fig. 3). We can 
observe that N,(x) > 0 everywhere for H < l/2, while 
N,(X) < 0 for H > l/2 in the regime of length scales 
x < [(l/W - l)uw and N,(x) >O for x> t(l/W- 
l)‘lw (Fig. 3). H owever, in order to gauge the effect of 
model-dependence, we perform a calculation of the 
slope-slope correlation for another model, which is not 
problematic at very low roughness exponents H(H - 0) 
as it happens for the C,(x) function [13]. 

Thus, we choose the model C,(k) = a2&1+ 
a]k]t)-1-2H [19] with the parameter “a” given by 
a = (l/H)[l - (1 + ak,f)-2H] (0 < H 5 1); a = (l/2) In 
(1 + ak&) (H = 0). The Cr -model has natural behaviour 
for all the exponents 0 I H 5 1 [20], where based on 
equation (1) we obtain Nr(x) = 2a2.$x2 sk2(1+ 

a&) -lpZHdk (0 zz k 5 k,). As can be seen in the inset 
of Fig. 3, we have similar behaviour with the N,(x) for 
large and small roughness exponents H. The only model 
dependence is on the value of H for which above that 
value [H = l/2 for N,(x)]N(x) < 0 at small length scales. 
Moreover, from both (1 + 1)-dimensional cases we infer 
that the existence of a zero [N(x) = 0] depends strongly 
on the value of H by contrast to (2 + 1)-dimensions. 
Therefore we can conclude that in (1 + 1)-dimensions, 
the slope-slope correlation posseses drastically different 
behaviour than in (2 + l)-dimensions. 

In conclusion, we investigated properties of the 
slope-slope correlation N(r) for self-affine fractal 
morphologies. The degree of surface irregularity 
(which is depicted through H) plays a crucial role on 
the disordering-ordering process as a function of length 
scale, which is depicted by means of N(r) (Fig. 1). 
Furthermore, our study revealed the existence of a 

unique zero of N(r) for self-affine morphology, which 
can play an important role in determining the growth law 
in the limiting case of H = 1 (unstable growth) as has 
been already pointed out in previous studies [4]. Finally, 
drastic differences in the behaviour of the slope-slope 
correlation arise as a function of the surface imbedded 
space dimension. 

Acknowledgements-It is a pleasure to acknowledge 
useful correspondence with M. Plischke (Simon Fraser 
University, Canada), G.A. Niklasson and C.G. Granqvist 
(Uppsala University, Sweden) and P. Statiris (G.S.A. 
Research & Development Center). Finally, I would like 
to acknowledge the hospitality of the G.S.A. Research 
and Development Center. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 
13. 

REFERENCES 

Statistical Mechanics of Membranes and Surfaces 
(Edited by D. Nelson, T. Piran and S. Weinberg). 
World Scientific, Singapore, 1989. 
Golubivic, L. and Bruinsma, R., Phys. Rev. Lett., 
66, 1991, 321. 
Johnson, M.D., Orme, C., Hunt, A.W., Graff, D., 
Sudijono, J., Sander, L.M. and Orr, B.G., Phys. 
Rev. Lett., 72, 1994, 116. 
Siegert, M. and Plischke, M., Phys. Rev. Lett., 73, 
1994, 1517; Ernst, H.J., et al., Phys. Rev. Lett., 72, 
1994, 112. 
Siegert, M. and Rao, M., Phys. Rev. Lett., 70,1993, 
1956. 
Mandelbrot, B.B., The Fractal Geometry of 
Nature. Freeman, New York, 1982. 
See references therein, Meakin, P., Phys. Reports, 
235, 1994, 191; Palasantzas, G. and Krim, J., MRS 
Proc., 317, 1994; Palasantzas, G. and Krim, J., 
Phys. Rev. Lett., 73, 1994, 356; Thompson, C., 
Palasantzas, G., Feng, Y.P., Sinha, SK. and Krim, 
J., Phys. Rev., B49, 1994, 4902. 
Sikkenk, H., van Leeuwen, J.M.J., Vossnack, E.O. 
and Bakker, A.F., Physica, A146, 1987, 622. 
Mitchell, M.W. and Bonnell, D.A., J. Mater. Res., 
5, 1990, 2244; Eklund, E.A., et al., Phys. Rev. 
Lett., 67, 1991, 1759; Kessler, D.A., et al., Phys. 
Rev. Lett., 69,1992, 100; Rubio, M.A., et al., Phys. 
Rev. Lett., 63, 1989, 1685; Horvath, V.K., et al., J. 
Phys. A24,1991, L25. 
Family, F. and Vicsek, T., Dynamics of Fractal 
Surfaces., World Scientific, Singapore, 1991. 
Sinha, S.K., Sirota, E.B., Garoff, S. and Stanley, 
H.B., Phys. Rev., B38,1988,2297. 
Palasantzas, G., Phys. Rev., E49, 1994, 1740. 
Palasantzas, G. and Krim, J., Phys. Rev., B48, 
1993, 2873; Weber, W. and Lengler, B., Phys. 
Rev., B46, 1992, 7953; Pynn, R., Phys. Rev., 
B45, 1992, 602; Williams, G. and Watts, D.C., 
Trans. Faraday Sot., 66, 1970, 80; Alexander, S., 
Transport and Relaxation in Random Materials, 
(Edited by J. Klafter, R. Rubin and M.F. Schle- 
singer). World-Scientific, Singapore, 1987. 



Vol. 100, No. 10 SLOPE-SLOPE CORRELATIONS FOR SELF-AFFINE ROUGH SURFACES 703 

14. Palasantzas, G., Phys. Rev., B48, 1993, 14472; 49, 
1994,5785, (E). 

15. Amar, J.G., et al., Phys. Rev. Lett., 64, 1990, 542; 
Krug, J., et al., Phys. Rev. Lett., 64, 1990, 2332; 
Kim, J. M., et al., Phys. Rev. Lett., 64, 1990,2333; 
Huse, D.A., et al., Phys. Rev., B41, 1990, 7075. 

16. Villain, J., et al., J. Phys. F: Met. Phys., 15, 1985, 
809; Jose, J., et al., Phys. Rev., B16, 1977, 1217. 

17. Watson, G.N., Treatise on the Theory of Bessel 
Functions, 2nd edn. Cambridge University Press, 
New York, 1980. The continuum limit expressions 
can be obtained in terms of the integral identity 
j’k’+“Jv(kr)(k* +X2)-‘*+@dk = [#‘x”-~I~~I’@+ l)] 
Kv -p&r) (0 < k < +m) which is valid for 
-1 <R(v) < 2R@) + 312. For x > 1, K,_,(x) = 

r/ti)“*e-” while for x << 1, K,__ (x) - (~/2)“-~ 
[l - r(l - v+p)/r(l + v -p)l(X/2+. 

18. Ernst, H.J., Fabre, F., Folkerts, R. and Lapujou- 
lade, J., Phys. Rev. Lett., 72, 1994, 112. Moreover, 
unstable growth is also observed in columnar 
structures: Le Bellac, D., Niklasson, G.A. and 
Granqvist, C.G., Europhys. Lett., 32, 1995, 155; 
Mbise, G.W., Niklasson, G.A. and Granqvist, C.G., 
in press to Solid State Commun. (private commu- 
nication). 

19. Palasantzas, G., Phys. Rev., B50, 1994, 18670. 
20. Palasantzas, G. In preparation (1996). About the 

deficiency of the C,(x) correlation function at shell 
H(< l/2), see also [13] and [14]. 


