University of Groningen

Unilaterally constrained dynamical systems

Dam, Albert Anton ten

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1997

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Dam, A. A. T. (1997). Unilaterally constrained dynamical systems. s.n.

[^0]The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Appendix A

Descriptions of the contact and release sets

In this appendix first some relations are presented that exist between subsets of the boundary set in case of unilaterally constrained dynamical systems. Next, algorithms are derived that will, in principle, produce all the contact and release sets discussed in chapters 6 and 7 in a finite number of steps.

A. 1 Linear systems

Lemma A.1.1 Let $\mathbb{X}_{n}(A, B, C)$ satisfy the assumptions. Then:
(i) $X_{c o n} \cap X_{r e l}=\mathcal{V}^{*} \cup \mathcal{V}_{g}$.
(ii) $X_{c o n, v} \cap X_{r e l}=\emptyset$, and $X_{r e l, v} \cap X_{c o n}=\emptyset$.
(iii) $X_{\text {con }} \cup X_{\text {rel }}=\operatorname{ker}(C) \backslash \mathcal{V}_{f}$.
(iv) $\mathcal{V}_{c} \cap \mathcal{V}_{g}=\emptyset$.

Proof: (i, \subseteq): Suppose that $x \in \mathcal{X}_{\text {con }} \cap \mathcal{X}_{\text {rel }}$. If $r_{C}(x)=r_{0}$ then $x \in \mathcal{V}_{c}$. From lemma 6.4.6 it follows that $x \in \mathcal{V}^{*}$. If on the other hand, $r_{C}(x) \neq r_{0}$ then $r_{C}(x)<r_{0}$ c.f. corollary 6.4.2 (i). From $x \in \mathcal{X}_{r e l}$, lemma 6.4.4 (ii), and corollary 6.4.2 (iii) it follows that $h_{r_{C}(x)}(x, \underline{u})>0$, $\forall \underline{u} \in \mathbb{U}^{\mathbb{N}}$. From $x \in X_{\text {con }}$ it follows from lemma 6.4.4 (i) that $h_{r_{C}(x)}(x, \underline{u})$ is even. From definition 6.4.5 now follows that $x \in \mathcal{V}_{g} .(\mathrm{i}, \supseteq)$: From definition 6.4.5 and lemma 6.4.4 it follows that $\mathcal{V}_{g} \subseteq X_{c o n} \cap X_{r e l}$. Suppose that $x \in \mathcal{V}_{c}$. Then $r_{C}(x)=r_{0}$ c.f. definition 6.4.5. From corollary 6.4 .2 (ii) and definition 6.4 .1 it follows that $h_{i}(x, \underline{u})=0 \forall i<r_{0}$, and $h_{r_{0}}(x, \underline{u})=C A^{r_{0}} x+C A^{r_{0}-1} B \underline{u}_{0}$, with $C A^{r_{0}-1} B \neq 0$. By appropriate choice of \underline{u}_{0} one can make $h_{r_{0}}(x, \underline{u})$ positive or negative, taking into account the parity of r_{0}. From lemma 6.4.4 now follows that $x \in \mathcal{X}_{\text {con }} \cap \mathcal{X}_{\text {rel }}$.
(ii): We only prove the first equality. The second equality can be proven analogously. Suppose $x \in \mathcal{X}_{c o n, v}$. Then $r_{C}(x)=1$ c.f. definition 6.4.7. It follows from lemma 6.4 .4 and
$C B=0$ that $h_{1}(x, \underline{u})<0, \forall \underline{u} \in \mathbb{U}^{\mathbb{N}}$. Lemma 6.4.4 (ii) now gives that $x \notin X_{\text {rel }}$.
(iii): Let $x \in \operatorname{ker}(C)$. First assume that $x \in \mathcal{V}_{f}$. Definition 6.4 .5 (ii) gives that $\forall \underline{u} \in \mathbb{U}^{\mathbb{N}}$, $r_{C}(x)$ is even and $h_{r_{C}(x)}(x, \underline{u})<0$. From lemma 6.4.4 now follows that $x \notin X_{\text {con }} \cup X_{r e l}$. Next assume that $x \in \operatorname{ker}(C) \backslash \mathcal{V}_{f}$. If $r_{C}(x)$ is odd and $h_{r_{C}(x)}(x, \underline{u})<0$ then it follows from lemma 6.4.4 that $x \in \mathcal{X}_{\text {con }}$. If $h_{r_{C}(x)}(x, \underline{u})>0$ then it follows from lemma 6.4.4 that $x \in \mathcal{X}_{\text {rel }}$. This leads to $x \in \mathcal{X}_{\text {con }} \cup X_{\text {rel }}$.
(iv): Follows from the definitions.

Note that the result in lemma A.1.1 (i) shows that example 6.3.2 is indeed non general. That example however does show that some of the subsets can be empty. For the sets X_{g}, $X_{f}, \operatorname{ker}(C)$ expressions in terms of constraint matrix C are given by (6.9), (6.10) and (6.11) respectively. Moreover, from $\mathcal{V}_{c}=\mathcal{V}^{*}$ it follows that ISA (6.7) yields the set \mathcal{V}_{c} in a finite number of steps. Therefore, in the remainder we will concentrate on the subsets $\mathcal{V}_{g}, \mathcal{V}_{f}$, $X_{c o n, v}, X_{c o n, h}, X_{r e l, v}$ and $X_{r e l, h}$. Recall from theorem 6.4.9 that these sets are two by two disjunct. For the sets $X_{c o n, v}$ and $\mathcal{X}_{r e l, v}$ there holds $r_{C}(x)=1$, by definition. From definition 6.4.1 now follows that $h_{1}(x, \underline{u})=C A x$. This yields by lemma 6.4.4:

Proposition A.1.2 Let $\mathbb{X}_{n}(A, B, C)$ satisfy the assumptions. Then: $X_{c o n, v}=\{x \in$ $X \mid C x=0 \wedge C A x<0\}$, and $X_{r e l, v}=\{x \in X \mid C x=0 \wedge C A x>0\}$.

Proof: Omitted.
For the subsets $\mathcal{V}_{g}, \mathcal{V}_{f}, X_{c o n, h}$ and $X_{r e l, h}$ the derivation of alternative representations is based on the observation that either $r_{C}(x)$ must be odd or $r_{C}(x)$ must be even.

Proposition A.1.3 Let $\mathbb{X}_{n}(A, B, C)$ satisfy the assumptions. Then:
(i) $\nu_{g}=\cup_{1 \leq i<\frac{1}{2} r_{0}} V_{g}^{i}$;

$$
\nu_{g}^{i}=\left\{x \in \operatorname{ker}(C) \mid C A^{2 i} x>0\right\} \cap\left\{\cap_{0 \leq j<2 i} A^{-j} \operatorname{ker}(C)\right\}, 1 \leq i<\frac{1}{2} r_{0} .
$$

(ii) $\nu_{f}=\cup_{1 \leq i<\frac{1}{2} r_{0}} \nu_{f}^{i}$;

$$
V_{f}^{i}=\left\{x \in \operatorname{ker}(C) \mid C A^{2 i} x<0\right\} \cap\left\{\cap_{0 \leq j<2 i} A^{-j} \operatorname{ker}(C)\right\}, 1 \leq i<\frac{1}{2} r_{0} .
$$

(iii) $X_{c o n, h}=\cup_{1 \leq i<\frac{1}{2}\left(r_{0}-1\right)} X_{c o n, h}^{i}$;
$X_{c o n, h}^{i}=\left\{x \in \operatorname{ker}(C) \mid C A^{2 i+1} x<0\right\} \cap\left\{\cap_{0 \leq j \leq 2 i} A^{-j} \operatorname{ker}(C)\right\}, 1 \leq i<\frac{1}{2}\left(r_{0}-1\right)$.
(iv) $X_{r e l, h}=\cup_{1 \leq i<\frac{1}{2}\left(r_{0}-1\right)} X_{r e l, h}^{i}$;
$X_{r e l, h}^{i}=\left\{x \in \operatorname{ker}(C) \mid C A^{2 i+1} x>0\right\} \cap\left\{\cap_{0 \leq j \leq 2 i} A^{-j} \operatorname{ker}(C)\right\}, 1 \leq i<\frac{1}{2}\left(r_{0}-1\right)$.
Proof: We will prove only (i). The other statements are proven analogously. From definition 6.4.5 it follows that: $\left\{x \in \mathcal{V}_{g}\right\} \Leftrightarrow\left\{r_{C}(x)=2 i\right.$ and $\left.h_{r_{C}(x)}(x, \underline{u})>0,1 \leq i<\frac{1}{2} r_{0}\right\}$. The result now follows from corollary (6.4.2) (ii) and (iii), and the definition of the map $h_{i}(x, \underline{u})$. \triangleleft

In the remainder of this section we show that the calculation of the subspaces can be based on the Invariant Subspace Algorithm (ISA) (6.7). The integer r_{0} is well defined as a consequence of the controllability of the pair (A, B). Recall from definition 6.7.2 that $r_{1}:=\min \left\{i \in \mathbb{N} \mid \cap_{0 \leq j<i} A^{-j} \operatorname{ker}(C) \subseteq A^{-i} \operatorname{ker}(C)\right\}$, and $r_{\text {min }}:=\min \left(r_{0}, r_{1}\right)$.

Lemma A.1.4 Let $\mathbb{X}_{n}(A, B, C)$ satisfy the assumptions. Let \mathcal{V}^{i} denote the subspaces obtained in step i of ISA (6.7). Then:
(i) $\quad \operatorname{im}(B) \nsubseteq A^{-\left(r_{0}-1\right)} \operatorname{ker}(C)$;
(ii) $\operatorname{im}(B) \subseteq A^{-(i-1)} \operatorname{ker}(C), \forall i: 1 \leq i<r_{0}$;
(iii) $\mathcal{V}^{i}=\cap_{0 \leq j<i} A^{-j} \operatorname{ker}(C), \forall i: 1 \leq i \leq r_{0}$;
(iv) $r_{\text {min }}=r_{0}$, and $\mathcal{V}^{r_{0}}=\mathcal{V}^{*}$.

Proof: (i) and (ii) follow immediately from the assumptions and the definitions. (iii): From ISA (6.7) it follows that for $i=1$ the equality (iii) holds since $\mathcal{V}^{1}=\operatorname{ker}(C)$. Now assume that $i=n<r_{0}$. Then, from (6.7): $\mathcal{V}^{n+1}=\operatorname{ker}(C) \cap\left(A^{-1}\left(\cap_{0 \leq j<n} A^{-j} \operatorname{ker}(C)\right)+\operatorname{im}(B)\right)$. Using (ii) now gives $\mathcal{V}^{n+1}=\operatorname{ker}(C) \cap\left(A^{-1} \cap_{0 \leq j<n} A^{-j} \operatorname{ker}(C)\right)=\cap_{0 \leq j<n+1} A^{-j} \operatorname{ker}(C)$. (iv): From (i), (ii), and definition 6.7 .2 follows that $r_{0} \leq r_{1}$. The second statement now follows from (i), (ii) and ISA.

Combining ISA (6.7) and lemma A.1.4 now gives:
Corollary A.1.5 Let $\mathbb{X}_{n}(A, B, C)$ satisfy the assumptions. Then the subspaces \mathcal{V}^{i}, calculated with ISA, have the following characteristics: $\mathcal{V}^{0}=X ; \mathcal{V}^{1}=\operatorname{ker}(C)=\mathcal{V}^{0} \backslash\left(X_{g} \cup X_{f}\right)$; $\mathcal{V}^{2}=\mathcal{V}^{1} \backslash\left(X_{c o n, v} \cup X_{r e l, v}\right) ; \mathcal{V}^{3}=\mathcal{V}^{2} \backslash\left(\mathcal{V}_{g}^{1} \cup \mathcal{V}_{f}^{1}\right) ; \mathcal{V}^{4}=\mathcal{V}^{3} \backslash\left(X_{c o n, h}^{1} \cup X_{r e l, h}^{1}\right) ; \ldots ; \mathcal{V}^{r_{0}}=\mathcal{V}_{c}$.

Finally, combining corollary A.1.5 with propositions A.1.2 and A.1.3 and lemma A.1.4 yields the following algorithm, which produces all the required subsets in a finite number of steps. Since $\mathcal{V}^{*}=\mathcal{V}^{r_{0}}$ the algorithm can be terminated in at most r_{0} steps.

Algorithm A.1.6 Computation of the subsets of the state-space. Let $\mathbb{X}_{n}(A, B, C)$ satisfy the assumptions. Let \mathcal{V}^{i} denote the subspaces obtained in step i of ISA (6.7). Let $\mathcal{V}^{0}=X$. Then:
(i) $\mathcal{V}^{i}=\left\{x \in \mathcal{V}^{i-1} \mid C A^{i-1} x=0\right\}, 1 \leq i \leq r_{0}$;
(ii) $X_{g}=\left\{x \in \mathcal{V}^{0} \mid C x>0\right\}$;
(iii) $X_{f}=\left\{x \in \mathcal{V}^{0} \mid C x<0\right\}$;
(iv) $X_{c o n, v}=\left\{x \in \mathcal{V}^{1} \mid C A x<0\right\}$;
(v) $X_{r e l, v}=\left\{x \in \mathcal{V}^{1} \mid C A x>0\right\}$;
(vi) $\mathcal{V}_{g}=\cup_{1 \leq i<\frac{1}{2} r_{0}} \mathcal{V}_{g}^{i}$ with $\mathcal{V}_{g}^{i}=\left\{x \in \mathcal{V}^{2 i} \mid C A^{2 i} x>0\right\}, 1 \leq i<\frac{1}{2} r_{0}$;
(vii) $\mathcal{V}_{f}=\cup_{1 \leq i<\frac{1}{2} r_{0}} \mathcal{V}_{f}^{i}$ with $\mathcal{V}_{f}^{i}=\left\{x \in \mathcal{V}^{2 i} \mid C A^{2 i} x<0\right\}, 1 \leq i<\frac{1}{2} r_{0}$;
(viii) $X_{c o n, h}=\cup_{1 \leq i<\frac{1}{2}\left(r_{0}-1\right)} X_{c o n, h}^{i}$ with

$$
X_{c o n, h}^{i}=\left\{x \in \mathcal{V}^{2 i+1} \mid C A^{2 i+1} x<0\right\}, 1 \leq i<\frac{1}{2}\left(r_{0}-1\right)
$$

(ix) $X_{r e l, h}=\cup_{1 \leq i<\frac{1}{2}\left(r_{0}-1\right)} X_{r e l, h}^{i}$ with $X_{r e l, h}^{i}=\left\{x \in \mathcal{V}^{2 i+1} \mid C A^{2 i+1} x>0\right\}, 1 \leq i<\frac{1}{2}\left(r_{0}-1\right) ;$
(x) $\mathcal{V}_{c}=\mathcal{V}^{r_{0}}\left(=\mathcal{V}^{*}\right)$.

Proof: Omitted.

A. 2 Nonlinear systems

In this section we give some results for the nonlinear case. The proofs mimic the proofs given in the previous section for the linear case. We assume throughout that there is a single inequality constraint, i.e. $h: \mathcal{M} \mapsto \mathbb{R}$.

Corollary A.2.1 Let $\mathcal{M}_{n}(f, g, h)$ satisfy the assumptions. Then $\mathcal{N}_{c}=\mathcal{N}^{*}$.
Lemma A.2.2 Let $\mathcal{M}_{n}(f, g, h)$ satisfy the assumptions. Then:
(i) $\mathcal{M}_{\text {con }} \cap \mathcal{M}_{\text {rel }}=\mathcal{N}^{*} \cup \mathcal{N}_{g}$.
(ii) $\mathcal{M}_{\text {con }, v} \cap \mathcal{M}_{\text {rel }}=\emptyset$, and $\mathcal{M}_{\text {rel, }, v} \cap \mathcal{M}_{\text {con }}=\emptyset$.
(iii) $\mathcal{M}_{\text {con }} \cup \mathcal{M}_{\text {rel }}=\mathcal{M}_{b} \backslash \mathcal{N}_{f}$.
(iv) $\mathcal{N}_{c} \cap \mathcal{N}_{g}=\emptyset$.

Proof: The proof is similar to the proof of A.1.1.
Proposition A.2.3 Let $\mathcal{M}_{n}(f, g, h)$ satisfy the assumptions. Then:
(i) $\mathcal{M}_{c o n, v}=\left\{x \in \mathcal{M} \mid h(x)=0 \wedge L_{f} h(x)<0\right\}$,
(ii) $\mathcal{M}_{\text {rel }, v}=\left\{x \in \mathcal{M} \mid h(x)=0 \wedge L_{f} h(x)>0\right\}$,
(iii) $\mathcal{N}_{g}=\cup_{1 \leq i<\frac{1}{2} r_{0}} \mathcal{N}_{g}^{i}$;
$\mathcal{N}_{g}^{i}=\left\{x \in \mathcal{M}_{b} \mid L_{f}^{2 i} h(x)>0\right\} \cap\left\{\cap_{0 \leq j<2 i} L_{f}^{j} h(x)=0\right\}, 1 \leq i<\frac{1}{2} r_{0}$.
(iv) $\mathcal{N}_{f}=\cup_{1 \leq i<\frac{1}{2} r_{0}} \mathcal{N}_{f}^{i}$;
$\mathcal{N}_{f}^{i}=\left\{x \in \mathcal{M}_{b} \mid L_{f}^{2 i} h(x)<0\right\} \cap\left\{\cap_{0 \leq j<2 i} L_{f}^{j} h(x)=0\right\}, 1 \leq i<\frac{1}{2} r_{0}$.
(v) $\mathcal{M}_{\text {con }, h}=\cup_{1 \leq i<\frac{1}{2}\left(r_{0}-1\right)} \mathcal{M}_{c o n, h}^{i}$; $\mathcal{M}_{c o n, h}^{i}=\left\{x \in \mathcal{M}_{b} \mid L_{f}^{2 i+1} h(x)<0\right\} \cap\left\{\cap_{0 \leq j \leq 2 i} L_{f}^{j} h(x)=0\right\}, 1 \leq i<\frac{1}{2}\left(r_{0}-1\right)$.
(vi) $\mathcal{M}_{\text {rel, }, h}=\cup_{1 \leq i<\frac{1}{2}\left(r_{0}-1\right)} \mathcal{M}_{r e l, h}^{i} ;$
$\mathcal{M}_{r e l, h}^{i}=\left\{x \in \mathcal{M}_{b} \mid L_{f}^{2 i+1} h(x)>0\right\} \cap\left\{\cap_{0 \leq j \leq 2 i} L_{f}^{j} h(x)=0\right\}, 1 \leq i<\frac{1}{2}\left(r_{0}-1\right)$.
Proof: The proof runs analogously to the proofs of propositions A.1.2 and A.1.3.
\triangleleft
The above result can be rewritten to obtain a result analoguus to algorithm A.1.6, but we omit the details.

Notation

Notation

Below the notation which is used in this thesis is given. A short explanation is included.
Equation refers to equalities and inequalities alike. All inequalities are componentwise, with the notable exception of the notation $\stackrel{e}{\geq}$ (see below).

General

\underline{n}
\mathbb{N}
\mathbb{R}
\mathbb{Z}
\mathbb{C}
\mathbb{Z}_{+}
\mathbb{R}_{+}
\mathbb{R}^{q}
\mathbb{R}_{+}^{q}
$\mathbb{R}^{n \times m}$
$\mathbb{R}_{+}^{n \times m}$

\mathbb{T}

$W^{W}{ }^{T}$
$\mathbb{R}[s]$
$\mathbb{R}^{n \times m}[s]$
$\mathbb{R}\left[s, s^{-1}\right]$
$\mathbb{R}^{n \times m}\left[s, s^{-1}\right]$
$\mathbb{R}_{+}^{n \times m}\left[s, s^{-1}\right]$
$\mathbb{R}(s)$
$\{1,2, \ldots, n\}$.
The natural numbers $\{1,2,3, \ldots\}$.
The reals.
The integers.
The complex numbers.
The nonnegative integers $\{0,1,2,3, \ldots\}$.
The nonnegative reals $[0, \infty)$.
The q-dimensional real vectors.
The q-dimensional real vectors with nonnegative real coefficients.
The $(n \times m)$ matrices with real coefficients.
The $(n \times m)$ matrices with nonnegative real
coefficients.
The time set.
The set of all maps from \mathbb{T} to \mathbb{W}.
The polynomials with real coefficients and positive powers in the indeterminate s.
The $(n \times m)$ polynomial matrices in the indeterminate s. The polynomials with real coefficients and positive and negative powers in the indeterminate s.
The $(n \times m)$ polynomial matrices with real coefficients and positive and negative powers in the indeterminate s.
Idem as $\mathbb{R}^{n \times m}\left[s, s^{-1}\right]$ but with nonnegative coefficients only. The rational functions in the indeterminate s.

Matrices

I

A^{T}
A_{i}
${ }_{j} A$
${ }^{j} A$
$\left(A_{i j}\right)$
$\operatorname{row}(A, B)$
$\operatorname{col}(A, B)$
$\operatorname{ker}(A)$
$\operatorname{im}(A)$
$A \geq 0$
$A \stackrel{e}{\geq} 0$

Other notation

σ^{t}
$R\left(\sigma, \sigma^{-1}\right)$
\mathfrak{P}
$\mathfrak{P}^{\#}$
\mathfrak{B}
\mathbb{L}^{q}
L^{q}
$\mathcal{L}_{1}^{l o c}\left(\mathbb{R}, \mathbb{R}^{q}\right), \mathcal{L}_{1}^{\text {loc }}$
$\mathcal{L}_{1,+}^{\text {loc }}$
$\mathbb{U}\left(\mathbb{R}_{+}, \mathbb{R}^{m}\right)$
$\Sigma_{1} \wedge \Sigma_{2}$

Polyhedral sets

cone $\left\{v_{1}, \ldots, v_{m}\right\}$
$\mathfrak{P}_{E}(A)$
$\mathfrak{P}_{I}(B, b)$
$\mathfrak{P}_{I}(B)$
$\mathfrak{P}_{E I}(A ; B, b)$
$\mathfrak{P}_{E I}\left(A^{k} ; B, b\right)$
$\mathfrak{P}_{E I}\left(A ; B^{l}, b^{l}\right)$
$\mathfrak{N}(M, N, L)$
$\mathfrak{N}_{E I}(M ; N)$
$\mathfrak{N}_{E}(M)$
$\mathfrak{N}_{I}(N)$

The identity matrix.
The transpose of matrix A.
The i th row of matrix A.
The j th column of matrix A.
$\operatorname{row}\left({ }_{1} A, \ldots,{ }_{j-1} A,{ }_{j+1} A, \ldots,{ }_{s} A\right)$.
The $i j$ th element of matrix A.
$[A: B]$.
$\left[A^{T}: B^{T}\right]^{T}$.
Kernel: $\{x \mid A x=0\}$.
Image: $\{y \mid \exists x$ such that $y=A x\}$.
$\left(A_{i j}\right) \geq 0$ for all i, j.
$\left(A_{i j}\right) \geq 0$ for all $i \neq j$.

The (backward) t-shift.
A polynomial operator in the shift.
A convex polyhedral set, $\mathfrak{P} \subseteq \mathbb{R}^{n}$.
Polar set.
A behaviour, $\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$.
$\left(\mathbb{R}^{q}\right)^{\mathbb{T}}$ equipped with the topology of pointwise convergence.
The collection of all linear closed shift-invariant subspaces of \mathbb{L}^{q}.
The space of locally integrable functions.
$\mathcal{L}_{1}^{\text {loc }}\left(\mathbb{R}_{+}, \mathbb{R}^{q}\right)$.
The collection of piecewise C^{∞} signals.
The interconnection of systems Σ_{1} and Σ_{2}.

$$
\begin{aligned}
& \left\{\sum_{i} \lambda_{i} v_{i} \mid \lambda_{i} \geq 0, i \in \underline{m}\right\} . \\
& \left\{x \in \mathbb{R}^{n} \mid A x=0\right\} . \\
& \left\{x \in \mathbb{R}^{n} \mid B x \geq b\right\} . \\
& \left\{x \in \mathbb{R}^{n} \mid B x \geq 0\right\} . \\
& \left\{x \in \mathbb{R}^{n} \mid A x=0 \wedge B x \geq b\right\} . \\
& \left\{x \in \mathbb{R}^{n} \mid A_{i} x=0, B x \geq b, i \neq k\right\} . \\
& \left\{x \in \mathbb{R}^{n} \mid A x=0, B_{j} x \geq b_{j}, j \neq l\right\} . \\
& \left\{x \in \mathbb{R}^{n} \mid x=M \ell_{1}+N \ell_{2}+L \ell_{3}, \ell_{2} \geq 0, \sum_{i} \ell_{3, i}=1\right\} . \\
& \left\{x \in \mathbb{R}^{n} \mid x=M l_{1}+N l_{2}, l_{2} \geq 0\right\} . \\
& \left\{x \in \mathbb{R}^{n} \mid x=M l_{1}\right\} . \\
& \left\{x \in \mathbb{R}^{n} \mid x=N l_{2}, l_{2} \geq 0\right\} .
\end{aligned}
$$

Abbreviations	
BFD	Backward Difference Formula
DAE	Differential Algebraic Equation
DASSL	Differential/Algebraic System Solver
FE	Forward-Euler
ISA	Invariant Subspace Algorithm
MPUM	Most Powerful Unfalsified Model
NLR	National Aerospace Laboratory NLR
ODE	Ordinary Differential Equation
PDE	Partial Differential Equation
SES	Static Equality System
SEIS	Static Equality/Inequality System
SIS	Static Inequality System
SISO	Single Input Single Output

Index

Applicable controls, 105, 128
Autonomous system, 18
Behaviour, 12
difference inequality, 44
equivalent, 53,55
implicit equality, 54
implicit linear, 54
lineality, 45
minimal, 53
redundant inequality, 54
shift-invariant, 12
shifted-polyhedral cone, 46
BFD, 198
Collision
controlled, 106, 129
elastic, 107
inelastic, 108
map, 106, 129
uncontrolled, 106, 129
Collision:avoidance, 7
Complete, 13
Cone, 23
behaviour, 43
characteristic, 25
pointed, 25
Configuration, manipulator, 144
Constrained linear system
bilateral, 59
unilateral, 59
Constraint
holonomic, 84
nonholonomic, 84
Contact
problem, 98, 124
set, 100,125
Controllable system, 16
Controlled holdable set
closed-loop, 75, 81
dynamic feedback, 81
open-loop, 75
static state feedback, 75
strong, 75
Controlled invariant subspace, 98
Convex, 23
behaviour, 43
hull, 23
DAE, 198
DASSL, 198
Difference
equality, 12
inequality, 44
Dynamical system, 12
Elastic collisions
controlled, 107
uncontrolled, 107
Equivalent
image representation, 35
SEIS, 26
SIS, 26
Essentially nonnegative, 78
FE, 198
Finite-polyhedral, 43
system, 43
Finitely generated, 25
Forbidden controls, 105, 128
Full row-rank, 17
Full column rank
positive, 24
Full row rank
positive, 24
Haar's Lemma, 28
Halfspace, 46
Hidden constraint, 97, 159
Holonomic constraint, 84
Image
equality representation, 16
inequality representation, 25
Impact
forces, 142
post-impact, 142
time, 142
Impedance control, 153
Implicit
equality, 27,54
linear behaviour, 54
Inelastic collisions
controlled, 108
uncontrolled, 108
Initial condition sets, 105
Interconnected systems, 14
Interior point lemma, 30
Invariant
manifold, 124
subspace, 98
ISA, 99, 198
Jacobian matrix
constraint, 150
manipulator, 144
Kernel representation, 12
Kinematic relations, 144
Lagrange multiplier, 138, 149
discrete, 164
Latent variable, 16
Line, 34
redundant, 34
Lineality
behaviour, 45
space, 25
system, 45
Manifest variable, 12
Minimal, 17
image representation, 35
kernel representation, 18
representation, 53, 55
SEIS, 26
SIS, 26
MPUM, 87, 198
NLR, 198
Nonholonomic constraint, 84
Notation, 196
Numerical errors, 160
Observable system, 17
ODE, 198
PDE, 198
Polar, 26
Polyhedral, 24
cone, 46
shifted, 46
Polynomial matrix
posimodular, 55
positive, 55
Posimodular polynomial matrix, 55
Positive, 55
(in)dependent, 24
full column-rank, 24
full row-rank, 24
polynomial, 55
Positive invariant, 69
Ray, 34
implicit, 34
redundant, 34
Redundant
equality, 27
equation, 27
inequality, 27,54

Regula falsi, 174
Relative degree, 101, 121
uniform, 121
Release
controlled, 106, 129
set, 100, 125
uncontrolled, 106, 129
Representation
image, 16,25
kernel, 12
nonnegative, 86
Robotic manipulator
dynamics equation, 143, 145
first-order model, 146
Jacobian matrix, 144
kinematic relations, 144

SEIS, 198
SES, 198
Similarity matrix, 32
SIS, 198
SISO, 198
Slack variable, 51
State-space system, 19
Static system
equality, 24
equality/inequality, 24
inequality, 24
Symmetrical set, 70
System
autonomous, 18
complete, 13
controllable, 16
dynamical, 12
finite-polyhedral, 43
lineality, 45
linear, 12
nonnegative, 86
observable, 17
state-space, 19
time-invariant, 12
unilateral, 44

Unilateral
constrained linear system, 59 dynamical system, 44
Unimodular, 17
posimodular, 55
Variable
latent, 16
manifest, 12

[^0]: Copyright
 Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

