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Appendix A

Descriptions of the contact and

release sets

In this appendix �rst some relations are presented that exist between subsets of the bound-

ary set in case of unilaterally constrained dynamical systems. Next, algorithms are derived

that will, in principle, produce all the contact and release sets discussed in chapters 6 and

7 in a �nite number of steps.

A.1 Linear systems

Lemma A.1.1 Let Xn(A;B;C) satisfy the assumptions. Then:

(i ) Xcon \ Xrel = V� [ Vg.

(ii ) Xcon;v \ Xrel = ;, and Xrel;v \ Xcon = ;.

(iii ) Xcon [ Xrel = ker(C)nVf .

(iv ) Vc \ Vg = ;.

Proof: (i, �): Suppose that x 2 Xcon \ Xrel. If rC(x) = r0 then x 2 Vc. From lemma 6.4.6

it follows that x 2 V�. If on the other hand, rC(x) 6= r0 then rC(x) < r0 c.f. corollary 6.4.2

(i). From x 2 Xrel, lemma 6.4.4 (ii), and corollary 6.4.2 (iii) it follows that hrC(x)(x; u) > 0,

8u 2 U
N . From x 2 Xcon it follows from lemma 6.4.4 (i) that hrC(x)(x; u) is even. From

de�nition 6.4.5 now follows that x 2 Vg. (i, �): From de�nition 6.4.5 and lemma 6.4.4

it follows that Vg � Xcon \ Xrel. Suppose that x 2 Vc. Then rC(x) = r0 c.f. de�nition

6.4.5. From corollary 6.4.2 (ii) and de�nition 6.4.1 it follows that hi(x; u) = 0 8i < r0, and

hr0(x; u) = CAr0x+CAr0�1Bu0, with CAr0�1B 6= 0. By appropriate choice of u0 one can

make hr0(x; u) positive or negative, taking into account the parity of r0. From lemma 6.4.4

now follows that x 2 Xcon \ Xrel.

(ii): We only prove the �rst equality. The second equality can be proven analogously.

Suppose x 2 Xcon;v. Then rC(x) = 1 c.f. de�nition 6.4.7. It follows from lemma 6.4.4 and
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Section A.1: Linear systems 193

CB = 0 that h1(x; u) < 0, 8u 2 U
N . Lemma 6.4.4 (ii) now gives that x =2 Xrel.

(iii): Let x 2 ker(C). First assume that x 2 Vf . De�nition 6.4.5 (ii) gives that 8u 2 U
N ,

rC(x) is even and hrC(x)(x; u) < 0. From lemma 6.4.4 now follows that x =2 Xcon [ Xrel.

Next assume that x 2 ker(C)nVf . If rC(x) is odd and hrC(x)(x; u) < 0 then it follows

from lemma 6.4.4 that x 2 Xcon. If hrC(x)(x; u) > 0 then it follows from lemma 6.4.4 that

x 2 Xrel. This leads to x 2 Xcon [ Xrel.

(iv): Follows from the de�nitions. �

Note that the result in lemma A.1.1 (i) shows that example 6.3.2 is indeed non general.

That example however does show that some of the subsets can be empty. For the sets Xg,

Xf , ker(C) expressions in terms of constraint matrix C are given by (6.9), (6.10) and (6.11)

respectively. Moreover, from Vc = V
� it follows that ISA (6.7) yields the set Vc in a �nite

number of steps. Therefore, in the remainder we will concentrate on the subsets Vg, Vf ,

Xcon;v, Xcon;h, Xrel;v and Xrel;h. Recall from theorem 6.4.9 that these sets are two by two

disjunct. For the sets Xcon;v and Xrel;v there holds rC(x) = 1, by de�nition. From de�nition

6.4.1 now follows that h1(x; u) = CAx. This yields by lemma 6.4.4:

Proposition A.1.2 Let Xn(A;B;C) satisfy the assumptions. Then: Xcon;v = fx 2

X jCx = 0 ^ CAx < 0g, and Xrel;v = fx 2 X jCx = 0 ^ CAx > 0g.

Proof: Omitted. �

For the subsets Vg, Vf , Xcon;h and Xrel;h the derivation of alternative representations is

based on the observation that either rC(x) must be odd or rC(x) must be even.

Proposition A.1.3 Let Xn(A;B;C) satisfy the assumptions. Then:

(i ) Vg = [1�i< 1

2
r0
Vig;

Vig = fx 2 ker(C) jCA2ix > 0g \ f\0�j<2iA
�j ker(C)g, 1 � i < 1

2r0.

(ii ) Vf = [1�i< 1

2
r0
Vif ;

V i
f = fx 2 ker(C) jCA2ix < 0g \ f\0�j<2iA

�j ker(C)g, 1 � i < 1
2r0.

(iii ) Xcon;h = [1�i< 1

2
(r0�1)

Xi
con;h;

Xi
con;h = fx 2 ker(C) jCA2i+1x < 0g \ f\0�j�2iA

�j ker(C)g, 1 � i < 1
2(r0 � 1).

(iv ) Xrel;h = [1�i< 1

2
(r0�1)

Xi
rel;h;

Xi
rel;h = fx 2 ker(C) jCA2i+1x > 0g \ f\0�j�2iA

�j ker(C)g, 1 � i < 1
2(r0 � 1).

Proof: We will prove only (i). The other statements are proven analogously. From de�nition

6.4.5 it follows that: fx 2 Vgg , frC(x) = 2i and hrC(x)(x; u) > 0, 1 � i < 1
2r0g. The result

now follows from corollary (6.4.2) (ii) and (iii), and the de�nition of the map hi(x; u). �

In the remainder of this section we show that the calculation of the subspaces can be

based on the Invariant Subspace Algorithm (ISA) (6.7). The integer r0 is well de�ned as

a consequence of the controllability of the pair (A;B). Recall from de�nition 6.7.2 that

r1 := minfi 2 N j \0�j<i A
�j ker(C) � A�i ker(C)g, and rmin := min(r0; r1).
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Lemma A.1.4 Let Xn(A;B;C) satisfy the assumptions. Let Vi denote the subspaces

obtained in step i of ISA (6.7). Then:

(i ) im(B) 6� A�(r0�1) ker(C);

(ii ) im(B) � A�(i�1) ker(C), 8i : 1 � i < r0;

(iii ) Vi = \0�j<iA
�j ker(C), 8i : 1 � i � r0;

(iv ) rmin = r0, and V
r0 = V

�.

Proof: (i) and (ii) follow immediately from the assumptions and the de�nitions. (iii): From

ISA (6.7) it follows that for i = 1 the equality (iii) holds since V1 = ker(C). Now assume

that i = n < r0. Then, from (6.7): Vn+1 = ker(C) \ (A�1(\0�j<nA
�j ker(C)) + im(B)).

Using (ii) now gives Vn+1 = ker(C)\(A�1\0�j<nA
�j ker(C)) = \0�j<n+1A

�j ker(C). (iv):

From (i), (ii), and de�nition 6.7.2 follows that r0 � r1. The second statement now follows

from (i), (ii) and ISA. �

Combining ISA (6.7) and lemma A.1.4 now gives:

Corollary A.1.5 Let Xn(A;B;C) satisfy the assumptions. Then the subspaces Vi, calcu-

lated with ISA, have the following characteristics: V0 = X; V1 = ker(C) = V0n(Xg [ Xf );

V2 = V1n(Xcon;v [ Xrel;v); V
3 = V2n(V1g [ V

1
f ); V

4 = V3n(X1
con;h [ X

1
rel;h); : : : ; V

r0 = Vc.

Finally, combining corollary A.1.5 with propositions A.1.2 and A.1.3 and lemma A.1.4 yields

the following algorithm, which produces all the required subsets in a �nite number of steps.

Since V� = Vr0 the algorithm can be terminated in at most r0 steps.

Algorithm A.1.6 Computation of the subsets of the state-space. Let Xn(A;B;C) satisfy

the assumptions. Let Vi denote the subspaces obtained in step i of ISA (6.7). Let V0 = X.

Then:

(i ) Vi = fx 2 Vi�1 jCAi�1x = 0g, 1 � i � r0;

(ii ) Xg = fx 2 V0 jCx > 0g;

(iii ) Xf = fx 2 V0 jCx < 0g;

(iv ) Xcon;v = fx 2 V1 jCAx < 0g;

(v ) Xrel;v = fx 2 V1 jCAx > 0g;

(vi ) Vg = [1�i< 1

2
r0
Vig with V

i
g = fx 2 V2i jCA2ix > 0g, 1 � i < 1

2
r0;

(vii ) Vf = [1�i< 1

2
r0
Vif with Vif = fx 2 V2i jCA2ix < 0g, 1 � i < 1

2
r0;

(viii ) Xcon;h = [1�i< 1

2
(r0�1)

Xi
con;h with

Xi
con;h = fx 2 V2i+1 jCA2i+1x < 0g, 1 � i < 1

2
(r0 � 1);

(ix ) Xrel;h = [1�i< 1

2
(r0�1)

Xi
rel;h with

Xi
rel;h = fx 2 V2i+1 jCA2i+1x > 0g, 1 � i < 1

2(r0 � 1);

(x ) Vc = Vr0(= V�).

Proof: Omitted. �
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A.2 Nonlinear systems

In this section we give some results for the nonlinear case. The proofs mimic the proofs

given in the previous section for the linear case. We assume throughout that there is a

single inequality constraint, i.e. h :M 7! R.

Corollary A.2.1 Let Mn(f; g; h) satisfy the assumptions. Then Nc = N
�. �

Lemma A.2.2 Let Mn(f; g; h) satisfy the assumptions. Then:

(i ) Mcon \Mrel = N
� [Ng.

(ii ) Mcon;v \Mrel = ;, and Mrel;v \Mcon = ;.

(iii ) Mcon [Mrel =MbnNf .

(iv ) Nc \Ng = ;.

Proof: The proof is similar to the proof of A.1.1. �

Proposition A.2.3 Let Mn(f; g; h) satisfy the assumptions. Then:

(i ) Mcon;v = fx 2M jh(x) = 0 ^ Lfh(x) < 0g,

(ii ) Mrel;v = fx 2M jh(x) = 0 ^ Lfh(x) > 0g,

(iii ) Ng = [1�i< 1

2
r0
Ni
g;

Ni
g = fx 2Mb jL

2i
f h(x) > 0g \ f\0�j<2iL

j
fh(x) = 0g, 1 � i < 1

2
r0.

(iv ) Nf = [1�i< 1

2
r0
Ni
f ;

Ni
f = fx 2Mb jL

2i
f h(x) < 0g \ f\0�j<2iL

j
fh(x) = 0g, 1 � i < 1

2r0.

(v ) Mcon;h = [1�i< 1

2
(r0�1)

Mi
con;h;

Mi
con;h = fx 2Mb jL

2i+1
f h(x) < 0g \ f\0�j�2iL

j
fh(x) = 0g, 1 � i < 1

2(r0 � 1).

(vi ) Mrel;h = [1�i< 1

2
(r0�1)

Mi
rel;h;

Mi
rel;h = fx 2Mb jL

2i+1
f h(x) > 0g \ f\0�j�2iL

j
fh(x) = 0g, 1 � i < 1

2
(r0 � 1).

Proof: The proof runs analogously to the proofs of propositions A.1.2 and A.1.3. �

The above result can be rewritten to obtain a result analoguus to algorithm A.1.6, but we

omit the details.



Notation

Notation

Below the notation which is used in this thesis is given. A short explanation is included.

Equation refers to equalities and inequalities alike. All inequalities are componentwise, with

the notable exception of the notation
e
� (see below).

General

n f1; 2; : : : ; ng.

N The natural numbers f1; 2; 3; : : :g.

R The reals.

Z The integers.

C The complex numbers.

Z+ The nonnegative integers f0; 1; 2; 3; : : :g.

R+ The nonnegative reals [0;1).

R
q The q-dimensional real vectors.

R
q
+ The q-dimensional real vectors with nonnegative real coe�cients.

R
n�m The (n�m) matrices with real coe�cients.

R
n�m
+ The (n�m) matrices with nonnegative real

coe�cients.

T The time set.

W
T The set of all maps from T to W .

R[s] The polynomials with real coe�cients and positive

powers in the indeterminate s.

R
n�m [s] The (n�m) polynomial matrices in the indeterminate s.

R[s; s�1 ] The polynomials with real coe�cients and positive and

negative powers in the indeterminate s.

R
n�m [s; s�1] The (n�m) polynomial matrices with real coe�cients and

positive and negative powers in the indeterminate s.

R
n�m
+ [s; s�1] Idem as Rn�m [s; s�1] but with nonnegative coe�cients only.

R(s) The rational functions in the indeterminate s.
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Matrices

I The identity matrix.

AT The transpose of matrix A.

Ai The ith row of matrix A.

jA The jth column of matrix A.
jA row(1A; : : : ; j�1A; j+1A; : : : ; sA).

(Aij) The ijth element of matrix A.

row(A;B) [A : B].

col(A;B) [AT : BT ]T .

ker(A) Kernel: fx jAx = 0g.

im(A) Image: fy j 9x such that y = Axg.

A � 0 (Aij) � 0 for all i; j.

A
e
� 0 (Aij) � 0 for all i 6= j.

Other notation

�t The (backward) t-shift.

R(�; ��1) A polynomial operator in the shift.

P A convex polyhedral set, P � Rn .

P# Polar set.

B A behaviour, B � W
T.

L
q (Rq )T equipped with the topology of pointwise convergence.

Lq The collection of all linear closed shift-invariant subspaces of Lq .

Lloc
1 (R;Rq ),Lloc

1 The space of locally integrable functions.

Lloc
1;+ Lloc

1 (R+ ;R
q ).

U(R+ ;R
m) The collection of piecewise C1 signals.

�1 ^ �2 The interconnection of systems �1 and �2.

Polyhedral sets

conefv1; : : : ; vmg f
P

i �ivi j�i � 0; i 2 mg.

PE(A) fx 2 R
n jAx = 0g.

PI(B; b) fx 2 R
n jBx � bg.

PI(B) fx 2 Rn jBx � 0g.

PEI(A;B; b) fx 2 R
n jAx = 0 ^Bx � bg.

PEI(A
k;B; b) fx 2 R

n jAix = 0; Bx � b; i 6= kg.

PEI(A;B
l; bl) fx 2 R

n jAx = 0; Bjx � bj; j 6= lg.

N(M;N;L) fx 2 R
n jx =M`1 +N`2 + L`3; `2 � 0;

P
i `3;i = 1g.

NEI(M ;N) fx 2 R
n jx =Ml1 +Nl2; l2 � 0g.

NE(M) fx 2 R
n jx =Ml1g.

NI(N) fx 2 R
n jx = Nl2; l2 � 0g.
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Abbreviations

BFD Backward Di�erence Formula

DAE Di�erential Algebraic Equation

DASSL Di�erential/Algebraic System Solver

FE Forward-Euler

ISA Invariant Subspace Algorithm

MPUM Most Powerful Unfalsi�ed Model

NLR National Aerospace Laboratory NLR

ODE Ordinary Di�erential Equation

PDE Partial Di�erential Equation

SES Static Equality System

SEIS Static Equality/Inequality System

SIS Static Inequality System

SISO Single Input Single Output



Index

Applicable controls, 105, 128

Autonomous system, 18

Behaviour, 12

di�erence inequality, 44

equivalent, 53, 55

implicit equality, 54

implicit linear, 54

lineality, 45

minimal, 53

redundant inequality, 54

shift-invariant, 12

shifted-polyhedral cone, 46

BFD, 198

Collision

controlled, 106, 129

elastic, 107

inelastic, 108

map, 106, 129

uncontrolled, 106, 129

Collision:avoidance, 7

Complete, 13

Cone, 23

behaviour, 43

characteristic, 25

pointed, 25

Con�guration, manipulator, 144

Constrained linear system

bilateral, 59

unilateral, 59

Constraint

holonomic, 84

nonholonomic, 84

Contact

problem, 98, 124

set, 100, 125

Controllable system, 16

Controlled holdable set

closed-loop, 75, 81

dynamic feedback, 81

open-loop, 75

static state feedback, 75

strong, 75

Controlled invariant subspace, 98

Convex, 23

behaviour, 43

hull, 23

DAE, 198

DASSL, 198

Di�erence

equality, 12

inequality, 44

Dynamical system, 12

Elastic collisions

controlled, 107

uncontrolled, 107

Equivalent

image representation, 35

SEIS, 26

SIS, 26

Essentially nonnegative, 78

FE, 198

Finite-polyhedral, 43

system, 43

Finitely generated, 25

Forbidden controls, 105, 128

Full row-rank, 17

Full column rank

199
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positive, 24

Full row rank

positive, 24

Haar's Lemma, 28

Halfspace, 46

Hidden constraint, 97, 159

Holonomic constraint, 84

Image

equality representation, 16

inequality representation, 25

Impact

forces, 142

post-impact, 142

time, 142

Impedance control, 153

Implicit

equality, 27, 54

linear behaviour, 54

Inelastic collisions

controlled, 108

uncontrolled, 108

Initial condition sets, 105

Interconnected systems, 14

Interior point lemma, 30

Invariant

manifold, 124

subspace, 98

ISA, 99, 198

Jacobian matrix

constraint, 150

manipulator, 144

Kernel representation, 12

Kinematic relations, 144

Lagrange multiplier, 138, 149

discrete, 164

Latent variable, 16

Line, 34

redundant, 34

Lineality

behaviour, 45

space, 25

system, 45

Manifest variable, 12

Minimal, 17

image representation, 35

kernel representation, 18

representation, 53, 55

SEIS, 26

SIS, 26

MPUM, 87, 198

NLR, 198

Nonholonomic constraint, 84

Notation, 196

Numerical errors, 160

Observable system, 17

ODE, 198

PDE, 198

Polar, 26

Polyhedral, 24

cone, 46

shifted, 46

Polynomial matrix

posimodular, 55

positive, 55

Posimodular polynomial matrix, 55

Positive, 55

(in)dependent, 24

full column-rank, 24

full row-rank, 24

polynomial, 55

Positive invariant, 69

Ray, 34

implicit, 34

redundant, 34

Redundant

equality, 27

equation, 27

inequality, 27, 54
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Regula falsi, 174

Relative degree, 101, 121

uniform, 121

Release

controlled, 106, 129

set, 100, 125

uncontrolled, 106, 129

Representation

image, 16, 25

kernel, 12

nonnegative, 86

Robotic manipulator

dynamics equation, 143, 145

�rst-order model, 146

Jacobian matrix, 144

kinematic relations, 144

SEIS, 198

SES, 198

Similarity matrix, 32

SIS, 198

SISO, 198

Slack variable, 51

State-space system, 19

Static system

equality, 24

equality/inequality, 24

inequality, 24

Symmetrical set, 70

System

autonomous, 18

complete, 13

controllable, 16

dynamical, 12

�nite-polyhedral, 43

lineality, 45

linear, 12

nonnegative, 86

observable, 17

state-space, 19

time-invariant, 12

unilateral, 44

Unilateral

constrained linear system, 59

dynamical system, 44

Unimodular, 17

posimodular, 55

Variable

latent, 16

manifest, 12


