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Summary

Theoretical and experimental studies of various biomedical systems, including heart, brain, im-
mune system, and many ecosystems, have shown that many of these systems may be described
in terms of nonlinear dynamic$wo important consequences of this nonlinear dynamical be-
haviour are irreversibility and unpredictabilidue to the chaotic behaviour this type of system

may exhibitAnother trend in modern science (often named “the sciences of complexity”) deals
with the often complex or chaotic collective behaviour of systems made ug®hlambers of
relatively simple entitied/ery often such systems exhibit nonlinear dynamical behawtany

such complex and nonlinear systems have been studied successfully using computer simulation
techniques.

It is proposed that, as has been demonstrated for the immune system, the intestinal microbial
ecosystem may be viewed as such a complex system governed by nonlinear dynamical equa-
tions.A discussion of techniques available for the study of such systems is given, with a special
emphasis on computer simulation. Finglhe results of a pilot study using computer simulation

of the interaction between the anaerobic and aerobic compartments of the microflora within a
simple geometric model of the small andjlamtestine are presented.

Intr oduction

In recent years there has been a great deal of interest (and indeed a great deal of hype) concern-
ing three catch-phrases: nonlinear dynamics, chaos, and complaigtiynterest (and hype) has

led to a lage number of populascience articles decorated with very fancy graphics (fractals and

the like). Naturallya sceptical backlash from certain serious scientistgémorL995) has oc-

curred. Some scepticism is of course always in place when a group of scientists claims to have
opened up a new field of study which will (a) revolutionize science, and (b) explain virtually
anything under the sun and beyond. Some scientists working in the fields of nonlinear dynamics
and complexity have indeed made such claims. Such claims abound throughout the history of
modern science from Newton down to the present day (see Prirogine and Stengers (1984)). Each
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time some breakthrough was reachedfétched claims about the general applicability of the

new theory or model cropped up. Similadpjections by serious scientists against such claims
have been heard as often as the claims themselves. Even the critics must however concede that
nonlinear dynamics, chaos theory and studies of complex systems have been making solid con-
tributions to fields of physics (e.g. Gt al. 1994), meteorology (e.g. Lorenz, 1963), and ecol-

ogy (Bulmer 1994, Lindgren and Nordahl, 1994) to name but a few

Leaving aside both the exaggerated claims and the often acrimonious responses, the aim of this
paper is to explore the possible implications which techniques and insights gleaned from nonlinear
dynamics, chaos theory and studies of complex systems may have for the study of the intestinal
microbial ecosystem and its interaction with the hi@sachieve this, the meaning of the phrases
“nonlinear”, “chaos” and “complex” within this context will be defin&tle discussion of these

topics is presented without any attempt at mathematical rifloose interested in a more rigor

ous discussion are referred to €tal.(1994), or for the more philosophically minded Prirogine

and Stengers (1984) and Kanén (1995). It will then be shown that both the microbial ecosys-

tem and the hog®'immune and digestive system all meet the necessary conditions to be called
complex nonlinear dynamical systerile types of behaviour which such systems may exhibit

and the means to study them are explofed.approaches to study the intestinal microflora and

its interaction with the host follow naturally from this discussion: (i) computer simulation of the
system, and (ii) time-series analysis of series of measurements to measure degrees of chaos and
(un)predictabilityThere have been some attempts at the first approach alnesalyly by Freter

et al.(1983), who made a mathematical model of the competition for food substrate and binding
sites in a continuous flow model of the intestine. Many other types of interactions (both antago-
nistic and mutualistic) exist within the intestinal microflora, and it should be possible to model
many of these. In this paper a pilot stugl§ing computer simulation of the interaction between

the aerobic and anaerobic compartments of the microflora, is presEmidimulation lends

further support to the idea that a qualitative and quantitative theoretical understanding of a number
of features of the intestinal microflora can be obtained through computer simulation., Bmally
outline of a research programme to explore the interaction between microflora and host with
techniques from nonlinear dynamics and complexity studies is sketched.

Theory

What ae nonlinear dynamical systems?

Probably the most important contribution of Newton and Leibnitz to science is the introduction
of the concept of dynamical systems. In physics almost any system undendtather plan-

etary orbits, semiconductor electronics, or the Esgtrhosphere, may be considered a dynami-

cal systemA dynamical system is a simply system which can be characterized by (a) a set of
parameters the values of which definesiigteat a given point in time, and (b) a set of math-
ematically specified rules defining the change of state of the system inTimase rules are
generally specified as d@rential equations, defining the rate of change of each of the param-
eters describing the system, as a function of the current state of the system.

This definition is very broad indeed, and many systems in biptogglicine, economics and the
social sciences may be described and studied as dynamical systems (e.g. Prirogine and Stengers
1984, Kaufman 1994)A well-known example of this is the LotkasNerra predateprey model
ecosystemThe set of numbers describing this systems consists of (i) the number of predators,
and (ii) the number of pre¥he rules specify that the number of prey increase at a rate propor
tional to the number present (exponential growth) in the absence of predéterspredators

are present the number of prey caught, which is proportional to both the number of predators and
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the number of preynust be subtracte@ihe predators starve in the absence of prey (exponential
decay) and grow proportionally to the number of prey caught (again proportional to the product
of prey and predator numberBjis system may show damped, undamped and increasing predator
prey oscillations. By specifying the initial conditions (e.g. from observation) and solving the
differential equations involved, it is in principle possible to model or predict the future behav-
iour of the ecosystem.

The sequence of states the system passes through in time is catidaititf the system is
dissipative, i.e. it loses erggrin some way (and most systems do), the orbits cgaverone of

a small subset of all possible states calledtaactor. The simplest kind of attractor is a single

point: the system becomes stationditye system is said to be at rest or in dynamical equilib-
rium.Another type of attractor is calledimit cycle the system oscillates at a stable frequency

and amplitudeA system may have numerous attractors, and the initial conditions determine to
which attractor the system will conger.The set of initial states for which the system cogesr

to a particular attractor is called thasin of attractiorof that attractoThe Lotka-\blterra type
ecosystem may have either a point attracterthe populations become stable, or a limit cycle
attractor i.e. predateprey oscillations remain stable (e.g. Bulmer 1994, pp.39-45).

Depending on the kind of rules specified, dynamical systems are either linear or noimiaear
linear dynamical system the fifential equations are linearhich means that thefetts of
changes in the state of the system are additive and proportional to the magnitude of the changes.
The result of changing multiple parameters simultaneously is simply a superposition of the
change in each individual parameflne additive nature of changes to the system means that
different parameters of the system may each be studied sepdratdigrmore, the linear na-

ture of the of the equations ensures that, given an initial condition, the orbit of the system is
uniquely definedThis means the system is time-reversible and predictable: past and future may
be deduced with arbitrary precision from the present state. Furthermore, the attractors are guar
anteed to be simple, and the equations can be solved quite readily (even with paper and pencil in
small systems).

Because of all these features, linear systems have been studied most. Before the advent of elec-
tronic computers, mathematical simplicity was one overriding reason to study linear systems,
but a more subtle reason may have been equally important (Prirogine and Stengersh#984).
uniqueness of the orbit lent credibility to the idea of a Cartesian, clockwork unAicsendi-

tions were set at the time of creation, and the clockwork mechanism of Newtonian mechanics
would automatically see to the rest. Unique orbits also provide complete determinism, which is
not guaranteed to exist for nonlinear dynamical systems. Besides, it was (agues) that

many nonlinear systems (such as the simple pendulum) can be approximated by linear systems
to such a degree that there is no need to solve the more complicated nonlinear form.

By contrast, in nonlinear systems, changes in multiple parameter need neither be additive, nor
proportional to the magnitude of the changBse efects of changing individual parameters
cannot in general be studied separately as in the linear case. Furthermore, the orbit of a system
need not be unique for a given initial condition. In such cases bifurcations occur: places in the
orbit where two possible future paths are open to the system, and no deterministic means exists
to choose between the two pathAs. element of randomness creeps back into the mechanics
(Prirogine and Stengers, 1984).

In many nonlinear systems with more than three parameters which can be set foksthye s

of freedon), an efect calledchaosmay occurProbably the most famous example of chaos has
been found in meteorologwhere Lorenz (1963) has shown that deterministic, but highly ir
regular flow patterns exist within weather systewen chaos occurs the attractor cannot be
described by simple forms such as limit cycles, straight lines or points; the attractabts a
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Figure 1.An example of the fractal shape of a strange attractor: the Lorenz-aftvelutcir
may (roughly) be considered as consisting of an infinite setfefelift oscillations which the
system may go through.

shape (Figure 1A fractal shape shows detail at every possible magnificakitractors with

this peculiar property are usually calltthnge attractorsThese attractors can be thought of as
(roughly) the union of an infinite collection of limit cycles, with the system switching very
rapidly between thenT.he corresponding motion (or orbit) may appear to be random and look
something like Figure 2. Figure 2 shows the motion of a simple spring and magnet system
(Moon and Holmes, 19790he base of the spring is forced to oscillate at some frequaeitye
displacement of the end of the spring as a result of all forces is highly irreandayet it is not

noise The system is still deterministic. In fact, figure 2b is not a series of measurements, but the
result of a computer simulation using the sdiedéntial equations describing the system, so it
cannot contain truly random noigkhis type of seemingly random, yet fully deterministic be-
haviour is one of the hallmarks of chaos.

Another hallmark is the so called “butterflyfext”: change the initial conditions of wind speed

in the global weather by an amount corresponding to the beat of a wing of a butterfly in Peking,
and the path of a Caribbean hurricane is altered, because the change introduced increases
exponentially In chaotic systems, infinitesimal changes in initial conditions propagate
exponentially in time, resulting in drastically féifent outcomes from infinitesimally é&fent

initial conditions.This means that future and past cannot be deduced with arbitrary precision or
for arbitrary periods in time from measured data, which always contain some finitdtasror
possible to determine a degree of chaos: yla@unov exponenthis is a number which deter
mines the doubling rate of the error in the prediction. If it is low the system is not very chaotic,
and medium to long term predictions remain accurate over considerable periods of time. If it is
high, errors increase rapigdind only very short term prediction is possible. Other measures of
degree of chaos exist, most notablyftlaetal dimensiorof the attractqmwhich is a measure of

the complexity of the shape of the attractdre more complicated the attragttire higher the
degree of chaos.
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Figure 2.A simple system showing chaos (after Moon and Holmes, 1979): (a) diagram of
apparatus, showing a steel spring suspended between two magnets; the top of the spring is
forced to oscillate sinusoidallgb) the graph shows the chaotic motion of the lower end of the
spring.

Can micobial ecosystems be described as nonlinear dynamical systems?

Growth of bacteria, either single species (Monod, 1950), mixed cultures (Getrls&992),

or complete ecosystems (Dét et al. 1995) can be described in terms of dynamical systems.
The key feature of the dynamics of these systems is that they show autocatalytic or inhibitory
loops: the presence of a bacterium is needed to make more of that kind bacterium (obviously).
Furthermore, specigs may inhibit species B by secretion of toxins. Spegiesight also en-

hance growth by production of metabolites which serve as food for B, or may remove substances
toxic to B form the ecosystem. In systems which are far from thermodynamical equilibrium,
such autocatalytic and inhibitory loops produce just the type of nonlinear dynamics which can
produce highly complicated and chaotic behaviour (Prirogine and Stengers, 1984). In practice,
all ecosystems are far from thermodynamical equilibrium, singe Ruxes of engyy or food

pass through them; only death (a point attractor of any ecosystem) corresponds to thermody-
namical equilibrium.

For these reasons it may be assumed that techniques for analysis and modelling of nonlinear
dynamical systems in general are appropriate tools for the study of bacterial ecosystems, includ-
ing the gut microflora.
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Chaos and contl systems

As odd as it may seem, the presence of chaos may be an advantage in control systems, if rapid
responses are required. Chaotic systems would seem to be utterly unreliable, given their extreme
sensitivity to initial conditionsYet, as, e.g., Ottt al (1990) have noted, that same sensitivity
allows a control mechanism to control the system with very small corrective signals, provided
the developing chaos can be analysed rapi@yproper feedback is availabléery small ad-
justments have lge efects.

This may be of particular importance to biological control systems. Changing the mode of op-
eration of, e.g. heart, nervous system or immune system ragdlyvithout the expenditure of

large amounts of engy is literally of vital importance to practically anyganismThe constant
feedback and small corrective steps to keep a such systems in the correct mode are probably not
such a drawback, since the expenditure ofg@nean be small for chaotic systems. Chaotic
dynamics have indeed been observed in, e.g., heart rate variations (Galdbed. 1984),

though there is still some debate about the significance and meaning of these findings (Kaplan
andTalajic, 1991). It has been observed tha¢@uctionin variability (and possibly chaos) of

heart rate may indicate heart disease (Kagah 1991, Skinneet al.1991). On the other hand,
fibrillations seem to be highly chaotic in nature, with high fractal dimension (Garf@tled
1992).Too much chaos is uncontrollable.

It has also been claimed that chaos is present in electroencephalograms (EEG). Here too, there is
quite a lively debate about the reality and relevance of chaos (Batlatk995, Pritcharét al.

1995). Nonetheless, the fractal dimension of the attractor has been used as a measure of com-
plexity of the EEG patterns. Staet al. (1994) found that normal controls had significantly
(p<0.001) more complex EEG patterns than patients with Parksnd@®aseTheirs in turn

was significantly (p<0.001) more complex than EEGs of patientsAltieimer's disease.

What ae complex systems?

The “Sciences of Complexity” deal with systems which may show complicated behateow

ming from the behaviour of a @@ number of entities which themselves show a simple behav-
lour. The complexity does not stem from complex rules, but rather from tpe tarmber of
entities or subsystems the system is mad&mobbjection which has been raised is that the term
complexity has not been defined particularly strictly @#or, 1995). Indeed a number of (more

or less conflicting) definitions have been given, yet these definitions are mainly aimed at meas-
urement of complexity.e. assigning a number toWhatever the conflict about how to measure
complexity the basic premise that complex systems are systems which are made gp of lar
numbers of simpler objects is agreed on by all those working in theAete&ecosystem can of
course be considered as such a system, being built ugeilambers of individual ganisms,

each of which may show a a far simpler behaviour than the whole system. Sjthiaiymune
system may also be considered to be a complex system in this sense, since it is comprised of
many cells which themselves exhibit rather simpler behaviour than the whole.

Having said this, what can actually be gained by calling ecosystems or the immune system
“complex”? Do complex systems share certain properties which may be exploited to give extra
insight into the behaviour of, e.g., the gut microflora and its interaction with the immune sys-
tem? Several studies indicate that such common properties do exist (Langton 1989, 1992,
Kauffman 1995).The most important feature is probably that such systems show global, co-
ordinated behaviouwithout the presence of any distinct “global controller”: seffamization.
Though an ecosystem might show Lotkalt®tra type predatgorey oscillations, there is no
external driving force which creates this; no “invisible hand”. Similéiny immune system has

no “chief lymphocyte” which directs an immune response, neither has the brain a “chief neuron”
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in which central control of all behaviour is locat&tle behaviour of all such systems is collec-

tive, but not under any “Stalinist” rule, nor need any of the entities involved be aware of the
nature of the collective behavio@econdly almost all such systems are nonlinear system: given
the lage number of interactions in such systems, some are bound to nor@iivesrthat, and

the lage number of entities (and therefore degrees of freedom), such systems are almost certain
to show chaotic behaviour under a wide range of conditions.

Complex systems may show roughly four types of behaviour (Langton 1989, 1992): (i) steady
state, (ii) periodic, (iii) “complex”, and (iv) highly chaotic. Steady state is the simplest: the
system is frozen into a particular statbough there may be some initial oscillations, these die

out and the system settles down into its final sTdtere is a gradual transition into the periodic
regime: initial oscillations persisting for longer and longer times until they becdeoti\efly

infinite. Even though the system is oscillating, the spatiotemporal structure may be thought of as
fixed, non-adaptive. Both the steady state and periodic classes of behaviour may be thought of as
solid. Converselyin the highly chaotic regime, no oscillations persist, and no structure is appar
ent at all. Though determinism might be present, the degree of chaos is so high it is indistin-
guishable from stochastic behaviolihe system might be thought of as being in a gaseous
phasesAs such, the system is not adaptive eititas just a constant mess.

The most interesting behaviour is seen at the borderline between order and chaos, which might
be thought of as a phase-transition between the solid and the gaseouAtthésborderline,

periodic oscillations may persist for long periods of time, or may vanish almost insbzeftly

nite structures may propagate through space and time, and produce complex interactions where
they meet. It has also been shown that such systems, balanced on the “edge of chacs” can per
form computing tasks: manipulation, storage and transmission of data. On the edge of chaos
they are neither so rigid that manipulation or transmission is impossible, nor so chaotic that
stored and transmitted data are scramblée. systems can become truly adaptive. It is an at-
tractive, but as yet unproven conjecture of many workers in this field that all living systems
(single oganisms and ecosystems alike) are balanced on the edge between order and chaos,
since it is only on this edge that Bant order is present for homeostasis, along withcent

chaos for adaptive behaviour (Langton, 1992ere is a number of theoretical studies which
suggest that evolution indeed drives the evolving entities to this edgdr{taaudnd Johnsen

1992, Kaneko and Suzuki 1994).

Self-oganized criticality and powdaw spectra in complex systems.

It has been claimed that complex systems may show what has been calledgaaifent
criticality”: a situation in which the slightest disturbance may cause eitlysr ¢tarsmall cas-
cades of event3he classical example of this is agarpile of sand, each grain on the surface of
which isjustheld in placeToss an extra grain of sand on the pile and you may see anything may
happen from just a trickle to a huge avalanche @ait.1988). Similarlyin an ecosystem, the
introduction of a new species (or a mutation in an existing one) may cause mass extinction or no
effect whatsoeveln fact, if many species are present in the ecosystem, it becomes very hard to
introduce new species. Usualthey fail to colonize. Occasionally however an intruder may
wipe out practically all others.

According to Baket al, self-oganized, critical systems may show shifts in behaviour at all
scales, but not all magnitudes of shifts are equally lil&tyall changes (small trickles) are more
likely than lage ones (avalancheshhe likelihood p) that a shift of a given magnitudg)(
occurs is given by a power law:

A OA™Y (1)
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This equation implies two things: (i) catastrophes cannot be prevented in such a system, and (ii)
the rate of occurrence of catastrophes at given magnitudes can be predicted from small scale
events.This power law is seen by some as a hallmark of sghirozed criticality (Balet al.

1988), others claim such systems do not actually show a power laga(Hd995), but that very

large scale events occur at lower rates than predicted by equatidih@iever the final out-

come of that discussion, if some law may be postulated which, like equation (1), can predict the
frequency of occurrence of g magnitude shifts in a dynamic system from the rate of -occur
rence of small magnitude events, this may become a diagnostic tool. If cegaiadale shifts

in the microbial ecology of the intestine are associated with disease, their rate of occurrence
might be predictable from the normal, nonpathological population dynamics. If this is the case,
modulating the dynamical behaviour of the flora, rather than its mean composition might be-
come a goal of therapit this point in time, this idea is still very much speculation, yet there are
ways to verify it. If we can determine the short to medium term (and therefore small to medium
scale) fluctuations in the gut microflora of healthy volunteers, and we find a power law distribu-
tion, we can then try to predict the rate of occurrence gélacale shifts relating to certain well
defined pathological situations, for which good epidemiological data are available, and in which
the gut microflora is assumed to be involved in its aetiolagyood agreement between pre-
dicted and measured data would lend support to the thesis that the population dynamics of the
gut microflora are involved causally

Which techniques have been developed to study complex, nonlinear dynamical systems?

A number of diferent tools to study complex, nonlinear dynamical systems has been developed
in the last decadesll rely on the availability of moderate to g amounts of computing power

The methods can be divided into two categories: (i) (time-series) analysis of observations, and
(i) computer simulations: science on the edge between theory and experiment.

The first set of techniques attempts to detect the “fingerprint” of nonlidetarministic behav-

iour in measured time-series. If the data are digent quality it is possible to distinguish
chaotic from stochastic behaviour (The#énl 1992) The degree of chaos may be determined

be measuringyapunov exponents (Eckmaetnal. 1986 Parlitz 1992), or fractal dimensions of

the attractor (Grasshgsr and Procaccia, 1983, Brandstater and Swinney 198i).lower

grade data, spectral analysis, to measure the frequencies of shiftsrehdifhagnitudes can be
performed, to see whether power law relationships are evident (e.g. BracewellAll%&&Js

of time series analysis described here do negdrda@umbers of points than are usually obtained

in e.g. patient studies of the microbiology of the intestinal microflora. Some tens of sample
points should be available per patiefhis precludes the use of classical culturing for these
types of analysis, for all but the wealthiest researchers.

The other set of tools consists of computer simulation techniques or “experimantation”.
Computer simulations allow theorists to visualize what should happen if their theories concern-
ing complex systems are correct, or which parameter settings have the most profound influence
on the systems’ behaviourComputer simulations by themselves do not tell us anything about
the real system, they tell us something about our theories concerning the Byisheut com-

puter simulations theories of all but the simplest systems are hard to interpret in a quantitative
way. Especially in the case of complex, nonlinear systems, it is virtually impossible to say how
the system will behave, given a set of experimental conditions. Hovifeyeantitative models

of each of the systesmicomponents are available, it is possible to create a computer program
which could mimic the behaviour of the real system. By running such programs many times
with many diferent settings of experimental parameters, it is possible to gain a great deal of
insight into the behaviour of the system. Comparisoniwiivoandin vitro experimental data
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must of course be performed to see whether the behaviour of the model system is anything like
the real system.

Computer models come in two f@ifent basic typestactical and strategic(Levins 1968).A

tactical model strives to explain as much detail as possible of a specific system for prediction or
control purposeshe results of simulations of such a model can be highly accurate, but are not
widely applicable. By contrast, strategic models are more or less qualithiyecannot predict

the behaviour of a specific system in detail, but they can explain the kinds of behaviour a class of
systems sharing certain features may shosgight, rather than prediction and control is the
ultimate goal of such modelBhe results of these kinds of simulations are not at all numerically
accurate, but they are widely applicable. Most modelling in theoretical biology is of the strategic
type (Bulmer 1994)A number of tactical models have been used within the field of microbiol-
ogy (Jahnket al.1982, Gerritset al. 1992, DaNit et al. 1995), usually applying to ecosystems

of limited complexityAn example of more complex modelling is Cybermouse, a model murine
immune system (Siebgir1990, 1993).

The “spatial vs. chemical detail” trade-off

When modelling an ecosystem it is of course impossible to capture all detaiing every

single cells interaction with every chemical is beyond the power of any computer on earth. Some
intelligent simplifications are needafhen designing such a simplified model, the most impor

tant trade-dfis that between the spatial resolution required and the number of (chemical or
microbial) species in the model. Models can in fact be classified based on the spatial/species
resolution ratio.

At one end of the spectrum are those models which model “chemistry” in high detail, but do not
show any spatial detail. Usually these models@aneectionistnodels, using complicated graphs
(food-webs) to define the interactions between various species within the system. Such models
may be used for well mixed chemostats (e.g. Geratsal. 1993), and can be used to model
complex chemistry (Bagley and Farm&®92) or food webs (Lindgren and Nordahl, 1994).
Leaving out spatial detail may be safe enough if the ecosystem is fairly homogenous, yet there is
one caveat. In a study of gypsy moth population dynaidger et al. (1995) found that chaos
occurred when spatial detail was omitted. If spatial detail (and consequehibyashj was in-

cluded, highly regular travelling waves were seen insteaflidioh was capable of damping out
chaos, and changing it to regular behaviour

On the other side of the scale are cellular automata: (usually rectangular) grids of simple
“chemostats” of limited complexifyeach interacting only with its nearest neighbours through
simple rules. Such systems can show high spatial detail, at the expense of biochemical realism.
Nonetheless, as extremely abstract systems they lend themselves to strategic modelling of spatial
self-oilganization processes, such as can occur in reactiosidif systems (Markus and Hess
1990) As microbiological systems can often be seen as reactfosidii systems (e.g. Blackburn

and Blackburn 1993), it is reasonable to assume that some spatial detail must be included.
Many biological models are somewhere in between the two extremes, e.g. showing one (vertical)
spatial dimension for microbial mat communities yet show a great deal of biochemical realism
(De Wit et al 1995). DeWit et al. could predict the vertical spatial distributions and diurnal
cycles of coexisting cyanobacteria, purple sulphur bacteria and chemotrophic sulphur bacteria in
a microbial mat communitypased on detailed knowledge of metabolisms, light absorption, divi-
sion rates, etcThe computations could be carried out on a simple personal conmjhéesuc-

cess of such work strongly suggests that at least a strategic model could be made for the intestinal
microflora.With considerably more computing powand considerable input framvitro meas-
urements of microbial physiologg tactical model could possibly be made.
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An experimentin silico

A computer simulation has been run, using a program developed as a pilot study within the
ISGNAS research program.full description of the computer program, its capabilities and the
simulations run on it is in preparatiorhe model intestine consists of a 6 m long axisymmetric
tube of varying diametefhe first 4.98 m are the small intestine, with a radius of 1 cm; the next

18 cm are the “caecum” (radius 5 cm), followed by a “colon” of 84 cm long and 3 cm fidwBus.
lengths and radii may be varied at wilhe intestine is subdivided axially into 100 sections and
radially into 10 concentric shells. Each of the 1000 volume elements may be considered a sepa-
rate “chemostat” coupled to its neighbours by transport mechanisms. Continuous laminar flow
and difusion are the transport mechanisms modelled to date. Extensions for peristaltic motion
may be included lateApart from up to 6 “species of bacteria”, 2 “chemical substances” are
included in the model: food and oxygerhough | will use the phrase species, each type of
bacterium represents a whole category of bacteria, all of which share an aerobic or anaerobic
metabolism.This means that each “species” can metabolize a far wider set of food substrates
(lumped together as one substance “food”), than a single species inVd#itity each category
mutualisms, such as the use of metabolites of the one species as substrate by others, means that
the efective yield of biomass per unit of substrate should be higher than in a true single species.
The metabolism of each species was modelled using Monod equations with modifications for (i)

Table 1. Parameters describing a bacterial metabolism and numerical values fibre three
“species” used (derived fom Gerritse et al. [1992]).

Symbol Meaning strict facultative strict Units
anaerobe anaerobe aerobe

Mo max. aerobic growth -1.0104 4104 6104 Is
rate

M, max. anaerobic growth ~ 1.0104 0.75104 0 Is
rate

4.,  basal metabolic rate 1109 1109 1109 Is

_ aerobic food saturation ~ 2:10°2 2:102 2:102 mol/|

uptake rate constant

Ko anaerobic food saturation 1-106 1100 1100 mol/|
uptake rate constant

Kro oxygen kill rate saturation 1-106 1100 1100 mol/l
constant

Ko max. oxygen kill rate 1-10°6 0 0 Is

a, efficiency of aerobic 1 1 1
metabolism

a,. efficiency of anaerobic 1 1 1
metabolism

a, fraction of killed bacteria 0.5 1 1
returned as fodd

B, max. respiration oxygen 1109-11077 1.5104 1.5104 Is
uptake rate

B, max. oxygen uptake 1109-1-10°7 0.0 0.0 Is

rate as toxin

1 value has no influence on outcome if oxygen kill rate and uptake rate are zero, but causes divide by zero errors if
set to zero itself.
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a basal metabolism, and (ii) mutual hindrance at high population denEiteesodel metabo-

lism of each species is determined by 12 parameters, the meanings and values of which are
summarized in table The model metabolism is a slight variation of that used by Geetitde
(1990).All concentrations are given in mol/l: food and all bacteria in molesgafroc carbon,

oxygen simply in moles of molecular oxygen,JOTo convert to numbers of bacteria, it was
assumed that the volume of a single bacterium wd$ L(.e. a maximum of 1¥/g), and that

they contained roughly 10% w/w ofgamic C.This yields a conversion factor from mol/l to
bacteria/g of about 1- P01,

Using the above model, experiments were done to simulate colonization in a sterile intestine.
One or two species of bacteria, selected from three available types (strict aerobe, facultative
anaerobe and strict anaerobe), were introduced into a sterile intestine, in which the oxygen con-
centration of the lumen was in equilibrium with the walls (0.1 mmolhe input of food,
oxygen, and bacteria was in block waves with a 40% duty cycle. Food concentration at maxi-
mum was 7 mol/l, oxygen concentration 0.1 mmol/l, and in most experiments the food inflow
contained a maximum of 2103 bacteria/g of each specid@hough this may be a bit high, runs

with only 12 bacteria/g showed virtually identical results, so evidently this parameter is rela-
tively unimportant in the initial colonization phase.

Figure 3 andTable 2 summarize the results of the simulatioiben strict anaerobes were
introduced simultaneously with either facultative anaerobes or aerobes, the latter colonized within
1 day reaching a maximum at dayMdter this, they were replaced by the anaerobes, which only
appeared in any numbers at dapf8er 5 to 6 days a stable equilibrium was reached with strict
anaerobes outnumbering facultatives or aerobes by 218@y&teps. Small oscillations caused

by the periodic input of food remained visible. Once stabilized, the population did not change if
the influx of bacteria from the “stomach” reduced to zero, thus they had colonized the lumen.
Facultative anaerobes by themselves could colonize in high numbers in the absence of strict
anaerobes (2.2x18/g). Strict aerobes could colonize by themselves, but only in modest num-
bers compared to facultatives (1.181)). By contrast, none of the strict anaerobes tested could
colonize in the absence of bacteria with an aerobic metabolic ability

_____________________

____ strict anaerobes

----- facultative anaerobes

Log # bacteria/g

Time (days)

Figure 3.Colonization process in a di-associated sterile intestine modelled by computer simulation. Equal
numbers of two species of bacteria (one strict and one facultative anaerobe) are fed into the sterile intestine,
which contains an initial oxygen concentration of 0.1 mmol/l. Initidig facultatives colonize, laters oxygen
levels drop, the strict anaerobes outcompete the facultatives.
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Table 2. Mean numbers of bacteria pegram at equilibrium, 12 days after
colonization, for a mono- ordi-associated model intestine.

Mono-associated with:

Small intestine'Plog)

Large intestineflog)

strict anaeroBe
strict aerobe
facultative anaerobe

4.42- 107 (2.65)
1.04- 108 (8.02)
7.73- 108 (8.86)

6.77- 102 (2.83)
1.10- 109 (9.04)
2.22-1011 (11.35)

Di-associated

strict anaerobe +
strict aerobe
strict anaerobe +
facultative aerobe

1.65- 109 (9.22)
1.02- 108 (8.01)
1.66- 109 (9.22)
9.871- 107 (7.99)

2.8-1011(11.45)
4.42- 108 (8.65)
2.8-1011 (11.45)
9.89- 108 (8.99)

1 Does not represent colonization, as the maximum input density of bacteria wa931g2
(mean 4.8 10%/g), and when the input density was reduced to zero, all anaerobes were

washed out of the intestine with 3-4 days.

A second experiment started with the stable mixed populations at t=12 days found with the first
experimentAt that point, the aerobic fraction of the microflora was eliminated and the influx of
aerobes halted, as a (crude) simulation of selective decontamination of the digestive tract. De-
pending on the oxygen uptake rate of the anaerobeg¥pattameters ifable 1), the populations

could remain stable, even in the total absence of aerobes. Only if the inhibition of growth and
destruction of bacteria required less than 1.2% il Op per mol C bacterial biomass did the
population become unstable and die out due to the increased oxygen conceht@atstreme
sensitivity to the value of bofirparameters @ble 1) is shown in figure ¥hen both are set at

1.2 x 108, the flora remains stable, but at 1.1 x818 steady decline does set in after 4 or 5 days,
and at 1.0 x 1® the decline starts 2 days earlier
To test the stability of the ecosystem to perturbations around this critical point, the supply of
food was altered in two ways: (i) above the stability threshold the period was increased while

12 7

Log # anaerobes/g

Time (days)

Figure 4.The survival of strict anaerobes when all facultative anaerobes and aerobes have
been removed: depending on the oxygen uptake pararﬂeﬁ;ﬁsﬁ,{ (Table 1) the bacteria

survive or die out.
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Log # anaerobes/g

127

117

10 7

Log # anaerobes/g

B Time (days)

Figure 5.Modulatingthe survival of strict anaerobes when all facultative anaerobes and
aerobes have been removed: (a) increasing the pedbthP food supply cycle for the

survivors in figure 4=1.2 x 1®) causes increasing oscillations which destabilize the popula-
tion; (b) increasing food supply through mucus productigriricreases survival for bacteria
with B=1.1 x 1.

retaining the same total food supply (i.e. a fewdaamounts of food in stead of many small
amounts), and (ii) below the stability threshold increasing the production of mucus.

Figure 5a shows the results of the first perturbafisrthe period between meals increases, the
oscillations in the population density increase, which is expected in many types of damping
systemsWhen food is supplied only once a dthe oscillations become sodarthat the popu-

lation becomes unstable and dies out. Figure 5b shows the results of the second experiment.
With increasing food supplyhe survival increases, though in this experiment no permanent
survival was observed.

13
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Discussion

In my view no “leap of faith” is needed to describe the intestinal microflora and the immune
system as complex, nonlinear dynamical systems. In fact, it is merely a generalization of the
modelling work of, e.g. Fretegt al. (1983). Once this is accepted, it is a logical step to use
nonlinear time series analysis techniques and computer simulation as tools to study these sys-
tems. Computer simulation is probably the only way to verify that certain models work, i.e.
explain observed data, in any system with more than 3 interacting objects when it is not in an
equilibrium state. Computer simulation can distinguish the essential from the accidental param-
eters. Used properly nonlinear dynamics may tell us both how to interpret our data within the
framework of a complex model (i.e. a lot of simple interacting objects), and which parameters
should be observed to distinguish between competing models.

What might we learn®m nonlinear dynamics in the intestinal noftora?

Here we enter the realm of speculation. Leaving aside a number of “ifs”, computer simulation
and time-series analysis might give us insight into the following issues:

« Under which conditions does the microflora become more or less self-regulating?

« If we extrapolate the power law spectrum of the population dynamics (if it exists), could
we explain the occurrence of certain intestinal disorders as a consequence of this power
law? If so, this could lead to preventive therapy: can we modulate the flora to change the
power of the power law?

«What is the link between the power or fractal dimension of the time series and the number
of species in the flora? Does this conform to the conventional notion of some 400 spe-
cies?

«how does all this influence colonization resistance, i.e. can we predict colonization
resistances from population dynamics?

+ What role do bacteriophages play?

« What attributes does a bacterium need to survive in the intestines?

« How do the mechanics (intestinal motiliymen viscosityetc.) influence the spatial and
species distribution?

+ What role does the immune system (e.g., modelled using CYBERMOUSE) play in modu-
lating the flora?

These issues (and probably a lot more) can of course not be resolved by computer modelling
work alone, but should be addressed by a concerted, ehcorporating the development of

new theories and more accurate methods of observation. High quality data will be essential for
the nonlinear analysis approaches to wdtke problems with cultural counts can however be
surmounted with a number of techniques, such as measurement of microflora associated charac-
teristics (MACs) (Midtvedt, 1985) and digital image analysis (Majeal. 1991 ,Wilkinson et

al. 1995) especially in combination with 16S rRNXgAgeted fluorescende situ hybridization
(Langendijket al 1995) and measurements of metabolic activity (Nwaguh. 1995, Gribbon

and Barer1994). Such techniques promise to deliver both the data quality and achievable sam-
pling rates needed for the kind of analysis envisaged.

What has been learnedm the pilot study?

First of all it should be stated that no true chaos was observed in any of the simulations. Sec-
ondly, a number of things may be learned from the omissions in the rAdithelrence sites on

the epithelium were not modelled, yet in the absence of a true mucosal flora attached to the wall,
a luminal flora could become perfectly stable. Evideitcteriacan colonize the lumen with-

out colonizing the mucos@lithout an immune system reasonable ratios of aerobes to anaerobes
were foundThus, it is reasonable to assume that the immune system does not in fact regulate

14
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this ratio, but that the reduction of oxygen by aerobes creates an anoxic environment, in which
they are outcompeted for food by strict anaerobes. Far from being a new idea, this has already
been suggested by (e.g.) Meynell (1963), Schaedlal (1965) and Schaedler (1973) on the
basis of experimental data. Howeuaone of these authors could give a estimate of the magni-
tude of the d&ct on theoretical grounds.

Apart from the final numbers and ratios, sequence of the colonization in figure 3 is very reminis-
cent of the colonization of the gut of germ free and new-born mice (Schatdler 1965,
Schaedler 1973), where the “normal” flora (fusiforrBsctepides etc.) are preceded by the
coliform facultatives. For about 2 days, the facultatives dominate the strict anaerobes, after which
the anaerobes outcompete the coliforfise diference between these observations and the
simulation lies in the lactobacilli and lactococci, which are the first to appear in new-born mice.
However many lactobacilli grow readily at high oxygen levels (even in air (Schut, personal
communication)), and do not lower redox potential (Eh) (Meynell, 1963). Furthermore, they are
not thought to enter into direct substrate competition with the coliforms, fusifBattgpides

etc. (Schaedlest al, 1965).Thus, they may not interfere with the type of interaction modelled

in this experiment.

Selective decontamination could lead to a destruction of highly oxygen sensitive anaerobes,
even when totally resistant to the antibiotics u3dus efect should be lagrer in patients with
reduced mucus production due to epithelial damage than in healthy volunteers. On the other
hand, the oxygen uptake by anaerobes need not be unrealistically high (6e&it4892) to

retain a perfectly stable anaerobic flora when all aerobes have been removed. Even in these cases
it is likely that the anaerobes become more sensitive to extra stress factors, such as a residual
antibiotic resistance.

Since the main supply of oxygen in theglurintestine is the difsion through the mucosa,
oxygen availability should not change with food supfiya first order approximatioithere-

fore, if the host is starved or if little or no fibre is contained in the diet, a shift in ecological
balance towards a more aerobic flora is expecits may suggest that an increased risk of
intestinal ovegrowth by aerobic pathogens during malnutrition can exist, even before the im-
mune system is fdcted. Similarly if the mucosa is damaged thefasion of oxygen may in-
crease, causing an increase in the numbers of aerobes, which in turn may result in more damage.
This type of vicious circle may be considered an attractor in dynamical térenged in this

way, an aerobic infection may contain a form of setjamisation, the bacteria creating the con-
ditions for their own success. Furthermore, if the epithelium is damaged by irradiation or chemo-
therapy both the production of mucus and the oxygen uptake by the epithelium may be im-
paired. Both décts should contribute to an increase in aerobic bacteria. Both in man and in mice
such an increase has been observed after irradiagond@\Waaij, 1978).

Concluding emarks

More work,in vivo, in vitro andin silico, is needed to show whether the tentative conclusions
drawn from this pilot study hold ugA more complicated model, taking more microbial and
chemical species into account, and the inclusion of receptors on the intestinal epithelium, an
immune system, etc., are needed for ithailico part of the work. Simultaneouslihe data
analysis techniques reviewed here should be used to examine data ¥reomeasurements.
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