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Nonlinear Dynamics, Chaos-theory, and the “Sciences of
Complexity”: Their Relevance to the Study of the Interac-
tion between Host and Microflora

M.H.F. Wilkinson
Centre for High Performance Computing,
University of Groningen,
P.O. Box 800, 9700 AV Groningen, The Netherlands,
E-mail: michael@rc.service.rug.nl
Tel.: +31-50-3633374, Fax +31-50-3633406

Summary

Theoretical and experimental studies of various biomedical systems, including heart, brain, im-
mune system, and many ecosystems, have shown that many of these systems may be described
in terms of nonlinear dynamics. Two important consequences of this nonlinear dynamical be-
haviour are irreversibility and unpredictability, due to the chaotic behaviour this type of system

�
may exhibit. Another trend in modern science (often named “the sciences of complexity”) deals
with the often complex or chaotic collective behaviour of systems made up of large numbers of
relatively simple entities. Very often such systems exhibit nonlinear dynamical behaviour. Many
such complex and nonlinear systems have been studied successfully using computer simulation
techniques.
It is proposed that, as has been demonstrated for the immune system, the intestinal microbial
ecosystem may be viewed as such a complex system governed by nonlinear dynamical equa-
tions. A discussion of techniques available for the study of such systems is given, with a special
emphasis on computer simulation. Finally, the results of a pilot study using computer simulation
of the interaction between the anaerobic and aerobic compartments of the microflora within a
simple geometric model of the small and large intestine are presented.

Intr oduction

In recent years there has been a great deal of interest (and indeed a great deal of hype) concern-
ing three catch-phrases: nonlinear dynamics, chaos, and complexity. This interest (and hype) has
led to a large number of popular-science articles decorated with very fancy graphics (fractals and
the like). Naturally, a sceptical backlash from certain serious scientists (Horgan, 1995) has oc-
curred. Some scepticism is of course always in place when a group of scientists claims to have
opened up a new field of study which will (a) revolutionize science, and (b) explain virtually
anything under the sun and beyond. Some scientists working in the fields of nonlinear dynamics
and complexity have indeed made such claims. Such claims abound throughout the history of
modern science from Newton down to the present day (see Prirogine and Stengers (1984)). Each
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time some breakthrough was reached, far-fetched claims about the general applicability of the
new theory or model cropped up. Similarly, objections by serious scientists against such claims
have been heard as often as the claims themselves. Even the critics must however concede that
nonlinear dynamics, chaos theory and studies of complex systems have been making solid con-
tributions to fields of physics (e.g. Ott et al. 1994), meteorology (e.g. Lorenz, 1963), and ecol-
ogy (Bulmer 1994, Lindgren and Nordahl, 1994) to name but a few.
Leaving aside both the exaggerated claims and the often acrimonious responses, the aim of this
paper is to explore the possible implications which techniques and insights gleaned from nonlinear
dynamics, chaos theory and studies of complex systems may have for the study of the intestinal
microbial ecosystem and its interaction with the host. To achieve this, the  meaning of the phrases
“nonlinear”, “chaos” and “complex” within this context will be defined. The discussion of these
topics is presented without any attempt at mathematical rigour. Those interested in a more rigor-
ous discussion are referred to Ott et al. (1994), or for the more philosophically minded Prirogine
and Stengers (1984) and Kauffman (1995). It will then be shown that both the microbial ecosys-
tem and the host’s immune and digestive system all meet the necessary conditions to be called
complex nonlinear dynamical systems. The types of behaviour which such systems may exhibit
and the means to study them are explored. Two approaches to study the intestinal microflora and
its interaction with the host follow naturally from this discussion: (i) computer simulation of the
system, and (ii) time-series analysis of series of measurements to measure degrees of chaos and
(un)predictability. There have been some attempts at the first approach already, notably by Freter
et al. (1983), who made a mathematical model of the competition for food substrate and binding
sites in a continuous flow model of the intestine. Many other types of interactions (both antago-
nistic and mutualistic) exist within the intestinal microflora, and it should be possible to model
many of these. In this paper a pilot study, using computer simulation of the interaction between
the aerobic and anaerobic compartments of the microflora, is presented. This simulation lends
further support to the idea that a qualitative and quantitative theoretical understanding of a number
of features of the intestinal microflora can be obtained through computer simulation. Finally, an
outline of a research programme to explore the interaction between microflora and host with
techniques from nonlinear dynamics and complexity studies is sketched.

Theory

What are nonlinear dynamical systems?

Probably the most important contribution of Newton and Leibnitz to science is the introduction
of the concept of dynamical systems. In physics almost any system under study, whether plan-
etary orbits, semiconductor electronics, or the Earth’s atmosphere, may be considered a dynami-
cal system. A dynamical system is a simply system which can be characterized by (a) a set of
parameters the values of which define its state at a given point in time, and (b) a set of math-
ematically specified rules defining the change of state of the system in time. These rules are
generally specified as differential equations, defining the rate of change of each of the param-
eters describing the system, as a function of the current state of the system.
This definition is very broad indeed, and many systems in biology, medicine, economics and the
social sciences may be described and studied as dynamical systems (e.g. Prirogine and Stengers
1984, Kauffman 1994). A well-known example of this is the Lotka-Volterra predator-prey model
ecosystem. The set of numbers describing this systems consists of (i) the number of predators,
and (ii) the number of prey. The rules specify that the number of prey increase at a rate propor-
tional to the number present (exponential growth) in the absence of predators. When predators
are present the number of prey caught, which is proportional to both the number of predators and
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the number of prey, must be subtracted. The predators starve in the absence of prey (exponential
decay) and grow proportionally to the number of prey caught (again proportional to the product
of prey and predator numbers). This system may show damped, undamped and increasing predator-
prey oscillations. By specifying the initial conditions (e.g. from observation) and solving the
differential equations involved, it is in principle possible to model or predict the future behav-
iour of the ecosystem.
The sequence of states the system passes through in time is called its orbit. If the system is
dissipative, i.e. it loses energy in some way (and most systems do), the orbits converge to one of
a small subset of all possible states called an attractor. The simplest kind of attractor is a single
point: the system becomes stationary. The system is said to be at rest or in dynamical equilib-
rium. Another type of attractor is called a limit cycle: the system oscillates at a stable frequency
and amplitude. A system may have numerous attractors, and the initial conditions determine to
which attractor the system will converge. The set of initial states for which the system converges
to a particular attractor is called the basin of attraction of that attractor. The Lotka-Volterra type
ecosystem may have either a point attractor, i.e. the populations become stable, or a limit cycle
attractor, i.e. predator-prey oscillations remain stable (e.g. Bulmer 1994, pp.39-45).
Depending on the kind of rules specified, dynamical systems are either linear or nonlinear. In a
linear dynamical system the differential equations are linear, which means that the effects of
changes in the state of the system are additive and proportional to the magnitude of the changes.
The result of changing multiple parameters simultaneously is simply a superposition of the
change in each individual parameter. The additive nature of changes to the system means that
different parameters of the system may each be studied separately. Furthermore, the linear na-
ture of the of the equations ensures that, given an initial condition, the orbit of the system is
uniquely defined. This means the system is time-reversible and predictable: past and future may
be deduced with arbitrary precision from the present state. Furthermore, the attractors are guar� -
anteed to be simple, and the equations can be solved quite readily (even with paper and pencil in
small systems).
Because of all these features, linear systems have been studied most. Before the advent of elec-
tronic computers, mathematical simplicity was one overriding reason to study linear systems,
but a more subtle reason may have been equally important (Prirogine and Stengers, 1984). The
uniqueness of the orbit lent credibility to the idea of a Cartesian, clockwork universe. All condi-
tions were set at the time of creation, and the clockwork mechanism of Newtonian mechanics
would automatically see to the rest. Unique orbits also provide complete determinism, which is
not guaranteed to exist for nonlinear dynamical systems. Besides, it was (and is) argued that
many nonlinear systems (such as the simple pendulum) can be approximated by linear systems
to such a degree that there is no need to solve the more complicated nonlinear form.
By contrast, in nonlinear systems, changes in multiple parameter need neither be additive, nor
proportional to the magnitude of the changes. The effects of changing individual parameters
cannot in general be studied separately as in the linear case. Furthermore, the orbit of a system
need not be unique for a given initial condition. In such cases bifurcations occur: places in the
orbit where two possible future paths are open to the system, and no deterministic means exists
to choose between the two paths. An element of randomness creeps back into the mechanics
(Prirogine and Stengers, 1984).
In many nonlinear systems with more than three parameters which can be set freely (or degrees
of freedom), an effect called chaos may occur. Probably the most famous example of chaos has
been found in meteorology, where Lorenz (1963) has shown that deterministic, but highly ir-
regular flow patterns exist within weather systems. When chaos occurs the attractor cannot be
described by simple forms such as limit cycles, straight lines or points; the attractor has a fractal
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shape (Figure 1). A fractal shape shows detail at every possible magnification. Attractors with
this peculiar property are usually called strange attractors� . These attractors  can be thought of as
(roughly) the union of an infinite collection of limit cycles, with the system switching very
rapidly between them. The corresponding motion (or orbit) may appear to be random and look
something like Figure 2. Figure 2 shows the motion of a simple spring and magnet system
(Moon and Holmes, 1979). The base of the spring is forced to oscillate at some frequency ω. The
displacement of the end of the spring as a result of all forces is highly irregular, and yet it is not
noise. The system is still deterministic. In fact, figure 2b is not a series of measurements, but the
result of a computer simulation using the set differential equations describing the system, so it
cannot contain truly random noise. This type of seemingly random, yet fully deterministic be-
haviour is one of the hallmarks of chaos.
Another hallmark is the so called “butterfly effect”: change the initial conditions of wind speed
in the global weather by an amount corresponding to the beat of a wing of a butterfly in Peking,
and the path of a Caribbean hurricane is altered, because the change introduced increases
exponentially. In chaotic systems, infinitesimal changes in initial conditions propagate
exponentially in time, resulting in drastically different outcomes from infinitesimally different
initial conditions. This means that future and past cannot be deduced with arbitrary precision or
for arbitrary periods in time from measured data, which always contain some finite error. It is
possible to determine a degree of chaos: the Lyapunov exponent. This is a number which deter-
mines the doubling rate of the error in the prediction. If it is low the system is not very chaotic,
and medium to long term predictions remain accurate over considerable periods of time. If it is
high, errors increase rapidly, and only very short term prediction is possible. Other measures of
degree of chaos exist, most notably the fractal dimension of the attractor, which is a measure of
the complexity of the shape of the attractor. The more complicated the attractor, the higher the
degree of chaos.

Figure 1. An example of the fractal shape of a strange attractor: the Lorenz-attractor, which
may (roughly) be considered as consisting of an infinite set of different oscillations which the
system may go through.
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Can microbial ecosystems be described as nonlinear dynamical systems?

Growth of bacteria, either single species (Monod, 1950), mixed cultures (Gerritse et al. 1992),
or complete ecosystems (De Wit et al. 1995) can be described in terms of dynamical systems.
The key feature of the dynamics of these systems is that they show autocatalytic or inhibitory
loops: the presence of a bacterium is needed to make more of that kind bacterium (obviously).
Furthermore, species A may inhibit species B by secretion of toxins. Species A might also en-
hance growth by production of metabolites which serve as food for B, or may remove substances
toxic to B form the ecosystem. In systems which are far from thermodynamical equilibrium,
such autocatalytic and inhibitory loops produce just the type of nonlinear dynamics which can
produce highly complicated and chaotic behaviour (Prirogine and Stengers, 1984). In practice,
all ecosystems are far from thermodynamical equilibrium, since large fluxes of energy or food
pass through them; only death (a point attractor of any ecosystem) corresponds to thermody-
namical equilibrium.
For these reasons it may be assumed that techniques for analysis and modelling of nonlinear
dynamical systems in general are appropriate tools for the study of bacterial ecosystems, includ-
ing the gut microflora.

ω

�

�

Figure 2. A simple system showing chaos (after Moon and Holmes, 1979): (a) diagram of
apparatus, showing a steel spring suspended between two magnets; the top of the spring is
forced to oscillate sinusoidally, (b) the graph shows the chaotic motion of the lower end of the
spring.
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Chaos and control systems

As odd as it may seem, the presence of chaos may be an advantage in control systems, if rapid
responses are required. Chaotic systems would seem to be utterly unreliable, given their extreme
sensitivity to initial conditions. Yet, as, e.g., Ott et al. (1990) have noted, that same sensitivity
allows a control mechanism to control the system with very small corrective signals, provided
the developing chaos can be analysed rapidly, i.e. proper feedback is available. Very small ad-
justments have large effects.
This may be of particular importance to biological control systems. Changing the mode of op-
eration of, e.g. heart, nervous system or immune system rapidly, and without the expenditure of
large amounts of energy is literally of vital importance to practically any organism. The constant
feedback and small corrective steps to keep a such systems in the correct mode are probably not
such a drawback, since the expenditure of energy can be small for chaotic systems. Chaotic
dynamics have indeed been observed in, e.g., heart rate variations (Goldberger et al. 1984),
though there is still some debate about the significance and meaning of these findings (Kaplan
and Talajic, 1991). It has been observed that a reduction in variability (and possibly chaos) of
heart rate may indicate heart disease (Kaplan et al. 1991, Skinner et al. 1991). On the other hand,
fibrillations seem to be highly chaotic in nature, with high fractal dimension (Garfinkel et al.
1992). Too much chaos is uncontrollable.
It has also been claimed that chaos is present in electroencephalograms (EEG). Here too, there is
quite a lively debate about the reality and relevance of chaos (Bullock et al. 1995, Pritchard et al.
1995). Nonetheless, the fractal dimension of the attractor has been used as a measure of com-
plexity of the EEG patterns. Stam et al. (1994) found that normal controls had significantly
(p<0.001) more complex EEG patterns than patients with Parkinson’s disease. Theirs in turn
was significantly (p<0.001) more complex than EEGs of patients with � Alzheimer’s disease.

What are complex systems?

The “Sciences of Complexity” deal with systems which may show complicated behaviour, stem-
ming from the behaviour of a large number of entities which themselves show a simple behav-
iour. The complexity does not stem from complex rules, but rather from the large number of
entities or subsystems the system is made of. An objection which has been raised is that the term
complexity has not been defined particularly strictly (Horgan, 1995). Indeed a number of (more
or less conflicting) definitions have been given, yet these definitions are mainly aimed at meas-
urement of complexity, i.e. assigning a number to it. Whatever the conflict about how to measure
complexity, the basic premise that complex systems are systems which are made up of large
numbers of simpler objects is agreed on by all those working in the field. Any ecosystem can of
course be considered as such a system, being built up of large numbers of individual organisms,
each of which may show a a far simpler behaviour than the whole system. Similarly, the immune
system may also be considered to be a complex system in this sense, since it is comprised of
many cells which themselves exhibit rather simpler behaviour than the whole.
Having said this, what can actually be gained by calling ecosystems or the immune system
“complex”? Do complex systems share certain properties which may be exploited to give extra
insight into the behaviour of, e.g., the gut microflora and its interaction with the immune sys-
tem? Several studies indicate that such common properties do exist (Langton 1989, 1992,
Kauffman 1995). The most important feature is probably that such systems show global, co-
ordinated behaviour, without the presence of any distinct “global controller”: self-organization.
Though an ecosystem might show Lotka-Volterra type predator-prey oscillations, there is no
external driving force which creates this; no “invisible hand”. Similarly, the immune system has
no “chief lymphocyte” which directs an immune response, neither has the brain a “chief neuron”
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in which central control of all behaviour is located. The behaviour of all such systems is collec-
tive, but not under any “Stalinist” rule, nor need any of the entities involved be aware of the
nature of the collective behaviour. Secondly almost all such systems are nonlinear system: given
the large number of interactions in such systems, some are bound to nonlinear. Given that, and
the large number of entities (and therefore degrees of freedom), such systems are almost certain
to show chaotic behaviour under a wide range of conditions.
Complex systems may show roughly four types of behaviour (Langton 1989, 1992): (i) steady
state, (ii) periodic, (iii) “complex”, and (iv) highly chaotic. Steady state is the simplest: the
system is frozen into a particular state. Though there may be some initial oscillations, these die
out and the system settles down into its final state. There is a gradual transition into the periodic
regime: initial oscillations persisting for longer and longer times until they become effectively
infinite. Even though the system is oscillating, the spatiotemporal structure may be thought of as
fixed, non-adaptive. Both the steady state and periodic classes of behaviour may be thought of as
solid. Conversely, in the highly chaotic regime, no oscillations persist, and no structure is appar-
ent at all. Though determinism might be present, the degree of chaos is so high it is indistin-
guishable from stochastic behaviour. The system might be thought of as being in a gaseous
phases. As such, the system is not adaptive either, it is just a constant mess.
The most interesting behaviour is seen at the borderline between order and chaos, which might
be thought of as a phase-transition between the solid and the gaseous phase. At this borderline,
periodic oscillations may persist for long periods of time, or may vanish almost instantly. Defi-
nite structures may propagate through space and time, and produce complex interactions where
they meet. It has also been shown that such systems, balanced on the “edge of chaos” can per-
form computing tasks: manipulation, storage and transmission of data. On the edge of chaos
they are neither so rigid that manipulation or transmission is impossible, nor so chaotic that
stored and transmitted data are scrambled. The systems can become truly adaptive. It is an at-
tractive, but as yet unproven conjecture of many workers in this field that all living systems
(single organisms and ecosystems alike) are balanced on the edge between order and chaos,
since it is only on this edge that sufficient order is present for homeostasis, along with sufficient
chaos for adaptive behaviour (Langton, 1992). There is a number of theoretical studies which
suggest that evolution indeed drives the evolving entities to this edge (Kauffman and Johnsen
1992, Kaneko and Suzuki 1994).

Self-organized criticality and power-law spectra in complex systems.

It has been claimed that complex systems may show what has been called “self-organized
criticality”: a situation in which the slightest disturbance may cause either large or small cas-
cades of events. The classical example of this is a large pile of sand, each grain on the surface of
which is just held in place. Toss an extra grain of sand on the pile and you may see anything may
happen from just a trickle to a huge avalanche (Bak et al. 1988). Similarly, in an ecosystem, the
introduction of a new species (or a mutation in an existing one) may cause mass extinction or no
effect whatsoever. In fact, if many species are present in the ecosystem, it becomes very hard to
introduce new species. Usually, they fail to colonize. Occasionally however an intruder may
wipe out practically all others.
According to Bak et al., self-organized, critical systems may show shifts in behaviour at all
scales, but not all magnitudes of shifts are equally likely. Small changes (small trickles) are more
likely than large ones (avalanches). The likelihood (p) that a shift of a given magnitude (A)
occurs is given by a power law:

p A A
���

∝ −ν (1)
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This equation implies two things: (i) catastrophes cannot be prevented in such a system, and (ii)
the rate of occurrence of catastrophes at given magnitudes can be predicted from small scale
events. This power law is seen by some as a hallmark of self-organized criticality (Bak et al.
1988), others claim such systems do not actually show a power law (Horgan, 1995), but that very
large scale events occur at lower rates than predicted by equation (1). Whatever the final out-
come of that discussion, if some law may be postulated which, like equation (1), can predict the
frequency of occurrence of large magnitude shifts in a dynamic system from the rate of occur-
rence of small magnitude events, this may become a diagnostic tool. If certain large scale shifts
in the microbial ecology of the intestine are associated with disease, their rate of occurrence
might be predictable from the normal, nonpathological population dynamics. If this is the case,
modulating the dynamical behaviour of the flora, rather than its mean composition might be-
come a goal of therapy. At this point in time, this idea is still very much speculation, yet there are
ways to verify it. If we can determine the short to medium term (and therefore small to medium
scale) fluctuations in the gut microflora of healthy volunteers, and we find a power law distribu-
tion, we can then try to predict the rate of occurrence of large scale shifts relating to certain well
defined pathological situations, for which good epidemiological data are available, and in which
the gut microflora is assumed to be involved in its aetiology. A good agreement between pre-
dicted and measured data would lend support to the thesis that the population dynamics of the
gut microflora are involved causally.

Which techniques have been developed to study complex, nonlinear dynamical systems?

A number of different tools to study complex, nonlinear dynamical systems has been developed
in the last decades. All rely on the availability of moderate to large amounts of computing power.
The methods can be divided into two categories: (i) (time-series) analysis of observations, and
(ii) computer simulations: science on the edge between theory and experiment.	
The first set of techniques attempts to detect the “fingerprint” of nonlinear, deterministic behav-
iour in measured time-series. If the data are of sufficient quality, it is possible to distinguish
chaotic from stochastic behaviour (Theiler et al. 1992). The degree of chaos may be determined
be measuring Lyapunov exponents (Eckmann et al. 1986, Parlitz 1992), or fractal dimensions of
the attractor (Grassberger and Procaccia, 1983, Brandstater and Swinney 1987). With lower
grade data, spectral analysis, to measure the frequencies of shifts of different magnitudes can be
performed, to see whether power law relationships are evident (e.g. Bracewell, 1986). All kinds
of time series analysis described here do need larger numbers of points than are usually obtained
in e.g. patient studies of the microbiology of the intestinal microflora. Some tens of sample
points should be available per patient. This precludes the use of classical culturing for these
types of analysis, for all but the wealthiest researchers.
The other set of tools consists of computer simulation techniques or “experimentation in silico”.
Computer simulations allow theorists to visualize what should happen if their theories concern-
ing complex systems are correct, or which parameter settings have the most profound influence
on the system’s behaviour. Computer simulations by themselves do not tell us anything about
the real system, they tell us something about our theories concerning the system. Without com-
puter simulations theories of all but the simplest systems are hard to interpret in a quantitative
way. Especially in the case of complex, nonlinear systems, it is virtually impossible to say how
the system will behave, given a set of experimental conditions. However, if quantitative models
of each of the system’s components are available, it is possible to create a computer program
which could mimic the behaviour of the real system. By running such programs many times
with many different settings of experimental parameters, it is possible to gain a great deal of
insight into the behaviour of the  system. Comparison with in vivo and in vitro experimental data

Nonlinear Dynamics, Chaos theory and ComplexityM.H.F. Wilkinson



9

must of course be performed to see whether the behaviour of the model system is anything like
the real system.
Computer models come in two different basic types: tactical and strategic (Levins 1968). A
tactical model strives to explain as much detail as possible of a specific system for prediction or
control purposes. The results of simulations of such a model can be highly accurate, but are not
widely applicable. By contrast, strategic models are more or less qualitative. They cannot predict
the behaviour of a specific system in detail, but they can explain the kinds of behaviour a class of
systems sharing certain features may show. Insight, rather than prediction and control is the
ultimate goal of such models. The results of these kinds of simulations are not at all numerically
accurate, but they are widely applicable. Most modelling in theoretical biology is of the strategic
type (Bulmer 1994). A number of tactical models have been used within the field of microbiol-
ogy (Jahnke et al. 1982, Gerritse et al. 1992, De Wit et al. 1995), usually applying to ecosystems
of limited complexity. An example of more complex modelling is Cybermouse, a model murine
immune system (Sieburg 1990, 1993).

The “spatial vs. chemical detail” trade-off

When modelling an ecosystem it is of course impossible to capture all detail. Tracing every
single cell’s interaction with every chemical is beyond the power of any computer on earth. Some
intelligent simplifications are needed. When designing such a simplified model, the most impor-
tant trade-off is that between the spatial resolution required and the number of (chemical or
microbial) species in the model. Models can in fact be classified based on the spatial/species
resolution ratio.
At one end of the spectrum are those models which model “chemistry” in high detail, but do not
show any spatial detail. Usually these models are connectionist models, using complicated graphs
(food-webs) to define the interactions between various species within the  system. Such models

may be used for well mixed chemostats (e.g. Gerritse et al. 1993), and can be used to model
complex chemistry (Bagley and Farmer, 1992) or food webs (Lindgren and Nordahl, 1994).
Leaving out spatial detail may be safe enough if the ecosystem is fairly homogenous, yet there is
one caveat. In a study of gypsy moth population dynamics, Wilder et al. (1995) found that chaos
occurred when spatial detail was omitted. If spatial detail (and consequently diffusion) was in-
cluded, highly regular travelling waves were seen instead. Diffusion was capable of damping out
chaos, and changing it to regular behaviour.
On the other side of the scale are cellular automata: (usually rectangular) grids of simple
“chemostats” of limited complexity, each interacting only with its nearest neighbours through
simple rules. Such systems can show high spatial detail, at the expense of biochemical realism.
Nonetheless, as extremely abstract systems they lend themselves to strategic modelling of spatial
self-organization processes, such as can occur in reaction diffusion systems (Markus and Hess
1990). As microbiological systems can often be seen as reaction diffusion systems (e.g. Blackburn
and Blackburn 1993), it is reasonable to assume that some spatial detail must be included.
Many biological models are somewhere in between the two extremes, e.g. showing one (vertical)
spatial dimension for microbial mat communities yet show a great deal of biochemical realism
(De Wit et al. 1995). De Wit et al. could predict the vertical spatial distributions and diurnal
cycles of coexisting cyanobacteria, purple sulphur bacteria and chemotrophic sulphur bacteria in
a microbial mat community, based on detailed knowledge of metabolisms, light absorption, divi-
sion rates, etc. The computations could be carried out on a simple personal computer. The suc-
cess of such work strongly suggests that at least a strategic model could be made for the intestinal
microflora. With considerably more computing power, and considerable input from in vitro meas-
urements of microbial physiology, a tactical model could possibly be made.
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An experiment in silico

A computer simulation has been run, using a program developed as a pilot study within the
ISGNAS research program. A full description of the computer program, its capabilities and the
simulations run on it is in preparation. The model intestine consists of a 6 m long axisymmetric
tube of varying diameter. The first 4.98 m are the small intestine, with a radius of 1 cm; the next
18 cm are the “caecum” (radius 5 cm), followed by a “colon” of 84 cm long and 3 cm radius. The
lengths and radii may be varied at will. The intestine is subdivided axially into 100 sections and
radially into 10 concentric shells. Each of the 1000 volume elements may be considered a sepa-
rate “chemostat” coupled to its neighbours by transport  mechanisms. Continuous laminar flow
and diffusion are the transport mechanisms modelled to date. Extensions for peristaltic motion
may be included later. Apart from up to 6 “species of bacteria”, 2 “chemical substances” are
included in the model: food and oxygen. Though I will use the phrase species, each type of
bacterium represents a whole category of bacteria, all of which share an aerobic or anaerobic
metabolism. This means that each “species” can metabolize a far wider set of food substrates
(lumped together as one substance “food”), than a single species in reality. Within each category,
mutualisms, such as the use of metabolites of the one species as substrate by others, means that
the effective yield of biomass per unit of substrate should be higher than in a true single species.
The metabolism of each species was modelled using Monod equations with modifications for (i)

1 Value has no influence on outcome if oxygen kill rate and uptake rate are zero, but causes divide by zero errors if
set to zero itself.

Table 1. Parameters describing a bacterial metabolism and numerical values for the three
“species” used (derived from Gerritse et al. [1992]).

Symbol Meaning strict facultative  strict Units
anaerobe anaerobe aerobe

µO max. aerobic growth -1.0.10-4 4.10-4 6.10-4 /s
rate

µan max. anaerobic growth 1.0.10-4 0.75.10-4 0 /s
rate

µbasal basal metabolic rate 1.10-5 1.10-5 1.10-5 /s
KF aerobic food saturation 2.10-2 2.10-2 2.10-2 mol/l

uptake rate constant
KR,O anaerobic food saturation 1.10-6 1.10-5 1.10-5 mol/l

uptake rate constant
KT,O oxygen kill rate saturation 1.10-6 1.10-5 1.10-5 mol/l

constant1

κO max. oxygen kill rate 1.10-6 0 0 /s
αO efficiency of aerobic 1 1 1

metabolism
αan efficiency of anaerobic 1 1 1

metabolism
ακ fraction of killed bacteria 0.5 1 1

returned as food1

βµ max. respiration oxygen1.10-9-1.10-7 1.5.10-4 1.5.10-4 /s
uptake rate

βκ max. oxygen uptake 1.10-9-1.10-7 0.0 0.0 /s
rate as toxin
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Figure 3. Colonization process in a di-associated sterile intestine modelled by computer simulation. Equal
numbers of two species of bacteria (one strict and one facultative anaerobe) are fed into the sterile intestine,
which contains an initial oxygen concentration of 0.1 mmol/l. Initially, the facultatives colonize, later, as oxygen
levels drop, the strict anaerobes outcompete the facultatives.

a basal metabolism, and (ii) mutual hindrance at high population densities. The model metabo-
lism of each species is determined by 12 parameters, the meanings and values of which are
summarized in table 1. The model metabolism is a slight variation of that used by Gerritse et al.
(1990). All concentrations are given in mol/l: food and all bacteria in moles of organic carbon,
oxygen simply in moles of molecular oxygen (O2). To convert to numbers of bacteria, it was
assumed that the volume of a single bacterium was 10-15 l (i.e. a maximum of 1012/g), and that
they contained roughly 10% w/w of organic C. This yields a conversion factor from mol/l to
bacteria/g of about 1.2.1011.
Using the above model, experiments were done to simulate colonization in a sterile intestine.
One or two species of bacteria, selected from three available types (strict aerobe, facultative
anaerobe and strict anaerobe), were introduced into a sterile intestine, in which the oxygen con-
centration of the lumen was in equilibrium with the walls (0.1 mmol/l). The input of food,
oxygen, and bacteria was in block waves with a 40% duty cycle. Food concentration at maxi-
mum was 7 mol/l, oxygen concentration 0.1 mmol/l, and in most experiments the food inflow
contained a maximum of 1.2.103 bacteria/g of each species. Though this may be a bit high, runs
with only 12 bacteria/g showed virtually identical results, so evidently this parameter is rela-
tively unimportant in the initial colonization phase.
Figure 3 and Table 2 summarize the results of the simulations. When strict anaerobes were
introduced simultaneously with either facultative anaerobes or aerobes, the latter colonized within
1 day, reaching a maximum at day 4. After this, they were replaced by the anaerobes, which only
appeared in any numbers at day 3. After 5 to 6 days a stable equilibrium was reached with strict
anaerobes outnumbering facultatives or aerobes by 2.4-2.7 10log steps. Small oscillations caused
by the periodic input of food remained visible. Once stabilized, the population did not change if
the influx of bacteria from the “stomach” reduced to zero, thus they had colonized the lumen.
Facultative anaerobes by themselves could colonize in high numbers in the absence of strict�
anaerobes (2.2x1011/g). Strict aerobes could colonize by themselves, but only in modest num-
bers compared to facultatives (1.1x109/g). By contrast, none of the strict anaerobes tested could
colonize in the absence of bacteria with an aerobic metabolic ability.
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Figure 4. The survival of strict anaerobes when all facultative anaerobes and aerobes have
been removed: depending on the oxygen uptake parameters β=βµ=βκ (Table 1) the bacteria
survive or die out.

Table 2. Mean numbers of bacteria per gram at equilibrium, 12 days after
colonization, for a mono- or di-associated model intestine.

Mono-associated with: Small intestine (10log) Large intestine (10log)

      strict anaerobe1 4.42 . 102 (2.65) 6.77 . 102 (2.83)

      strict aerobe 1.04 . 108 (8.02) 1.10 . 109 (9.04)

      facultative anaerobe 7.73 . 108 (8.86) 2.22 . 1011 (11.35)

Di-associated

      strict anaerobe + 1.65 . 109 (9.22) 2.8 . 1011 (11.45)

      strict aerobe 1.02 . 108 (8.01) 4.42 . 108 (8.65)

      strict anaerobe + 1.66 . 109 (9.22) 2.8 . 1011 (11.45)

      facultative aerobe 9.871 . 107 (7.99) 9.89 . 108 (8.99)

A second experiment started with the stable mixed populations at t=12 days found with the first
experiment. At that point, the aerobic fraction of the microflora was eliminated and the influx of
aerobes halted, as a (crude) simulation of selective decontamination of the digestive tract. De-
pending on the oxygen uptake rate of the anaerobes (both β-parameters in Table 1), the populations
could remain stable, even in the total absence of aerobes. Only if the inhibition of growth and
destruction of bacteria required less than 1.2 x 10-8 mol O2 per mol C bacterial biomass did the
population become unstable and die out due to the increased oxygen concentration. The extreme
sensitivity to the value of both β-parameters (Table 1) is shown in figure 4. When both are set at
1.2 x 10-8, the flora remains stable, but at 1.1 x 10-8 a steady decline does set in after 4 or 5 days,
and at 1.0 x 10-8 the decline starts 2 days earlier.
To test the stability of the ecosystem to perturbations around this critical point, the supply of
food was altered in two ways: (i) above the stability threshold the period was increased while

1 Does not represent colonization, as the maximum input density of bacteria was 1.2 . 103/g
(mean 4.8 . 102/g), and when the input density was reduced to zero, all anaerobes were
washed out of the intestine with 3-4 days.

β=1.0 .10-9

β=1.2 .10-8

β=1.0 .10-8

β=1.1 .10-8
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Figure 5. Modulating the survival of strict anaerobes when all facultative anaerobes and
aerobes have been removed: (a) increasing the period P of the food supply cycle for the
survivors in figure 4 (β=1.2 x 108) causes increasing oscillations which destabilize the popula-
tion; (b) increasing food supply through mucus production (µ) increases survival for bacteria
with β=1.1 x 108.

retaining the same total food supply (i.e. a few large amounts of food in stead of many small
amounts), and (ii) below the stability threshold increasing the production of mucus.
Figure 5a shows the results of the first perturbation. As the period between meals increases, the
oscillations in the population density increase, which is expected in many types of damping
systems. When food is supplied only once a day, the oscillations become so large that the popu-
lation becomes unstable and dies out. Figure 5b shows the results of the second experiment.
With increasing food supply, the survival increases, though in this experiment no permanent
survival was observed.
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Discussion

In my view, no “leap of faith” is needed to describe the intestinal microflora and the immune
system as complex, nonlinear dynamical systems. In fact, it is merely a generalization of the
modelling work of, e.g. Freter et al. (1983). Once this is accepted, it is a logical step to use
nonlinear time series analysis techniques and computer simulation as tools to study these sys-
tems. Computer simulation is probably the only way to verify that certain models work, i.e.
explain observed data, in any system with more than 3 interacting objects when it is not in an
equilibrium state. Computer simulation can distinguish the essential from the accidental param-
eters. Used properly nonlinear dynamics may tell us both how to interpret our data within the
framework of a complex model (i.e. a lot of simple interacting objects), and which parameters
should be observed to distinguish between competing models.

What might we learn from nonlinear dynamics in the intestinal microflora?

Here we enter the realm of speculation. Leaving aside a number of “ifs”, computer simulation
and time-series analysis might give us insight into the following issues:

•Under which conditions does the microflora become more or less self-regulating?
• If we extrapolate the power law spectrum of the population dynamics (if it exists), could

we explain the occurrence of certain intestinal disorders as a consequence of this power
law? If so, this could lead to preventive therapy: can we modulate the flora to change the
power of the power law?

•What is the link between the power or fractal dimension of the time series and the number
of species in the flora? Does this conform to the conventional notion of some 400 spe-
cies?

•how does all this influence colonization resistance, i.e. can we predict colonization
resistances from population dynamics?

•What role do bacteriophages play?
•What attributes does a bacterium need to survive in the intestines?
•How do the mechanics (intestinal motility, lumen viscosity, etc.) influence the spatial and

species distribution?
•What role does the immune system (e.g., modelled using CYBERMOUSE) play in modu-

lating the flora?
These issues (and probably a lot more) can of course not be resolved by computer modelling
work alone, but should be addressed by a concerted effort, incorporating the development of
new theories and more accurate methods of observation. High quality data will be essential for
the nonlinear analysis approaches to work. The problems with cultural counts can however be
surmounted with a number of techniques, such as measurement of microflora associated charac-
teristics (MACs) (Midtvedt, 1985) and digital image analysis (Meijer et al. 1991, Wilkinson et
al. 1995) especially in combination with 16S rRNA targeted fluorescence in situ hybridization
(Langendijk et al. 1995) and measurements of metabolic activity (Nwoguh et al. 1995, Gribbon
and Barer, 1994). Such techniques promise to deliver both the data quality and achievable sam-
pling rates needed for the kind of analysis envisaged.

What has been learned from the pilot study?

First of all it should be stated that no true chaos was observed in any of the simulations. Sec-
ondly, a number of things may be learned from the omissions in the model. Adherence  sites on
the epithelium were not modelled, yet in the absence of a true mucosal flora attached to the wall,
a luminal flora could become perfectly stable. Evidently, bacteria can colonize the lumen with-
out colonizing the mucosa. Without an immune system reasonable ratios of aerobes to anaerobes
were found. Thus, it is reasonable to assume that the immune system does not in fact regulate
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this ratio, but that the reduction of oxygen by aerobes creates an anoxic environment, in which
they are outcompeted for food by strict anaerobes. Far from being a new idea, this has already
been suggested by (e.g.) Meynell (1963), Schaedler et al. (1965) and Schaedler (1973) on the
basis of experimental data. However, none of these authors could give a estimate of the magni-
tude of the effect on theoretical grounds.
Apart from the final numbers and ratios, sequence of the colonization in figure 3 is very reminis-
cent of the colonization of the gut of germ free and new-born mice (Schaedler et al., 1965,
Schaedler 1973), where the “normal” flora (fusiforms, Bacteroides, etc.) are preceded by the
coliform facultatives. For about 2 days, the facultatives dominate the strict anaerobes, after which
the anaerobes outcompete the coliforms. The difference between these observations and the
simulation lies in the lactobacilli and lactococci, which are the first to appear in new-born mice.
However, many lactobacilli grow readily at high oxygen levels (even in air (Schut, personal
communication)), and do not lower redox potential (Eh) (Meynell, 1963). Furthermore, they are
not thought to enter into direct substrate competition with the coliforms, fusiforms, Bacteroides,
etc. (Schaedler et al., 1965). Thus, they may not interfere with the type of interaction modelled
in this experiment.
Selective decontamination could lead to a destruction of highly oxygen sensitive anaerobes,
even when totally resistant to the antibiotics used. This effect should be larger in patients with
reduced mucus production due to epithelial damage than in healthy volunteers. On the other
hand, the oxygen uptake by anaerobes need not be unrealistically high (Gerritse et al. 1992) to
retain a perfectly stable anaerobic flora when all aerobes have been removed. Even in these cases
it is likely that the anaerobes become more sensitive to extra stress factors, such as a residual
antibiotic resistance.
Since the main supply of oxygen in the large intestine is the diffusion through the mucosa,
oxygen availability should not change with food supply, to a first order approximation. There-
fore, if the host is starved or if little or no fibre is contained in the diet, a shift in ecological
balance towards a more aerobic flora is expected. This may suggest that an increased risk of
intestinal overgrowth by aerobic pathogens during malnutrition can exist, even before the im-
mune system is affected. Similarly, if the mucosa is damaged the diffusion of oxygen may in-
crease, causing an increase in the numbers of aerobes, which in turn may result in more damage.
This type of vicious circle may be considered an attractor in dynamical terms. Viewed in this
way, an aerobic infection may contain a form of self-organisation, the bacteria creating the con-
ditions for their own success. Furthermore, if the epithelium is damaged by irradiation or chemo-
therapy, both the production of mucus and the oxygen uptake by the epithelium may be im-
paired. Both effects should contribute to an increase in aerobic bacteria. Both in man and in mice
such an increase has been observed after irradiation (Van der Waaij, 1978).

Concluding remarks

More work, in vivo, in vitro and in silico, is needed to show whether the tentative conclusions
drawn from this pilot study hold up. A more complicated model, taking more microbial and
chemical species into account, and the inclusion of receptors on the intestinal epithelium, an
immune system, etc., are needed for the in silico part of the work. Simultaneously, the data
analysis techniques reviewed here should be used to examine data from in vivo measurements.

Acknowledgement

This study was made possible by funding provided by the Institute for Microbiology, Herborn-
Dill, Germany, and the International Study Group for New Antimicrobial Strategies. I would
like to thank Drs R. de Bruin and J. Kraak of the Centre for High Performance Computing,

Nonlinear Dynamics, Chaos theory and ComplexityM.H.F. Wilkinson



16

University of Groningen, for many useful suggestions and discussions, and assistance with the
visualization of the simulations, and Dr F. Schut of Microscreen B.V., for giving me much useful
literature on bacterial metabolism.

References
Bagley, R.J., and Farmer, J.D.: Spontaneous emergence of a metabolism. Artificial Life II, Santa Fé Institute Stud-

ies in the Sciences of Complexity (Proceedings Vol. X) (Langton, C.G., Taylor, C., Farmer, J.D., and Rasmussen,
S., Eds.) Addison-Wesley, Redwood City CA, USA, 93-140  (1992).

Bak, P., Tang, C., and Wiesenfeld, K.: Self-organized criticality. Phys. Rev. A 38, 364-374 (1988).
Blackburn, N.D., and Blackburn, T.H.: A reaction diffusion model of C-N-S-O species in a stratified sediment.

FEMS Microbiol. Ecol., 102, 117-126 (1993).
Bracewell, R.N.: The Fourier Transform and its Applications, 2nd ed., McGraw-Hill, New York (1986).
Brandstater, A., and Swinney, H.L.: Strange attractors in weakly turbulent Couette-Taylor flow. Phys. Rev. A, 35,

2207-2220 (1987).
Bullock, T.H., McClune, M.C., Achimowicz, J.Z., Iragui-Madoz, V.J., Duckrow, R.B., and Spencer S.S.: Temporal

fluctuations in coherence of brain waves. Proc. Nat. Acad. Sci. USA, 92, 11568-11572 (1995).
Bulmer, M.: Theoretical Evolutionary Ecology. Sinauer Associates Inc., Sunderland MA, USA, pp 29-54 (1994).
De Wit, R., Van den Ende, F.P., and Van Gemerden, H.: Mathematical simulation of the interactions among

cyanobacteria, purple sulfur bacteria and chemotrophic sulfur bacteria in microbial mat communities. FEMS
Microbiol. Ecol., 17, 117-136 (1995).

Eckmann, J.-P., Kamphorst, S.O., Ruelle, D., Ciliberto, S.: Liapunov exponents from time series. Phys. Rev. A, 34,
4971-4979 (1986).

Freter, R., Brickner, H., Vickerman, V., and Carey, K.V.: Survival and implantation of Escherichia coli in the
intestinal tract. Infect. Immun., 39, 686-703 (1983).

Garfinkel, A., Spano, M.L., Ditto W.L., and Weiss, J.N.: Controlling cardiac chaos. Science 257, 1230-1235 (1992).
Gerritse, J., Schut, F., Gottschal, J.C.: Modelling of mixed chemostat cultures of an aerobic bacterium Comamonas

testosteroni, and an anaerobic bacterium Veillonella alcalescens: comparison with experimental data. Appl.
Environm. Microbiol., 58, 1466-1476 (1992).

Golberger, A.L., Findley, L.J., Blackburn, M.R., and Mandell, A.J.: Nonlinear dynamics in heart failure: implica-
tions of long-wavelength cardiopulmonary oscillations. Am. Heart J., 107, 612-615 (1984).

Grassberger, P., and Procaccia, I.: Measuring the strangeness of a strange attractor. Physica D, 9, 189 (1983).
Gribbon, L.T., and Barer, M.R.: Oxidative metabolism in nonculturable Helicobacter pylori and Vibrio vulnificus

cells studied by substrate-enhanced tetrazolium reduction and digital image processing. Appl. Env. Microbiol.,
61, 3379-3384 (1995).

Horgan, J.: From complexity to perplexity. Sci. Am. 272 (6), 74-79 (1995).
Jahnke, R.A., Emerson, S.R., and Murray, J.W.: A model of oxygen reduction, denitrification, and organic matter

mineralization in marine sediments. Limnol. Oceanogr., 27, 610-630 (1982).
Kaneko, K., and Suzuki, J.: Evolution to the edge of chaos in an imitation game. Artificial Life III, Santa Fé

Institute Studies in the Sciences of Complexity (Proceedings Vol. XVII) (Langton, C.G., Ed.) Addison-Wesley,
Redwood City CA, USA, pp. 43-54 (1994).

Kaplan, D.T., Furman, M.I., Pincus, S.M., Ryan, S., Lipsitz L., and Goldberger A.: Aging and the complexity of
cardiovascular dynamics. Biophys. 59, 945-949 (1991).

Kaplan, D.T., and Talajic, M.: Dynamics of heart rate. Chaos, 1, 251-256 (1991).
Kauffman, S.A., and Johnsen, S.: Co-evolution to the edge of chaos: coupled fitness landscapes, poised states, co-

evolutionary avalanches. Artificial Life II, Santa Fé Institute Studies in the Sciences of Complexity (Proceed-
ings Vol. X) (Langton, C.G., Taylor, C., Farmer, J.D., and Rasmussen, S., Eds.) Addison-Wesley, Redwood
City CA, USA, pp. 325-369 (1992).

Kauffman, S.A.: At Home in the Universe. Viking (Penguin Books Ltd.) Harmondsworth, England (1995).
Langendijk, P.S., Schut, F., Jansen, G.J., Raangs, G.C., Kamphuis, G., Wilkinson, M.H.F., and Welling, G.W.:

Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-tar-
geted probe and its application in fecal samples. Appl. Environm. Microbiol., 61, 3069-3075 (1995).

Langton, C.G.: Artificial life. Artificial Life, Santa Fé Institute Studies in the Sciences of Complexity (Proceedings
Vol. VI) (Langton, C.G., Ed.) Addison-Wesley, Redwood City CA, USA, pp. 1-47 (1989).

Langton, C.G.: Life on the edge of chaos. Artificial Life II, Santa Fé Institute Studies in the Sciences of Complexity
(Proceedings Vol. X) (Langton, C.G., Taylor, C., Farmer, J.D., and Rasmussen, S., Eds.) Addison-Wesley,
Redwood City CA, USA, pp. 41-91 (1992).

Nonlinear Dynamics, Chaos theory and ComplexityM.H.F. Wilkinson



17

Levins, D.: Evolution in a Changing Environment. Princeton University Press, Princeton (1968).
Lindgren K. and Nordahl M.G.: Articifial food webs. Artificial Life III, Santa Fé Institute Studies in the Sciences of

Complexity (Proceedings Vol. XVII) (Langton, C.G., Ed.) Addison-Wesley, Redwood City CA, USA, pp. 73-
103 (1994).

Lorenz, E.. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130-141 (1963).
Markus, M., and Hess, J.: Isotropic cellular automaton for modelling excitable media. Nature 347, 56-58 (1990).
Meijer, B.C., Kootstra, G.J., and Wilkinson, M.H.F.: Morphometrical parameters of gut microflora in human volun-

teers. Epidemiol. Infect., 107, 383-391 (1991).
Meynell, G.G.: Antibacterial mechanisms of the mouse gut II: the role of Eh and volatile fatty acids in the normal

gut. Brit. J. Exp. Pathol., 44, 209-219 (1963).
Monod, J.: La technique de culture continue, théorie et applications. Ann. Inst. Pasteur, 79, 390-410 (1950).
Midtvedt, T.: Microflora-associated characteristics (MACs) and germfree animal characteristics (GACs) in man

and animal. Microecol. Ther., 15, 295-302 (1985).
Moon, F.C., and Holmes, P.J.: A magnetoelastic strange attractor. J. Sound Vib. 65, 285 (1979).
Nwoguh, C.E., Harwood, C.R., and Barer, M.R.: Detection of β-galactosidase activity in individual non-culturable

cells of pathogenic bacteria by quantitative cytological assay. Molec. Microbiol., 17, 545-554 (1995).
Ott, E., Grebogi, C., and Yorke, J.A.: Controlling chaos. Phys. Rev. Lett., 64, 1196-1199 (1990).
Ott, E., Sauer, T., and Yorke, J.A., Eds.: Coping with Chaos. Wiley, New York, USA (1994).
Parlitz, U.: Identification of true and spurious Lyapunov exponents from time series. Int. J. Bifurcation Chaos, 2,

155-165 (1992).
Prirogine, I., and Stengers, I.: Order out of Chaos. Flamingo (HarperCollins Publishers),  London (1984).
Pritchard, W.S., Duke, D.W., and Krieble, K.K.: Dimensional analysis of resting human EEG. II: surrogate data

testing indicates nonlinearity but not low-dimensional chaos. Psychophysiology, 32, 486-491 (1995).
Schaedler, R.W., Dubos R., and Costello, R.: Association of germfree mice with bacteria isolated from normal

mice. J. Exp. Med., 122, 77-82 (1963).
Schaedler, R.W.: Symposium on ‘Gut microflora and nutrition in the non-ruminant’, the relationship between the

host and its intestinal microflora. Proc. Nutr. Soc., 32, 41-47 (1972).
Sieburg, H.B. McCutchan, J.A. Clay, O. Caballero L. and Ostlund J.J.: Simulation of HIV-infection in artificial

immune system. Physica D, 45, 208-228 (1990).
Sieburg, H.B., Baray, C., and Kunzelmann, K.S.: Testing HIVN  molecular biology in in silico physiologies. Proc. 1st

Intl. Conf. Intelli. Systems Molec. Biol. AAAI/MIT  Press, Boston, Mass. (1993).
Skinner, J.E., Carpeggiani, C., Landisman, C.E., and  Fulton, K.W.: The correlation dimension of heartbeat inter-

vals is reduced in conscious pigs by myocardial ischemia. Circ. Res., 68, 966-976 (1991).
Stam, K.J., Tavy, D.L.J., Jelles, B., Achtereekte, H.A.M., Slaets, J.P.J., and Keunen, R.W.M.: Non-linear dynamical

analysis of multichannel EEG: clinical applications in dementia and Parkinson’s disease. Brain Topography, 7,
141-150 (1994).

Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., and Farmer, J.D.: Testing for non-linearity in time series: the
method of surrogate data. Physica D, 58, 77-96 (1992).

Van der Waaij, D., Tieleman-Speltie, T.M., and De Roeck-Houben, A.M.J.: Relation between the faecal concentra-
tion of various potentially pathogenic microorganisms and infections in individuals (mice) with severely de-
creased resistance to infection. Antonie van Leeuwenhoek, 44, 395-405 (1978).

Wilder, J.W., Vasquez, D.A., Christie, I., and Colbert, J.J.: Wave trains in a model of gypsy moth population dynam-
ics. Chaos, 5, 700-706 (1995).

Wilkinson, M.H.F., Jansen, G.J., and Van der Waaij, D.: Computer processing of microscopic images of  bacteria:
morphometry and fluorimetry. Trends Microbiol., 2,  485-489 (1994).

Nonlinear Dynamics, Chaos theory and ComplexityM.H.F. Wilkinson


