1. Landau theory for polydisperse
copolymer melts

1.1 Introduction

The weak seqgreqation regime

For many monomer pairsA and B the net interaction in amcompressible system is
unfavorable, that isg,g— 7 (Eant€gg >0, Wheree, is the contact energy between a
monomer of typea, and a monomer of typ@. Consequently, inmany cases gpolymer
system containingwo or more monomer types ilv undergo a phase separation if the
interaction strength is increased relativekid , which can be achieved simply by lowering the
temperature Kz is Boltzmannsconstant). If thedifferent monomer typesire chemically
bonded in thesame chain to forrblock) copolymers, the phase separation gige rise to a
microscopicstructure Typically, it consists of domains whicrealternately rich imrA andrich

in B. Depending onthe degree of separation betwe@nand B, three regimes can be
distinguished:the weak segregatioregime (WSR), the intermedeate segregati@gyime’
(ISR), and the strong segregatioegimé (SSR). In the SSR the separation betweenAthe
and theB-monomers is complete, and the oAlB-interactions take place tte thininterfaces
between thelomains. Thechainsare strongly stretchédn order tominimize the interfacial
area. In the WSR théifference in composition betwedie A-rich andthe B-rich domains is
small, and thethickness ofthe interface is comparable tthe size of the domains. The
concentration profile is more or less sinusoiflale to theirlimiting character, both the SSR
and the WSRallow for analytical calculations. Although traditionallyese calculations have a
quite different nature, recently succesfull attefftave been made tmify the WSR with the
SSR.

Landau theory

In this thesighe phasdehavior of polydisperse copolymer melts is studiethenWSR.This
phase behavior can be described witthe framework ofclassical statistical mechanics.
However, taking into accourdll microscopic details of its cheoal constituents is an
impossibletask. Fortunatelythis is alsonot necessary. It is known from experimeritst
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polymer systems havingjuite different chemal compositionsmay exhibit very similar
behavior. The influence of the microscopic (i.e. onl¢ivel ofthe atomsyetails can be caught
in a smallnumber of parameters, such the Flory-Huggins x-parametef} the excluded
volume v per segment (a segment iflexible piece of chain), anthe stiffness ofthe chain.
Apart from these parameters ittise molecular architecture othe level of the blockswhich
determines the phase behavior. Therefore, a modsiplainthe phaséehavior needot (and
shouldnot) take into account thenicroscopic details. Landau thebnyhas proven to be a
usefull tool inthese cases, because it avaldaling withthe underlying microscopitheory by
working with a coarse grained description. Btartwith giving arough sketch of th&ea
underlying the Landau theory.

Since copolymer meltare almostincompressible, we can study them usthg canonical
ensemble, which assumesnstantvolume andtemperature. Irthis ensemblethe partition
function Z is defined aghe integral ofthe Boltzmannfactor e %" over the positions and
momenta ofll particles present in tregystem. Quite generally, it is possible to factodzeto
a contribution fronthe momenta, and a contributitom the positions. Théntegralover the
momenta is a function of the temperature, and will not be considered any more, since it is of no
use for the determination of the phase behavior.ifitegral over the positions isalled the
configurational partition function, and idenoted byZ. The probability that a certain
configurational microstateccurs is proportional to itBoltzmannfactor e %", whereE
does notnclude kinetic energyHHowever, we are ndhterested in microscopistates, but in
coarse grained states. Feample, if we study binary blends containfgandB-particles, we
are interested in whether tlsgstem is homogeneously mixed, or phesparated, andot in
the exact positions ddll particles. Each coarse grainethte represents large number of
microstates. In order ténd the probability of acoarse grainedtate, onehas to add the
probabilities(i.e. Boltzmanrfactors) ofall microstates it represents. The coarse grastaids
are often chosen in suchnary thatmost of the microstates it represehésvethe same energy
content, and, therefore, tlsame probability obccurrence. In that case ti@nnormalized)
probability P to find the system in a certaigoarse grainedtate isequal to theBoltzmann
factor per microstate, multiplied with the numk§erof microstates, that is,

POQe k=g i/kT
(1.1.1)
F=E-TS S - InQ



Landau theory

The quantityF, is called the Landau free energy of the coarse graitage (although in fact it
is not a free energy in theue sense of thevord),andSis its entropy. One can expect that the
system Wil be found in the coarse grainetate forwhich P attains itsmaximumvalue. At low
temperatures theystem prefers atate with low energy, whereas dtigh temperatures it
prefers astatewith high entropy. Inmany cases theséwvo conditions cannot beatisfied
simultaneously, and in risinthe temperature there could be a phase trandioom a low-
energystate to aigh-entropystate. In order taescribe these phase transitions, ugsful to
have an expression for the partition functibrAs a firststep, writeZ as a summatioaver the
coarse grained statgsin the following way:

z= ze‘Ff/"T (1.1.2)

If it is assumed thathe most probablstates (which isthe one with the lowestaluefor F )
is completely dominant over all other states, the free energy ef$tem can be approximated

by

F=—KTin'y el O (1.1.3)
S

This is calledthe saddle point approximation, and tlesulting theory is equivalent tmean-
field theory. Usually the coarse grainestatess are characterized by thalue of anorder
parameter In the most simple case theder parameter is a singlariable. Inthe Ising model,
for instance, it is the average magnetizatmnFor copolymer meltshe situation is more
complicated, and therder parameter isfanction of space’ thus representinigfinitely many
variables.

The main purpose othis chapter is to derive an expressiontf@ Landau free energy, for

all sorts ofpolydisperse block copolymerte only restrictionbeing thatthe molecules are
linear or tree-like(the study of the phadaehavior of ring copolymer melts is mublrder,
because rings ithe melt state do nobbey random walk statisti¢y. However, there is the
restriction that Landau theory @ly applicable inthe region where therder parameter is
small, which, inthe case of copolymenelts, corresponds the region where the interaction-
induced separation ismall (weak segregation regime, WSR). the remainder of this
introduction we first discusthe choice of th@rder paramete@and then we present a coarse
grained description of block copolymer chains, which ignties(for our purposeérelevant)
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microscopic details. In paragrapt? wedefinethe so-called correlation functionshich play
an important role in the calculation thie Landau freenergy in paragraph3. Theexpression
for the Landau freenergy obtained in this chapter forthe basisfor the rest othis thesis,
where it is used to calculate the phasagram of polydisperse multiblock copolymers in
various approximations.

The choice of the order parameter

In Landau theory one has toake a choice fothe order parameter. Thereniet a strictrule
which fixesthe order parameter forgiaven systembut generally it should be a sloslegree of
freedom which comes tequilibrium only after all other degrees direedom have come to
equilibrium. In AB-copolymer meltshe usual choic€'® is the concentratioprofile Y(X),
which is defined as the deviation of tAenonomer fraction from the average value.

P(X) =pAT®— f (1.1.4)

where p is the average totamonomer density (includinghe B-monomers). @Bce
incompressibility is assumethroughout (implying a constant density), there snly one
independent concentration profile. The profilgX) as defined inl.1.4 is not asmooth
function. On thelength scale corresponding the size of a monomer, its value fluctuates
between {- f )(if there is anA-monomer present at positiox) and —f (if there is aB-
monomer present at). However, Landau theory doast deal with properties on thisngth
scale, and in fact one shoubltke for Y(X) thecoarse grainedprofile. Coarseraining means
getting rid of short-scale fluctuationahich makesthe profile smooth. Technically, coarse
graining can be accomplished by introducingu-off value A for the vectors in Fourier
spac€;’ that is, by settinghe Fouriercoefficients @ ,(g) for |G|> A equal tozero. Thevalue
of A should be chosen such thAt' is smallcompared to the radius gfrationt” of the
blocks (which isthe characteristitength scale in a block copolymer melyt on the other
hand A™* should be large compared to #iee ofthe monomers. Nevertheless caiculations
oneusuallytakes thdimit A - o . This can lead to divergenciesthre integralsover Fourier
space (see for instance chap¢r but it wil now be clear that thestivergencies have no
physical meaning.
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A coarse grained model for block copolymer melts

Consider a copolymer system containing chenical buildingblocks (monomersh andB. A
microscopic description of the (configurationsiate ofthis system wouldnhvolve giving the
position in space adll monomers. Instead, we choose a coarse grained descrigkimh, iS
possible provided thdhere are long sequences of like monomers present in fleeutes. To
define the coarse grained state of the chain we proceed as followserEistence length, of
the chain is defined ashe distance, measured along tt&in, over which the directional
correlations vanish. Roughly speaking, pieceslwdin whichare shorter that, are stiff,
whereas pieces of chain which are longer thaareflexible. A piece of chain with length, is
called asegment On thelevel of the segments thehain behaves like eandom walk(the
random walk behavior of chains the melt will be discussed in paragragh2). In a coarse
grained description thehain of monomers can be regarded as a chain of segieatength
of the blocks should beuch larger tharthe lengths ofthe segments, otherwise the theory
described in this thesis i@t applicable. Ofterihe Kuhn segmefit is regarded as thauilding
block for the coarse grainathain. It is defined inhe following way. Consider #exible chain.
Approximate this chain by a model chainMffreely jointed segments with fixed lengty ,
such that thenodel chain hathe same radius of gyratidRy; and thesamecontourlengthL as
the real chain. These conditions fix the valueN ahd a, via

L = Na, R =1 Ng (1.1.5)

The thus obtaineBuhn segment lengtla, is closelyrelated to the persistence length. In the
following it is assumed that the length of a segment is not fixedhasua Gaussian distribution
with root meansquarevaluea, which isoften calledthe statistical segment lengtlsince the
segment length is mucshorter than thdlock length, most segments are homogeneous in
compositionmaking it possible téalk aboutA-segments anB-segments. The coargeained
state of thesystem can be described tne set ofpositions of thébegin- and end-points of the
segments. This coarse grained state contains no microscopic éditaigroscopic properties
(that is, the properties on thevel ofthe chental monomers) vl be represented by just three
parameters, a andy. The parameteo is the excludedolumeper segmenta is theroot
meansquare of the end-to-end distance of a segment, anggheametegivesthe effective
interaction between thé- and B-segmentswhich includesboth energetic and entropic
contributions. Because ahcompressibilityone interaction parameter sufficient. Thisx-
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parameter should be regarded as a phenomenological parametealue of which can be
determined by experiments.

The fact that the microscopic properties can be dealt with in suchpée siay isdue to the
following.'® Consider thesystem of disconnected monomengjich is the same system but
without the presence of the chieal bonds. The set ahicroscopicstates corresponding to
just one coarse grainathte of thgpolymer system is representatiee the whole phase space
of the system of disconnected monomers (assumingntfogt monomer-monomer contacts in
the polymer systemare between monomerselonging to different chains)Therefore,
averagingover the microscopic properties is independerdavaragingover the properties of
the coarse graineslystem. Inthe dynamics ofthe polymer system this is reflected bye fact
that on smaltimescalesthe coarse grained configurations of tielecules donot change
significantly, whereas theindividual nonomers have hadontacts with many different
monomers.

According to a rain postulate in statisticahechanics almicrostates in a canonicahsemble
have the same a priori probability. This ifjowever,not applicablefor the coarsegrained
states. In order téind the probability of acoarse grainedtate onehas to integratever all
conformations of the segments. Although a rigorcalsulation of this integral isnpossible
because of the excludedlume, assuming random walk behaviortloé chains(see the next
paragraph) the segmeitdgngths can be considered as independent, and it is possible to
approximate th@robability of acoarse grainedtate by thdollowing expressionLet s denote
a molecule type in a polydisperse systeet.m numberthe molecules of a givetypes and let
i numberthe segments in given chainLet ﬁr?yi denote the position of tH& segment in the
m" molecule. Therthe probability to findthe system inthe coarse grainestate R?u} IS
proportional t8°

PARLD O3(¢ Bl % -u™)[16 Bin= B (1.1.6)

s,mi

where the deltéunction expressethe incompressibilitycondition (p is the segmerdensity),
and g(r) is theprobability thatthe end-to-end vector ofsegment is equal to . Since on the
coarse grainetkvel the chain conformations obesandom walk statisticspne cantake for
g(r) the end-to-end probability distribution of a random walk, which is derived in appendix A:
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. 3 g/z O 3r?0 0 a’q®0
= - - = 1.1.7
g(r) %Tz exp—zH 9@) X ——H (1.1.7)

Equation 1.1.7 W be used as an a prioprobability for the coarse grained model. In the
following it is assumed thdioth monomer typebavethe same valudor a, and thesame
value foru . Since a segment contains several monomers, in general we have

a>>u¥3 (1.1.8)

In manytheoretical papers the unit Ength is chosen such thidite excluded/olume v per
segment becomes equal to unity. Becausk 1B thestatistical segment lengthwill then be
large compared to unitydowever, it ispossible to rescalthe model in such a way that in
appropriate units botlv anda become equal to unity. This can be achieveth@following
way. Consider a coarse grainewdel characterized e parameterg, v anda. Replace
every segment witk segments, and rescale the parameters according to

X' = a=— (1.1.9)

The statistical segment lengithas been rescaled in such a way thatradius of gyration of
the blocksremainsthe same. Thacaling ofx is necessary becaugeis the interactiorper
segment The reason for theescaling ofuv is obvious. Mte thatafter application of the
transformation 1.1.9 thblock lengths (measured in number of segmeetsblock) are all
multiplied by afactor k, that is, N' = kN. Strictly speakinghe models obtained by taking
various valuesfor k>1 are notcompletely equivalentput within our coarsegraining
approximation they can be expected to be equivalent mfuddlse realpolymer system (even
the fluctuational behavior is independent lgf see note 21). In the processrefining the
segmentation by increasitige value ofk, the ratio betweera/+/6 and u¥® decreases. At a
certain value ok thisratio is equal tainity. This shows thawithout restricting thegenerality
of the considerations it can be assumed that

0¥ =(ta?) " =1 (1.1.10)

Summarizing, the procedure is first to model the system by choosing the appropriate number of
chemical nenomersper segment, and teterminethe values ofthe parametera, v, andy.
Then, fromthe class of equivalent models obtainedthg refining transformationl.1.9, that
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model is chosen which satisfies condition 1.1.10 for some unit of length. To reduertber
of parameters even more itllwalso be assumeitiroughout that the unit of energydsosen
such thatkgT, which is roughly speakinthe translationakinetic energyper molecule, is
equal to unity:

keT =1 (1.1.11)

Nevertheless, theffect of a change afhe temperature on the phasehavior carstill be
investigated by changirtipe value ofthe Flory-Huggins x -parametef; which istemperature
dependent.

1.2 Correlation functions
Introduction

The mean-fieldphase diagram of afB-copolymer melt can beonstructed aftederiving an
expression for the Landau freeeegy F as a function ofthe concentratiorprofile
(equation 1.1.4)Minimizing this free energy givethe most probabl@rofile. In the weak
segregation regime, whengg is small, it is possible t@xpand F_ in powers of . The
coefficients in this expansioare called the vertex functionsThese vertex functions can be
obtained fromthe correlationfunctions inthe melt, and these correlation functions can be
related to the correlatiofunctions of isolated random walksTherefore, thecalculation of
correlation functions is an essential ingrediéot the following chapters. The correlation
functions give informatiombout how thevalues ofy at different space pointe correlated.
In order to explain their physical meaning, we describe qualitativelye second order
correlation function for a block copolymer mdlet f be the averag@-monomer fraction in
the melt. Then, ify denotesany position in spacé’ the expectationalue ofthe A-monomer
fraction aty is equal tof. Now suppose that waeasure thé&-monomer fraction at aearby
space pointx (nearby means th#tte distance betweex and y is of the order ofmagnitude
of the radius of gyratiofR; of the blocks).This extrainformation changeshe expectation
value for Y(y), and this change is described quantitativelyth®y second ordecorrelation
function. The presence of this kind of correlation carubeerstood as falvs. Suppose for
the moment thaty(X) is larger than average. Tieblocks whichare responsiblefor this,
penetrate over a distanBgthrough space. Therefore, it is to be expected thai-thenomer
fraction aty will also be larger than averagdis positivecorrelation,which is characteristic

10
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for block copolymer systems, éslledthe correlatiorhole effect:® The correlation disappears
if the distance betweex and y becomegoo large. The distance athich thisoccurs iscalled
the correlation lengthSince this distance can be much larger tiesize ofthe monomers,
the correlatiorfunctions in a polymer meéire callednon-local These long-range correlations
are due to thehain connectivity, an@re, therefore, absent in the correspondiygtem of
disconnected monomers, which hesame composition a@ke polymer systembut where all
chemicalbonds between the monomers are broken. The short-range corre{tiains, the
correlations over a distance corresponding tostbe ofthe monomers) are tleamefor both
systems, provided that e polymer systemmost monomer-monomer contadtke place
between monomers belonging to different chdhits. thecalculation ofthe phasdehavior of
block copolymer systems only the long-range correlations are important.

The second order correlatidunction can be studieelxperimentally by means ofszattering
experiment, in théollowing way. Let thesystem be irradiated by waves. Thie intensity of
the scattered radiation is proportional @ (G)Y(—g)L] where Y(q) is the Fourier transform
of Y(X), the brackets denotetlermodynamic average, amp= g, — G, is themomentum
transfer. In practice thevavelength ofthe chosen radiation should be of g@meorder of
magnitude ashe size ofthe structures to be studigBincethe size ofthe structures itlock
copolymer systems is of the orderldf nm Réntgen or neutron diffraction can be used.

The correlation functions in the melt can be calculated due to the fact that the conformations of
polymer molecules ithe melt obey random walk statistitsTo appreciatevhy this statement

is remarkable, consider first an isolated polymer chain in an athsotodéibn, where thealue

of the parameteg describingthe effective interaction betwedhe monomers and tlemlvent
molecules izero.Because of the excludewlume ofthe monomers, the conformation of the
chain is a self-avoiding walk. Siné&o monomers whichare far separatefilom eachother
along thechain canstill be close to eaclother inreal space, theffect of self-avoidance
remaindarge, no matter how long tlohain is (ifthe walk is regarded as a Mark@vocess, it
hasorderinfinity). The excluded volume effect forcte self-avoiding walk to benore open
than a random walk: thenean distance travelled by a self-avoiding Walf N steps is
proportional toN%°8 whereas thenean distance travelled by a random walgrisportional

to N®°. Next consider @olymer chain in a melt, which israther denseystem. Since the
chains cannot overlap, theyinder eachother enormously. Therefore, iseems that the
excluded volume effect is evemore important in thenelt state than it is for aisolated chain.
For each chairthe set ofpossible conformations ill the same as it ior an isolatecthain
under athermal condition&or anisolated chairall theseself-avoiding walks havéhe same

11
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probability, but for achain inthe melt the various conformations obtadifferent weight
factors,which is due to the entropy of theemaining chains. Qualitativelyhe effect is as
follows. If thechaintakes on a rather open conformatwinich ischaracteristic for an isolated
chain, it has a high internantropy, but at thesame time it hinderghe otherchains
considerably,thus decreasing their entropy. If it becomes more crumpfedts internal
entropy decreases, bgince it leavesmore room for the othechains this decrease is
compensated by an increasetheir entropy.This reasoning shows that the melt state the
chainsprefer conformationsvhich arelessopen than aelf-avoiding walk Flory'* has shown,
using simple arguments, that the weight factors of the vaseléisivoiding walksare suctthat
the set ofconformations becomes representative for a random walkther words, the
effective excluded volume of the monomers is zero, and the conformationschaihe can be
considered as random walks. Thistatement has beewerified experimentally;?°
theoretically’® and by computesimulations®’ It forms the basisfor all analysis irthis thesis,
and without it,analytical calculations oithe phasebehavior of polymer melts would be
impossible.

The presence of the short-range interaction andnit@mpressibilityconstraintgive rise to
correlations between thdifferent chains.However, inthis paragraph we ignore these
correlations, and calculate the correlationctions ofthe correspondingleal systent;” which
has no intermolecular correlations. In this (hypotheticial systenthere are no interactions,
and the constraint that tliensity should beonstant is absent. However, #éssential feature
of chain connectivity ipresent in thedeal system, anthe configurations of thehains obey
random walk statistics. Since tihe ideal systenthere are no correlations betwemonomers
belonging to different chains, we neealy to calculateéhe intramolecular correlations. In the
next paragraph it is shown how the correlationctions ofthe ideal system can besed to
calculate an expression for the free energy of the incompressible system with interactions.

Correlations between monomers

Consider a chain itheideal system. Sincthere are no interactions @t between theifferent
chains,the chain can beonsidered as isolated. L&, R,---, R, denote the positions of the
monomers markinghe beginning orthe end of a segment, such that in betweemitreomers

at positionsR and R,, there isonly one segmeniFor shortness weillv often refer to the
positions R} as the positions of the segments. T8&t {R,R .-, R} is called the
configuration of the chain. It involves both the spatial shape of the chain, and the position of its
centre of mass. In the ideal system, the random walk statistics is taken as anpagtuadility

12
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measure. Lef(') be thenormalized isotropiprobability density thathe end-to-endlistance
of a segment is equal o (appendix A). Therthe (unnormalized) probability density on the
space of conformations is given by (see also 1.1.6)

PR~ R) =d B-Rd B- BR-—d R R) (1.2.1)

The integral ofP over the phase space aif configurations equal¥, which represents the
translational freedom of thehain. AlthoughP and the correlatioriunctions to be defined
below areprobability densities we will call them probabilitiesor shortness. Bylefinition, the
n™ order correlation function

Gji, (s ¥oreou %) (1.2.2)

is the probability (normalized @) that segment numigéri, is at positionk, , for k=1,---,n.
The peculiar normalization &dopted in order tmakethe correlatiorfunction independent of
the size of the system. According to definitior.2.2, P itself is anN"™ order correlation
function. For the analysis inthe WSR we neeanly®® the second, third and fourth order
correlation functions. As aexample wepresent thealculation ofthe fourth order one for the
situation that the indices are all different. Supposeithgt<k <| .

Gya (%4, %, %, %)= [ R~ dRG(CR- "BICR R g(WR WR)O

(1.2.3)
(R - %) (R - %) 8( R-"%) 8 R-")
After the coordinate transformation
=R .
o - R, = 27 (1.2.4)
r=R,-R_ if n>1 i=1

the correlation function 1.2.3 attains the form
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G (%4 7(217(33(4):J’ di-- dg 9(%) - 9(} )0
[B(Fy + -+ +1] =X 1) Oy + -+ +1; =X ) U (1.2.5)
By + -+ 1 =X3) O(Fy + -+ +1 =X )
The vectorr; does not appear asgument forg(r), because it represents the position of the

first segment. Expressiofi.2.5 can be simplified by going over to Fourier transforms.
Generally, the Fourier transform of a functié(x) is defined by

f@=[dx (3 G

. (1.2.6)

(2m)°

(R = Y F@e =3[ da iy &
a

According to this definitionthe Fourier transform of the" order correlatiorfunction 1.2.2
for n=4 is given by

i1 Ry +oo e +i0 4y

Gy (G B &, 0)= [ O dx Ox dx e i@ (X X X (1.2.7)
Substituting 1.2.5 into 1.2.7 and using the identity
iJ’dy 9 =5 (9 (1.2.8)
\%
whered, is the Kronecker delta (taking on the valOasr 1), we get

Gy (G, & B, )= WOy (§+ g+ 7g+7q) g o+ g+ ~g+ ~ 90
(1.2.9)
g™ (G + T+ Q) 07 (%+ Q) ¢ () g0

Using the normalizatiog(q = 0) = 1 this can be rewritten to

Gy (G, Ty G, t) = Wy (Q+ @+ g+ Q) ¢ (9 ¢ Ca+"q ¢ (g (1.2.10)
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Equation 1.2.10 i®nly valid if i <j <k <l . The result
1.2.10 can be described in thiellowing pictorial way, q — O3

which makes generalization to higherder correlations \-\/\/
straightforward. Through segmenta “current” ¢, is j k
flowing into the chain, through segmers “current”q, is

flowing into the chain, etc (this is just a metaphore). The qu Tq“
Kronecker delta ensures that no charge is accumulating.

At any point the totalsum ofall currents must be zerq j i | %
2N

(Kirchhoff's law). The number of bonds betwee
monomeri and monomej is equal to [—i ) Through
each of these bonds a curreqy is flowing. The
expression for the correlatidnnction shows that to each of these bondackor g(d,) is
assigned. Between segmereind segmerk the total current igqual tod,; +d,, and each of
the k- j) bonds gets a factg(q, + d,), etc. This has been illustrated in fig 1.1.

fig 1.1

The correlations between A and B

The notion of correlation function can be generalizedthains consisting ofwo segment
(monomer) typed andB. If o, = A or B, then then™ order correlation function

Gy, (Xm0, %)) (1.2.11)

is the probability (normalized to/) that at the point, a segment of type; is present, for
i=1---,n. The correlation functiorl.2.11 depends on tharder in which the A and B
monomers are placed along tein. ThisAB-sequence can be described byftheetion o7,
which is defined by

of = M if segment is of type (1.2.12)
' 7 D otherwise -

Using definition1.2.12, theAB-correlation functionl.2.11can be written in terms of the
correlation function 1.2.2.

Gal...an(?p“'j%):_20?11“'0?1” o (e %) (1.2.13)
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Equation 1.2.13nvolves a summatiomver n . ,
indicesi,,--+,i, . This summation can be split in i, “;‘ is i .fis
n! contributions, one contribution correspon-
ding to i, <i,<---<i,, etc. Each of these .
contributions can be represented by a diagram.
This diagram containk points representing
iy,-++,i,. Thechain isdrawn as a directetihe )
between these pointsFig 1.2 shows the| . _
diagrams corresponding 6,55 for adiblock '
co-polymer. In this casenly 4 of the 4! o .
diagrams give a contribution (solithe: A- | it P i1 q:i“

block, dashed lineB-block). fig 1.2

The Fourier transforms of the correlatifumctionsG are proportional to theolumeV of the
system, and it is convenient to define

ga1a2~~~an(qy e G) = 6K((jl'*' - +0h) Gb1a2~~~an (q’ - Gh) (1.2.14)

<|p

Although the delta function otte righthand side is superfluous (beca@éself iszero if the
sum of its arguments isot zero), ithas been addddr clarity. To avoid confusiomote that
g, which is given inl.1.7, denotes the end-to-editribution function of a single segment,
while g denotes the correlation function of the chain as a whole.

The correlation functiori.2.13can be rewritten in a mofamiliar form. Let p, ({I?{}, ¥ be
the density of monomers of type at positionX due to thechainunder consideration. It is

given by

PR =P (R ¥ =3 0, & % B (1.2.15)

where the hat denotes that thensity is a function ofhe configuration R } of the chain.
Using1.2.15 and thegeneralization ofL..2.3 to then" order, equation 1.2.1&n be rewritten
as
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Ga1~~~an (7(1""121): d{T% H _»B ﬁal(_X) ﬁan(ﬁﬁ() = al(_»fg ﬁan(_»r» (1-2-16)
0

The average over the configuratiohas been normalized to unity, atite subscriptO
indicates that it is defined in thaeal system.

The second order correlation function for a homopolymer chain

The mostsimple, non-trivial example of an (intramoleculagrrelation function ariseshen
there isonly one monomer type present in tobain. In that casé¢he chain is called a
homopolymer. If the chain h&$segments, then afteombiningl.2.13with thegeneralization
of 1.2.10,and going over to Fourier transforms, the secanmigr correlatiorfunction isgiven
by

N
(6. %)= ) G (G @)=
i,J=1
' (1.2.17)
N L.
FV8(G+ @) Yy ¢ (@ =Wk (4+ W) 69

i,)=1

For the end-to-end distribution functigr{g) of a single segment wellivadoptequation 1.1.7
(do not confuseg(q) with g(q))

= &% (1.2.18)

The summation representirgfd) can be split into two parts:

o(d) = i1+ 2% &0 = N+ 22

1=1 i<j=1

SN @~ N+ Né
(e -1)

(1.2.19)

The first part is called the self correlation. Folarge values othe molecule lengthN this
equation can be approximated in tf@lowing way. The relevant length scaleor the
correlation function (i.ethe length scale on which its derivative is@merunity) isthe radius
of gyration of the chain, which is proportional to
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R,0VN (1.2.20)

Therefore, the relevant values tpscale withN like

qD% 0 xﬂﬁl (1.2.21)

This is the motivation to define a rescaled wave vectaa

y=Nx=2 N& (1.2.22)

The relevant valuefor y are of orderunity. Inserting1.2.22 into 1.2.19 shows that the
dominant contribution tdhe correlationfunction is oforder N?, and after neglecting the
lower order terms we get finally

_ eV+y-1
o(q) = 2N ——>— (1.2.23)

This is called the Debije functioithe procedure used to approximate 1.2.19 by 1.2.23 is quite
general and is also used for block copolymers. In that tdaseglevaniength scaldor the
correlation function isnot theradius of gyration of the wholmolecule,but the radius of
gyration of the blocks. Theame resultl.2.23 couldhave been obtained moresda by
replacing the summations in 1.2.19 by integrals:

N N o —y _
9(9) DJ’J’didj e‘x“"':ZI\FLZyl (1.2.24)
00 y

It is useless tdake along the termsubdominant i\ in the calculation ofthe correlation
functions, even iN is small,for the following reason. As Wl be explained inchapter 5, the
free energy can be written as @ufinite series of terms. These terms candoderedwith
respect to theiscaling withN. Usually onlythe dominant termsyhich are proportional to
N~*, are taken into account. If treeibdominant terms ithe calculation ofthe correlation
functionsare taken into account, then, in order to be consistent, ifréleeenergy expansion
one shouldtake into accoungll termstill order N2, which proves to be far beyond the
accuracy required to calculate phase diagrams in the WSR.
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1.3 The Landau free energy for polydisperse
copolymer melts

Introduction

In this paragraph we derive an expressiontf@ Landau freerergy F of polydisperse
copolymer melts in terms of the order paramétewhich was defined in 1.1.4 as the deviation
of the A-monomer fraction fronthe averagealue. Since irthe WSR theorder parameter is
small, it is meaningful texpandF,_in a Taylor seriesUsually the second and third order
contributions toF, are decreasinfunctions ofthe amplitudeA of the profile, and in the
minimum these terms arealanced bythe fourth order contributionwhich is usually an
increasing function of. Near the phase transititinesbetween the various ordered structures
these second, third and fouxhder terms are of theameorder ofmagnitudewhile the fifth
and higherorder terms ar@egligible. Therefore, it issufficient to expandr_ till the fourth
order?® As mentioned beforéhe coefficients in this expansiarecalled \ertex functions. We
startfrom the general expression fahe (configurational) partitiofunction Z in the Landau
form.

7 :Idw g FLlv]
4 g (1.3.2)
EOEN RN RN e

The vertex functiond”, are “non-local,”which means that thegouple thevalues ofy at
different points in space to each ethThis non-locality is a consequence tbfe chain
connectivity, and so it is no surprise tlia¢ vertexfunctionsl”, are related to the correlation
functions G,,. Revealingthe exactrelationship between these objectghe purpose ofthis
paragraph.

Leiblers method for monodisperse copolymers

As an introduction, we W first describe qualitativelyhow Leibler®> derived mean-field
expressions for the vertdunctions of monodisperse diblock copolymers. It is convenient to
introduce arauxiliary field U(X) which acts on theA- andB-monomers in such a way that it
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changes the engy content of acopolymer system with profilep(X) by the amountAE,
which is given by

AE = [dxU(RW(3 (1.3.2)

Due to theéncompressibility we dmot need separateelds for the A- andB-monomers. In the
presence of the field (X), the expression 1.3.1 for the partition function is changed into

Z0U) = [y & TRV~ K ()
(1.3.3)

FIU] =-In ZU

where F_ is the Landau freenergy ofthe system wherthe externalfield is absent. By
differentiating the free energy[U] with respect to the external field, one obtains

OF[U]
AU (X)

= [(X)0 (1.3.4)

Equation 1.3.3 provides a description of the system in terms of the eXielthal. Because of
the way in whichp andU are coupled to eadther in the exponent of equation 1.3y8 @énd

U are “conjugated”), it ipossible to changie viewpoint, and to go over to a description in
terms ofy. To this end, define the Legendre transfdfify] of the free energy[U] via

FTW =HU| —J'dYUqJ( 3 U3 (1.3.5)

whereUy is theinverse ofl.3.4. Thetransformation 1.3.5 isalled a Legendre transformation.
By differentiating 1.3.5 with respect o, one obtains

= -U(X) (1.3.6)

which is equivalent to 1.3.4. Since in the real system the exteiddl is absent, we sdeom
1.3.6 that the averagarofile [pCJcan be found byninimizing F'. Therefore, it would be
usefull to have alosed expression foF’ (note thatF' is the truefree energynot themean-
field free energy). Since equatiohs3.4and1.3.6 areeach othersnverse, the expression for
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F'[y] is known once we hawke expression foF[U] . It follows directly from1.3.3 that the
coefficients inthe Taylorexpansion ofF[U] aroundU =0 are (aparfrom numericalfactors)
the correlation function§,,, defined by

G (%, %) = W (%) -+~ w ()0 (1.3.7)

where the brackets denotetreermodynamic averag&his average is different frotie one
used in 1.2.16which was defined inthe (compressible) ideal systemjhere there are no
interactions between thehains. Sahe problem offinding anexpression forF[U] has been
reduced to th@roblem offinding anexpression for the correlatidunctions1.3.7 in themelt.

Up till now, the analysis ofthe coarse grainesystem ixact, but in order ténd expressions

for the correlation functions 1.3.7 Leibler used the mean-field approximation, as follows. In the
previous paragraph it was shown how the correlatimetions ofthe correspondingdeal
system can be calculated. The interaction gnedincompressibility can baccounted for by
means of self-consistent fields. In this wayne obtainsmean-field expressionfor the
correlation functions1.3.7, which, via equations 1.3.4and 1.3.6, lead to mean-field
expressions for the vertex functions. This completes our brief discussion of Leiblers method.

In thefirst papef® dealing withthe generalization of Leiblertheory to polydisperse melts, it
was shown that theorrect procedurgvolvesthe averaging othe ideal correlation fucntions
over the variousnolecule typepresent in thesystem. However, an important contribution to
the fourth order vertefunction was missed. To obtathe complete expression for the fourth
order vertexseveral methodare available. One othese methods ilvbe presented irdetail
further on, butfirst we discussriefly two alternative methods: theeplica trick’® and the
detailed densitie¥.

The generalization to polydisperse block copolymer melts: quenched average
and replica trick

In a polydisperse copolymer system several molecule gfgegresent. I denotes anolecule
type (i.e. dinite sequence of’s andB's), and if p, denotes theumberdensity of molecules
of type s, then the composition of theelt is fixed completely byhe set § }. Clearly, the
probability that a randomly chosen molecule is of tgpg proportional top,. Sincefor the
determination of the phasehaviorthe chental bonds are considered to beeversible, any
molecule is afixed realization ofthe probability distribution §.}. Therefore, there is a
guenched (i.e. frozen) disorder present inceins ofthese systems. Thwncept of disorder
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is well known fromthe study ofspin glass systeni$®® In these systems, magnetic atoms are
present in a matrix. The nature of their pair interaction (ferro- or para-magneticlery a
sensitive function of their mutual distance. Sirtbe positions of the magtic atoms are
random and quenched, so are their interactions, ansiytem can be described by an Ising
model with interaction strengtld which are, foreachi andj, fixed random numbers (chosen
according to some appropriate distributi(d;)). The problem is tdind anexpression for the
free energy of such disordered systems. To rifakdiscussion general, lgtdenote the set of
quenched variables, and fetlenote the set dfee variableskor thelsing modelx ={J;} and
y={o} , whereo; = %1 is thespin at lattice site; whereas for &hain from a polydisperse
copolymer meltx = s (its AB-sequence), anglis its configuration IR } Let P(x,) denote the
probability thatx = X, in a realization othe system. In principlethe free energy of such a
guenched system could be obtained by calculativey partition function after taking a
representative realizatior of the quenched variables, that is

F = _|nJ'dye—Hz(Y) =-In Z (1.3.8)

where H is the Hamiltonian. Ifthe system is self-averagiri§,then the free energglensity
F/V is independent ok , once thevolumeV of thesystem is large enough (this statement
can be made more precis@his means thathe properties of theystemare reproducable,
despite the randomness. AlthoubB.8givesthe expression for the freeergy of a quenched
system, itdoes notprovide a directneans of calculating. However,since allrepresentative
realizations ofx give the same valudor F,, averaginghe free energy over thendomness
will not change its value, so

Fyuenched™ F*x:J’dX A(X F&=-n Z[] (1.3.9)

This is called a quenched average. It is important to not¢hikavay of averaging givesther
results than the so-called annealed average, which is defined by

E

annealed: - In |IX |:| (1310)

and which leads tthe free energy of system in whiclthe variablesx are notquenched, but
change in time according tB(x). Due to the presence of the logarithm, the average3i®
cannot be obtained in a straightforward way. The logarithm can, however, be rewritten as
follows:*
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Zlo-1
Fyuenched™ -UnZ, = _”T) Xn = L”;no F (1.3.112)

The chain of identities inl.3.11 iscalled the replicatrick. The quantityZ, is the partition
function ofn non-interacting replicas oie system, whiclall have exactlyfhe same realization
x of the quenched disorder (i.e.identical chains inthe case of golydisperse copolymer).
However, theaveraging induces coupling betwete replicas, and sdZ;J may contain
interreplica terms. Strictly speakinthe quantity K, has only meanindor positive integer
values ofn, and taking thdéimit n — 0 is, therefore, @ather trickybusiness. Ithe procedure
outlined above is applied to polydisperse copolymer meltsthenttee energy is expandait
fourth order in the concentratigarofile i, one obtains aum oftwo parts>**>*® The first
part can be obtained by replacing the Leibler expressionghe single-chaincorrelation
functions by their averages, i.e.

N o (1.3.12)

S

The secongbart, which is acontribution to the fourtlordercoefficient, is calledhe non-local
term. Its expression contains the peculiar avérage

PRHAR: (1.3.13)
S

which involvesthe second order correlatidunctions oftwo replicas (i.etwo chains having
the sameAB-sequences). Its precise form ull be given further on, butfirst we discuss an
alternative way to arrive at the same expression for the free energy, without the use of replicas.

Detailed densities

Since in polydisperse copolymer melts as considered there is noreplica symmetry
breaking’’ it is possible to arrive @he correcexpression for the free energy without the use
of replicas. As a first example we discuss shattly so-called detailedensitiesapproach,
which was introduced in ref 31 by Erukhimovich and Dobrynin.the detailed desities
approach, the concentratignofiles Y4, (X) of monomers of typex = A/ B belonging to a
molecule of types are taken as independehermodynamic variables. These profilgsg, (X)

are called detailed densities. Generalizithg method used blyeibler, it is possible to write
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down amean-field expressiofor the free energy in terms of the detaitemhsities. The lowest
(second) order contributioR, to this free energy has the fofm

1 q -
FZZW Zyz(q)slal,szazqulal(Q)quzaz(_q) (1.3.14)

q s,04
$,0 2

where in thegeneralized secondrder vertexmatrix y,(q) the incompressibility has been
taken into account bgssigning an infinitéree energy to profilegp, (X) which donot saisfy
the incompressibility constraint

> bu(@=0 (1.3.15)

As long asall eigenvalues othe (ymmetric and real) matriy,(q) are positive foall values
of q=0, the homogeneous state Stable againsinfinitesimal fluctuations. Therefore, the
spinodal condition is that one of the eigenvalueg 4f}) becomes zero for some valuepf
The corresponding eigenvectd(q,), havingcomponentsEg, (q,), is calledthe strongly
fluctuating field, and in composition spatiee spinodal decompositioproceeds along its
direction. In the WSR in thenicrophase separatedtiate, the domant Fourier components
(g, [0G) will be present for vectorg] with length g, and they W be proportional to the
strongly fluctuatingfield (for the correlated random copolymer to delyzed inchapter 3, 4
and 5 this inot completelytrue, since g, =0 for this systemHowever, the procedure can
easily beadapted to covehis system as well). the freeenergy is expanded powers of the
strongly fluctuating field, then one arrives the same expressiofor the free energy as by
using the replicatrick, including the non-local termThis is becaus¢he stronglyfluctuating
field is a betterchoice for theorder parameter in handau description of a polydisperse
copolymer system thatine A-monomer concentration profile. The advantagehefdetailed
densitiesapproach is that the expression for the stroffigigtuating field gives information
about howmuch each molecule type separatetntributes to tharising profile Y ; see for
instance ref39. Thedetailed densitieapproach Wl be used in chapter 4 in order e&xamine
phase coexistence in polydisperse copolymer melts.
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The generalization of the FLM-method

Although the use ofeplicas or detailed densities leadstite correctexpression for théree
energy, here we W follow a different route. The derivation presented further on is a
generalization othe calculation ofthe free energy as developed by Fredrické@ibler and
Milner (FLM) in ref 40 forthe special case aforrelated randommultiblock copolymers. In ref
40, afterwriting down aformal generalequation for the partition functiorall further
manipulationsvere donewithin this particular model, until an approximate expresfwrthe
free energy was found. The FLM-method can be generalized tahgivexpression for thieee
energy for block copolymersaving a generarchitecture and sequence distribution. Before
presenting this generalization, we need a number of definitions.

Preliminaries

A molecule types is defined as a finitsequenced(; o, -4+ o, Pf segment types; = A/ B.
If ps is thenumber of molecules of type per unit ofvolume, andN, is the number of
segments per molecule of tygethen

ZpSNS: =1 (1.3.16)

S

Clk

See equation 1.1.10. The spt { Wwhich describes completellge composition of theystem,
is calledthe monomer sequence distribution.odirder to beable to describ¢he state of the
polymer system we number the molecules of a givengyyth the labein

m=12--,n n=p.V (1.3.17)

where n, is the totahumber of molecules of typin thesystem. If ﬁr?yi denotes the position
of segment in moleculem of types, then {ﬁ;i} fixesthe coarse grainestate of thesystem.

Remember that ﬁﬁ” }is not amicroscopic stateall coarse grainedtates havalifferent

probabilities even ifthere is no interaction present. A&splained inparagraph 1.1, the
probability of the coarse grainedtate R?u} Is proportional to theintegral over the

conformations of the segments, aagsuming random walk statistics it is given (sge

equations 1.1.6, 1.1.7 and 1.1.10, and appendix A)
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ng Ng-1 1 _ 2

o iR )
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—_

-Ho((RWD —
e oY o= (1.3.18)
]

1

FAV L (4
where H, is calledEdwardsHamiltonian?® Expression 1.3.18 isnly valid for configurations
havingconstantdensity p = 1. All otherconfigurations have probabilizero. The factorl/V
is includedfor normalization: it accounts fdhe probability to findthe centre of mss of the
chain &,m) at a certain place ithe volumeV. The exponential givethe probability for the
relative positions othe monomers. lorder to beable towrite the partitionfunction in the
form 1.3.1, wehave to find arexpression for therofile ¢ as a function othe configuration

{Ii’;‘} . As a first step define the state function (a state function is a functicﬁ’,ﬁpf){ }

PadRRE ¥ = 5 o5, % R) (1.3.19)

s,mi
For shortness, we denote state functions with a hat, for instance
PaR) =pa{ R} ¥ (1.3.20)
Besidesp , , we will need the following state functions as well:
P(X) = Pa(X) +pg(¥) PA(N=PpA(R- f We(B=pe(Y-1+ f (1.3.21)

wheref denotes the fraction @&-monomers. According to its definitiod) , is a sum of delta
spikes. @ly after coarsegraining wil it correspond to the order paramet&his coarse
grained profile is denoted by , (X) , which, in an incompressible system, satisfies

Wa(X)=-We(X)=w(X (1.3.22)
The interaction energy

As already explained iparagraph 1.1, theghysics orthelevel ofthe monomers can ligeated

independently fronthe physics orthe level ofthe coils. As a consequende mean-field free
energy can be written as sum of two parts?* one partcoming fromthe short-ranged
interaction (quantified byhe x -parameter), and anothpart coming fromthe long-ranged
chain connectivity. Irorder toobtain thefirst part, theFlory-Huggins expressiott, which is

valid if the profile is flat, is taken as a starting point.
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E:nXpApB:%VpApB (1.3.23)

wheren = V/uv is thenumber of segments the system. Ifthe profile isnotflat (i.e. if p, is a
function p,(X) of space), then theultiplication withV should be replaced by an integral.
Since we have

pp=F+y, pg=1-f-y (1.3.24)

the generalization of 1.3.23 is
E:—%J'dwz(yﬁ E (1.3.25)

where E, is an unimportant constanthich isomitted fromnow on. Inarriving at1.3.25 use
has been made dlie fact that thentegral of y over space is zero. Equation 1.3 be
simplified evenmore. Via the substitutionx = y/u*® we go over tdength units in which the
excluded volumev is unity (see equation 1.1.10and thefinal expression for the interaction
energy is

E= —xJ'lelJZ(Y) (1.3.26)

This is analogous tdhe Ising model, wherethe average magnetizatian is the order
parameter,) is the interaction strength, and the interaction energyven by E = -Jn?. In
the literature the~lory-Huggins parameteyx is often defined for the situation where the
excluded volumey of the segments i$00cm® permole. The value to be usedirB.26 has
to be corrected for this, according to

—  UXiiterature
= 1.3.27
X 100cm®/ mole ( )

Sincethevalue ofy is a combination of energetic and entropic contributishieh depend on

the details onthelow-molecular level, it isnost convenient toegardy as a phenomenological
parameter which has to be determined experimentally.

27



Chapter 1

The patrtition function

At this point all preliminary work has been done, and we can write down the expression for the
configurational partition functiod in the Landau description (see 1.1.2):

Z=[dy eWZI dR,, &% 8(1-p) d(w - ) (1.3.28)
The integral oven) is a functional integral, that is,

Idw EJ'DHJ(YFJ'H ab(® (1.3.29)

We make no distinction in notation between acfiomal integral and a normal integral; the
difference will be clear from the context. The Edwards Hamiltollgrtaking into account the
chain connectivity has been definedlLi3.18.Sincethe incompressibility i-due to interactions
on themolecular level, it has to becorporated in arartificial way viathe deltafunction
d(1-p). This delta function can be rewritten in the following way:

0 * 0
3(1-p) = [ 8(1-p(x) =] @# J %R ex] i3, (of1-pOI)HO

0w
Bﬂ J’dJl(i)%] exifi 3, (3<)(1—[3(3<))]§D [ dqexp{ [ ax 4(3)(1—()(*)9]

% %o (1.3.30)
0 8(1-p)0 [y, &
3(p =) O [, eI
where thesymbol[] means thathe equality is valid up to #actorwhich is independent of the
configuration R;i}. Using 1.3.30 and taking asanyfactors agpossibleout of the integral
over the configurationteads to (inthe following the symbol[] will be replaced by theymbol

= because constant multiplication factors in the partition function hardlnence ornthe final
results)
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7 :Idw e;qwzj, dJ dg g(J1+sz)J- aﬁ%i Ho Y W1p+I20)

Rewriting p and () in terms ofp, andpg via

and introducing the shorthand notation
A = [dR,, e A
leads to

2 g, [ agogl 712 g onss)

0

After the substitution

[}
>
1
[}
=
+
Nl
I\%‘
é_a
1
e
|
Nl
N

1.3.34 can be rewritten as

Z= [y IV [ dg g G220 (G0 )

0

wherey , =y and g = - . Following ref 40, we definéa in the following way

L= LM [FLD - HA=-8(D IO

(1.3.31)

(1.3.32)

(1.3.33)

(1.3.34)

(1.3.35)

(1.3.36)

(1.3.37)

The right hand equation showegearly thatone variable islost in this way.However, the
integrand of 1.3.36 does not depend on this variable and can be written in teims of
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Z=[dy é‘f"’zj' d} dy 42vec —In< efZJ“p“> (1.3.38)

0

G is the freeenergy of a compressible system of non-interacting random walk chains in the
presence of an externld iJ~a. Since in such a systethe chainsare independent afach
other, the expression f@ can be factorized in contributions from the different chains:

sml

- InfoR, € g T IEGR
(1.3.39)

pg"(X) = Z O, 6(7(_ %.)

Different chains (labeled witim) having the same architectures are present in theame
external field. Therefore, they all have the same free energ® and be rewritten as

G=-Vyp, |n<e“f 3 s > = - \VinO&* [} (1.3.40)
S 0

The bar represents the average oarchains: A=3p A, The thermodynamic average
[}+-- §§ in 1.3.40 is now an average over tomfigurations of ainglechain, and it includes a
factor V1. The expression foB can be expanded in powers of In the weak segregation
regime it is sufficient to expand till the fourth order. Usiiég = 0 one obtains

%:%g B-LE°Q- 4R G+3E°0 (1.3.41)

The first term orthe righthand side ofl..3.41can be written as (use2.24 in the second step,
and 1.2.14 in the third step)

&%= % [axdy 3R JOYY polBG(I5(Yd =
(1.3.42)
=Y [y A YOV ooy G (RN = Y [ Ay ICK JY GCXY
op s ap

30



Landau theory

The correlation functionsgjﬁ(i, y) were defined and discussed the previous paragraph.
Going over to Fourier transforms the expressiorfteecomes

Gzizzia(al)”iﬁ(@)zpsiﬁ(*qﬁq>+

2y > L@ LW UW Y erd,, (357
apy S

(1.3.43)
1 T = 3 /= — —
_24V3QQZ Ja(ql) Ja(ch)zpsilg%(qa, Q1)+
010203014 O B s
1 -~ ~ oo oo
+qua2a3a4a v () 5(014)295923(% D g (49

In the summationsover G, the terms corresponding =0 give nocontribution, because
3(61: 0) = 0; see 1.3.37Since 3(61) = J(9 for g#0, one can rewritd..3.43 byremoving
thetildes over theJ's, and at thesame time restrictinthe summations taon-zerovalues of
g . For instance, the first term in 1.3.43 becomes

1o B
3 %Ja(%)%(%)zpsiﬁ(% %) (1.3.44)

G0y

where the star denotes that gwenmation igesticted toq # 0. We now return to equation
1.3.38 for theconfigurational partition functioZ. The functional integradver thefields J(X)
can be replaced by an integral over the Fourier comporéijs Sincethe integrand does not
depend onJ(g=0), the integration ovethis variable gives just eonstant (thouglnfinite)
factor in front of the partition function. larder tomakethe notation more transparent, the
following abbreviations are used:

a=(o,q)
_J4.(9)
ya - Vv
T
\%
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Pab = Z psgzlaz(q’ _Cb)

—

Pabc = _izpsgzlaza3((j1’ G, &)

S

Pacd = =) P58} o0, (G & B )
S

+3 08, (@ W &, (W)
) (1.3.45)
308, ., (&) G, (B )

+3 005, (@ €, (B )

Again, the star in¢,q)" denotes thafj # 0. The objectP,, ., has been defined in such a way
that it is symmetric ina, b, ¢ and d. As shown in the previous paragraph, the Fourier
transforms of the correlatiofunctions appearing id.3.45 are zerainlessthe sum of their
arguments is zero, i.e.

Gyt (G G ) = O (G Gt + Q) Qo (4G (1.3.46)

In the following the deltafunction appearing irl.3.46 wl be written down explicitly for
clarity, although strictly speaking this is superfluous. Moreover, we will write

Jap(Ch: ) = Ok (tu+ @) Gp( @) (1.3.47)

where g, is thelength ofthe vectord;. In terms of thebbreviations introduced h3.45, the
expression 1.3.38 for the partition function becomes

7 :Idw engzJ- d v éVZxaya—%VZ RoYathg V3 RocYadb g B RocaVadbde Y
(1.3.48)
EJ’qu et
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where thesummations rumovera, b, ¢, andd. The integrabver y, will be calculated by the
saddle point methdd That is, we make the approximation

VY %Ya~3VY RoYa¥b g W RocYad%¥%ay ¥ Rocadadh Ve Yo
—InJ’dya e =

(1.3.49)
=Vy xa?a+%VZ Bo%%+s VZ Re ¥ ¥z ? Bea VY YY
a a abc

abcd

where Yy, is determined by the condition thatnitaximizesthe integrand. The saddle point
approximation1.3.49 is exact irthis situation. Solvinghe maximization condition for y,
iteratively and substituting this back inta3.48givesthe final expression for the Landdtee
energyF,_ truncated to fourth order.
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where the term 1.3.26 accounting for the interaction energy
E=x[dxp2(¥ =2 p(g) y(-g 1.3.51
KW=y 3 V@D (1.3.51)

has been absorbed intbe second order vertefxinction. The vertices, are given by
(remember that the bar denotes an average over all moleculesAp&sp A,
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Landau theory

where the superscriptg stands foregular, and the superscripil for non-local see the next
section for an explanation. The quantty( g is defined by

ACEFWE R (1.3.57)
This completeshe calculation ofthe Landau free @ngy of a polydisperse copolymer melt in

the WSR.Sincethe Fourier transforms of the vertamctionsare proportional to theolume
V, it is convenient to define, in analogy with the correlation functions,
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where the deltéunction onthe righthand side is in fact superfluousyt has been added for
clarity.

The non-local term

The contributionl' given by 1.3.56 iscalled the non-local term. It wafirst derived by
Shakhnovich and Gutihfor thespecial case aincorrelated random copolymers, and later in
the mostgeneral form by Panyukov and Kucharid¥ One can showenerally thathe non-
local term isidentically zero if thenumber of molecule typedoes notexceed thenumber of
monomer typesFor instance, if there arewvo monomer types present the non-local term
vanishesfor monodisperse copolymers, and for two-compongends. In polydisperse
copolymers, however, its presence can be of crucial import&wseinstance for random
copolymers, which fornthe subject of théollowing three chapters, the non-local terneven
the donmnant contribution tothe fourth order vertexand togetherwith the second order
vertex it is responsibldor the strong temperature dependence of the period of the
microstucture, which is characteristic for these systéms.

The phrasenon-local termwas introduced in ref85, 36and originates fronthe study of
uncorrelated random copolymeFor uncorrelatedandom copolymers there is no correlation
between the cheigal identity of the monomers along thehain. Theprobability that the
neighbor of a randomly picked monomer is of typer B is independent of thehemical
identity of the monomer picked. A representatighain can beconstructed bydrawing
monomers one by orfeom a large reservoir containing disconnectedand B-monomers in
the ratio f : 1- f, and connecting them. The block lengthshe random copolymeshains
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thus obtained are afrderunity. For amelt ofthese chainghe second order vertex, ttiard
order vertexand the regulapart of the fourth orderertex contaironly the self-correlations
Gi, Gii, andG;i, since the contributions coming frd&), Gk, andGj« cancel iftheindices are
not all equal. As a consequence, adastm the non-local term, the vertices of the random
copolymer coincide witlihe vertices of dow-molecular mixture of disconnectéd andB-
monomers. These vertices could be obtained in an alternative way by exptediigry-
Huggins expression fdahe entropy ofmixing in aTaylor series. The non-local term, however,
is differentfor these systems: it gero for thelow-molecular mixture, and proportional to
1/(g? + o) for the random copolymer. Therefore, if the Landau free energy of the random
copolymer is expanded to fourtivder, thenon-local term is thenly part which contains
correlations between different monomerstioé same chain, and soatccounts for thehain
connectivity; hencéhe name “non-locaterm.” There is areasy physical explanatidior the
fact thatonly the self-correlatiorsurvives inthe calculation ofthe regular vertices for the
uncorrelated random copolymer. Wél weturn tothis in chapter 3, where it is shown that an
analogous (thouglslightly more complicated) situation exists ftie correlated random
copolymer. The peculiarity thaihe chain connectivity is onlpresent in the non-local term is
only strictly true for uncorrelatedandom copolymers: for general polydisperselts all
vertices are non-local. However, we stick to the convention and usartfee“non-local term”
generally.

Although 1.3.54, 1.3.55and 1.3.56 present theonventional way to splitt, into two
contributions, it is a bit unnatural, because if for instagice ¢, = 0, then the ternmnvolving
the two third order correlatiorfunctions is added té#;*°, and subsequently substracfezm
r;' . Therefore, theroblems arisinglue to the fact thag_w(q =0) maynot beinvertible are
artificial. Conventionally, these problems are dealt with by taking the limit
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The advantage of splittingpe fourth order vertex likd, =T+ is that in this way the
part I';*® is a continuous function.
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Landau theory

The mean-field approximation

By now we arrived at an expression for the configurational partition function Z of the form

Z :J’qu e W (1.3.60)

If the Landau freenergy F_ () is minimized bythe profile i, then  givesthe dominant
contribution to Z. Although] is themost probableprofile, it is not necessarilythe average
profile, because profilesther than() can also give a contribution the integral in1.3.60.
However, in a first approximation one could ignafieprofiles other thany and investigate
the consequencesin this approximation the profilé is assumed to be completely dominant,
and the statistical weight afl otherprofiles is strictlyzero.This assumption is justified if any
experimental measurement ¢fie profile gives ) as a result. In other wordshis
approximation iscorrect if the profile is static, notfluctuating, and the instantaneous
fluctuationsoy (X, t) = Y(X, t)— [ (X)Jwheret representime can be ignored:herefore this
approximation is equivalent tine mean-fieldapproximation, and thenean-field free energy
can be obtained by calculating the integral 1.3.60 with the saddle point method:

=

mean field: _InquJ e_FL[qJ] = FL[lTJ] (1.3.61)

saddle pait

According to equatiorl.3.61, themean-field free energy coincides withe Landaufree
energy. For most physical systemsthe mean-field approximation isather crude. For
copolymer melts, however, it can be made arbiteengurate byncreasinghe (averageblock
lengthN in the system.For homopolymer blends it can been shown tihat error in theree
energydue to themean-field approximation has relative magnitudé*, for monodisperse
multiblock copolymers it has relative magnitute¥® (ref 44),and for correlated random
copolymers, which haveatherpolydisperse blocks, it has relative magnitude** (refs 45,
46). Summarizingonce the blockengthsare large enough, theean-field approximation is
quite reasonable for block copolymer melts.
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