
 

 

 University of Groningen

On the Nevanlinna-Pick interpolation problem for generalized Stieltjes functions
Alpay, D.; Bolotnikov, V.; Dijksma, A.

Published in:
Integral equations and operator theory

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1998

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Alpay, D., Bolotnikov, V., & Dijksma, A. (1998). On the Nevanlinna-Pick interpolation problem for
generalized Stieltjes functions. Integral equations and operator theory, 30(4), 379 - 408.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 20-06-2022

https://research.rug.nl/en/publications/f288d001-6895-4806-b56b-0dcd1b3aeade


Intcgr. r opcr. theory 30 (1998) 379 - 408 
0378-620X/98/040379-30 $1.50+0.20/0 
�9 B i r ~ r  Vcrlag, Basel, 1998 

J Integral Equations 
and Operator Theory 

O N  T H E  N E V A N L I N N A - P I C K  I N T E R P O L A T I O N  P R O B L E M  F O R  
G E N E R A L I Z E D  S T I E L T J E S  F U N C T I O N S  

D. ALPAY, V. BOLOTNIKOV and A. DIJKSMA 

Dedicated to the memory of M. G. Kre~n 

The solutions of the Nevanlinna-Pick interpolation problem for generalized Stielt- 
jes matrix functions are parametrized via a fractional linear transformation over 
a subset of the class of classical Stieltjes functions. The fractional linear trans- 
formation of some of these functions may have a pole in one or more of the 
interpolation points, hence not all Stieltjes functions can serve as a parameter. 
The set of excluded parameters is characterized in terms of the two related Pick 
matrices. 

1 I n t r o d u c t i o n  

The objective of this paper is to study the Nevanlinna-Pick interpolation problem in the 
class of generalized Stieltjes matrix functions. The Nevanlinna-Pick problem for classical 
Stieltjes functions was considered by M.G. KreYn and A.A. Nudelman [8] for the scalar case; 
the matrix case appeared in [6] and its tangential and two-sided generalizations in [1], [3]. 
In these problems the two kernels in (1.2) below are nonnegative. Scalar generalized Stieltjes 
functions have been treated by M.G. Kre~n and H. Langer in [7] under the assumption that 
the first kernel in (1.2) below has a finite number of negative squares and the second one is 
nonnegative. In this paper we consider the matrix case and assume that both kernels have 
a finite number of negative squares. V. Derkach in [4] studied the moment problem in the 
same generality. 

Throughout this note we work with meromorphic matrix functions, and when S is 
such a function, we denote the set of points of analyticity by p(S). 

Defini t ion 1.1 An m x m matrix function S belongs to the generalized Stieltjes class $~ if 
it is meromorhic in @\JR, 

S(~) = S(z)*, 

and the kernels 

gs(z,o~) . -  S(z) - S(o~)* 
Z--~ 

z E @ + n p(S), ( I . i )  

 S(z) - 

Fs(z, ) := (1.2) 
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have ~ and ~ negative squares on @+ n p(S), respectively; in formulas: 

sq_(Ks) = ~, sq_(Ks) = ~. 

The first equality means that for every choice of an integer r and of r points A1,...,  ,~T E 
@+ R p(S),  the Hermitian mr x mr  matrix (Ks(Aj,  A k))kj=l has at most ~ and for at least 
one such choice it has exactly ~ negative eigenvalues counting multiplicities. The second 
equality is defined in the same way with Ks replaced by Ks.  

We denote the classical Stieltjes class S ~ by S; it consists of all functions S such 
that both kernels in (1.2) are nonnegative, that is, have no negative squares. It is well known 
that the functions in the class S are analytic in @\]l~ + and take nonnegative values on the 
negative half-axis, while the functions in the class S~ have at most 2rain{n, ~} poles in 
r  which are symmetric with respect to the real axis. 

In the paper we consider the following Nevanlinna-Pick interpolation problem: 

P r o b l e m  1.2 Given are n distinct points z l , . . . , z ~  C @+ and m • m matrices 51 , . . . , S~  
such that the Hermitian matrices (called Pick matrices) 

are invertible and 

p := (sJ-  5;l" 
\ Zj --  7"k ] k,j=l 

sq_(P) = ~, 

\ Zj --  ~,k ] k,j=l 

sq_ (P) = 

that is, P and P have a and ~ negative eigenvalues (counting multiplicities). 
functions S C S~ which are analytic at zj and satisfy 

(1.3) 

(1.4) 
Find all 

S(zj)  = Sj, j = 1 , . . . ,  n. (1.5) 

We thank Heinz Langer for bringing this problem to our attention. 
We show that there are infinitely many solutions to this problem and that the 

solutions can be parametrized via a fractional linear transformation over a subset of the 
class ,q7 v of Stieltjes pairs. 

Def ini t ion 1.3 A pair {p, q} of m • m matrix functions p and q is called a StieItjes pair 
(belongs to the class ,.q7 ) )  if they are meromorhic in @\IR+, 

q*(~)p(z) = p*(2)q(z), det(p(z)*p(z) + q(z)*q(z)) ~ O, z e @ + R p(p, q), (1.6) 

where p(p, q) is the set of points in which p and q are holomorphic, and 

q(z)*p(z) - p(z)*q(z) > 0, zq(z)*p(z) - > o, z e e + n p(p, q )  (1.7) 
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Note that the inequalities (1.7) imply that the kernels 

Kpq(z,w) := q(w)*p(z ) -p (w)*q(z )  -i~vq(Z,W ) := 
Z -- C~ 

are nonnegative, that  is, have no negative squares in (D + N p(p, q). 

Def in i t ion  1.4 We say  that a Stieltjes pair {p, q) is strict if 

q(z)*p(z) - p ( z ) * q ( z )  > O, zq(z)*p(z) - 5p(z)*q(z) > O, 
z - -2  z - - 5  

zq(o )*p( z) 
z - - ~  

(1.s) 

z e C + f3 p(p, q). (1.9) 

We introduce an equivalence relation on the set of Stieltjes pairs $7~: the pair {p, q} is said to 
be equivalent to the pair {pl, ql} if there exists an m • m matrix function X(z) ,  meromorphic 
in C\]R and satisfying det X ( z )  ~ 0, such that pl(z)  = p ( z )X(z ) ,  ql(z) = q(z )X(z ) ;  It is 
easily seen that  if {p, q} E S P  and det q(z) ~ O, then the function S = pq-1 belongs to 
S. Conversely, every S E S generates a Stieltjes pair {S, I,~}. Thus, there is a one to one 
correspondence between the elements of S and the equivalence classes of pairs {p, q} E S P  
such that det q(z) ~ O. We denote by S + the class of those matrix functions S E S f o r  
which {S, I,~} is a strict pair. 

In Section 2 we construct from the data of Problem 1.2 a 2m • 2m rational matrix 
function @(z), and we prove in Section 3 that the solutions of Problem 1.2 are obtained 
as a fractional linear transformation of Stieltjes pairs whose coefficients are formed by the 
four m • rn block entries of 0 .  In general not all Stieltjes pairs may serve as a parameter: 
the corresponding fractional linear transformation in that case does not define a solution 
of Problem 1.2. In Section 5 we characterize these excluded parameters. For this we use a 
description of the solutions of a special one point left-sided interpolation problem for Stieltjes 
pairs studied in Section 4. Multipoint problems of this type are studied in [3], but here we 
also need a description of the solutions in the degenerate cases. In Section 6 we show that 
Problem 1.2 has a solution. We refer the reader who wants to get an impression of our results 
to Section 7. There we have spelled out the scalar case and worked out two examples. Closely 
related to this paper are the two papers: [1], because many of the formulas in, for example, 
Sections 2 and 3 can be traced back to this paper, and [5], where the Nevanlinna-Pick 
problem for generalized Nevanlinna functions (scalar case) and in particular the excluded 
parameters in the parametrizatiou of all solutions were studied. In [5] it is shown that the 
excluded parameters can be divided into two types: either there is only one parameter whose 
fractional linear transformation is not a solution and then this parameter is identically equal 
to a real constant, or there are infinitely many excluded parameters and then none of them 
is identically equal to a constant. According to Theorem 7.1 the same kinds of exclusion 
occur here, except that  in one of the cases where the excluded parameter is unique, this 
parameter is not necessarily a real constant. 

2 T h e  p a r a m e t r i z a t i o n  matr ix  of  the  p r o b l e m  

In this section we construct the so called parametrization matrix formed by the four coef- 
ficients in the fractional linear transformation which describes all solutions of the Problem 



382 Alpay, Bolotnikov and Dijksma 

1.2. Throughout the paper J denotes the signature matrix 

(o 
J =  iI~ 0 " 

A 2m • 2m matrix M is called J-unitary if M J M *  = M, or equivalently, M * J M  = J. 

Def in i t ion  2.1 A 2m • 2m matrix function 0 belongs to the class ]/Y~ if it is meromorhic 
in �9 hoIomorphic and J-uni tary  on the real axis: 

O(z)JO(z)* = J, z C JR, (2.1) 

and the kernel 

J -  O(z)JO(w)* 
g~,o(~,~) := i ( ~ -  z) , z ,~  c p(o) ,  z r ~, (2.2) 

has ~ negative squares: 
sq_(Kj, o) = a. (2.3) 

We associate to @ the function @) defined by 

~)(z) := P ( z ) O ( z ) P - l ( z ) ,  P(z )  := 0 I,~ " 

Def in i t i on  2.2 A 2rn x 2m matrix function O belongs to the class 1/V~ if it belongs to kY~ 
while the associated function 0 belongs to kYT. 

In other words, 0 belongs to kY~ if it satisfies (2.1), (2.3) and the following two conditions 
hold 

= J ,  z e sq_(Kj, ) = 

The next lemma gives an example of a function from the class }/Y.. 

L e m m a  2.3 Let G E C 2m• and Z E C lv• be matrices such that c,(Z) ~ ]R = 0 and 

A Ker GZ ~ = {0}, (2.5) 
j_>0 

and assume that the Lyapunov equation 

Z*P - P Z  = iG*JG (2.6) 

has an invertible Hermitian solution P E @N• with sq_(P) = a. Then the 2m x 2m matrix 

function 
O(z)  = I2m -- i a ( z I  -- Z ) - I p - 1 G * J  (2.7) 

belongs to the class V~,. Moreover, for z, w E p(~3) with z # ~, 

I(j,@(Z, ~)  = a ( z I -  Z)- lP  -1(~I - Z*)-iG *, (2.8) 

and 
J - O(w)*JO(z)  = j G p _ ~ ( & I _  Z . )_~p(z  I _ Z)_ap_~G. j .  (2.9) 

- z )  
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Proof: Using (2.7) and (2.6) we get (2.8): 

J - ~3(z)JO(w)* = i G ( z I  - Z ) - I P - 1 G  * - i G P - ~ ( ~ I  - Z*)-IG *. 

- G ( z I -  Z ) - I P - ~ G * J G P - ~ ( C o I -  Z * ) - I G  * 

: G ( z I  - Z ) - I P  -1 {iF(Col - Z*) - i ( z I  - Z ) P  q- i Z * P  - i P Z }  

•  _ Z.)-IG.  

-~ i(Co - z ) G ( z I -  Z ) - I p - I ( ~ I  - Z*)-IG *. 

Let .A4 be the space of rational •Y-vector functions spanned by the columns of the matrix 
G ( z I  - Z)-I: 

,<  = s p a n  , L } ,  ( s  ,L ( z ) )  = a ( z I  - Z) -1. 

The condition (2.5) ensures that the fj 's form a basis for 3A. We provide M with the 
indefinite inner product [., .] such that P is the Gram matrix for this basis: 

[fj, fk] =Pkj, k , j  = 1 , . . . , n ,  P = (Pkj)~,j=l. (2.10) 

Since .h/l is resolvent invariant, it is a reproducing kernel Pontryagin space with reproducing 
kernel 

k(z,~.;) = G ( z I -  Z ) - I p - I ( ~ I -  Z*)-IG *. (2.11) 

The equality sq_(P) = ~ means that the negative index of A4 (the dimension of any maximal 
negative subspace of A/l) equals x and therefore, the reproducing kernel (2.11) of .A4 has 
negative squares. From (2.11) and (2.8) it follows that the two kernels k acnd Kj,~  coincide, 

and it now easily follows that ~3 E W~. Finally, the identity (2.9) follows from (2.8), (2.7), 
and (2.6): 

J - ~)(w)*JO(z)  = J G P - l ( f f ; I  - Z*) -~ { i ( ~ I  - Z*)P  - i P ( z I  - Z )  

4-iZ*P - i P Z )  ( z I  - Z ) - I  p - 1 G * J  

= i(CO - z ) J G P - a ( c o I -  Z * ) - a P ( z I  - Z ) - I P - 1 G * J .  | 

Using Lemma 2.3 we can construct a function | from the class W~. 

L e m m a  2.4 Let G1, G2 E C "~• Z C C N• be matrices such that cr(Z) N IR = 0 and 

()  ~ Ker a l  Z~ = ~ Ker Z j = {0) (2.12) 
j>o G2 ~>0 G2 ' 

and assume that there exist invertible Hermit ian matrices P and P with sq_(P) = ~ and 
sq_(/5) = ~, such that 

P - P Z  = G~G2. (2.13) 

Let M and M be the two J - u n i t a r y  matrices defined by 

M = ,-~2r'/5-1G,2 I,~ ' M = 0 I,~ . ( 2 . 1 4 )  
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Then the function 

| = I2m + G2 za2 ( z I -  Z)-~P-~G; 

belongs to the class )4;~, and for z, w E p(O), z ~ ~, 

y -  e(~)Je(~)* 
i ( ~  - ~) 

J -  @(w)*i| 
i (~  - z) 

J -  [9(z)J(9(w)* 
i(c~ - ~) 

d -  ~)(~)*Z~)(~) 
i ( ~  - z) 

- ( z I -  Z)-~P-~G~ 
0 ] (2.15) 

G 1 )  (zI - (G~, G~), (2.16) 
\ 

Z)- lp - l (e l  Z,)-I  
G2 

M* ( -GIG2 ) p_1(r f_ Z.)_ip(z I _  Z)_lp_ 1 (a~, M, 

(2.17) 
( a,z a;) 

G2 

M* ( -GIZG2 ) ~_l(coi _ Z,)_l f i(z[_ Z)_l~_ 1 (G;, -Z*G~) M, 

(2.19) 

Moreover, 0 and 0 admit the factorizations 

O ( z )  = h r ~ +  G2 

and the first factors on the right-hand sides of these identities are functions from ~4;~ and 
14;-~ respectively. 

Proof:  Substituting (2.15) into (2.4) we get 

~(z)  = h . ,  + a2 a2 ( z i -  z ) - l P - l a ;  o �9 

Using the equalities 

(G;, -a~) M --- (PZJff)-IG~, -a~),  (a~, -z*a~) M = (G~, -Pp-IG~), (2.23) 

which follow from (2.13) and (2.14), it is easily checked by straightforward verifications that 
the formulas (2.15), (2.20) and (2.22), (2.21) define the same functions O and ~), respectively. 
It follows from (2.13) that 

PZ=G;G2-G~G1 =i(G 1, G~)J ( G1G2 ) ' (2.24) Z ' P -  

which together with (2.12) means that the matrices 

G =  G2 ' 
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Z, and P satisfy the conditions of Lemma 2.3. Therefore the function ~) defined via (2.7) 
belongs to W~. The equality (2.20) can be written as 0 = 6)M, and since M is J-unitary, we 
have Kj, o = Kj,  8. Now (2.16) and (2.17) follow from (2.8), (2.9), and (2.25). In particular, 
O EW,~. 
Similarly, it follows from (2.t3) that 

Z*P - 25Z = Z*G~G2 - G~Gi Z = i ( z * a ~ ,  G~) J G2 ' 

which together with (2.12) means that the matrices 

( Z G I )  (2.26) 
G: G2 ' 

Z, and/5 also satisfy the conditions of Lemma 2.3. Therefore the function ~) defined via (2.7) 
belongs to W~, ~ = sq_ (25). Since ~) = ~)_]~f (see (2.21)) and ]~f is J-unitary, Kz, ~ = Kj,~. 

Now (2.18) and (2.19) follow from (2.8), (2.9), and (2.26). In particular, ~) �9 W~. So by 
Definition 2.2, O �9 W~. | 

R e m a r k  2.5 Since O and ~) are J-unitary on the real axis, the symmetry relations 

| -1 = JO(5)*J, O(z) -~ = JO(~)*J (2.27) 

hold for z E ~D \ {zl, 21,. . . ,  zn, 2n}. The right-hand sides here define holomorphic functions 
on ~D \ {21,... ,5~}, which we denote by O-l(z) and ~)-l(z), respectively. From (2.16) and 
(2.18) it follows that 

J - (O-~(w))*JO-~(z)  

J - (~)-l(w))*j~)-~(z) 
- z) 

62 ) (~I-- Z)-Ip-I(z./- Z*) -1 (e~, -G~) 
\ 

= -- -Vl 
(2.2s) 

: - ( -GlzG2 )(~I- Z)-'25-1(zI - Z*) -I (O~, -Z*G~) 

In the sequel we now take N =mn and set 

a l  = ($1, . . . ,  S . ) ,  G2 = (/,~, . . . ,  1,0, Z = ... . (2.29) 
zn lm 

It is easily seen that these matrices and the Pick matrices P and 25 defined by (1.3) satisfy 
the equality (2.13). Relations (2.12) are also in force and by Lemma 2.4, the function G 
defined by (2.15) or equivalently, by (2.20) and with this choice of the matrices, belongs to 
the class W~. We show later (see Theorem (3.8) below) that O is a paxametrization matrix 
of Problem 1.2. In what follows when we refer to 0 in (2.20), we assume that the matrices 
are given by (2.29) and (1.3). 
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L e m m a  2.6 Let @ be defined by (2.20). Then for every interpolation point zs, j = 1 , . . .  ,n, 

( S J )  =0 .  (2.30) (• -S;) e(~) = o, ~ • 

Proof:  It follows from that (1.3) and (2.29) that 

( I ,~ , -S] ) (G2G1)  ( S j I -  Z ) ' I P - I  (G~' -G~)  

, y , I . ~  - S *  

j-th row of P 

= - ( o , . . . , o ,  i,,,, o,. . . ,o) : = - ( ~ , , , , - s ; ) .  

Hence, on account of (2.20), 

: - ( , , . . ,  = o .  

This implies the first equality in (2.30); the second equality follows bom the first by taking 
adjoints. | 

3 D e s c r i p t i o n  o f  a l l  s o l u t i o n s  

In this section we characterize the set all solutions of Problem 1.2 in terms of a fractional 
linear transformation. We begin with some preliminary results. 

L e m m a  3.1 Let f i ( z ,w)  be an (N  + m) • (N  + rn) matrix kernel for z, w in an open subset 
~2 of C defined by 

f i ( z ,~)  B(~)* K ( z , ~ )  ' 

where A E (~N• i$ a Hermitian matrix, B(z)  is an N x m matrix function on ~ and 
K(~, ~) = g(~, ~)* is an .~ • .~ matrix kernel with a finite number of negative squares in 
~. I f  A is invertible then 

sq_ (fi(z, ~o)) = sq_ (A) + sq_ (K(z ,  w) - B(w)*A-1B(z) ) .  

On the other hand if  

A = : : , B(z )  = : , (3.1) 
g(zl, z~) . . .  K ( ~ , ~ )  K(~,z~) 
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then 
sq_ (q~(z, w)) = sq_ (K(z ,  w)). 

Proof:  The first assertion follows from the factorization 

B ( ~ ) * A  -1 I ~  0 K(z ,~o)  - B@)*A-1B(z )  0 I~ " 

The second assertion follows from the definition of a kernel having ~ negative squares. | 

Coro l la ry  3.2 Assume that Problem 1.2 has a solution S. Define the kernels K s  and K s  
by (1.2) and the matrices G1, G2 and Z by (2.29), and let the Pick matrices P and P be 
given by (1.3). Then the two difference kernels 

D s ( z , w )  := g s ( z , w ) -  

(S(w)*G2 - Gx) (~ I  - Z) -~ P-~ ( z I  - Z*) -~ (a~S(z)  - G;)~ (3.2) 

Ds(z ,  ~) : =  Ks(z, ~)- 
((oS(w)'G~ - G1Z) @ I  - Z) -~ fi-~ ( z I  - Z*) -~ (zG~S(z) - Z*G~) (3.3) 

are nonnegative in ffJ\]R. 

Proof:  Since S is a solution of Problem 1.2, it belongs to 8~ and therefore, 

sq_ ( g s ( z , w ) )  = to, sq_ (Ks(Z ,w))  = ~. 

We first apply the second part of Lemma 3.1 with K ( z , w )  := Ks(z ,w) .  Then, see (3.1), 

s(~)-s~* 
Z--~'I 

A = P, B(z )  = : = ( z I  - Z*) -1 (G~S(z) - G;),  
S(z)-S*. 

z--Sn 

and hence 

p 

sq_ (S(w)*a2 - a l ) ( ~ i -  z )  -1 

Similarly, if K(z ,  w) := Ks( z ,  w) then 

~s(~)-~l s; 
Z--Z1 

A = P, B(z )  = : 

Z--Sn 

and the second part of Lemma 3.1 yields 

( sq_ ( ~ s ( ~ ) * a 2  - a l z ) ( ~ I -  z )  -~ 

(zZ - z* )  -~ ( a ; S ( z )  - a ; )  

K s ( z , w )  ] = x. 
(3.4) 

= (~• - z*) -~ ( za iS(~)  - z ' a T ) ,  

( z i -  z*)  -1 (za~S(z)  - z ' a ; )  
U~(z ,~)  } = ~" 

(3.5) 
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Applying the first assertion of Lemma 3.1 to the matrix kernels in (3.4), (3.5) and taking into 
account (1.4) we find that the difference kernels in (3.2) and (3.3) have no negative squares. II 

Let 
(Oll(Z) 012(Z) 

O(z) 021(Z) 022(Z) ] (3.6) \ 
be a partition of the function O(z) given by (2.20) into four m • m blocks. The following 
two theorems imply that O(z) is a parametrization matrix. In the first one we use that O(z) 
is defined in z = 2j, j = 1 , . . . , n ,  that is, in the complex conjugates of the interpolation 
points. 

Theorem 3.3 All solutions S of Problem 1.2 are parametrized by the fractional linear trans- 
formation 

S(Z)  = (011(z)p(z)  q- O12(z)q(z))  (021(z)p(z)  n t- 022(z)q(z)  ) -1 , (3.7) 

where the parameter runs through the set of those pairs {p, q} E S P  which satisfy 

det (021(~i)p(Yq) +0~2(#j)q(s r 0, for j = 1 , . . . , n .  (3.8) 

Under the transformation (3.7), two pairs correspond to the same function 5" if and only if 
they are equivalent. 

Proof." Since @ is J-unitary on the real axis, the function S of the form (3.7) satisfies 
the symmetry relation (1.1) if and only if the corresponding parameter {p, q} is subject to 
symmetry relation in (I.6): setting 

v(~)=o2~(z)p(~)+o~2(~)q(~) (3.9) 

we get 

S ( z ) -  S(2)* = -i(S(2)*'  I'~)J ( S(z) 
f 

p(z) 
\ 

= -iv(~)-* (p(~)*, q(~)*)o(~)*Jo(~) ( ) V-I(z) q(~) k / 
= -iv(~)-'(p(~)*, q(~)*)J(p(z)q(~) )V-l(z) 
= V(2)-* {q*(5)p(z) - p*(2)q(z)} V-~(z). 

Let 5' be a solution of the Problem 1.2 and let {p, q} be the pair defined by 

p(z) ) q(z) ) = o-~(z) ( S(z) 
]m " 

Then by (2.4), (zP(z))=~ Im ) 

(3.1o) 

(3.11) 
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Using the partition (3.6) of O we get from (3.10) 

011(z)p(z) + 012(z)q(z) = S(z) and 021(z)p(z) + 022(z)q(z) =- I,~. (3.12) 

In particular, S admits the representation (3.7) and the second condition in (1.6) is in force. 
It remains to show that {p, q} E 37 ~. 

The kernels Ks and Ks can be written as 

Ks(z,w) = (S(w)*, I.~) I.~ ' 

- -  ~ ( zS(z) ) (3.14) Ks(z,~) = (~s(~)*, s~) s~ �9 

Hence by the first relation in (2.28), (3.10) and (1.8), the difference kernel in (3.2) takes the 
form 

Ds(z,w) = (S(w)*, Ira) x 

_G1)(~oI-Z)-IP-I(zI-Z*)-I(G~, -G~)}(S(z) 

% ]  

, (,(zl) 
= (p(w)*, q ( w ) * ) ~  q(z) 

= p ( z ) q ( w ) *  - q ( z ) p ( w ) *  = K p q ( z , w ) .  z--CO 
Similarly, by the second relation in (2.28), (3.11) and (1.8), the difference kernel in (3.3) can 
be written as 

Ds(z,~o) = (~S(z)*, S~) x 
J 

, 
= (~p(w)*, q(w)*) ~ q(z) 

= zp(z)q(w)* -- &p(w)*q(z) = Kpq(z,w). 

Corollary 3.2 states that these kernels are nonnegative, and therefore {p, q} E 8P.  
Conversely, let {p, q} be a Stieltjes pair which is a~alytic at the interpolation points 

zj, j = 1 , . . . , n ,  and satisfies (3.8), and let S be defined by (3.7). Using (3.9) we rewrite 
(3.7) as 

( s r  ,~ ) vr =0r ( ; ( ' )  q(z) ) (3.17) 
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By (2.30), 

~ q(~j) ",~, 

and since det V(2j) # O, it follows that S is subject to the conditions 

S(si) = S;, j = 1 , . . . , n ,  

which in view of (1.t), are equivalent to interpolation conditions (1.5). 
Let Ks and Ks  be the kernels as in (1.2). In view of (1.3) and the interpolation 

conditions (1.5), 
o (- (Ks(zj, z,))kS=l = P, Ks(zj,z, ,,j=l = ~' 

and the relations (1.4) mean that Ks and Ks have at least ~ and ~ negative squares, 
respectively. Substituting (3.17) into (3.13) and using the notation (1.8) we get 

O(w)*JO(z) ( P(Z) ) v-l(z) 
K~(z,~) = V(~)-*(p(~)*, q(~)*) /-(g--V) q(z) 

= V(~)-*K,q(z,~)V-l(z) 
O(w)*JO(z)- J ( P(Z) ) v-1 

+V(w)-* (p(w)*, q(w)*) i((o - z) q(z) (z), 

where the first kernel on the right-hand side is nonnegative and the second one has at most 
negative squares in view of (2.17). Therefore Ks has at most ~ negative squares; hence 

sq_(Ks)  = n. Similarly, 

-- O(w)*JO(z) ( zp(z) ) v_,(z ) Ks(z,w) = V(w)-* (Cop(w)*, q(w)*) i(~ - z) q(z) 

= v ( ~ ) - * ~ , q ( z , ~ ) v - l ( ~ )  

O(w)*J~)(z) - J -I-V(w)-'(wp(w)*,q(w)*) i-('~'--'Z) ( zP(Z) )  

and in view of (2.19), Ks has at most ~ negative squares and therefore sq_(Ks)  = ~. By 
Definition 1.1, S belongs to $2 and thus, is a solution of Problem 1.2. 

Obviously, the transformation (3.7) applied to equivalent pairs give the same func- 
tion S. Conversely, assume that S has two different representations S(z) = Ue(z)V~-i(z) 
with 

Ut(z) = On(z)pl(z) + 012(z)qe(z), V~(z) = 021(z)pe(z) + 022(z)qe(z), 
and such that det Ve(z) 7! 0, g = 1, 2. Then 

o_~(z) (S(z) q2(z) ) V2-1(z)" 

Hence p~ = p2X, q~ = q2X with X = V2-~V1, that is, the pairs {p~, q~} and {P2, q2} axe 
equivalent. | 
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In the following parametrization theorem we replace the conditions (3.8) in Theorem 3.3 
by limit conditions in the interpolation points (see (3.19) below). In these points O(z) has 
simple poles. 

T h e o r e m  3.4 All solutions S of Problem 1.2 are parametrized by the fractional linear trans- 
formation 

S(z) -- (011(z)/5(z) ~- O12(z)(7(z)) (021(z)/5(z) --~ 022(z)(7(z)) -1 , (3.18) 

where the parameter runs through the set of those {t5, ~} E 37 ) which satisfies 

~-~j(lim(z-zJ)(O:l(z)/5(z)+O~2(z)(7(z))}- ~ 0 for j = 1, . . . ,n .  (3.19) det 

Under the transformation (3.18), two pairs correspond to the same function S if and only if 
they are equivalent. 

A pair {p, q} E 87 ) is called an excluded parameter in the parametrization (3.18) of the 
solutions of the Nevanlinna-Pick problem if it does not satisfy (3.19). 

Proof :  Let S be a solution of Problem 1.2. Without loss of generality we assume 
that S is of the form (3.7) with {p, q} E 87 ) as in (3.10), hence the relations (3.12) hold. 
By the second formula in (2.30), 

and therefore ( ) p(z) = 1-I(z - (3.20) q(z) (7(z) j=l  

for some pair {/5, (7) E 87 ) which is analytic at the interpolation points zj. The representation 
(3.18) follows from (3.7), since the pairs {p, q} and {/5, (7} are equivalent. In view of (3.12 
and (3.20), 

(Z -- Zj) (021(Z)p(Z) "~ 022(Z)(7(Z)) : 021(z)P(Z) 27 022(z)q(z) frn 
- - 1-I  s(z - 

Therefore the conditions (3.19) are fulfilled. 
Conversely, let {/5, (7} be a Stieltjes pair which is analytic at the interpolation points 

zj and satisfies (3.19), and let S be defined by (3.18). Multiplying the numerator and the 
denominator in the right-hand side of (3.18) by (z - zj) and taking into account (3.19) we 
conclude that S is analytic at all zj's. To show that S satisfies the interpolation conditions 
(1.5) we note that on account of (2.20) and (2.29), 

( 0  - Sj . .  0 ) p _ l  . . 
l i ~ ( z - z j ) O ( z ) =  0 .. .  I,~ . . .  0 ( a  2, -G1)M,  (3.21) 

and therefore 
(Ira, -S j )  lira (z - zj)O(z) = 0. (3.22) z--*zj 
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We write (3.18) in the equivalent form 

s(z) = (z_ zj)o(~) ~(z) ((z- ~j)(~ + 022(z)~(z))) -1 
Im 

and multiply both sides from the left by (I,~, -S j ) .  If we then let z ~ zj we obtain, on 
account of (3.19) and (3.22), 

(• -sJ) (s(zJ) ) = ,~ 

( ~(z) ) ((~- z~) (o~(~)~(4 + o~(~)~(~)))-I =o. = (z~, -s j )  ~s - zj)e(~) ~(~) 

Hence S satisfies (1.5). Since O belongs to 14)~, we conclude as in Theorem 3.3 that the 
kernels K s  and K s  in (3.18) have at most n and ~ negative squares~ respectively. Due to 
the interpolation conditions (1.5) and the equalities (1.4) these kernels have exactly ~ and 

negative squares, respectively, and therefore S E S~. | 

4 A o n e  p o i n t  i n t e r p o l a t i o n  p r o b l e m  for  S t i e l t j e s  p a i r s  

This section is auxiliary. We consider a left-sided one point interpolatio n problem for Stieltjes 
pairs which will be the main tool in the investigation of the excluded parameters of the 
parametrization (3.7) in the next section. The multipoint version of this problem is discussed 
in [1] and [3] for the nondegenerate case (the precise meaning will be given below). Here we 
consider also the degenerate cases and we present them in a form which is convenient for 

later use. 

P r o b l e m  4.1 Given two row vectors a, b E r "~ and a point  co E C +, f ind all pairs {p, q} E 

S~P which are analytic at w and sat is fy  the interpolation condition 

ap(co) = bq(co). (4.1) 

Note that condition (4.1) is invariant with respect to the equivalence relation in the class 
87): if {p, q} satisfies (4.1) then every equivalent pair {pl, ql} which is analytic at co satisfies 
(4.1) as well. 

Problem 4.1 is solvable if and only if the corresponding Pick matrices are nonnega- 

rive, that is, 
k . -  ba* - ab__.__._.~* > O, ~ . -  coba* - ~vab* >_ O. (4.2) 

c o  - - c o  c o  - -  ff2 

The description of all solutions of Problem 4.1 relies on the following theorem. 



Mpay, Bolotnikov and Dijksnm 393 

T h e o r e m  4.2 A pair {p, q} is a solution of Problem 4.1 /f and only if it satisfies the fol- 
lowing inequalities for all z �9 @+, 

( k ap(z) - bq(z) ) 
z - w  > 0, (4.3) 

p(z)*a*-q(z)*b* q ( z )*p ( z ) -p ( z )*q ( z )  - 
#.--~ z - - 2  

z--  w > O. (4.4) 
5p(z)*a* - Caq(z)*b* zq(z)*p(z) - 2p(z)*q(z) - 

z - w  z - %  

Proofi  Let {p, q} be a Stieltjes pair satisfying (4.1). From 

(p + iq)(p + iq)* = pp* + qq * + q* p - P*--q 
i 

it follows that det (p(z) + iq(z)) ~ 0 for all z �9 @+ ouside some set of isolated points. The 
pair {15, ~} defined by 

~(z) = p(z)(p(z)  + iq(z)) -1, ~(z) = q(z)(p(z) + iq(z)) -1 

is equivalent to {p, q} and satisfies (4.1) and/3(z) +iq(z)  - I,~. Therefore it can be assumed 
without loss of generality that {p, q} apriori satisfies 

p(z) + iq(z) -- Im. (4.5) 

By assumption (4.5), the interpolation condition (4.1) is equivalent to 

(b + ia)p(w) = b, (b + ia)q(w) = a. (4.6) 

Moreover, the matrix function 
R(z)  := p(z) - iq(z) (4.7) 

is a contraction in @+: 

~ - R(z)*R(z) = (p(z) + iq(z))*(p(z) + iq(z)) - (p(z) - iq(z))*(p(z) - iq(z)) 

= 2 q ( z )*p ( z ) -p ( z )*q ( z )  > 0  
i 

and satisfies, on account of (4.6), 

(b + i a ) R ( ~ )  = (b - in).  

As an analytic contraction R satisfies the inequality 

i ~  - R ( ~ ) R ( ~ ) *  R ( z )  - R ( ~ )  \ 

i ( ~  - ~ )  - ~ -  ~--7-- ) n(z)*  - n(.~)* ~m - n ( z ) * n ( z )  >__ o, 

i (~ - ~) i ( ~ -  ~) 

(4.8) 

(4.9) 

~ r  \ {~} ,  (4.1o) 
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(see e.g., [2, p.77]). We multiplying the matrix in (4.10) from the left by ( b+;~ x,~~ ), and 

from the right by its adjoint ( b*-~*o Ira~ ) and we obtain, on account of (4.2) and (4.9), 

(b + ia)R(z) - b + in 
2k i(z - w) 

R(z)*(b* - ia*) - b* - ia* I m  - -  R(z)*R(z) j >_ O. (4.11) 

i(~, - ~) i (~ - z)  

By (4.5) and (4.7), 

(b + ia)R(z) - b + ia = (b + ia)(p(z) - iq(z)) - (b - ia)(p(z) + iq(z)) 
= 2 i ( a p ( z )  - ~q(z)) ,  

and we substitute this and (4.8) into (4.11), we get (4.3). Applying the same arguments to 
the pair {zp(z), q(z)} we come to (4.4). 

Conversely, assume that {p, q} satisfies the conditions (1.6) and the inequalities 
(4.3) and (4.4) for all z E •+ outside some finite set of isolated points. Then, in particular, 
the inequalities (1.7) hold and therefore {p, q} is a Stieltjes pair. Since p and q are analytic 
at w, the diagonal blocks in (4.3) are bounded in a neighbourhood of w. Therefore, the 
nondiagonal block ~p(z)-bq(,} is bounded for z --+ a; and thus (4.1) is fulfilled. | 

Z--CO 

For the multipoint interpolation problem the inequalities (4.3) and (4.4) were con- 
sidered in [3] to construct a recursive Schur process associated with a Nevanlinna-Pick 
problem for Stieltjes functions. 

To describe the solutions of Problem 4.1 we consider four cases: the nondegenerate 
case k > 0 and k > 0, and the three degenerate cases in which one of numbers h and ~ is 
zero or both are zero. 

I. The  n o n d e g e n e r a t e  case: k > 0 and k > 0. In this case the inequalities (4.3) 
and (4.4) are equivalent to 

J 1 ~* ~ - l ( a , _ b )  q ( z )  
(P(z)*' q(~)*) i (~:z)  I~-~P -b* 

and 

{ ( ) Y 1 a* ~-1 (a, - ab )  > 0, (~p(z)*, q(z)*) i (~-  ~) I~- ~I ~ - ~ *  q(~) - 

respectively. Using the function 

z - ~  a* za* k- la  0 

and the associated function 

~(z)  = P(z)q~(z)P-l(z),  P ( z ) =  ( ZI~o I,~O ) ,  

(4.13) 

(4.14) 
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we can rewrite the inequalities (4.12) and (4.13) as follows: 

�9 (z)-*J~(z)-I (p(z) ) > 0, (p(z)*, q(z)*) ~ - ; ) )  q(~) _ 

~(z)-*J~(~)-~ ( zp(z) ) >o. 
(hp(z)*, q(z)*) ~ ( 5 : ~  q(z) - 

The kernels in these inequalities are "projective" analogues of the kernels (3.15) and (3.16). 
The inequalities can easily be solved. The solutions are parametrized via a linear (rather 
than fractional linear) transformation, and the parametrization matrix is given by ~. 

T h e o r e m  4.3 I l k  > 0 and k > O, then all solutions {p, q} of Problem 4.1 can be parametrized 
by the linear transformation 

q(z) q~ (~ ) / ,  (4.i5) 

where ~(z )  is the 2m x 2m matrix function defined by (4.14) and the parameter {Pl, qi} 
runs through all of 87 ). 

II. The  case k = 0 and k > 0. It follows from (4.2) that ab* = ba* and therefore 

= ab*> O. (4.16) 

T h e o r e m  4.4 I f k  = 0 and k > O, then all solutions {p, q} of Problem 4.1 can be parametrized 
by ( 0 a*k-la ) (p l (Z)  

q(z)  - z,n q~(~) )' 
where the parameter runs through the set of pairs {Pl, ql} E S P  for which 

bqi(z) - O. 

(4.17) 

(4.18) 

Proofi  Let {p, q} be a solution of Problem 4.1. By Theorem 4.2, it satisfies the inequalities 
(4.3) and (4.4). Since k = 0, (4.3) implies 

ap(z) -- bq(z), (4.19) 

and therefore, (4.3) ~ d  (4.4) we equivalent to 

q ( z ) * p ( z ) - p ( z ) * q ( Z ) > o ,  ( "k ap(z) ) 
z - 2 - p(z)*a* zq(z)*p(z)-~p(z)*q(z) >_ 0. (4.20) 

Z--2  

Since k > 0, the second inequality in (4.20) is equivalent to 

zq(z)*p(z) - 2p(z)* q(z) _ p(z) ,  a,~c_iap(z) > 0. (4.21) 
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Define the pair {Pl, ql} by 

( p~(~) 0 

Then the first inequality in (4.20) and the inequality (4.21) can be expressed in terms of 
{pl, qa }: 

ql(z)*pl(z) --pl(z)*ql(z) > O, zlq(z)*pl(z) --zpl(z)*ql(Z) > O, (4.23) 
z - - 5  -- z - - 5  -- 

respectively. Thus, the inequalities (4.20) are equivalent to the fact that {p~, q~} of the form 
(4.22) is a Stieltjes pair, or equivalently, that {p, q} admits a representation (4.17) for some 
{pl, q~} E $ P .  Finally, it follows from (4.16) and (4.22) that the identities (4.18) and (4.19) 
are equivalent: 

bql(z) = bq(z) - ba*'~-lap(z) = bq(z) - ap(z). | 

I I I .  T h e  case  k > 0 and  k = 0. Now it follows from (4.2) that wba* = ~ab* and 

k = - w - l a b  * > 0. (4.24) 

T h e o r e m  4.5 I l k  > 0 and k = O, then all solutions {p, q} of Problem 4.1 can be parametrized 
by 

where the parameter runs through the set of {Pl, ql} E 87 ) for which 

ap l ( z ) - -O.  (4.26) 

P roof :  Let {p, q} satisfy (4.3) and (4.4). Since k = 0, (4.4) implies 

ap(z) =-- Wbq(z). (4.27) 

Hence (4.3) and (4.4) axe equivalent to 

k -�89 ) zq(z)*p(z) - 2p(z)*q(z) > O. (4.28) 
_ ! q ( z ) . b  * q(z).v(z)_~,(~),q(~ ) > O, 

Since k > 0, the first inequality in (4.28) can be written as 

q(z )*p(z ) -p ( z )*q(z )  1 ** 1 
i~q(~)~ ~ k-  bq(~) _> o. Z 

Let {pl, ql} be defined by 

ql(z)  = o ~ I,.  q(z) " 

(4.29) 

(4.30) 
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In terms of this pair, the inequality (4.29) and the second inequality in (4.28) take the same 
form ~ in (4.23). By the arguments following (4.23) we get the representation (4.25) with 
{pl, qx} E ,97 ~. The equivalence of the identities (4.26) and (4.27) follows from (4.24) and 
(4.30): 

1 ~ 

ap (z) = ap(z) + • = a p ( 4  | 
Z Z 

IV .  T h e  case  k = k = 0. It follows from (4.2) that  ba* = 0, that  is the row vectors a and 
b are orthogonal. Now the inequalities (4.3) and (4.4) are equivalent to the fact that  {p, q} 
is a Stieltjes pair such that  

ap(z) = bq(z), = •  
Z 

or equivalently, 
ap(z)  -- O, bq(z) - O. (4.31) 

T h e o r e m  4.6 I f  k = k = O, then a pair {p, q} E 8 P  is a solution of  Problem 4.1 i f  and 
only i f  it satisfies (4.31). 

Note that  of the four cases only in this case it can happen that  a or b is zero; then in fact 
we have in (4.31) only one condition. If a = b = 0 then every pair {p, q} E $ P  is a solution 
of Problem 4.1. 

If a and b are orthogonal, it is shown in, for example, [3] that  up to equivalence, a 
pair {p, q} E S P  which satisfies the conditions (4.31) has the block diagonal form (0) 

p(z)  = U,b 0 , q(z) = Uab i , (4.32) 
~(z)  ~(~) 

where U,b 6 Cm• is a unitary matr ix  which depends only on a and b and {:fi, ~} is a Stieltjes 
pair of smaller size. If in particular a = 0 or b = 0, than we have in (4.31) at most one 
condition: bq(z) - 0 or ap(z)  - 0, and a pair {p, q} E S P  which satisfies the remaining 
condition has, up to equivalence, the form 

-- 1 
' O(z) ' if a = O, (4.33) 

o r  

q(z) = uo 0 ' 0(z) ' if b =  0. (4.34) 

Here Ub and U~ are unitary matrices which depend only on b and a, respectively. In partic- 
ular, the representations (4.33) and (4.34) give a complete characterization of all admissible 
parameters  {pl, ql} in the linear transformations (4.17) and (4.25). 

R e m a r k  4.7 Using (4.14) one can easily show that  the linear transformation (4.15) maps 
a strict Stieltjes pair {pl, ql} into a strict Stieltjes pair {p, q}. Hence in the nondegenerate 
case Problem 4.1 always has strict Stieltjes solutions. From the representations (4.32) and 
(4.33), it follows that  in the three degenerate cases, none of the solutions of Problem 4.1 is 
strict. 
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5 E x c l u d e d  p a r a m e t e r s  

In this section we describe more explicitly the set of excluded parameters, that is, the set 
all pairs {p, q} �9 $9 O which satisfy together with all equivalent pairs at least one of the 
following n conditions 

det {1L (z- + 0:2(z)q(z))} 0, (5.1) 

where the zj's, j = 1 , . . . ,  n, are interpolation points of Problem 1.2. Set 

Ej  = (0m, . . . ,  0,~, I%, 0,~,. . .0m) �9 C "~x'~". (5.2) 

J 

Then from the block decomposition (3.6) of @ and (3.21) we get 

(a j ,  /~S) := l i ~ ( z  - z j )  (02~(z), 022(z)) = E j P  -~ (G; ,  - G ~ ) M ,  

where by (2.23), 

Olj ~-- E j Z ~ - I ~  �9 C mxm, flj = - E j P - ~ G 7  �9 C m• (5.3) 

Thus (5.1) can be written as 

det ( a j p ( z j )  + f l jq(z j ) )  = 0 (5.4) 

with aj  and ~j as in (5.3). Substituting (3.6) into (2.16) we obtain in particular, 

022(z)O21(w)* - -  021(z)O22(w)* = G 2 ( z I  - -  Z ) - I P - I ( O [  - -  Z*)-IG~.  (5.5) 
z - w  

The block decomposition 

follows from (2.4) and (3.6), and if it is substituted into (2.18) we get 

zO22(z)O2a(w)* - Co02a(z)O22(w)* = z & G 2 ( z I  - Z ) - I P - I ( & I  - Z * ) - I G ~ .  (5.6) 
Z -- t~) 

Let 
p - 1  = (~9l)j , l=l,  ~ - 1  = (~rj~)j,~=l, ~je, ~je �9 C "~• (5.7) 

be the block decompositions of p -1  and l 5-1 of the inverses of the m n  •  Pick matrices 
in (1.3). Consider (5.5) and (5.6) for w = z, multiply by Iz - zj[ 2 and let z ~ zj,  then, on 
account of (2.29) and (5.3), we obtain 

#Sa'J - aS~3'] = E s P - ~ E ~  : ~r#, zs#Ja~ - z~e~s~; = ]zs]ZEsP-IE~ = Izsl~JS. (5.8) 
zs - ~s zs - ~ s  
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Of interest here is that ~rjj and ~jj are the diagonal entries in the decompositions (5.7); see 
below. Returning to (5.4) we conclude that a pair {p, q} E S; ~ is an excluded parameter in 
the fractional linear transformation (3.18) if and only if it satisfies together with all equivalent 
pairs which are also analytic at zj, the condition 

h + Zjq(zj))  = 0 (5.9) 

at least for one j E { 1 , . . . , n }  and for some nonzero row vector h E C 1• To show that 
Problem 1.2 has a solution we first verify that the kernels of oq and/3j have a zero intersection, 
otherwise each pair {p, q}, which is analytic at zj, satisfies (5.9) for h E K e r n / n  Ker/3j and 
is therefore, an excluded parameter in the transformation (3.18). 

L e m m a  5.1 Let (~j and flj be defined by (5.3). Then 

+ ZjZ; > 0. (5.10) 

P roo f i  Let h E C "~ be a row vector such that 

haj = hEjZ.p-1G~ = O, ht3j = hEjP-aG~ = 0. (5.11) 

We show that  h = 0, which implies (5.10). If we multiply both sides of (2.13) by hEjP -1 
from the left and by/5-1G~ from the right, we get 

hEjP-1G~ hEjZP-IG~ hE p - l f , * f , p - l f  TM - -  ~ J ~ 1  ":r2 ('x2 

hence in view of (5.11), 
hEjP-~G~ = 0. (5.12) 

If we multiplying both sides of (2.24) by hEjP -1 from the left, by P-~E~ from the right and 
invoke (5.11) and (5.12), we obtain 

hEjP-IZ*E~ - hEjZP-~E~ = 0, g = 1 , . . .  ,n. 

LFrom the formulas (2.29), (5.7), and (5.2) of the matrices Z, p - l ,  and Ej (and E,) the last 
equality simply reads: 

h~rj~5~ = hzj~rj~, g = 1 , . . . ,  n. 

As all interpolation points belong to (~+, so in particular zj ~ 5,, 

h~rj~=O, g= l , . . . , n ,  

that  is, hEjP -1 = O, hence h = 0. | 

We now apply the results from the previous section to describe the set of pairs 
{p, q} which satisfy the left-sided interpolation condition (5.9) for each j E {1 , . . . ,  n} and 
nonzero row vector h E C ~ separa.tely. The union of all these sets (taken over j and h) will 



400 Alpay, Bolotnikov and Dijksma 

form the set of excluded parameters. For fixed j and h the condition (5.9) is of the form 
(4,1) of Problem 4.1 with 

a =ha i ,  b = -h~ i  , w = zj. (5.13) 

If we substitute (5.13) into the defining expressions (4.2) for the Pick matrices k and ~ and 
use (5.8), we get 

O~" *. OL* 
k = h ~ -/~j  j h* = -h~rjjh*, k = h ~jaj/3~ - zJflJa~h* = -[z~12h~jjh *. (5.14) 

zj - h i  zj - h i  

From (5.14) and the solvability criteria (4.2) of Problem 4.1, we conclude that there exists a 
pair {p, q} satisfying (5.9) if and only if h~rjjh* <_ 0 and h~jjh* < 0. In particular, if ~rjj > 0 
or ~'jj > 0, then there is no pair satisfying (5.9) and therefore, every pair {p, q} e $7 ~ is 
admissible at zj. According to Remark 4.7, if rjj > 0 or ~jj > 0, then there is no strict 
Stieltjes pair satisfying (5.9) and therefore, every strict Stieltjes pair {p, q} is admissible at 
zj. We see that the signs of the m x m Hermitian matrices ~rjj and ~jj on the diagonal of 
the inverse of the Pick matrices P and t5 play an important role in the description of the 
excluded parameters. To describe this role we partition ( ~  in two different ways: 

= c t  u c ;  u c; = c-? u z ;  u 

where Z: +, s and Z~ consist of all row vectors h e Cm for which hrjjh* is positive, negative 
and zero, respectively, and where Z~ +, s and s axe defined similarly with respect to ~'jj. 
In other words, the indiated spaces consist of positive, negative and neutral vectors with 
respect to the indefinite inner product in ~m induced by Hermitian matrices ~rjj and ~jj, 
respectively. From the previous section we get the following description of all excluded 
parameters of the transformation (3.18). That is, every excluded parameter belongs to one 
of the sets described by the following four corollaries to Theorems 4.3 - 4.6, respectively. 

Corol lary 5.2 Assume s  N s r {0}. Define for h e s  n s h r O, 

_ 0 ' 

( 5 . 1 5 )  

where ~j, flj are given by (5.3). Then all pairs{p, q} of the form 

( ) (") p(z) = l~]j,h(Z) {Pl, ql} E S ~ ,  (5.16) , 

are excluded parameters. 

Corollary 5.3 Assume s A ~ ;  74 {0}. For each h �9 f~ N ~; ,  h # O, all pairs {p, q} of 
the form 

pl(z) (5.17) 
q(z) ql(Z) / '  

where {pl, ql} is an arbitrary Stieltjes pair such that 

h~jql(z) - O, (5.18) 

are excluded parameters. 
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Corol lary 5.4 Assume s  n Z~ # {0}. 
the form 

( p ( z ) ) =  (Ira lfl~h*(h~rjjh*)-lh~j ) ( pl(z) ) 
q(z) 0 Im ql(Z) / '  

where {Pl, ql} is an arbitrary Stieltjes pair such that 

h ~ m ( z )  -- o, (5.2o) 

are excluded parameters. 

Corollary 5.5 Assume Z; n ~ # {0). For each h e ~; n ~ ,  ~ # O, all Stieltjes pairs 
{p, q} satisfying 

hajp(z) - h~jq(z) =_ 0 

are excluded parameters. All other pairs {p, q} E $ ~  are admissible: the function S defined 
by (3.18) is a solution of Problem 1.2. 

6 T h e  e x i s t e n c e  o f  a s o l u t i o n  

In this section we prove that Problem 1.2 is always solvable. 

L e m m a  6.1 The Pick matrices 

(O -o 1 ~ 
\ zj - #~ / t,j=~ ' \ zj - 5~ / ~,j=~ 

with 

For each h e E~ A ~ ,  h ~ O, all pairs {p, q} of 

(5.19) 

Proof." It is easily seen that 

f 
P+ = L 

J r )  

(t - ~,,)-~I,. 
1 ( ( t -  ~)-~/,~ 

h = / o  / (t - e.)-iz,~ 

are strictly positive. 

dt((t- z,)- lz , , . . . ,  ( t -  z . ) - 'I . )  _> 0, 

tdt ((t- z,)-'Zm,.. . ,(t-  ~,)-1Im) > 0. 

If gPr = 0 for some row vector g = (gl, . . .  ,g~) E C '~'~ where each gj is a row vector in C TM, 
,we get 

) O = gPog* = f o ~ \ j = l  t - z; ] 

(6.1) ( 1 (1)) 
r  1 -  1 I ra= In 1 - ~  + i a r g  1 -  I,~, j = l , . . . , n ,  
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and therefore 

j=l t zj  

Since the functions ~ are linearly independent, each gi = 0, hence Pc has a zero kernel. 

A similar argument proves the strict p0sitivity of P. .  | 

Theorem 6.2 Problem 1.2 has a solution. 

Proof: By Theorem 3.4, it suffices to establish the existence of a pair {p, q} E SW which 
satisfies the conditions (3.19), or equivalently (see (5.4)), the conditions 

det (a jp ( z i )  + f l jq(zj))  # 0, j = I , . . . , n ,  (6.2) 

where ai ,  /3j E C m• are defined by (5.3). As observed in the previous section, after the 
formulas (5.14), if 7rjj > 0 or ~iJ -> 0, or equivalently, /3y N/~y = {0}, then every pair 
{p, q) E S~ o is admissable at zj, that is, the fractional linear transformation (3.18) applied 
to this pair yields a Stieltjes function S(z )  which satisfies the interpolation condition at 
z = zj in (1.5). Thus the Problem 1.2 is solvable if/3 7 M ~j7 = {0} for all j E {1, . . . ,  n}. 

Now we assume that not all these intersections are trivial: let J1 be the set of those 
j E {1, . . . ,  n} for which/3~ NET # {0}, then J~ # 0. For j C J~, let hj E r215 be a matrix 
whose rows form a basis in/3y V1 ~- .  For j E Ja and every nonzero row vector f E C *~, 

f h j ~ r j j h ~ f *  < O, f h j ~ j j h ~ f *  < 0. (6.3) 

Therefore, the left-sided interpolation problem 

T ( z )  E 8 +, h j a j T ( z j )  = -hi/~ J (6.4) 

has a solution Tj(z) ,  say, in the strict Stieltjes class S +, because by (5.8) and (6.3), the Pick 
matrices corresponding to this problem are positive: 

OL" * O~* 
k = h j  ~flj - ~3j j h~ = -hjTcj jh~ > O, 

zi - z j 

= _ __~ - h j r c j j h j  > O. 
z~ - zj  

The matrices 

satisfy 

T j  := Tj (z j )  e C re• j E J~, 

hja jTj  = -hjf l j ,  Tj - T~ > 0, z j T j  - EjTy - -  > o .  ( 6 . 5 )  
zj - ~j zs - ~j 

We set for j E {1, . . . ,n} \ J1, Tj := Cj given by (6.1) (the choice is not important, for 
example, Tj = 0 would also work). The Pick matrices 

Pr = ~ 5 / ~,s=1' \ z j -  ~ / ,,j=~ 
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have positive diagonal blocks but in general, they are not positive. But by Lemma 6.1, there 
exists a 5 > 0 such that 

PT + 5P* > 0, /ST + 5/5~ > 0. (6.6) 

The matrices on the left-hand side are the Pick matrices associated with the following 
Nevanlinna-Pick problem in the strict Stieltjes class: 

T(z )  E $+, T(zj)  = Tj  + 5r j = 1 , . . . , n .  (6.7) 

The inequalities in (6.6) are the solvability criteria for this problem, and hence this problem 
has a solution T(z) ,  say. We show that the strict Stieltjes pair {p, q} defined by 

p(z) = T(z), q(z) =-- I,~, (6.8) 

satisfies the conditions (6.2). By Theorem 3.4, the fractional linear transformation (3.18) 
applied to this pair gives a solution S(z)  of Problem 1.2, which completes the proof. 

We argue by contradiction. Assume that for some j E {1 , . . . ,  n}, there is a nonzero 
row vector f j  E C ~ such that 

f j  (ogp(zj) + fljq(zj) ) = fj  (a jT(z j )  + flj) = 0. (6.9) 

The space em is the union of the three (not necessarily disjoint) sets Z: + U ~+, o ~o /:j U/2j, and 
s  fl s and accordingly we prove three noninchsions which contradict f j  E e'~: 

(i) f j  9f s  U Z;~+: a Stieltjes pair {p, q} cannot satisfy (6.9) if f j  does belong to 
this set; see the discussion after (5.14). 

(ii) f j  ~f s U s By Remark 4.7, a strict Stieltjes pair {p, q} cannot satisfy (6.9) 
if f j  does belong to this set. 

(iii) f j r  s  n s Assume that 

f j  E Z:}- n s (6.10) 

We show that (6.9) implies that then also fj  E s N s which contradicts the inclusion 
(6.10). We use the special structure of the choosen pair (6.8). By (6.10), f j  = gjhj for some 
nonzero row vector gj E C rj. Because of (6.7), the first relation in (6.5) and (6.9), we have 

0 = f j  (a jT(z j )  + jhj) = gj (h ja jT j  + 5hjo~j~j + hj/3j) = @jhjaj,~j = 6 f ja j~ j .  

Since ~j is invertible (see (6.1)), f ja j  = O. In view of (5.8), 

fJ JJf; = f 7  = o, zj -- zj 
2 - * z jetaja~--  a j ~ . f f  rzjl = = 0 ,  

zj - -  zj 

that is, f j  E s n ~ .  which contradicts (6.10). | 
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7 T h e  s c a l a r  c a s e  

In this section we apply the preceeding analysis to the scalar case: m = 1. Then the 
characterization of the excluded parameters in the parametrization of all solutions of the 
scalar Problem 1.2 is especially explicit and elegant. For the scalar case the rule 

{p ,q}~pq-1  (qT~O) and {p, O } ~ e o ,  

establishes a one to one correspondence between the equivalence classes on 87 ) and the 
elements of the extended Stieltjes class g = S U {~}.  With the data (the interpolation 
points za, . . .  ,z~ and the values S1,...  S~) and the n x n Pick matrices P and/5 in (1.3) we 
associate the matrices (see (2.29)): 

a l  = (s1, - - . ,  s~ ) ,  a~ = (1, . . . ,  1),  z = diag ( z i , . . .  z~), 

and the parametrization matrix (2.20): 

~)(Z) = ( OIl(z) 012(Z) ) 
O~l(z) 022(z) = 

G2/5-1G~ Im " 

According to Theorem 3.4, all solutions S(z) of the scalar Problem 1.2 are parametrized by 
the fractional linear transformation 

S(z) = 01~(z)T(z) + 0~2(z) (7.1) 
021(z)T(z) + 022(z) ' 

where the parameter T(z) runs through the extended Stieltjes class ,~ restricted only by the 
n conditions 

li~(z-zj)(O2~(z)T(z)+O22(z)) r j = l , . . . , n .  

For T = c~, S = 0ii/021. These restrictions are equivalent to the conditions (see (5.9) 

ajT(zj) + ~j # O, j = l , . . . ,n ,  

where the complex coefficients are defined by 

o(i = EjZ/5-1G~, flj = -F_,jp-1G~, 

and Ej is the j-th unit row vector in e'~: 

Ej  = ( 0 , . . . , 0 , 1 , 0 , . . . , 0 )  

J 

(see (5.2), (5.3)). A function T(z) E ,~ is called an excluded parameter for the interpolation 
problem if the corresponding function S(z) in (7.1) is not a solution of problem 1.2, or 
equivalently, for at least one j E {1,. . .  ,n} T(z) satisfies the condition 

~jT(zj)  + Zj = O. (7.2) 

The excluded parameters can be classified according to the sign of the diagonal entries ~rjj 
and 5jj (they are real numbers) of the inverses of the Pick matrices P and/5, respectively. 
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T h e o r e m  7.1 (1). Assume at least one of the two numbers ~rjj and ~jj is positive. Then 
the relation (7.2) is satisfied for no T 6 8.  Therefore for all parameters, the function S 
defined by (7.1) is analytic at zj and satisfies S(zj)  = S s. 

(2). Assume ~rsj and ~JS are both negative. Then the relation (7.2) is satisfied for 
infinitely many T 6 3:  they are parametrized by the formula 

r "~ ~)12(z) 
T(~) = r + r (7.3) 

where 

~I](z) = (r r ) 
r ,~22 (Z) ----- 

z ~s as za~ 1 ~-1 - * - ~ r S S  a s 0 

and T(z)  is a free parameter from S.  For all other parameters, S is analytic at zj and 
satisfies S(zj)  = Sj. 

(3). Assume ~r~ = 0 and ~S < O. Then the relation (7.2) is satisfied for exactly 
one parameter T 6 S:  it is given by 

1 
~(z)  = izsl ~ ( ~ ; ~ % )  ~ > o 

For all other parameters, S is analytic at zj and satisfies S(zs) = S s. 
(4). Assume ~rSj < 0 and iris = O. Then the relation (7.2) is satisfied for exactly 

one parameter T E S:  it is given by 

T(~) = ~ ; ~ % .  

For all other parameters, S is analytic at zj and satisfies S(zs) = S s. 
(5). Assume ~rjj = 0 and ~SJ = O. Then aS~ j = 0 and the only excluded parameter 

is 
T - O  ( i f f l s = O )  or T - o c  ( i f a s = O ) .  

Proof." (1) follows from the solvability criterion of the Nevanlinna-Pick problem for Stieltjes 
pairs, (2) is a consequence of (5.16), (5.15). It follows from (5.8) that if at least one of the 
numbers ~'jj and ~-jj is not zero, then both aj,/gj differ from zero. (3) follows from (5.17), 
since (up to equivalence) the only pair {Pl, ql} satisfying (5.18) is {1, 0}. Similarly, (4) 
follows from (5.19), since (up to equivalence) the only pair {Pl, q,) satisfying (5.18) is {0, 1). 
(5) is clear. By Lemma 5.1, the equalities a~ = 0,/gj = 0 do not hold simultaneously. | 

Example  7.2 T a k e z l = l + i ,  z 2 = 2 + i ,  S l = l + i a n d S 2 = l - i .  Then 

P =  0 - ' 1 + i  - 1  ' 
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sq_(P) = sq_(] 5) = i ,  and 

/D--1 --~ ( i 0 1 )  
__  .~ 

1( 1 1~) 
i~--1=4 1 + i  - 2  ' 

According to (2.14), 

( 1 
M =  1 1 - i  1 = 1 , 

�88 1) l + i  -2 1 1 ~ 1 

and by (2.20), 

o~_-{~+(~ ~)(~ ~ 1 1  o ~ Oz~)(1, ~)}(11~ o) 
1 ( z 2 - 3 z + }  2 ) 

( z - l - i ) ( z - 2 - i )  z '~-3z Z 2 - -  3 Z  "~ 4 " 
4 

The solutions of the interpolation problem in the class SI are given by the formula 

(z ~ - 3z + ~)T(z) + 2 
s(z) = ~ 2 ~ ( 7 7 ~ : ~ 7 4  ) 

Since 
z 2-3z+4~=I+i -i+2i and Im-l+2i 

z ~ : ~ 7  - 5 - - y - -  > 0, 

the function S(z) is analytic at z = 1 + i for every parameter T(z). Since 

z 2 - 3 z  + 4  1 -  2i z 2 -  3z + 4  4 - 3 i  
"z -~ : -3z  - 3 ' z z-7_--3z - 

and 
1 - 2i 4 - 3i 

I m - - - ~  < 0, I m - - - ~  < 0 

there are infinitely many excluded parameters T(z) which solve the interpolation problem 

T(2 + i) = ~ ( - i  + 20; 

they are described by the fractional linear transformation (7.3). 

E x a m p l e  7.3 Take zl = 1 + i, z2 = 2i, 5"1 = 2 and $2 = 2i. Then 

P = g  4 - 2 i  5 ' g 3 - 4 i  0 ' 
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sq_(P) = sq_(/5) = 1, and 

1 ( --5 
P-~ 4 4 -  2i 

According to (2.14) and (2.20), 

4 + 2 i  ) 
0 ' 

1 (  0 3 + 4 i )  
p - 1  = ~ 3 -- 4i - 5  " 

{(  )(1 )}( ) 
z - l - i  --4 7 O(z) = h +  2 2i 0 1+ 1 -2  1 0 

1 1 o ~ o 1 2i 1 1  

(2  ~-~ z+6 ) 1 z - gz--l- g 
- (~-l+i)(z-2i) 1(z2 +6z)  z 2 -  7 z + 5  " 

The solutions of the interpolation problem in the class S 1 are given by the formula 

(z 2 -  ~z + ~)T(z) + z +  6 
S(z) = ~(z~7 6--z)T~-4--;z2-}-;; 5 

where T(z) runs over g except for Tl(Z) = 5 (an excluded parameter at z~) and T2(z) _ 5  - 7  = 7  
(an excluded parameter at z2). For these exceptional values of T(z) we have that 

4 
e l ( Z )  = - -  a n d  & ( z )  - -  2, 

Z 

respectively. These functions are analytic at the interpolation points, but they are only 
partial solutions of the problem: 

$1(2i)=2i,  $ 1 ( 1 - i ) = - 2 - 2 i 7 ~ 2 ,  $ 2 ( 1 - i ) = 2 ,  $ 2 ( 2 i ) = 2 # 2 i ,  

and moreover, they belong to 80 ~ and not to S~. 
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