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Abstract. A representative model of a return map near homoclinic bifurcation is studied. This
model is the so-called fattened Arnold map, a diffeomorphism of the annulus. The dynamics is
extremely rich, involving periodicity, quasiperiodicity and chaos.

The method of study is a mixture of analytic perturbation theory, numerical continuation,
iteration to an attractor and experiments, in which the guesses are inspired by the theory. In
turn the results lead to fine-tuning of the theory. This approach is a natural paradigm for the
study of complicated dynamical systems.

By following generic bifurcations, both local and homoclinic, various routes to chaos and
strange attractors are detected. Here, particularly, the ‘large’ strange attractors which wind
around the annulus are of interest. Furthermore, a global phenomenon regarding Arnold tongues
is important. This concerns the accumulation of tongues on lines of homoclinic bifurcation.
This phenomenon sheds some new light on the occurrence of infinitely many sinks in certain
cases, as predicted by the theory.
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1. Introduction

1.1. Motivation

This paper involves a dissipative family of diffeomorphisms of the annulus, the so-called
fattened Arnold family, which can be regarded as a perturbation of the Arnold family
of circle maps. It turns out that in a certain setting, the fattened Arnold family can be
regarded as a simplified global model for the return map of a dissipative diffeomorphism
near homoclinic bifurcation. This implies that its dynamics has a universal character in the
world of two-dimensional (2D) maps. This dynamics itself turns out to involve periodicity,
quasiperiodicity and chaos, between which there are various transitions (bifurcations). In
this respect it can be compared with classical examples such as the Hénon map and the
standard map (cf Broeret al [54, 10, 11], Roussaine and Simó [48]).

We study the fattened Arnold family in dependence of three parameters, using both
analytic perturbation theory and numerical methods. In certain parameter regimes, our
family is quite near the Arnold family of circle maps. Perturbation theory here reveals
periodicity and quasiperiodicity, parametrically organized by Arnold (resonance) tongues.
Outside these parameter regimes the perturbation becomes larger and bifurcations complicate
the dynamics, often involving chaos. On the one hand, this concerns local bifurcations, e.g.
cascades of flips (period doublings) and of cusp bifurcations. On the other hand, we have
to deal with homoclinic bifurcations. Here the dynamical features are further explored by
numerical methods, with an emphasis on numerical continuation of the bifurcations such
as the boundaries of the Arnold tongues. Also, we often just iterate to a periodic attractor.
The numerical search is then guided by the corresponding theory. This approach seems a
natural paradigm for the study of complicated systems.

The dynamics of the model expectedly is extremely rich. In several cases we find
interesting dynamical objects as predicted by the theory, such as ‘large’ strange attractors
that wind around the entire annulus (cf Dı́az et al [19] and Viana [60]). Also we discover
an interesting global phenomenon in the parameter plane. This concerns the accumulation
of the boundaries of certain Arnold tongues on lines of homoclinic bifurcations. This sheds
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some new light on the existence of infinitely many periodic attractors (sinks) near such a
tangency (cf Newhouse [38] or Palis and Takens [45]).

1.2. Object of study

To fix thoughts, we first introduce the fattened Arnold family of annulus diffeomorphisms
by

F̄α,ω,β : S1× R → S1× R
(x, y) 7→ (x + ω + α(y + sinx)(mod 2π), β(y + sinx)),

(1)

where ω ∈ S1 = R/2πZ, α ∈ R and β ∈ R are parameters. The map̄Fα,ω,β has
constant Jacobian JacF̄α,ω,β ≡ β. Moreover, ifβ 6= 0, by using the change of coordinates
x ↔ −x+ω+αβ−1y, y ↔ β−1y we obtainF̃−1

α,ω,β = F̄αβ−1,ω,β−1, whereF̃α,ω,β is the family
(1) in the new coordinates. Hence, without loss of generality we can assume|β| 6 1.

Instead ofF̄α,ω,β we may consider a liftFα,ω,β : R2 → R2. The only difference with
(1) is that in thex-direction we refrain from counting mod 2π . Also, the parameterω now
varies overR. Notice that in this setting a periodic point(x, y) of rotation numberp/q is
determined by the equationFqα,ω,β(x, y) = (x+ 2pπ, y). We recall the simple fact that, for
any k ∈ Z, the mapFα,ω+2kπ,β is also a lift of F̄α,ω,β .

Note that for β = 0 the circle y = 0 is invariant. Inside this circle we have
F̄α,ω,0(x, 0) = (f̄α,ω(x), 0), where f̄α,ω(x) = x + ω + α sinx (mod 2π) is the classical
Arnold family of circle maps, see Arnold [1], which explains the name of this object
of study. We recall that the Arnold map̄fα,ω is a diffeomorphism for|α| < 1, only a
homeomorphism for|α| = 1 and an endomorphism for|α| > 1. For |α| > 1 it is, for
example, known that there are at most two attracting periodic orbits (see Boyland [8]).

This paper deals mainly with the dissipative case|β| < 1. Some facts about the (near)
conservative cases are further elaborated in section 5.3.4 and appendices C and D. In most
of the sections, we shall fixβ and study the bifurcation set in the(α, ω)-plane. However,
sometimes we also vary the parameterβ, in order to see transitions between several of these
two-parameter scenarios. For|β| < 1, the set

T := S1×
[
− |β|

1− |β| ,
|β|

1− |β|
]

satisfiesF̄α,ω,β(T ) ⊂ T . Therefore there exists a global (or universal) attractor� =⋂
n∈N F̄

n
α,ω,β(T ), of zero Lebesgue measure. One of our interests is to understand the

structure of this set�. For many values of the parametersα andβ the attractor� is just
an invariant circle, displaying either periodic or quasiperiodic dynamics. The question then
becomes: How is this ‘simple’ structure destroyed when changing the parameters?

Remarks.
(i) Note thatF̄α,ω,β for β = 1 coincides with the standard map. For general 0< β < 1

we have a shifted dissipative standard map. For−1 < β < 0 the map is similar, but
orientation reversing. This property has important qualitative implications for the dynamics.
Some other interesting families of maps are also particular cases or limit cases of (1), such
as the H́enon and logistic maps, the so-called ‘twist map’. An extension introduced in
appendix A (given by (6)) also contains the whisker map as a particular case.

(ii) We observe that the transformations(x, y, α, ω, β) ↔ (−x,−y, α,−ω, β) and
(x, y, α, ω, β) ↔ (x + π,−y,−α, ω, β) again give the initial family. Therefore, we can
restrict ourselves to the caseω ∈ [0, π ], α > 0.
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1.3. Outline, sketch of some results

The analytic study of the dynamical behaviour of the familyF , given by (1), in general is
not easy. However, there are two regions in the parameter space, given by|β| � 1 and
|α| � 1 respectively, in which some information can be obtained using perturbation theory.
Here the main conclusion is that the attractor� is an invariant circle.

In fact, as said before, for|β| � 1 our family (1) is a perturbation of the one-
dimensional (1D) Arnold family. A similar relationship exists between the Hénon map,
given byHa,b(x, y) = (1+ y − ax2, bx) and the 1D logistic map. In the latter case a
perturbation analysis allows us to obtain many details about the dynamics ofHa,b(x, y)

for |b| � 1 (see Holmes and Whitley [30], Benedicks and Carleson [5], Mora and Viana
[36], Tatjer [57, 56]). It is our aim to use similar techniques in the present Arnold case.
In section 2 we shall see, that here indeed� is a globally attracting invariant circle. In
the case where|α| � 1, our family (1) cannot always be viewed as a perturbation of
a 1D map. Here, however, using normal hyperbolicity directly, we still obtain the same
conclusion regarding�. Another conclusion of section 2 will be that this invariant circle is
quasiperiodic and hence of classC∞, or evenCω, for a subset of the(α, ω)-plane of large
Lebesgue measure.

We also have to consider periodic attractors, which for small values of|α| lie inside
the invariant circle�. In the (α, ω)-plane periodic attractors are organized by Arnold
tongues, the properties of which will be treated systematically. Nearα = 0 a normal-form
approach gives all the information needed, as will also be seen in section 2. Relevant
generic conditions have been checked with suitable computer programs, both symbolically
and numerically. Some new material concerning the resonant normal form can be found in
appendix B.

The perturbation theory also gives an important contribution to the theory of homoclinic
bifurcation (again cf [30, 56]). It turns out to be useful to explicitly regard the unperturbed
Arnold family of circle maps as the ‘trivial’ annulus map:

Fα,ω(x, y) = (x + ω + α sinx, 0).

In this way a good perturbation theory for small|β| is particularly possible, so we can keep
track of the winding of the unstable manifold around the annulus and a good description of
homoclinic tangencies can be given, also with respect to the strong stable foliation. Since
we are dealing with more than one parameter, combinations of homoclinic and fold (saddle-
node) bifurcations also have to be considered. Furthermore, we briefly touch upon primary
homo- and heteroclinic tangencies in this ‘trivial’ case.

Section 2 gives the starting point for the numerical exploration of section 5. What is
new in it is theapplication of the theory (generally known, however see appendix B) to
our fattened Arnold model.

In section 3 we briefly discuss the present knowledge of the possible transitions to
complicated and chaotic dynamics as the parameters move. One element concerns the loss
of smoothness of the invariant circle as well as its destruction. The second element is the
birth and death of chaos. Here we just briefly introduce the elements of local and homoclinic
bifurcation involved. It is to be noted that all scenarios sketched in this section indeed seem
to occur in the fattened Arnold example.

Section 4 contains an extensive theoretical review of generic possibilities concerning
bifurcations of periodic points and homoclinic bifurcations. This material is of basic
importance for the numerical continuation starting from the perturbative situation in
section 2, in search of the scenarios of section 3. Notably, all the possibilities mentioned
seem to appear in our fattened Arnold family.
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We will restrict ourselves mainly to bifurcations of codimension 2. However, in the
semiglobal organisation of these phenomena also codimension 3 phenomena necessarily
come into play, since our example depends on three parameters. As mentioned earlier, also
infinite cascades of some bifurcations (flips and cusps) are relevant. Another part of this
survey concerns codimension 1 and 2 homoclinic bifurcations, so related to both saddle and
fold points.

This section is closed with some remarks regarding the role of heteroclinic intersections
and the differences between the orientation-preserving and reversing cases. A further
question is how to deal with genericity. Indeed, our numerical search in section 5 is
theory guided, but often genericity can only be checked partially. Our solution to this
predicament is simply to assume genericity and to interpret the numerical output from this,
until absurdities arise.

Section 5 then, contains the numerical exploration of the fattened Arnold model, starting
from the results of section 2. As earlier stated, all the scenarios and bifurcations sketched
so far are relevant for the model. Detailed graphics and other data can be found below,
including tests for the generic differentiability of circle attractors. Instead of summing up
many details, let us here restrict ourselves to sketching a few of the objectives.

In figure 1 the(ω, α)-plane is depicted, forβ fixed atβ = 0.1. Each point (pixel) in the
plane is given a grey tone, encoding the existence of a periodic attractor, different periods
giving rise to different grey tones. A black parameter point indicates an invariant circle
(close to the bottom of the figure) or a strange attractor (further upward). The organization
of the parameter points with periodic attractors in overlapping Arnold tongues is immanent
from the picture. Often, several attractors can coexist for the same value of the parameters.

Figure 1 certainly indicates that the model displays a great richness, which we attempt
to understand better in this paper. Let us single out two aspects. One of these concerns the
accumulation of Arnold tongues. To indicate what we mean by this we refer to figures 2
and 3, where the latter is a magnification of the former. These figures show that the Arnold
tongues accumulate on lines of homoclinic tangency, indicated byT

2,0.3
0 andS0.3

1 . This is
an experimental fact with a partial theoretical explanation. One thing it helps to understand
is the occurrence of infinitely many periodic attractors (sinks) in this situation (see again
Newhouse [38], Palis and Takens [45]).

Remark. Accumulation or ‘trend’ of resonance tongues is sometimes met in applications
(cf van der Heijden [28]). Also see Broer, Roussarie and Simó [10, 54] regarding the
Bogdanov–Takens bifurcation for diffeomorphisms.

Another aspect is the occurrence of ‘large’ strange attractors, for examples see figures 4
and 5. Such attractors occur near homoclinic tangency, as theoretically predicted by Dı́az
et al [19] and Viana [60]. Compare with the ‘small’ attractors as predicted by Newhouse
[38], Palis and Takens [45], Benedicks and Carleson [5], Mora and Viana [36] and Tatjer
[57, 56], and which show up also abundantly in our model. This remark is of special
importance when viewing the fattened Arnold family as modelling the return map near
homoclinic tangency. This is used to try to capture the full dynamics on a fundamental
domain (for details also see appendix A).

Furthermore, in section 5.3.4 some open problems are mentioned, while in section 5.5
we invite the reader to join us in a computer experiment. This verbal ‘movie’ concludes
the paper, illustrating the claim that 2D maps should no longer have any secrets.

An essential tool for the numerical computations is continuation. It has been used for
most of the bifurcation diagrams, to trace curves of: folds, flips, constant trace, double
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Figure 1. Arnold tongues:β = 0.1, ω ∈ [0, π ] andα ∈ [0, 10].

eigenvalues, homoclinic and heteroclinic tangencies (both to saddles and folds) and cubic
tangencies to strong stable foliations. When required, several symbolic computations have
been carried out to high order, for example to obtain good starting approximations of
invariant manifolds or to have local approximations of tongues. Typically, truncated power
series in one or several variables, with numerical coefficients, have been used. For details
we refer to [51].

2. Perturbation properties of the fattened Arnold family

We consider the fattened Arnold familȳFα,ω,β given by (1). The properties presented here
are mainly based on a perturbation analysis of 1D maps. Our results concern the existence
and differentiability of the invariant circle�, using normal hyperbolicity. The dynamics
inside this circle can then be either periodic or quasiperiodic. The(α, ω)-plane is organized
by Arnold tongues, which will also be defined here. Moreover, we discuss homoclinic
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Figure 2. Arnold tongues forβ = 0.3 up to period 10. We include two homoclinic bifurcation
curves at which the tongues accumulate.
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Figure 3. Magnifications of the rectangles in the previous figure. The number indicates the
rotation number associated to each invariant circle. Windows: [1.45, 1.6]× [1.4, 1.6] (left) and
[1.9, 2.1]× [1.4, 1.6] (right).

bifurcations from the perturbative point of view.
First, however, we briefly review some generalities about circle maps and about the

perturbation relation between 1D and certain 2D maps.
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tongueIβ0 , consideringx as the angle andr = y + β/(1 − β) + 0.1 as the radius in polar
coordinates, and displaying it in Cartesian coordinates.
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Figure 5. ‘Large’ strange attractor forα = 4.5, β = 0.55 andω = 10 (on the boundary of the
tongueIβ0 ). The polar coordinates are the same as in figure 4.

2.1. Circle maps

We commence by recalling some general facts about circle maps. Every orientation-
preserving homeomorphism ofS1 = R/2πR can be lifted to a homeomorphismf of
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R wheref (x + 2π) = f (x)+ 2π . This is equivalent to saying thatf = Id + ϕ, whereϕ
is a 2π -periodic map. Let us introduce the following notation. Forr = 0, r > 1, r = ∞
or r = ω by Dr(S1) we denote the set ofCr diffeomorphisms (r > 0) or homeomorphisms
(r = 0) f on R, with f = Id + ϕ andϕ a 2π -periodicCr map.

The rotation number of any mapf ∈ D0(S1) is defined by

ρ(f ) := lim
n→∞

f n(x)− x
2nπ

.

This limit exists independent ofx. Also it is independent of the lift, if defined moduloZ.
Note that in the case of the rigid rotation,Rω(x) = x + 2πω , one hasρ(Rω) = ω.

We list some well known properties ofρ (see, e.g. Nitecki [41]). Letf ∈ D0(S1). Then
there existsx ∈ R such thatf q(x) = x+2πp if and only if ρ(f ) = p/q ∈ Q. The rotation
number depends continuously onf in theC0-topology. Conjugate homeomorphisms have
the same rotation number. In general the converse is not true. However, iff is of classC1,
with ρ(f ) ∈ R \ Q and logf ′ of bounded variation thenf is C0-conjugate toRρ(f ); this
it the content of the Denjoy theorem. For such diffeomorphisms every orbit is dense. In
such a case one says that the dynamics of the map is quasiperiodic. Finally, an orientation-
preserving diffeomorphism of the circle is structurally stable if and only if the rotation
number is rational and all its periodic points are hyperbolic. Moreover, the set of structurally
stable diffeomorphisms is open and dense in the spaceD1(S1).

In the following propositions, we quote some other properties related to the maps under
consideration. Proofs of these results can be found in Herman [27] and Yoccoz [61]. First,
however, we need the following definition.

Definition 2.1. Let {ft }t∈R be a family of maps inD0(S1).
(1) We say that{ft }t∈R is positiveif: (a) ft+1 = 2π +ft , for all t ∈ R and (b) If t1 < t2

thenft1(x) < ft2(x), for all x ∈ R;
(2) We say that the family{ft }t∈R satisfies propertyA if f qt 6= Rp for all t ∈ R, p ∈ Z

andq ∈ Z \ {0}.
We observe that ifft = Rt ◦ f , then {ft }t∈R is a positive family. If, moreover,f

is a non-affine entire function, then{ft }t∈R satisfies propertyA, see [47]. In particular
the Arnold family is both positive and satisfies propertyA, if we take t = ω/2π and
0< |α| < 1. Finally we note thatA is a generic property.

The two results we wish to consider are now formulated as propositions.

Proposition 2.2. If ft = Rt ◦ f andρ(t) = ρ(ft ) then:
(1) ρ(t + 1) = ρ(t);
(2) ρ is a continuous increasing map. It is strictly increasing att0 if ρ(t0) ∈ R \Q;
(3) if {ft }t∈R satisfies the hypothesisA, then for allp/q ∈ Q, the setρ−1(p/q) is an

interval with non-empty interior. MoreoverR \ int (ρ−1(Q)) is a Cantor set.

Proposition 2.3. For r > 2, let f ∈ Dr(S1) and ρ(f ) = ρ0. Then there exists a set
A ⊂ [0, 1] \Q of Lebesge measure1, such that ifρ0 ∈ A thenf is Cr−2 conjugate toRρ0.
(Here∞− 2= ∞ andω − 2= ω.)

2.2. Normally hyperbolic invariant circles

We show that both for small|α| and also for small|β|, the attractor� is a normally
hyperbolic invariant circle. A definition of normal hyperbolicity can be found in Hirsh
et al [29] or in Palis and Takens [45]. Indeed, for a smooth diffeomorphismϕ : M → M,
whereM is a compact manifold, consider an invariant submanifoldV ⊂ M. One says
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that V is normally hyperbolic if for eachx ∈ V there is a continuous, invariant splitting
Tx(M) = Tx(V ) ⊕ Ns

x ⊕ Nu
x with the following properties. There exist constantsC > 0,

σ > 1, r > 1, such for every triple of unit vectorsv ∈ Tx(V ), ns ∈ Ns
x , andnu ∈ Nu

x and
for any k ∈ N

‖(dϕk)nu‖
‖(dϕk)v‖r > Cσ

k and
‖(dϕk)ns‖
‖(dϕk)v‖r 6 C

−1σ−k,

where the norms are taken with respect to some Riemannian metric. In this case one calls
V r-normally hyperbolic.

It is known [29, theorem 4.1], thatr-normal hyperbolicity ofV implies thatV is of
classCr . If we apply this to the fattened Arnold familyFα,ω,β , with |α| � 1, we obtain
the following.

Proposition 2.4. Let us fix0 < |β| < 1 and r > 1. Then, there existsαr > 0 such that for
|α| < αr :

(1) for all ω ∈ R there exists anr-normally hyperbolicF -invariant circleCα,ω,β and,
hence, it is of classCr ;

(2) Cα,ω,β = � is a global attractor.
For fixedβ and r let ᾱr be the supremum of the values of|α| such thatCα,ω,β is r-

normally hyperbolic for allω ∈ R. If we allowr or β to vary, one has:
(3) ᾱr → 0 as r →∞, for fixedβ, while for fixedr one hasᾱr → 0 as |β| → 1.

Proof. We perturb from the caseα = 0. It is easy to see thatF0,ω,β has a globally attracting,
hyperbolic invariant circleC0,ω,β given by the equationy = yω,β(x), where

yω,β(x) = β sin(x − ω)− β2 sinx

1− 2β cosω + β2
.

Moreover, this circle isr-normally hyperbolic for anyr > 1. Therefore, the items (1) and
(2) follow from [29, theorem 4.1].

In order to prove (3), consider a value ofω for which Fα,ω,β has a fixed point with
eigenvaluesλ1, λ2, such that|λ1| < |λ2|. That this is possible follows from a direct
study of F̄α,ω,β (see below). If there exists ar-normally hyperbolic invariant circle, then
|λ1|/|λ2|r < 1. An easy calculation now shows thatᾱr 6 Nr(β) = minω∈RNr,ω(β), where

Nr(β) := (1− |β|1/(r+1))(1− sign(β)|β|r/(r+1)),

andNr,ω(β) = (ω2(1− β)2+Nr(β)2)1/2. This proves (3). �

Remarks.
(i) For |β| < 1 and |α| � 1 the invariant circleCα,ω,β is the graph of a 2π -periodic

Cr -mapgα,ω,β . Moreover, by the unicity ofCα,ω,β , one hasgα,ω+2π,β = gα,ω,β .
(ii) One may ask whetherCα,ω,β is of classCr even if it is notr-normally hyperbolic.

If ρ(Cα,ω,β) ∈ Q then it is an open property thatCα,ω,β contains two periodic orbits,
one consisting of sinks, the other of saddles. The invariant curve itself then consists of
branches of the unstable manifolds of the saddles which meet at the sinks. Within this
setting, generically the matching of the branches at the sinks is not better thanCr , where
r := logλs1/ logλs2, 1 > λs2 > λs1 > 0 being the eigenvalues at the sinks ifr 6∈ N. This
differentiability is not higher thanCr−ε for any ε > 0 if r ∈ N. Numerical evidence that
our family (1) has these generic properties will be given in section 5.3.1.

For β = 0 the mapF degenerates to an endomorphism with a critically attracting
invariant circle. We want to perturb fromβ = 0, investigating the persistence of this circle.
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Figure 6. The curvesα = ±Nr(β), for r = 1, 2, 3.

Proposition 2.5. Let r > 1 be given. Then for any|α| < 1 and |β| sufficiently small (the
smallness depending on|α|) and for allω, there exists an invariant circleCα,ω,β of classCr .
Moreover,Cα,ω,β is r-normally hyperbolic.

Proof. We use a graph transform as in the proof of the stable manifold theorem (cf Shub
[49]), only explaining the Lipschitz case. Indeed, letLK be the set of 2π -periodic maps in
R with a Lipschitz constant less than or equal toK. Then define the mapF : LK → LK
by F(g)(x) = β(g(G−1(x))+ sin(G−1(x))), whereG(x) = x + ω + α(g(x)+ sinx)). Let
K > 0 be such that(K + 1)|α| < 1 and|β| 6 K

K+1(1− |α|(K + 1)). One can show thatF
has a unique fixed pointg. By definition, the graph ofg is an invariant circle. In the case
r > 1, we have to take smaller values of|α| and |β|. The normal hyperbolicity is due to
the persistence of the invariant circle if the map is perturbed. The final statement follows
applying Mãné [33]. �

Remark. Let Mr be the subset of the(α, β)-plane bounded byNr and−Nr and containing
(0, 0) (cf the proof of proposition 2.4 and figure 6). By proposition 2.4, if(α, β) 6∈ Mr ,
there exists a value ofω for whichFα,ω,β does not have anr-normally hyperbolic invariant
circle. Generically one expects that the curves±Nr are the boundary of the set̄Mr of
(α, β)-values, for whichFα,ω,β hasr-normally hyperbolic invariant circles for allω-values.
Also it seems thatα = ±Nr,ω(β) form the boundary, for any given value ofω, of the
α values for which there exists ar-normally hyperbolic invariant circle. As we shall see
below, these expectations can be frustrated by different mechanisms. Note that the two
previous propositions only ensure thatM̄r contains a neighbourhood of the union of theα
andβ axes. Moreover, from the proof of proposition 2.5, it follows that, for a fixed value
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of |α|, the optimal choice ofK is K = |α|−1/2 − 1 and then the bound on|β| is given by
|α|−1/2+ |β|−1/2 6 1. This bound coincides withN−1

1 (|α|) for positive values ofβ.

We complete these general considerations by deriving a normal form for the mapFα,ω,β ,
restricted to the invariant circleCα,ω,β .

Proposition 2.6. Fixing |β| < 1 and r > 1, let ᾱr > 0 be as in proposition 2.4. Then, for
|α| sufficiently small and, in any case, less thanᾱr , the restrictionFα,ω,β|Cα,ω,β is smoothly
conjugate to a normal form

hᾱ,ω,β(x̄) = x̄ + ω + ᾱ sinx̄ +O(ᾱ2),

whereᾱ = αH(ω), x̄ = x + G(ω), for some functionH(ω) 6= 0 for all ω ∈ R, H andG
being2π -periodic functions. Moreover,hᾱ,ω,β is a positive family with respect toω.

Proof. First, we parametrizeCα,ω,β by thex variable. It follows directly that

hα,ω,β(x) = x + ω + α
(
− β sinω

1− 2β cosω + β2
cosx + 1− β cosω

1− 2β cosω + β2
sinx

)
+O(α2).

Let G(ω) = arctan(−β sinω/(1 − β cosω)) (in the suitable quadrant) andH(ω) =
(1− 2β cosω + β2)−1/2. Then

hα,ω,β(x) = x + ω + αH(ω) sin(x +G(ω))+O(α2).

Using the mapsG andH we obtain the normal form forh as desired. The second part of
the proposition is a consequence of the remark following proposition 2.4 and the fact that
G is 2π -periodic. �

2.3. Quasiperiodicity, smooth invariant circles

In this section we consider the case in which|α| is sufficiently small to ensure, by normal
hyperbolicity, the existence of a smooth invariant circle. Lethα,ω,β denote the mapFα,ω,β
restricted to the circleCα,ω,β . First, we present a result concerning to the measure of the
values of the parameterω for which the maphα,ω,β is smoothly conjugate to a rigid rotation.
As we shall see, this is a way of obtaining values of the parameters(α, ω) for which the
invariant circle is of classC∞.

Proposition 2.7. Fix |β| < 1 and r > 2, while αr > 0 is as in proposition 2.6. Also fix|α|
sufficiently small (less than̄αr ). Then:

(1) there exists a setM ⊂ [0, 2π ], of non-zero Lebesgue measure, such that forω ∈ M
the restrictionhα,ω,β is smoothly conjugate to an irrational rigid rotation;

(2) for all ω ∈ M, the invariant circleCα,ω,β is of classC∞;
(3) for α→ 0, the measure ofM tends to2π .

Proof. The starting point here is the normal formhα,ω,β , obtained in proposition 2.6. Here
we take|α| < ᾱr , for r sufficiently large, sayr = 12. For simplicity we omit all bars.

The first step of this proof is to obtain a further normal form forh, assuming thatω/2π
is a diophantine number. This means that for someτ , γ > 0, for all p/q one has∣∣∣∣ ω2π − pq

∣∣∣∣ > γ q−τ .
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Indeed, provided this condition onω, by successive changes of variables one obtains

hα,ω,β(x) = x + ω + f (α, β, ω)+O(αr+1).

The idea is to expand into powers ofα and to average away thex-dependence in an inductive
process. Compare with Broeret al [9], or Broer and Takens [12].

The second step applies a finite differentiable version of the KAM theorem for families
of diffeomorphisms, see e.g. [9, section 8d]. Therefore we fixτ = 3 andγ > 0 in the
above diophantine condition. The corresponding set ofω then contains a Cantor set of
positive measure. The conclusion is that the familyhα,ω,β , with α fixed sufficiently small,
is conjugate to a family of irrational rotations. Here the conjugacy has lost some smoothness,
but is still of classC6. In the ω-direction this smoothness is understood in the sense of
Whitney.

Since the perturbation term in the above normal form is of orderαr+1 it now follows
that we can takeγ = αr . The setM obtained in this way is larger than the one obtained
so far with a fixed value ofγ . Indeed, locally the measure of its complement in [0, 2π ] is
of orderαr asα→ 0. This proves the items (1) and (3) of our proposition.

In order to show the second item, we prove thatCα,ω,β is l-normally hyperbolic for
any l. Indeed, just apply the definition of normal hyperbolicity toV = Cα,ω,β , ϕ = Fα,ω,β ,
Nu
x = 0. One then has to prove that

‖(dϕk)ns‖
‖(dϕk)v‖l 6 C

−1σ−k.

However, this is trivial, sincehα,ω,β is at leastC1-conjugate to a rigid rotation, whence
‖(dϕk)v‖ > D > 0, for someD that does not depend onk. Another application of
[29, theorem 4.1] gives that the unique circleCα,ω,β must be of classC∞. �

Remark. Our example is real analytic and one may ask whether some of the above
quasiperiodic circles are also analytic. It turns out that, for small|α| these correspond
to a similar setM̃, the measure of which again tends to full measure forα→ 0. Indeed, for
α = 0 the invariant circleC0,ω,β is real analytic, while here we haveh0,ω,β(x) = x +ω for
the restriction. Moreover, if we writey = yω,β + z, at C0,ω,β we obtain the normal linear
form F0,ω,β(x, z) = (x+ω, βz). We now proceed similarly to in the above proof, applying
the analogue of [9, theorem 4.1] for diffeomorphisms. Up to diophantine conditions with
τ = 3 and γ > 0, this yields a conjugacy with the familyFα,ω,β , again withα fixed
sufficiently small. This conjugacy is of class (Whitney-)C∞ and even analytic inx, z, β
andα. Finally, by takingγ = 2α, one obtains a set̃M as desired, such that measure of
[0, 2π ] \ M̃ is of orderα.

2.4. Periodicity, Arnold tongues

In this section we consider the periodic points of our familyFα,ω,β , in particular studying
the corresponding organization of the(α, ω)-parameter plane. Recall that|β| < 1 was fixed.
Givenp/q ∈ Q, we now define the Arnold tongueIβp/q ⊂ R2 as follows

(ω, α) ∈ Iβp/q :⇐⇒ F
q

α,ω,β(x, y) = (x + 2πp, y), for some(x, y) ∈ R2.

As stated earlier, this condition means that(x, y) corresponds to a periodic point of rotation
numberp/q. Note that this definition does not need the existence of an invariant circle. Our
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Figure 7. The structure ofIβp/q : Cα1,ω1,β is less differentiable thanCα2,ω2,β .

first concern is with the geometry of the tongueIβp/q , related to some dynamical properties.
The situation is illustrated in figure 7.

We first need more detailed information abouthα,ω,β than given in propositions 2.6 and
2.7. To this end we formally expandhα,ω,β and the invariant circley = g(x) to powers of
α. Indeed, let

hα,ω,β(x) = x + ω +
∑
j>1

αjhj (x), g(x) =
∑
m>0

αmgm(x),

where the coefficient functionshj andgm are trigonometrical polynomials also depending
on the parametersβ andω.

The invariance requires

x + ω +
∑
j>1

αjhj (x) = x + ω + α
(∑
m>0

αmgm(x)+ sinx

)
,

β

(∑
m>0

αmgm(x)+ sinx

)
=
∑
n>0

αngn

(
x + ω +

∑
j>1

αjhj (x)

)
.

From the first relation it follows immediately thath1(x) = g0(x)+sinx andhj (x) = gj−1(x)

(j > 1). Inserting this into the second relation we obtain

β
∑
j>1

αj−1hj (x) = − sin

(
x + ω +

∑
j>1

αjhj (x)

)
+
∑
k>1

αk−1hk

(
x + ω +

∑
j>1

αjhj (x)

)
.

Comparing powers ofα we recurrently obtainh1, h2, . . . which are all of the form

hj (x) =
∑

|k|6j,k−j=2̇

cj,ke
ikx,
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wherehj take real values wheneverx is real and2̇ denotes a multiple of 2.
Next we further simplifyhα,ω,β , reducing it to normal form. Indeed, let

hα,ω,β(x) = x + 2πp/q + δ +
∑
j>1

αj
∑

|k|6j,k−j=2̇

cj,ke
ikx,

whereδ is small. We perform successive changes of variables of the form

z = x + αj
∑

|k|6j,k−j=2̇,k 6=0

dj,ke
ikx if j < q,

z = x + αq
∑

|k|<q,k−q=2̇,k 6=0

dq,ke
ikx if j = q.

Keeping the namesh andx for the new function and variable, we obtain a normal form

h(x) = x + 2πp/q + δ + c1(δ)α
2+ · · · + c[q/2](δ)α

2[q/2]

+αqAp/q(δ) sin(qx + ϕp/q)+O(αq+1),

wherec1, . . . , c[q/2] andAp/q > 0 are analytic inδ aroundδ = 0. The O(αq+1) terms are
also analytic inδ. The angleϕp/q is a suitable phase, depending onδ. By shifting the origin
of x we can takeϕp/q = 0.

Before stating the next results we make the following conjecture.

Conjecture 2.8. Given0< p/q < 1, (p, q) = 1, q > 0, considerAp/q(δ = 0) as a function
of β: A = A(p, q, β). Then for allp/q as before and|β| < 1 we haveA(p, q, β) 6= 0.

Appendix B gives support for this conjecture.

Proposition 2.9. Assume|β| < 1 andp/q ∈ Q, q > 1 (p, q) = 1, and that conjecture 2.8
holds true. Then there exists a positive constantα0 depending onβ and p/q, such that
there exist two analytic curves0βp/q,i , of the formω = γi(α), i = 1, 2, with the following
properties:

(1) γi(α) = 2πp/q+ c̄1α
2+· · ·+ c̄q−2α

q−1+Oi (α
q), for suitable constants̄c1, . . . , c̄q−2

and |α| < α0;
(2) for |α| < α0, bothγ1(α) < γ2(α) and if (α, ω) ∈ Iβp/q , thenγ1(α) 6 ω 6 γ2(α).

Proof. By demanding that theqth power ofh has a double fixed point we obtain

δ + c1(δ)α
2+ c2(δ)α

4+ · · · + c[q/2](δ)α
2[q/2] ± αqAp/q(δ)+O(αq+1) = 0.

From this the proposition follows becauseAp/q 6= 0 by conjecture 2.8. �

Remarks.
(i) Note that from this proposition it follows that the order of contact of the tongue

boundaries at the resonancep/q is of q. Even for the familiar caseβ = 0 (i.e. the Arnold
family of circle maps) we did not find a complete proof anywhere in the literature. See also
appendix B where, in particular, conjecture 2.8 is proven forβ = 0.

(ii) If Ap/q = 0 the normal form must be computed to higher order. Eventually, some
coefficient ofαm sin(nqx+ϕn,m) for n > 1,m > nq, is different from zero. Then a similar
formula holds. If all of these are zero thenγ1(α) = γ2(α) or the difference is infinitely flat.

(iii) Compare with item (3) of proposition 2.7. The fact that the measure of the
quasiperiodicω-domainM increases to full measure asα → 0, is in accordance with
the sharpness of the Arnold tongues.
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We are now interested in the smoothness of the invariant circle, in particular how this
smoothness decreases asα increases. It turns out that this occurs on curves6t inside the
tongues.

Proposition 2.10.Assume|β| < 1, p/q ∈ Q and that conjecture 2.8 holds true. Then for
all |α| < α0, a positive constant depending onβ andp/q, we have:

(1) the curve0βp/q,i is a line of generic fold bifurcations of the corresponding periodic
orbit.

Moreover, if0 6 |β| < 1, let pα,ω be ap/q-periodic sink with(α, ω) ∈ Iβp/q . Given

t ∈ R, let6t ⊂ Iβp/q be given by the equationtrDFqα,ω(pα,ω) = t . Then:
(2) 6t is an analytic curve, defined fort in a punctured left-hand neighbourhood of

1+ βq , for t = 1+ βq degenerating to0βp/q,1 ∪ 0βp/q,2;

(3) these curves6t analytically foliate the interior of the setIβp/q ∩ {|α| 6 α0};
(4) the r-normally hyperbolic invariant circleCα,ω,β exists for all |α| < α0, and r

increases to∞ as t ↑ 1+ βq .

Proof. The genericity of the fold bifurcation is ensured by the fact that at the saddle-nodes
(folds) the second derivative ofhq equals±q3αqAp/q +O(αq+1).

As detDFqα,ω(pα,ω) = βq , the trace of the sink,t , ranges below 1+ βq . Let λ2 be the
eigenvalue of the sink along the curve andλ1 the one transversal to it. For the boundary
of the domain ofr-normally hyperbolic invariant circles, we must have|λ1| = |λ2|r ,
λ1λ2 = βq . Henceλ2 = |β|q/(r+1). Let δ̄ = α−q(δ + c1(δ)α

2 + · · · + c[q/2](δ)α
2[q/2]).

Let qξ ∈ [π/2, 3π/2) be the approximate location of the sink (up to O(α)). Then we have
qδ̄ + qAp/q sinqξ = O(α) andλ2 = 1+ q2Ap/qα

q cosqξ + O(αq+1) = |β|q/(r+1). Hence,
we obtain for6tr , with tr = |β|q/(r+1) + sign(β)|β|rq/(r+1), the expression

δ̄2+
(

1− |β|q/(r+1)

q2αq

)2

= A2
p/q +O(α).

This curve is analytic because of the non-degeneracy and because it is obtained as a solution
of the analytic system

F
q

α,ω,β(x, y) = (x, y), trDFqα,ω,β(x, y) = t.
Figure 8 illustrates the behaviour of the6tr curves, in the(δ̄, α) parameters, when
changingr for fixed values ofβ and q. Along 6tr the minimum value ofα is given
by αqmin = (1− |β|q/(r+1))/(q2Ap/q) andαqmin ↓ 0 if r ↑ ∞. This completes the proof of
(2)–(4). �

Remarks.
(i) The assumption in proposition 2.10, for small values ofα, relies on conjecture 2.8.

We shall show that the hypothesisA also plays a role in this. For the caseβ = 0 (the
Arnold family) it is generally only known thatI 0

p/q = {(ω, α) ∈ R2 : γ1(α) 6 ω 6 γ2(α)},
for continuous functionsγ1 andγ2 with γ1(0) = γ2(0) = 2πp/q. However, these functions
are analytic for|α| small. See Herman [26] for the case|α| < 1 and Boyland [8] for the
general non-invertible case. Moreover, by proposition 2.2, since the Arnold family satisfies
the hypothesisA, the setI 0

p/q has non-empty interior. The hypothesisA, for small values
of α, is equivalent to either thatAp/q > 0 or that some coefficient ofαm sin(nqξ), n > 1,
m > nq, is non-zero. Hence, conjecture 2.8 implies that the hypothesisA is true ‘at the
first opportunity’, when just considering the terms inαq .
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Figure 8. Some curves6r in the coordinates(δ̄, α).

(ii) In view of the dynamics of the Arnold familyfα,ω inside the tongues, the
following is known (again see [8]). For any given value ofp/q ∈ [0, 1], there exist
two smooth curvesσ1, σ2 : [1,∞) → R such that the following holds. (a) Forα > 1,
γ1(α) < σ1(α) < σ2(α) < γ2(α) while (b) γ1(1) < σ1(1) = σ2(1) < γ2(1), moreover (c)
for ω ∈ (γ1(α), σ1(α)) ∪ (σ2(α), γ2(α)), α > 1, the Arnold familyfα,ω has an attracting
p/q-periodic point.

(iii) Next we consider the caseβ 6= 0. First, it is easy to check the assumption made
in proposition 2.10 for the first tongueIβ0 . For a general tongue, ifβ and α satisfy the
hypotheses of proposition 2.4 or 2.5, there exists a globally attracting invariant circleCα,ω,β .
Moreover, by proposition 2.6 it follows thatFα,ω,β restricted toCα,ω,β is conjugate to a
positive family, which is a perturbation of the Arnold family.

The results of propositions 2.7, 2.9 and 2.10 are a starting point of our numerical
continuation programme. As already stated, our main interest is how the structure of the
tongues develops as|α| increases and how bifurcations of the periodic points and their
invariant manifolds play a role in this.

2.5. On homoclinic bifurcations

The fattened Arnold family fits in a quite general perturbation programme for small values
of β, the unperturbed caseβ = 0 corresponding to the Arnold family of circle maps. In
this section we shall see how homoclinic phenomena for the 1D case translate to the 2D
case.
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2.5.1. Preliminaries. We explain this in a general setting. Given any one-parameter family
of 1D mapsfa, we define the two-parameter family of 2D diffeomorphismsFa,b by

Fa,b(x, y) := (fa(x)+ y, bga(x, y)).
It is easily verified that iffa is the logistic family andga(x, y) = x, then Fa,b is the
Hénon family. Presently our interest is in the case wherea = (α, ω) (meaning thata is a
parameter-vector with two components) and wherefa is the Arnold family of circle maps
given byfa(x) = x+ω+α sinx. If we introduceỹ = αy, we setga(x, ỹ) = ỹ+α−1 sinx
and b = β, in which case the corresponding familyFa,b is exactly our fattened Arnold
family.

Thus, here the interest is in small values of|b|. In the ‘unperturbed’ caseb = 0, the
2D family readsFa,0(x, y) := (fa(x) + y, 0). For geometric reasons, however, it is often
useful not actually to reduce to dimension 1. Compare the approach of Tatjer [57] studying
the H́enon map, and of Bosch [7] in a more general case. At the level of periodic points,
there is an obvious relationship betweenfa, Fa,0 andFa,b, for small |b|, but for the moment
we shall focus on the homoclinic phenomena.

So suppose thatf is a 1D map with a repelling fixed pointp. We say thatp has a
homoclinic tangency if there existsx and n such thatf ′(x) = 0 andf n(x) = p. This
situation can be seen as the limiting case of a homoclinic tangency for a one-parameter
family of dissipative 2D diffeomorphisms, as the dissipation tends to infinity, i.e. asb→ 0
(see e.g. Tatjer [57]).

Under suitable assumptions the following result holds, see Holmes-Whitley [30]. If for
a = a0 the mapfa has a homoclinic tangency of some saddle point, then in the(a, b)-plane,
originating from the point(a0, 0), there exists a countable infinite number of homoclinic
bifurcation curvesγn, n ∈ N. We shall explain this now.

2.5.2. Homoclinic tangencies coming from 1D.We first explore the various effects of
tangencies in a 1D mapf = fa(x) on its ‘trivial’ 2D extensionFa,0(x, y) = (fa(x)+y, 0),
that is, when the parameterb is set to zero.

Although the idea of this is quite general, for simplicity we restrict ourselves to the case
of the Arnold familyFα,ω,0(x, y) = (x +ω+ α(y + sinx), 0), to be regarded as a 2D map.
In view of the relevance of the fold bifurcation, we restrict the parameters to the right-hand
boundary curve00

0,2, given by the equationα = ω. This leads to the one-parameter family

Fω,ω,0(x, y) := (x + ω(1+ y + sinx), 0).

Let pω = (xω, 0) be the fold fixed point ofF̄ω,ω,0, recalling from section 1 thatF is a lift
of F̄ . Also write xω,k := xω+2πk. We study this lift in order to keep track of the winding
of the unstable manifold around the annulus (cylinder).

For ε > 0, sufficiently small, the interval [xω, xω + ε] is entirely contained in the
unstable manifoldWu(xω) of the ‘ordinary’ Arnold mapfω,ω(x) = x + ω(1 + sinx).
Hereafter, we shall abbreviatẽfω := fω,ω. If t parametrizes this interval, then the iterates
gn,ω(t) = f̃ nω (t) fill up the whole of this manifoldWu(xω). The graph of the mapgn,ω gives
much information on the dynamics of̃fω.

The translation of all this for the 2D mapFω,ω,0 is immediate. Indeed, for the unstable
manifoldWu(pω) we haveWu(pω) = Wu(xω) × {0}, with the interval [xω, xω + ε] × {0}
contained in it. Moreover, forGn,ω(t) = Fnω,ω,0(t, 0) we haveGn,ω = (gn,ω, 0).

We continue by listing the various possibilities for the mapgn,ω, thereby following the
same scheme as in section 4.3 below, indicating the parameter values in the corresponding
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Figure 9. The map g20,ω for several values ofω. The horizontal lines are given by
x = 3π/2+2kπ , k = 1, 2, 3. (a) Fold cycle:g20,0.7, (b) cubic critical cycle:g20,1, (c) quadratic
critical cycles:g20,1.2, (d) fold homoclinic tangency:g20,1.380 050 14, (e) quadratic critical cycles:
g20,1.4 and (f ) quadratic critical cycles:g20,1.6.

plots, as displayed in figure 9. The whole scenario, in the transfer for 0< |β| � 1, certainly
promises a complicated geometric structure of the unstable manifold!

(1) Fold cycle. By definition, for all the pointst ∈ (xω, xω + ε], one hasgn,ω(t) ↑ xω,1
as n → ∞. As a consequencexω,0 < gn,ω(t) < xω,1 for all n and all t ∈ (xω, xω + ε].
Moreover, since the cycle is non-critical, we haveg′n,ω(t) 6= 0 for all n and all t ∈
(xω, xω + ε]. In particular this implies that the map̃fω is invertible, and, thererefore,
this situation is only possible for|ω| < 1.
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(2) Quadratic critical cycle. The strong stable foliationF ss(pω) intersects the liney = 0
transversally. In order to have quadratic tangency ofWu(pω) with F ss(pω) it is necessary
to have some pointt0 and somen ∈ N such thatg′n,ω(t0) = 0 andg′′n,ω(t0) 6= 0. Furthermore,
we require thatgn,ω(t0)→ xω,k, for somek, asn→∞. Since here we are not in the case
of a fold homoclinic bifurcation, see below, we also havegn,ω(t0) 6= xω,k. We call this
situation ak-quadratic critical cycle. Its occurrence necessarily requires|ω| > 1.

(3) Cubic critical cycle. This case is much like the previous one. Indeed, now
g′n,ω(t0) = g′′n,ω(t0) = 0, while g′′′n,ω(t0) 6= 0. Observe that this can only occur for|ω| = 1.

(4) Fold homoclinic bifurcation. In order to have a quadratic tangency withWss(pω),
a point t0 is needed and somek > 0, satisfyinggn,ω(t0) = xω,k, while g′n,ω(t0) = 0 and
g′′n,ω(t0) 6= 0. We call this situation a homoclinic bifurcation of typek.

In figure 9 we show the graph of the mapgn,ω for several, increasing values ofω.
Moreover, in each case the corresponding type of homoclinic behaviour is indicated. For the
domain of definition ofgn,ω we took a large intervalJ = [3π/2, 33π/20], with xω = 3π/2
as its left endpoint. In figure 9(f ) one sees that there are pointsxk that, by iteration under
f̃ω, accumulate at the fixed pointsxω,k = 3π/2+ 2kπ for k = 1, 2, 3.

What does this mean for the invariant manifolds ofpω? As we have seen before, for
0< ω < 1 the mapf̃ω has a fold cycle, and forω = 1 a cubic critical cycle. As is suggested
by figure 9(d), there exists a valueω1 ≈ 1.380 050 14 such that̃fω1 has a fold homoclinic
tangency. Moreover, ifω > ω1, then for anyk > 0 the mapf̃ω has ak-quadratic critical
cycle.

2.5.3. Primary homo- and heteroclinic tangencies in 1D.For the sake of completeness and
for later use we look in greater detail at some other facts concerning homoclinic tangencies
for the Arnold family of circle maps. Given the value of the parameters(α, ω), to have a
homoclinic tangency a pointxc should exist, such that:

(1) f ′α,ω(xc) = 0;
(2) fα,ω(xc) is a fixed point whilexc is not fixed;
(3) fα,ω(xc) is a repellor or a fold fixed point.
Using the explicit expression forfα,ω, the first two conditions lead to the following

parametric representation of the(α, ω) couple. Let t be a real parameter ranging over
R \ {2πk, k ∈ Z}. Let γ (t) be defined as

γ (t) := t − sint

1− cost
. (2)

Then one has

α(t) = (1+ γ 2)1/2, ω(t) = t − γ (t). (3)

Note that the excluded set in the range oft corresponds to unbounded values of the
parameters (except for the trivial caset = 0, α = 1, ω = 0). Different t-intervals of
the form (2kπ, 2(k + 1)π) correspond to different fixed points. The values oft for which
one has a homoclinic tangency to a fold fixed point are obtained by setting|ω| = α. This
gives for t the very simple conditiont = 2 arctant .

Figure 10 shows the values of(α, ω) obtained by using (2) and (3). Note that not all
of these values satisfy the third condition above. Ifk > 0 in the range(2kπ, 2(k + 1)π)
the valuetk leads to a homoclinic tangency of a fold fixed point. Fort ∈ (tk, 2(k + 1)π)
one has a homoclinic tangency of a saddle, while fort ∈ (2kπ, tk) a heteroclinic tangency
occurs, since a branch of the unstable manifold of the saddle is tangent to the strong stable
manifold of the node. Different values ofk produce unstable manifolds which perform a
different number of windings before tangency. It is similarly true for negative values ofk.
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Figure 10. Curves of primary homo- and heteroclinic tangency in the (ω, α) plane for the
Arnold circle map.

This whole discussion refers to ‘primary’ tangencies, in the sense that the image of the
critical point xc of fα,ω is a fixed point.

Hereafter, we shall confine our attention to the first component of the curve displayed
in figure 10, that is, we restrictt to the interval(−2π, 2π). For t = 0 one obtains the point
α = 1, ω = 0. The values corresponding tot ∈ (−2π,−t0) will be denoted asT 1,0

0 . Those
for t ∈ (t0, 2π) will be denoted asT 2,0

0 . Finally, for t ∈ (−t0, t0), excluding the degenerate
caset = 0, we shall use the notation̄T0.

In figure 11 we depict the curves00
0,i andT i,00 . The broken curvēT0 is the continuation

of the curvesT i,00 when the fixed point is attracting. Moreover, we have drawn the curve
C0 of values of the parameters for which the unstable invariant manifold of the repellor has
a cubic tangency with the strong stable foliation.

The idea behind this is that, when transferring from the ‘trivial’ 2D situation to the
‘perturbed’ case with|β| small, we remain on a fold line throughout.

To this end we have to (re-)introduce the parameterβ in our considerations, so obtaining
maps which can be denoted byGn,ω,β . Several remarks are now in order. First, this map
is differentiable with respect to the parameters. Second, e.g. see [39], there exists a strong
stable foliationF ss(pω,β) with leaves that are at leastC1. We note that we do not need
more differentiability in order to define quadratic and cubic tangency, with respect to the
foliation, at least in the topological sense. Third, bothF ss(pω,β) and the strong stable
invariant manifoldWss(pω,β) depend continuously onβ in the C1 topology. The latter
statement follows from Perron’s existence proof (cf [44]).
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Figure 11. Homoclinic bifurcation curves inI0
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3. Scenarios to complicated dynamics

We discuss various theoretical mechanisms by which the dynamics gets more complicated
when the parameterα becomes larger. At first we are concerned with the destruction of the
invariant circle. For related numerical studies, see Aronsonet al [3], Feigenbaumet al [20]
and Ostlundet al [43] (also cf Broeret al [10]). The second subject deals with the onset
of chaos. (For bibliographical references see below.) We also note that all the possibilities
sketched in this section occur in our example of the fattened Arnold family.

3.1. Loss of smoothness and destruction of invariant circles

In view of the destruction of the invariant circle, several theoretical scenarios are possible.
One scenario involves the transition, on the circle, from a node to a focus. At this moment
the circle only persists as a continuous curve. Briefly before the focus comes into existence,
the eigenvalues of the node approach each other, until they coincide at the moment of
transition. Let us discuss the differentiability of the invariant circle at the node. Generically
this order is given by

log |λ|/ log |µ|,
whereλ andµ denote the minimum and maximum eigenvalues (in absolute values) at the
node. An exception occurs when the quotient is an integer, sayn. The resonance between
the eigenvalues gives rise to logarithmic terms in the local equation of the invariant circle,
implying that this curve is only(n − ε)-times differentiable for any positive value ofε.
Hence, variation of a parameter will induce a gradual loss of differentiability.

After creation of the focus, the invariant circle is just continuous (note that the length is
finite). In this form it can persist until a period-doubling bifurcation occurs (then the length
would be infinite). However, in principle, up to the value of the parameter for which the
flip occurs (with this value include) it can be homeomorphic toS1. Before that it could
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Figure 12. Typical transition inC of the eigenvalues at an attracting point in the orientation-
preserving (left) and reversing (right) cases. The transition is from the fold to the flip, following
the arrows.

already be destroyed by heteroclinic tangencies. Figure 12 displays the transition from fold
to flip regarding the eigenvalues in the complex plane. The orientation-reversing case is
simpler, since then the eigenvalues are always real.

Another possible scenario involves the occurrence of a cubic tangency between an
unstable manifold with the strong stable foliation of a node or fold (saddle node), again
yielding an invariant circle that is only continuous (see, e.g. figure 13(a), which refers to
the fattened Arnold family).

In this case, at the moment of bifurcation, there is a sudden loss of differentiability, from
Cr to C0. It may even occur that, if the invariant circle consists of two branches of periodic
saddles, both of these enter the node from the same side. Now we refer to figures 13(c)
and (d). The reader can easily imagine intermediate cases. For instance consider figure 13,
in which there is an occurrence of transversal intersections of the unstable manifold of the
saddle and the strong stable manifold of the node (between (b) and (c) above), quadratic
tangencies with the strong stable foliation of the node (between (c) and (d) above) or
without any tangency with the mentioned foliation (between (d) and (e)). After such a
cubic tangency, a homoclinic tangency may occur. In that case, the circle, which up to then
persisted only as a continuous curve, is destroyed.

Depending on the region of the parameters these scenarios all seem to show up in this
problem of the fattened Arnold family, as can be seen from figures 13(e) and (f ), also see
section 5.3. Similar situations are found in the caseβ < 0 as displayed in figure 14. In
figures 15 and 16 similar pictures are given for the fold cases.

Another important point is what happens after thelast homoclinic tangency. This
behaviour is displayed in figure 15(e), for the fold case. In this problem such a tangency
only occurs for positiveβ. Indeed, after the tangency the whole scenario is in some sense
reversed. We mean that the unstable manifold of the saddle can, in turn, have a cubic
tangency to the stable foliation of the same saddle. In that case a smooth invariant circle
may be born (see the passage in figure 17 from the case (c) to (d)). The difference with the
above scenario is that the rotation number of this curve changes with the parameter, while
in the earlier case it had a fixed rational value. This curve can again be destroyed in various
ways. Between thefirst andlast homoclinic tangencies several interesting phenomena occur,
with creation and destruction of sinks and the subsequent accumulation of ‘secondary’ fold
curves. Also see the end of sections 4.3 and 5.3.2.

From proposition 2.7 and the previous considerations, we expect that the subset of the
(α, ω)-plane, where the circleCα,ω,β is of classCr , but not of classCr+1, has a complicated
geometry. This also holds for the boundary of the total parameter domain of invariant circles.

A matter which is not quite understood is how the quasiperiodic circles disappear into
Denjoy or Aubry–Mather sets. It is suspected that someobstruction phenomenonas in the
conservative case (see [42]) plays an important role.
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Figure 13. Some configuration of the invariant manifolds of a saddle for values of the parameters
near a fold bifurcation. Caseβ > 0. (a) Left cubic tangency toF ss , (b) left quadratic tangency
to Wss , (c) right quadratic tangency toWss , (d) right cubic tangency toF ss , (e) left quadratic
tangency toWs and (f ) cubic tangency toWs .

3.2. Birth and death of chaos

Consider again the above scenarios by which the invariant circle loses differentiability. We
claim that in both cases strange attractors (and chaos) can be brought about.

In the first scenario a node turns into a focus. After this the eigenvalues can go to the
negative half-plane, where one of them can ‘cause’ a flip bifurcation (see figure 12). After
this bifurcation the invariant circle, should have ‘infinite length’ and, furthermore, it is not
homeomorphic toS1. Then, repetition of a flip may lead to a cascade: a familiar method
for obtaining chaos. This is exactly the mechanism that creates the Hénon attractor (cf Siḿo
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Figure 14. Some configurations of the invariant manifolds of a saddle for values of the
parameters near a fold bifurcation. Caseβ < 0. (a) Cubic tangency toF ss , (b) quadratic
tangency toWss , (c) quadratic tangency toWs and (d) cubic tangency toWs .

[50], Benedicks and Carleson [5], Palis and Takens [45], Mora and Viana [36] and Tatjer
[57, 56]).

In the second scenario, involving the behaviour of the unstable manifold of the saddle
and tangencies to stable manifolds or foliations, different kinds of attractors can occur. After
a quadratic homoclinic tangency related to the saddle (that, for definiteness, we assume
takes place to the left of the stable manifold), if one has transversality, a small piece of the
unstable manifold goes to the right of the stable manifold. The situation is similar to the
Hénon case. Theoretically one can expect creation of periodic orbits and then again the flip
cascade and a usual road to chaos (see figures 17(a) and (b)). But the strange attractors
created in this way should be named ‘small’ attractors. Suppose, however, that the ‘last
homoclinic tangency’ occurs, i.e. that the unstable manifold completely goes to the right of
the stable manifold of the saddle (or the fold), two quadratic tangencies occur with the stable
foliation, see figure 17(b). This can again give rise to periodic orbits, but also to ‘large’
strange attractors. There is no way to avoid the ‘folds’ of the unstable manifold, and if this
one accumulates to some invariant set, this set will inherit a similar ‘folding’. It is only after
a possible cubic tangency to the stable foliation when one can recover a smooth invariant
curve (see figure 17(d)). Both types of phenomena occur inside an Arnold tongue. Another
possible situation appears when one has quadratic tangencies to the strong stable foliation
in the saddle-node case (to the left of the stable manifold) and a perturbation destroys the
periodic orbit. Then again ‘large’ attractors may occur, but the parameters are outside the
Arnold tongue (cf D́ıazet al [19], Viana [60]). An illustration of this last situation is shown
in figure 4, section 1.
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Figure 15. Several configurations of the invariant manifolds of a saddle-node fixed point. Case
β > 0. (a) Fold cycle, (b) quadratic critical cycle, (c) cubic critical cycle, (d) fold homoclinic
tangency and (e) fold homoclinic tangency from outside.

There is a simple way to see why in our case ‘small’ strange attractors do occur in some
extreme situation. Indeed, we carry out the following change of variables and parameters
on the mapFα,ω,β :

x = 1

ω
x̄ + 3

2
π, y = 1

ω2
ȳ + β

β − 1
, α = ω(1− β)+ γ

ω
,

where we transform(x, y) into (x̄, ȳ) and(α, β) into (γ, β). The new map reads(
x̄

ȳ

)
7→
(
x̄ + ȳ(1− β)+ (1− cos(x̄/ω))ω2(1− β)+ γ (ȳ/ω2 − cos(x̄/ω)+ β/(β − 1))

β(ȳ + (1− cos(x̄/ω))ω2)

)
.
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Figure 16. Several configurations of the invariant manifolds of a saddle-node fixed point.
Caseβ < 0. (a) Fold cycle, (b) quadratic critical cycle, (c) cubic critical cycle and (d) fold
homoclinic tangency.

It is easy to see that forω→∞ this map tends to(
x̄

ȳ

)
7→
(
x̄ + ȳ(1− β)+ 1

2(1− β)x̄2− γ ( β

1−β + 1)

β(ȳ + 1
2 x̄

2)

)
.

So, the map under study can also be related to the Hénon map in a limit case. Then, using
the results of Benedicks and Carleson [5] and Mora and Viana [36], we obtain the following.

Proposition 3.1. There existβ0 > 0 andω0 > 0 such that ifβ andω satisfy|β| < β0 and
|ω| > ω0, then there is a subsetA ⊂ R of positive measure such that, for allα ∈ A the map
Fα,ω,β has a strange attractor. Moreover, ifα ∈ A thenα = O(ω) and |A| = O(1/ω).

Remark. Note that the ‘small’ strange attractors as found in [45] occur in a different
parameter domain.

3.3. On genericity

At this point it is appropriate to add some remarks on genericity. When dealing with
a concrete example, one can always ask whether it has a given generic property or not.
As an example consider the Kupka–Smale property, requiring that all periodic points are
hyperbolic, while their stable and unstable manifolds meet only transversally. TheCr -theory
(r > 1) is reviewed in Palis and de Melo [44]. For a real analytic analogue see Broer and
Tangerman [13].
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Figure 17. Several configurations of the unstable manifold of a saddle fixed point with respect
to the stable manifold. Caseβ > 0. (The caseβ < 0 is not given.) (a) Just after inner (first)
tangency, (b) just after external or outer (last) tangency, (c) cubic external tangency and (d) after
the cubic external tangency.

It may be clear that for any given system such a property is almost impossible to verify.
A similar situation to that which we met when considering the generic propertyA for circle
maps. In general, the problem is that an infinitude of checks has to be made. However,
note that in both of the above properties, any reasonable, finite amount of such checks in
principle can be made with the help of a computer (cf appendix B).

In this predicament our approach is simply to assume ‘genericity’, or rather ‘persistence’,
of the example in some wide sense, and to interpret the numeric evidence from this. Below,
in some cases symbolic and numeric checks for such assumptions are made.

In view of the generic phenomena mentioned in this paper, in particular bifurcations and
scenarios for transition to chaos, we repeat that all of these seem to occur in the fattened
Arnold family under consideration.

We recall that our exampleFα,ω,β , for α = β = 0, boils down to the family of rigid
rotationsx 7→ x+ω (cf the original Arnold family). This degeneracy even has codimension
∞. Nevertheless, as we saw above, the property that quasiperiodic dynamics occurs with
positive measure in the parameter space, is persistent. Another special feature of our example
is thaty only occurs in a linear way. At the moment, beyond simplifying the normal-form
computations, are not clear to us the consequences of this fact.

We close this section by listing a few other properties that play a role in this respect.
(1) Consider the normally hyperbolic invariant circleCα,ω,β as before. Genericallyr-

normal hyperbolicity implies that the circle only is of classCr , but in exceptional cases the
circle may beC∞, or even analytic. These exceptions are again degenerate of codimension
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∞. Also in this case certain numerical checks can be made, at least partially, see below.
(2) Our example depends on the parametersα, ω andβ. As said earlier, we mostly keep

β fixed, unfolding with the pair(α, ω). Apart from the degeneracies occurring atα = 0, see
above, one expects that our map is ‘Kupka–Smale as a family’. Among other things this
means that only generic codimension 2 bifurcations occur. In section 4 we shall explore
various theoretical possibilities of this.

4. A theoretical survey of bifurcations

In this section we briefly review some generic bifurcation theory as far as relevant for
our purposes, namely for interpreting the numerical output concerning the fattened Arnold
family. We consider elements from the local theory and from the global theory of homoclinic
bifurcations.

4.1. Local bifurcations

We start with the bifurcations of periodic points in 2D maps, looking for codimension 1 and
2 phenomena, where a restriction is given by the dissipation. This leaves us with the fold,
the flip, the cusp and the codimension two flip, while, for example, Hopf bifurcations are
excluded. Particularly various semiglobal scenarios near the cusp will have our attention.
For simplicity, all considerations will be held only for the case of fixed points.

So let fa,b : M → M be a general two-parameter family of diffeomorphisms of a
surfaceM. Assume that for(a, b) = (a0, b0) the map has a fixed pointp0 ∈ M. Since our
interests are local, we may assume thatM = R2, for simplicity putting(a0, b0) = 0 = p0.
Let λ andµ be the eigenvalues ofDf0(0). By dissipation at least one of the eigenvalues is
inside the complex unit disk. Hereafter we may assume that|λ| < 1, non-hyperbolicity of
the fixed point then meaning that|µ| = 1, and hence,µ = 1 or µ = −1.

4.1.1. The cases of codimension not exceeding 2.First we consider the generic codimension
1 bifurcations. The corresponding cases are the well known fold(µ = 1) and flip(µ = −1).
For a description of fold and flip, see, for example, Guckenheimer and Holmes [25], Devaney
[18] or Newhouseet al [39]. We only recall that there are two possible classes of flip
bifurcations: (a) subcritical, where one node of period 1 becomes a saddle and there appear
two nodes of double period, and (b) supercritical where one saddle of period 1 becomes a
node and there appear two saddles of period 2. Explicit necessary and sufficient conditions
for their occurrence in this 2D case can be found in Tatjer [57] and Carcassès et al [16].
We recall that in the 2D parameter space these cases correspond to smooth curves, while
the bifurcations occur upon transversal crossing of these.

Next we turn to the less well known, generic codimension 2 cases. These bifurcations
occur in isolated points of the parameter plane. The only possibilities now are the so-called
cusp (µ = 1) and the codimension 2 flip(µ = −1). Here dissipation excludes, among
other things, the Bogdanov–Takens bifurcation.

We shall now give a brief outline of the two cases. For details, also concerning the
explicit conditions for occurrence in 2D maps, we refer to [57, 16].

(1) The cusp bifurcation. As a representative example we considerfa,b(x, y) =
(λx, b + (1+ a)y ± y3), for someλ ∈ R, 0 < |λ| < 1, either positive or negative. The
bifurcation diagram is given in figure 18. Here we exhibit the fixed points and their invariant
manifolds, where arrows indicate the sense of the dynamics: more arrows signifying stronger
attraction, namely repulsion.
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III

C

Figure 18. Bifurcation diagram of the cusp. More arrows indicate a stronger eigenvalue. The
horizontal (vertical) axis corresponds to variablea (b). The cusp is at the origin and C denotes
the saddle-node locus.
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Figure 19. Bifurcation diagram of the codimension 2 flip. The pointp0 is fixed, whereasp1,
p2, p3, p4 are 2-periodic:fa,b(p3) = p4 andfa,b(p1) = p2. More arrows indicate a stronger
eigenvalue. Thea andb axes are as in the previous figure. The codimension 2 flip is located
at the origin.

(2) The codimension-2 flip bifurcation. Here a representative example is given by
fa,b(x, y) = (λx, (1+ a)y + by3 ± y5). For a bifurcation diagram, see figure 19. Upon
crossing of the curveC1 into region II, the 2-periodic orbits disappear by a fold bifurcation
of period 2. Therefore in region II only the sinkp0 remains. The crossing from region
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I into region III over the curveC2 gives a collapse ofp0, p1 andp2 into the fixed point
saddlep0. This happens in a flip bifurcation of fixed points.

Remark. The equations for the periodic point in the product of phase space and parameter
space, with coordinates(x, y, a, b), determine a submanifold of codimension 2. In Carcassès
et al [16, 17] the geometry of this submanifold is shown near a cusp and a codimension 2 flip.

4.1.2. Organization of the parameter plane near a cusp.One natural question arising from
the previous section is as follows. How is the organization of the bifurcation curves near a
cusp? Below we shall see how to obtain several possibilities for this.

Hereafter, we assume that we have a two-parameter family of smooth mapsfa,b : V ⊂
Rk −→ Rk, wherek = 1 or k = 2, andV is an open set, where(a, b) ∈ U ⊂ R2 also
open. First, we need to introduce the concept of generalized eigenvalue and of the level
sets associated to such an eigenvalue.

Definition 4.1. Suppose thatS ⊂ U × V is a regular surface, such that for(a, b, x) ∈ S,
fa,b(x) = x holds, wherex ∈ Rk. Givenλ ∈ R, the level set ofλ with respect the surface
S is:

Lλ(f, S) = {(a, b, x) ∈ S|3(a, b, x) = λ},
where

3(a, b, x) =


trDfa,b(x)

detDfa,b(x)+ 1
for k = 2

f ′a,b(x) for k = 1.

3(a, b, x) is called the generalized eigenvalue offa,b at x.

If (a, b, x) ∈ L±1(f, S), x ∈ R or x ∈ R2, thenx is a fixed point offa,b with one eigenvalue
equal to±1. Moreover, ifk = 1 the generalized eigenvalue is exactly the derivative of the
map in this fixed point.

Using this concept there is a simple way of building various examples of configurations
of bifurcation curves near a cusp. Forn = 2 or 3, consider 1D families of(n+ 1)-degree
polynomial maps, having a codimensionn bifurcation of eigenvalue 1.

First, let us consider the following two two-parameter families of 1D cubic maps that
unfold the cusp bifurcation:

g±a,b(y) = (1+ a)y ± y3+ b.
We call the cusp bifurcation corresponding tog+a,b a cusp of saddle typeand the one
corresponding tog−a,b a cusp of spring type(these names are suggested by the patterns
of the bifurcation locus in the parameter plane). Conditions for the existence of such types
of cusps for a general 2D family of 1D or 2D maps having a cusp bifurcation were given
in [6] and [57].

For these examples one easily identifies the fixed-point surfaceS ⊂ R3, in the a, b, y
variables. Indeed, we obtain

S = {(a, b, y) ∈ R3 : b = −ay ∓ y3},
where the plus sign corresponds tog−a,b and the minus sign corresponds tog+a,b. So, in this
case, the level sets of (generalized) eigenvalueλ ∈ R are given by

Lλ(g
±, S) = {(a, b, y) ∈ S : 1+ a ± 3y2 = λ} = {(a±(y, λ), b±(y, λ), y), y ∈ R},

(a±(y, λ), b±(y, λ)) = (λ− 1∓ 3y2,±2y3+ (1− λ)y).
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Figure 20. The cusp of saddle type corresponding tog+a,b.

In figures 20 and 21, for several values ofλ, we depict the projection on the(a, b)-plane
of some of these level curves̄Lλ. In figure 21 there are two parameter points on the curve
L̄−1, indicating the occurrence of codimension 2 flip bifurcations.

For any family of maps having a cusp bifurcation, a similar level set can be identified
if |λ− 1| is small enough.

Next we define the following configurations of bifurcation curves near a cusp.

Definition 4.2. Let (fa,b)(a,b)∈U be as before, having a cusp bifurcation atx = x0 ∈ Rk
(k = 1 or 2) for (a, b) = (a0, b0). Suppose that the fixed-point surfaceS in the (a, b, x)-
space has(a0, b0, x0) as a regular point. We say thatfa,b displays asaddle area(respectively
a spring area) near (a, b) = (a0, b0) if there exists a connected neighbourhoodW of
(a0, b0, x0) in S such that:

(1) the cusp inx0 is of saddle type (resp. spring type).
(2) The set of fixed pointsW satisfies:

W = {(a, b, x) ∈ Rk+2 : (a, b, x) = (a(t, λ), b(t, λ), x(t, λ)), (t, λ) ∈ T },
whereT is an open and connected set inR2.

(3) There exist an open intervalI ⊂ R containing [−1, 1], such that for allλ ∈ I , the
level setLλ(f,W) of the generalized eigenvalueλ satisfies:

Lλ(f,W) = {(a, b, x) ∈ Rk+2|(a, b, x) = (a(t, λ), b(t, λ), x(t, λ)), t ∈ Tλ},
whereTλ = {t ∈ R|(t, λ) ∈ T }.

(4) Let π : W ⊂ Rk+2 −→ R2 be the natural projection on the two first components.
Thenπ(W) is an open neighbourhood of(a0, b0), andπ(W) = W1∪W2∪ L̄1(f,W), where
L̄1(f,W) = π(L1(f,W)), such that:

(a)W1 andW2 are open and connected, andW1, W2 and L̄1(f,W) are disjoint,
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Figure 21. The cusp of spring type corresponding tog−a,b.

(b) if (a, b) ∈ L̄1(f,W) there exists exactly one(t, λ) ∈ T such thatλ 6= 1 and
(a, b) = (a(t, λ), b(t, λ)),

(c) if (a, b) ∈ W1 there exist exactly three values(ti , λi) ∈ T , i = 1, 2, 3, such that
(a, b) = (a(ti , λi), b(ti , λi))

(d) if (a, b) ∈ W2 there exists exactly one value(t, λ) ∈ T such that(a, b) =
(a(t, λ), b(t, λ))

(e) for all λ ∈ I such thatλ > 1 (resp.λ < 1) there are exactly two valuest1, t2 ∈ Tλ
such that(a(t1, λ), b(t1, λ)) = (a(t2, λ), b(t2, λ)).

It turns out that the global organization around a cusp point can be different from the
saddleandspring areas just defined. To see this, we consider the following three-parameter
family of quartic 1D maps

ga,b,c(x) = (1+ a)x + bx2+ x4+ c,
which is a local model of a codimension 3 cusp. Following the previous notation, the
hypersurface of fixed points is given by

S = {(a, b, c, y) ∈ R4|c = −ay − by2− y4},
while the level sets of the eigenvalueλ are

Lλ = {(a, b, c, y) ∈ R4|a = −2by − 4y3+ λ− 1, c = (1− λ)y + by2+ 3y4}.
Then the projection of this set on the(a, b, c)-space is

Sλ = {(a, b, c) ∈ R3|a = −2by − 4y3+ λ− 1, c = (1− λ)y + by2+ 3y4, y ∈ R}.
In figures 22 and 23 we depicted the surfacesS1 corresponding to fold, andS−1 to flip
bifurcation. In the fold surfaceS1, we have two important curves, namely,γ : R −→ R3

corresponding to codimension 2 cusps of period 1, such that

γ (s) = (a(s), b(s), c(s)) = (8s3,−6s2,−3s4),
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Figure 23. The S−1 surface of flip bifurcation for the quartic map.

and the self-intersection curve,γ̄ , defined by:

γ̄ (s) = (0,−2s2, s4).

In the flip surface there is also the curve of self-intersections,ϕ̄, defined by

ϕ̄(s) =
(
−8s6,−6s4− 1

2s2
,−3s8+ 5

2
s2− 2

s2
+ 1

16s4

)
,
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while the curve

(a, b, c, y) = (−8s6+ 4s3− 2,−6s4+ 2s,−3s8+ 2s5− 2s2,−s2)

corresponds to points with a codimension 2 flip bifurcation. Moreover, there are two
points with codimension 3 flip bifurcations, namely,(a, b, c) = (−2, 0, 0), for y = 0, and
(a, b, c) = (− 49

32, (
7
16)(

3
2)

1/3, ( 9
1024)(

3
2)

2/3) for the pointy = −32/3/28/3.
In order to create other configurations of bifurcation curves near a codimension 2 cusp,

we only have to consider two-parameter families likefu,v = ga(u,v),b(u,v),c(u,v), such that for
some(u0, v0), the mapfu0,v0 has a codimension 2 cusp. The simplest case occurs when the
mapsa, b andc are affine. Below, we need some of these configurations.

We do not know whether this procedure exhausts all possibilities, but it seems that it
does for the more ‘frequent’ ones. A heuristic argument for this runs as follows. It is well
known that, given any one-parameter family of 2D mapsfa having a dissipative saddle
with a quadratic homoclinic tangency, the family of iterates,f na , for n sufficiently large
and after a change of scale, behaves, near the tangency, as a one-parameter family of 1D
quadratic maps. The same is true for a two-parameter family with a cubic tangency: a high
iterate behaves like a cubic family (see Tatjer [58]). It is plausible that the same is true
when considering three parameters, a quartic tangency and a quartic family.

This would mean that, at least if the considered family is near a family having a
homoclinic tangency of order 2 or 3, the expectedly most frequent configurations of the
bifurcation curves of periodic points near a cusp, are those obtained before using the cubic
and quartic families of maps. This may even be true if the family is near, but not too near,
a family having a quartic homoclinic tangency.

We now proceed by giving two more definitions, that may involve many subcases.

Definition 4.3. Let (fa,b)(a,b)∈U be as before, having a cusp bifurcation atx = x0 ∈ Rk
(k = 1 or 2) at(a0, b0). Suppose that the fixed-point surfaceS in the (a, b, x)-space has
(a0, b0, x0) ∈ S as a regular point.

(1) We say thatfa,b displays across-road areanear(a0, b0, x0) if:
(a) the cusp bifurcation inx0 is of spring type;
(b) there exist a connected neighbourhoodW of (a0, b0, x0) in S such that the map

3 : W ⊂ S −→ R has one and only one non-degenerate critical point of saddle type
(a1, b1, x1) ∈ W such that−1< 3(a1, b1, x1) < 1;

(c) there is only one cusp bifurcation(a0, b0, x0) in W .
(2) Suppose that there is another cusp bifurcation forfa1,b1 in x1 ∈ Rk. We say thatfa,b

displays adovetail areanear the two cusps if there exists an open setW in S such that:
(a) (ai, bi, xi) ∈ W for i = 0, 1;
(b) the projection of the level setL1(f,W) on the(a, b)-plane can be parametrized by a

differentiable mapγ : [−3, 3] −→ R2 such that it has points of self-intersection fort = −1
and t = 1. Furthermore, the two cusps occur fort = − 1

2 and t = 1
2;

(c) one cusp is of saddle type and the other is of spring type;
(d) the curveγ|[−1,1] is a Jordan curve such that the region bounded by it does not

contain any point of the curveγ .

Finally, we present some examples of the configurations described above. Here we use the
following notation for the bifurcation curves: foln indicates a fold of periodn, fln a flip
of period n, cn a cusp of periodn and fl

n
a codimension 2 flip of periodn. Moreover,

subscripts are used in order to distinguish different curves of the same type, and the broken
lines indicate level sets̄Lλ corresponding to various values ofλ.
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Figure 24. Cross-road area. The dotted curves correspond to level lines of3.

So, as before, letfa,b be a two-parameter family of diffeomorphisms having a cusp
bifurcation for (a, b) = (a0, b0). Then we have the following configurations of bifurcation
curves near the origin of the parameter plane.

(1) Cross-road area. In figure 24 the configuration is depicted for the modelx 7→
bx2 + x4 + c, where we consider the fixed-point casen = 1. The flip curves fln1, fln2
approach different fold curves in different regions of the(b, c)-plane.

(2) Spring area. In figure 25 we show the configuration for the model mapx 7→
−2x + bx2 + x4 + c. Again we tookn = 1. The curve fln1 loops aroundcn. On this curve
the points betweenfl

n

1 and fl
n

2 are supercritical flips, the remaining ones being subcritical.
At the codimension 2 flips, folds of double period are born.

(3) Saddle area. Figure 26 shows the configuration for the model mapx 7→ 2x+bx2+
x4 + c in the casen = 1. The reader may observe that in some part a cross-road area
structure shows up.

(4) Dovetail area. In figure 27 we can see that this family displays a spring area near
one cusp and a saddle area near the other. The model map isx 7→ (1+ a)x−3x2+ x4+ c,
while n = 1.

Most of the terminology has been introduced by Mira and co workers (see, e.g., Mira
[34])

In figure 28 we display some cases of relative positions of the fold and flip curves.
They are obtained by intersection of the surfaces displayed in figures 22 and 23 with some
suitable planes. From cases A–C the fold and flip curves have only one component, from
D–F they have two, and the remaining ones have three. Case A shows a dovetail area with
self-intersections of both the fold and flip curves. Case B is obtained by evolution of A,
and the fold curve contains two cusps associated to spring and saddle areas, respectively.
Case C shows no cusps but self-intersections. Cases D and E illustrate a transition from
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spring area to cross-road area. Case F is, in fact, a cross-road area example, but shortly
after a dovetail area meets a spring area. Cases G and H, with three components, have no
cusps and they illustrate a transition from no changes to a cross-road area situation. In case
I a saddle area, a spring area and a fold curve without cusp, appear simultaneously, which
evolve to a saddle area plus a cross-road area in case J. Case K displays a triple exchange
of the flip curves with respect to the fold ones. Finally, case L is similar to case J but with
four cusps in all, two of them associated to a small dovetail area.

4.2. Cascades of bifurcations

We close this section with a sketch of a cascade of bifurcations, associated to the cusp,
in particular a cross-road area. In figure 29 we display the corresponding organization of
the parameter plane by bifurcation curves, using the same convention as before. Figure 30
enlarges the rectangle A in figure 29. The behaviour of the bifurcation curves in the
rectangle B is similar. In these figures we observe that associated to the main cusp, cn

1,
two more cusps of period 2n appear (c2n1 in B and c2n2 in A). These, in turn, are centres of
cross-road areas of double period. This doubling repeats itself, giving cusps of period 4,
8, 16 etc, all these cusps being centres of cross-road areas. The model map used here is
x 7→ bx2+ x4+ c, and againn = 1.

Remarks.
(i) When following the broken line l in figure 29, we undergo an ordinary Feigenbaum

cascade of flips.
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(ii) The occurrence of cusp cascades in the Arnold family was studied by Bélair and
Glass [4].

(iii) The concept of generalized eigenvalue has been used before in Carcassès [15] (where
it is called reduced multiplier) to obtain information on the configuration of bifurcation
curves near a cusp.

(iv) In Carcass̀eset al [16] the concept of cross-road area is more restrictive than here
and corresponds to the example we have described above.

(v) The name dovetail area was first used in Miraet al [35]. There one considers,
moreover, other possibilities of dovetail areas, some of these with more cusps.

(vi) The dovetail area can appear when the two-parameter family is near a codimension
3 fold bifurcation (see section 5.1.1).

4.3. Homoclinic bifurcations related to saddles and folds

In this section we treat homoclinic phenomena, as far as relevant to us, both related to
saddle points and to fold points (saddle nodes). Apart from transverse homoclinic points
we also have to consider homoclinic tangencies. As before, we simply restrict ourselves to
the case of fixed points. Reference will be made to some figures (mainly figures 13–17)
from section 3. We recall that these illustrations are taken from the fattened Arnold family.
Hence, the plots are on a cylinder (one should identify the left- and right-hand sides) and
that the casesβ > 0 andβ < 0 are orientation preserving and reversing, respectively.

So we again consider a general two-parameter familyfa,b of 2D diffeomorphisms having
a fixed point,p0, for (a, b) = (0, 0). We distinguish between the following two cases.
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(1)p0 is a saddle point. Homoclinic dynamics then means thatWu(p0)∩Ws(p0) 6= {p0}.
Since the saddle is persistent, for parameter values(a, b) ≈ (0, 0) the mapfa,b has a nearby
saddle, saypa,b, together with its stable and unstable manifoldsWs(pa,b) andWu(pa,b). In
the corresponding figuresn0 denotes the companion node, created together with the saddle
at a fold bifurcation.

There are several possibilities for the generic behaviour ofWs(pa,b) andWu(pa,b).
First, they can intersect transversally. This case is well known and will not be discussed
here. In our two-parameter context there are two further generic cases to consider.

(a) Quadratic tangency ofWs(p0) andWu(p0). This is a codimension 1 phenomenon,
so generically taking place along a curve0 in the parameter plane. This case has also been
widely studied, e.g. see Newhouse [38], Palis and Takens [45], Tatjer and Simó [59], Mora
and Viana [36].

Among other things, it can be proven that, for any sufficiently largen, there exists an
n-periodic fold curve0n, where0n → 0 as n → ∞. Moreover, for suitable values of
(a, b) near0 there are infinitely many periodic attractors. Finally, for appropriate values of
(a, b) near0, strange attractors exist. According to Mora and Viana [36], the corresponding
set of parameter values has positive measure.

(b) Cubic tangency ofWs(p0) andWu(p0). This is a codimension 2 bifurcation and
therefore generically taking place only in isolated points of the parameter plane. In this
case, it has been shown that for anyn there exist parameter values for whichn-periodic
cusps and codimension 2 flips occur, where these parameter values tend to(a, b) = (0, 0)
asn→∞ (see Tatjer [58]).

Furthermore, we consider the position of the manifoldWu(p0) with respect to the stable
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Figure 28. Some configurations of fold (lines) and flip (dots) bifurcations curves obtained by
intersection of the corresponding surfaces by planes. See additional explanation in the text.

and strongly stable manifoldsWs(n0) andWss(n0) of the companion noden0 (think of the
saddle-node bifurcation). Codimension 1 bifurcations appear at the homoclinic quadratic
tangencies ofWu(p0) with some of the manifolds ofn0 and at the cubic tangencies of
Wu(p0) with the strong stable foliationF ss associated ton0 (see later). Figures 13 and 14
display some of these possibilities, both for theβ > 0 andβ < 0 cases. Some of these
situations can coexist, giving phenomena of higher codimension. For instance, an ‘external’
heteroclinic tangency betweenWu(p0) andWss(n0) (as in figure 13(c)) can coexist with an
‘internal’ homoclinic tangency betweenWu(p0) andWs(p0) (as in figure 13(e)), giving a
codimension 2 case.
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Figure 29. First steps of a cascade of cusp bifurcations.

(2) p0 is a fold point. First, we note that associated to this fold we have a weak
unstable invariant manifoldWu(p0), a strong stable invariant manifoldWss(p0) and an
invariant strong stable foliationF ss (cf Newhouseet al [39]). See figure 15, whereF ss
is represented by vertical lines. A weak (and non-unique) stable manifold,Ws(p0), also
appears. BothWu(p0) andWs(p0) are on the centre manifoldWc(p0) and both consist of
only one branch. In this case we have four possibilities, two of codimension 1 and two of
codimension 2.

(a) Fold cycle. This is a codimension 1 case. As we can guess from figure 15(a),
Wu(p0) is a smooth invariant circle. This case has been studied in [39].

(b) Quadratic critical cycle. This is again a codimension 1 case, occurring whenever
there are points inWu(p0) belonging to the basin of attraction ofp0, that have quadratic
tangency withF ss . It has been proved by Dı́az et al [19] that for values of the parameter
near(0, 0) there exist strange attractors, again for a parameter set of positive measure [36]
(see figure 15(b)).

(c) Cubic critical cycle. This case is like the previous one but now the tangency is
cubic. Therefore, it is a codimension 2 bifurcation (see figure 15(c)).

(d) Fold homoclinic tangency. This bifurcation occurs whenWu(p0) has a quadratic
tangency withWss . This is again a codimension 2 bifurcation (see figures 15(d) and (e)).
Note that, despite the length of the unstable branch of the fold is infinite, this branch is still
homeomorphic to a circle.

We note that the casesβ positive andβ negative are different as is shown in the figures.
In figure 15 we haveβ > 0 and in figure 16β < 0.

As far as we know, cases (c) and (d) have not been studied theoretically. In particular
one would like to know the structure of the codimension 1 and 2 bifurcations of periodic
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points near(a, b) = (0, 0).
When considering a one-parameter family having a fold point, the four possibilities are

found in the following order: fold cycle, cubic tangency toF ss , quadratic tangencies to
F ss and then a quadratic homoclinic tangency. After the quadratic homoclinic tangency,
generically, transversal homoclinic intersections appear. Later, another quadratic homoclinic
tangency can occur and then the homoclinic points disappear. This happens in our problem
for β positive when increasing the parameterω. We refer to these tangencies as inner and
outer. In the caseβ < 0 outer tangencies cannot appear, because the change of orientation
forces us to have homoclinic points in both branches ofWss(p0), forcingWu(p0) to have
points inWs(p0). Cubic homoclinic tangencies to the fold can also occur, but this is a
codimension 3 phenomenon (see the next section).

Remark. We give some additional explanation related to section 3.1. Assume that in the
case of figure 17(a) we take a small ‘vertical’ rectangle,R, to the right ofWs(p0) and
with left boundary rather close toWs(p0) (‘parallel’ to it). After, say,n iterates the image
of R intersectsR, giving rise to a horseshoe-like behaviour. In the horseshoe we find two
fixed points of the return map (n-periodic points of the initial mapf ). In our geometrical
situation one of these is a saddle and the other is a saddle with reflection. By moving
parameters we can go back to the ‘first’ homoclinic tangency and even before this occurs.
At some momentf n(R) has no intersection withR (say,f n(R) is confined to the left of
Ws(p0)).

Between these values of the parameters and those of the previously described horseshoe
a fold bifurcation occurs. Typically the saddle created at the fold bifurcation remains a
saddle all the time, while the node goes to a flip (see figure 12) and then to a saddle with
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reflection. In the(a, b) space there will be a line close to (and ‘after’) the line of first
homoclinic tangency for which ann-fold bifurcation is produced. TakingR closer and
closer toWs(p0) the value ofn increases, because the iterates spend more time close top0,
and a sequence of fold bifurcation curves, with increasing period, accumulates to the first
homoclinic tangency in the parameter space (to the ‘right’).

Similar to the case of the line of ‘last’ homoclinic tangency. Consider the situation
shown in figure 17(b). If R is close toWs(p0) it cannot intersect any of its iterates. By
moving R to the right a sufficiently large amount we may again have some horseshoe.
Hence a fold curve will be created. Then, by letting the parameters approach the line of
the last homoclinic tangency, the periods of the folds will increase, as before, and that
line will be accumulated, by a sequence of fold bifurcation curves (to the ‘right’ of it).
The behaviour just described appears in the case of the fattened Arnold family, and further
numerical evidence will be presented in section 5.3.2.

4.4. General remarks

We conclude this section on bifurcations by a few remarks.

4.4.1. Transversality. Transversal intersection of all stable and unstable manifolds of fixed
and periodic saddles is an open property. As observed before it may be hard to know (and
difficult to prove) in which cases our family of maps has this property and what can be said
about the set of parameter values where transversality does not hold.

A typical numerical computation of a homoclinic tangency starts at a fold point (saddle
node), after which the line of tangencies is obtained by a continuation method. As usual we
fix β. Along the continuation checks are made for extra degeneracies. The only extra cases
we detected correspond toβ negative and are geometrically related to cubic tangencies. At
these tangencies new lines of tangencial homoclinics are born, which can be followed as in
the previous case. The full tools to develop and implement this methodology are given in
[51].

4.4.2. The role of heteroclinic intersection.Heteroclinic intersection plays an important
role, since it couples dynamics arising from different saddles. Let us consider the case where
a saddle has a transversal homoclinic point. In that case the closure of the unstable invariant
manifold is a good candidate to be a strange attractor [50, 5]. Heteroclinic tangencies can
destroy such an attractor by ‘pulling out’ points. Indeed, it may well be called apotential
strange attractor.

Also a ‘coupling’ of two strange attractors may occur. Indeed, letS1 andS2 be two
different strange attractors, occurring as the closure of the unstable manifoldsW1

u and
W2

u. If the related stable manifolds,W1
s andW2

s intersectW2
u andW1

u, respectively, a
larger potential attractor will be born. In the process of changing parameters to obtain these
transversalities, periodic sinks will certainly appear and will destroy, locally in parameter
space, the strange attractors.

4.4.3. Preservation versus reversion of orientation.The original motivation for the study
of our family is its occurrence as a model of the return map of a near-the-identity map. Since
the initial map preserves orientation, so does the return map. However, in some cases, due
to the special geometry of the problem, the initial map can be seen as the composition of a
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near-the-identity map with a symmetry. In this case the return map is orientation reversing,
and should also be considered. This motivates our interest for the caseβ < 0. Main
differences with the caseβ > 0 are the non-existence of foci (see section 3.1), that, as said
before, alast homoclinic tangency never occurs (see, for instance, section 3.1), and the very
wild character of the ‘last’ invariant curves in the anticonservative case (see appendix C).
This is reflected in some attractors of the fattened Arnold family (see section 5.3.4).

5. Numerical study of the fattened Arnold family

In this section we return once more to the fattened Arnold familyF , given by (1):

F̄α,ω,β : S1× R → S1× R
(x, y) 7→ (x + ω + α(y + sinx)(mod 2π), β(y + sinx)).

As announced several times, we now perform perturbations corresponding to larger values
of the parameterα. Our results are partly conjectural and based on numerical computation
which are interpreted against the theoretical background of the previous sections. The results
mostly concern the bifurcation set in the(α, ω)-plane but also aspects of the corresponding
dynamics are shown. As before we mostly fix|β| < 1, but sometimes a codimension 3
phenomenon is observed, in which caseβ is taken into account as an extra parameter. Our
exposition chiefly restricts us to the main tongueIβ0 , but almost all our statements and
speculations directly translate to the other tongues.

We divide this section into four parts. The first part deals with bifurcations of periodic
points, mainly restricting us to one Arnold tongue. In this exploration we find all the
phenomena described in section 4.1, including strong evidence of infinite cascades of cusp
(cf section 4.2). Another aspect is the geometry of the tongue boundary. We shall see that
for β < 0 this boundary no longer needs to consist of two smooth curves. In section 5.2
homoclinic bifurcations are studied, again using the main tongueI

β

0 as a representative case.
Our special interest is with homoclinic bifurcations near the tongue boundary. It appears
that all the complexity of section 4.3 is met. The third part is concerned with global aspects
of the dynamics. As announced before, we study the accumulation of tongue boundaries on
certain curves of homoclinic tangency. We also consider the invariant circle, certain types
of strange attractors and the coexistence of attractors. Finally, in a conclusive section, we
present a sample of attractors, some bifurcation diagrams and the corresponding dynamical
scenarios, as observed numerically.

5.1. Local bifurcations

First we obtain the different structures of bifurcation curves, analysed in section 4. However,
there is one difference, namely that in the diagrams the role of the fold curves is played by the
boundary curves0βp/q,i , i = 1, 2, the ‘cusp’ then being the tongue tip(ω, α) = (2πp/q, 0).
We shall conclude that it is easy to detect many examples of saddle area, spring area and
cross-road area. Second the boundary of the tonguesI

β

p/q is studied further. We shall see

that this boundary is not always the union of the0βp/q,i , i = 1, 2. Finally an example is
given of (the beginning of a) cascade of cusp bifurcations (cf section 4.2).

5.1.1. Cusps inside one tongue.We found all three: the saddle, the cross-road and
the spring area associated to the fold curves0

β

p/q,i , i = 1, 2, but with the tongue tip
(ω, α) = (2πp/q, 0) replacing the cusp point.
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Figure 31. Saddle area inI0
1/3.

(1) Saddle area. We find this type of behaviour for allβ > 0, and also forβ < 0 not
too close to−1. Admittedly this does not exactly correspond to the definition of section 4,
since in theω-axis no cusp bifurcation takes place. Nevertheless, the pattern of bifurcation
curves is strikingly similar.

In this case we have only level sets of a generalized eigenvalue less than 1, which
means that there are at most two periodic points inside one tongue. However, by analogy
we also call this type of behaviour a saddle area. In figure 31 we show an example for
β = 0, p/q = 1

3, displaying bifurcation curves corresponding to periods 3 and 6 (cf the
above figure 26).

(2) Cross-road area. We have found this phenomenon only forβ < 0. Again, the
difference with its analogue in section 4 is that now there does not exist a fold curve of
periodq without cusps. We detected three different cases:

(a) without codimension 2 flips. In figure 32 we depict the bifurcation curves of period
4 (cf figure 24, above);

(b) with two codimension 2 flips in one of the flip curves of period 4, see figure 35.
We show the same curves as in case (a) and also fold curves of period 8 leaving from the
codimension 2 flips;

(c) with two codimension 2 flips in each flip bifurcation curve of period 4 (cf figure 36).
(3) Spring area. This is again similar to the case studied in section 4, with the same

difference as noted before. Moreover, in the case presented in figure 37, there are two
codimension 2 flips in each of the flip curves of period 4.

(4) Transition cross-road area–saddle area. The transition we find from cross-road
area to saddle area occurs through codimension 3 bifurcations (see figures 32–34). The
behaviour of the bifurcation curves is as follows. There exist two negative values ofβ, β1
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andβ0 < β1, where the following properties hold.
(a) Forβ < β0 there is a cross-road area with centre incq1 (cf figure 32).
(b) For β = β0 a ‘double’ cusp point appears on a fold line (this is the codimension

3 cusp bifurcation) and, then, the two cusp points go away from the fold line creating a
dovetail area. In our example this occurs between figures 32 and 33.

(c) For β ∈ (β0, β1) the dovetail area becomes apparent (see the magnification in
figure 33). The cusps in the dovetail are namedc

q

0 andcq2, and they are of saddle and spring
type, respectively. The other cusp,cq1, already present in figure 32 as the organizer of the
cross-road area, approachescq2.

(d) For β = β1 there is another codimension 3 fold bifurcation (different from the
previous one). It is produced by the coincidence of the two cuspsc

q

1 and cq2. In our
example this occurs between figures 33 and 34. The two fold curves that at the moment of
the bifurcation become tangent, go away from each other. This produces a global change
in the fold curve which connects with one of the curves of0

β

p/q,i , i = 1, 2, of the tongue

boundary for small values ofα. In this example, this happens for0β1/4,1, and then, instead

of going quickly to the left, as in figure 32, it continues as the previous left branch of fol4.
(e) Forβ > β1 there exist two saddle areas, one associated to the tongue boundary, as

in the item 1, and the other in a neighbourhood of the cusp that was denoted asc
q

0. This is
displayed in figure 34.

We note that in the process just described, one of the branches0
β

p/q,i has undergone a
strong modification. Moreover, it is possible to find a model of this type of transition using
the quartic model of the codimension 3 fold that we presented in section 3, taking planes
in the space of parametersa, b, c parallel to a planeb = αa + βc through(a, b, c) = 0.
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The values ofβ0 andβ1 in the example shown forp/q = 1
4 are−0.6176 and−0.6046,

approximately.
(5) Transition cross-road area–spring area. This transition is due to a transversal

intersection between the two flip curves of periodq.
Let β = β0 ≈ −0.888 638 3860 be the value for which this intersection occurs. In

figure 37 we show the bifurcation curves forβ < β0, and in figure 36 forβ > β0. In other
words, whenβ = β0 the generalized eigenvalue map as defined in section 3 has a critical
point of saddle type of critical value−1. Whenβ > β0 the corresponding critical point is
larger than−1 and smaller than 1, so there is a cross-road area. Whenβ < β0 the critical
value is less than−1 and therefore we have a spring area. We note that in this case there
are four codimension 2 flips. By further increasingβ we have a case like figure 35, where

fl
4
2 andfl

4
3 have collapsed and disappear.

As before we can obtain a similar behaviour for the quartic map cited before. For
example, we can take in the parameter spacea, b, c, the planesb = a + γ . Then if we
perturbγ from 1.5 we obtain the same situation of our example, by changing the parameter
β by γ andβ0 by 1.5

All examples presented here seem to be persistent. According to our numerical
simulations, the case 06 β < 1 is quite simple, since only the saddle area seems to
occur. The case−1 < β < 0, however, is a lot more complicated, while this complexity
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increases rapidly with decreasingβ. We are not sure whether in this case all tongues display
the three areas we have described.

5.1.2. The tongue boundary.In section 2 we studied the Arnold tonguesIβp/q for |β| < 1,

conjecturing that for sufficiently smallα0, the straight linesα = α0 intersectIβp/q in an

interval, with endpoints in the curves0βp/q,i , i = 1, 2. We shall see that for larger|α|, the
tongue boundary may be not so simple.

It seems that the boundary ofIβp/q is most complicated forβ < 0. Indeed, figure 34

already suggests that the curves0−0.58
1/4,i , i = 1, 2, are not the boundary ofI−0.58

1/4 . This
boundary seems even very complicated forβ near−1. In figure 38 some 4-periodic fold
curves are depicted, corresponding to the tongueI−0.99

1/4 . Beyond the curves0−0.99
1/4,i , i = 1, 2,

one observes several additional fold curves, each containing a cusp point close to0−0.99
1/4,i and

a ‘near cusp’ close to0−0.99
1/4,3−i . Here ‘near cusp’ indicates a point in the fold curve where

the cusp condition (some function equal to zero) is not satisfied, but the related function has
an extremum close to zero. The cusp point in a given curve is also close to the ‘near cusp’
point of the preceding one (going from bottom to top). See the magnifications in figure 39.

One complicating factor concerning the boundary ofIp/q , is related to codimension 3
bifurcations in the curves0βp/q,i , i = 1, 2, as described before (again see figure 33). The

behaviour of the mapFα,ω,β for values of the parameters inI−0.99
1/4 seems very complicated.
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As we will see in section 5.3, it is possible to obtain coexistence of a quasiperiodic attractor
and several attracting periodic orbits of period 4, and also coexistence of a ‘large’ strange
attractor and attracting periodic orbits. We note that at least for values of the parameters
(α, ω) in I−0.99

1/4 ∩ {(α, ω) : 06 α 6 1.2} there exists some attracting periodic orbit.

However, there are also many cases in which the curves0
β

p/q,i do seem to be the

boundary ofIβp/q . We expect this to be the case anyway for all 06 β < 1, and for all

|β| < 1 only in the special casesIβp andIβ1/2+p, for p ∈ Z.

5.1.3. Cascades of bifurcations.We have detected cascades of cusp bifurcations as
described in section 4. In figures 40 and 41 there is an example insideI 0.2

1/3, showing
bifurcation curves of periods 3, 6, 12, 24 and 48. It was conjectured by Tatjer [57], that in
any parameter region with cross-road areas, saddle areas or spring areas, subregions exist
with a cusp cascade. In particular, it seems that there is always a cusp cascade associated
to the saddle area. From all this we now conjecture that the corresponding behaviour is the
same as above for all tongues withβ > 0 and also forβ < 0 with |β| � 1.

5.2. Homoclinic bifurcations and cubic tangencies to the strong stable foliation

As we saw in the theoretical considerations of sections 2–4, the behaviour of the stable and
unstable manifolds is of importance for the global geometry of the Arnold tongues of our
family Fα,ω,β . As stated there, we first consider the simpler caseβ = 0, and present some
conjectures in the case 0< |β| 6 1, based on numerical simulations.

We now divide into two sections. First, the homoclinic bifurcations in the boundary
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of the tongueIβ0 are considered. When perturbing from the caseβ = 0, we conjecture all
homoclinic phenomena listed in section 4 to be persistent. As a remarkable fact, however,
we here announce that forβ > 0 a fold homoclinic bifurcation seems to occur, which is not
persistent for 0> β � −1. See conjecture 5.1, below, in what refers to the ‘last’ tangency.
In a second section we shall find two curves of homoclinic bifurcation inside the tongueI 0

0 ,
symmetric with respect toω = 0. These curves emanate from the boundaries00

0,i , probably
with a quadratic order of contact. We expect this phenomenon also to be persistent for
|β| � 1. Moreover, as said before, we found the main tongueI

β

0 quite representative for
the others.

Hereafter, we restrict ourselves toω > 0, the caseω < 0 being similar. The following
will be necessary throughout both sections.

The fold curves0β0,i , i = 1, 2 are given byα = ±(1− β)ω. As before, we have to
distinguish between̄F and its lift F . Indeed, we study the familyFω(1−β),ω,β , associated
to the right-hand tongue boundary. Letpω,β,k = (xω,β,k, yω,β,k), k ∈ Z be the fold fixed
points of this. It is easy to see thatxω,β,k = xω,β,0 + 2πk and yω,β,k = yω,β,0, all these
points being representatives of one fixed pointp̄ω,β of F̄ω(1−β),ω,β .

5.2.1. Homoclinic bifurcations and cubic tangencies to the strong stable foliation on the
tongue boundary. In the previous section we described the perturbation programme from
the caseβ = 0, i.e. from the unperturbed mapFω,ω,0(x, y) = (x+ω(1+sinx+y), 0) on the
tongue boundary00

0,2. Based on the results described in section 4 (see also appendix D) and
on our numerical computations (mainly figure 42), we now formulate for the case|β| 6 1
and the saddle-node fixed point,p̄ω,β .
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Conjecture 5.1. Figure 42 displays an accurate configuration of the global bifurcation
curves where the following properties hold.

(1) For parameter values(ω, β) inside the regionA no critical cycle exists, while the
curveω0 corresponds to the first or inner (cubic) tangency to the strong stable foliation.

(2) All the homoclinic bifurcations are quadratic, except at the point of contact between
the curvesω3 andω4, which is a cusp point of cubic tangency.

(3) The parts of the curvesω2 andω3 in the border of the regionB ∪ C correspond to
the first homoclinic tangency, while at the curveω1 the last homoclinic tangency occurs (as
ω increases from0 to∞).

(4) For β < 1 and close to1, all the differences betweenω0(β), ω3(β) andω1(β) are
exponentially small in1− β.

(5) For β > −1 and close to−1, the functionsω0(β)+1 andω2(β)+1 are exponentially
small in 1+ β.

(6) ω1(β) ↑ ∞ asβ ↓ 0 andω2(β), ω4(β) ↑ ∞ asβ ↑ 0.

The numerical values of the cusp point in item 1 and the point of intersection of the
curvesω1 andω2 are, respecively,(ω3(β0), β0) = (1.5110,−0.3907) and (ω2(β1), β1) =
(1.5301,−0.2832).

In figures 43 and 44 one can see the behaviour of the unstable invariant manifold of the
saddle-node point near values corresponding to a cubic critical cycle. Finally, in figure 45
pictures are shown of the invariant manifolds of the saddle-node fixed point corresponding
to several zones in the(ω, β) plane.

The computation of the curveω0 has been carried out in a simple way. Starting with a
local approximation of the unstable branch of the fold, it has been globalized numerically,
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until it is close enough to the ‘node part’ of the fold. A change of variables puts the
invariant manifolds as the horizontal and vertical axes, locally. Assume the vertical axis
corresponds to the strong stable manifold. Then, points on a fundamental domain have been
taken, and the projection on the horizontal axis of the return close to the node part of the
fold has to preserve the order before the cubic tangency, while after this tangency there are
points whose projections have reversed order. It is easy to implement routines detecting the
critical situation, but one should be very careful with the arithmetic error.

The following question is also of interest. The curvesω3 andω1 correspond to first (or
inner) and last (or outer) homoclinic tangencies, respectively. The curveω0 corresponds
to the inner cubic tangency to the strong stable foliation of the saddle node. What about
an outer cubic tangency to this foliation? The experimental results are shown in figure 46,
where for completeness, we also include the parts of theω0, ω1, and ω3 curves in the
window (ω, β) ∈ [0, π ] × [0, 1]. The new curve is denoted byω5, despite the fact that it
cannot be represented as the graph of a single-valued function ofβ. For the computations
around the saddle node it is convenient to use a different representation of the map (1),
namely (

u

v

)
7→
(
u∗

v∗

)
=
(

u+ α
2 (v + 2 sin2( u2))

β(v + 2 sin2( u2))+ 2 sin2( u
∗

2 ))

)
, (4)

whereα = ω(1− β). Now the saddle node is at the origin and the centre manifold has a
representationv = g(u) =∑n>2 gku

k, where the coefficientsgk depend onω andβ.
Before going into detail we must clarify the exact meaning of theω5 curve. For small

values ofω it is certainly related to cubic tangency to the strong stable foliation ofp̄ω,β .
Between the outer homoclinic tangency and the outer cubic tangency to this foliation, the
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Figure 39. Magnification of the rectangle of the previous figure. As the arrow shows,
in the lower right corner there is a magnification of the small rectangle, using the window
[1.6971, 1.6973]× [1.0228, 1.0234].

branchWu(p̄ω,β) (Wu for short) is ‘folded’, and the ‘folds’ are preserved under iteration.
What we have followed, to obtain the curveω5, is the boundary of the set in the(ω, β)-plane
for which there are ‘folds’ inWu. To detect the ‘folds’, afterWu has been approximated
in a fundamental domain usingg, it has been continuated with controlled distance between
any two consecutive points and controlled angle between any three consecutive points. The
‘folds’ show up if two points, havingu1 < u2 in the fundamental domain, have iterates
under (4) such that the order of the first components is reversed (mod 2π ). This has been
checked allowing for some tolerance to account for the rounding errors.

As can be seen in figure 46, for small values ofω the curveω5 seems to also have a
exponentially flat contact withω1 and the other two curves. Forω > 1 it goes away from
ω1 and several ‘soft’ peaks appear, related to resonances. The sources of the existence of
‘folds’ in Wu can be of different kinds. The following points have been observed.
• A quadratic tangency to the strong stable foliation at the saddle node.
• Wu spirals approaching an invariant curve with rational rotation number. The

attracting periodic orbit inside this curve goes from a node to a focus.
• The same as in the previous case, the periodic attractor being still a node, but the

points ofWu approach the node entering close to only one of the branches of the unstable
manifold of the node (see figure 13(d)).
• Wu spirals approaching a periodic saddle and becomes tangent to the stable foliation

of that saddle. Eventually, by moving parameters,Wu has points going to the saddle and
later they go to an attracting focus. This seems to be the main mechanism for values ofβ

close to 1.
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It is clear that the source of ‘folds’, in the first case, is due to the proximity of a
homoclinic situation and, in the other cases, to the proximity to a heteroclinic one.

5.2.2. Homoclinic bifurcations originating from a tongue boundary.Although one can find
many curves of homoclinic bifurcation inside the tongueIβ0,i (for example, cf Ostlundet al
[43]), our main interest is with curves originating from a fold point on the boundary. This is
concerned with our preoccupation with the tongue boundaries and the accumulation property
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Figure 42. Curves of cubic critical cycles (ω0) and saddle-node homoclinic bifurcations
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Figure 43. Wu
sn for β = −0.7, ω = 0.547 341. The origin is at thesn and the

axes are eigenspaces. Near thesn the foliation F ss is almost vertical. Left: the full
manifold in the window [−3.2, 3.2] × [−0.5, 0.75]. Right: magnification using the window
[−0.08,−0.075]× [0.0044, 0.0005], containing two complete fundamental domains; the vertical
tangencies are easily seen.

to be illustrated in section 5.3.2 and which was sketched at the end of section 4.3. In this
respect the two curves of homoclinic bifurcation, to be presented here, also are of special
interest. In fact, again we restrict ourselves to considering the main tongueI 0

0 , generalizing
from this.

The new curves are denotedT i,βp/q , so presently we shall deal withT i,β0 , i = 1, 2.
Their definition is by continuation, indeed, they represent homoclinic bifurcation curves
of rotation numberp/q originating from a fold homoclinic bifurcation. The case with
β = 0 was displayed in section 2. In figures 47–51 we give several configurations of
the homoclinic bifurcation curves, in the(ω, α)-plane, that are born in the saddle-node
bifurcation curve0β0,2. Moreover, in each picture there are the curves corresponding to the
cubic tangency of the unstable invariant manifold of the saddle fixed point to the strong
stable foliation of its corresponding node (born by saddle-node bifurcation). Also, we depict
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(a)

(b)

(c)

Figure 44. The unstable manifoldWu
sn of the saddle-node (sn) for β = 0.3, ω =

0.718 8724 (slightly after the cubic tangency toF ss ). Origin and axes as in figure 43.
(a) The full manifold. Window: [−3.2, 3.2] × [−0.2, 3.45]. (b) Magnification of window
[−0.052,−0.05]× [0.0015, 0.0035] using 100 points per fundamental domain. Roughly two
fundamental domains are displayed. One can see an accumulation of points where the tangencies
with F ss occur. (c) Figure (b) enlarged, using 105 points per fundamental domain, to the window
[−0.051 3437,−0.051 3436]× [0.002 5126, 0.002 5127]. The value of the regression line has
been substracted from the ordinates and the difference is displayed. The vertical window in (c)
is [−3× 10−15, 3× 10−15]. One can see the effect of the rounding errors and the shape ofWu

sn

near a cubic tangency to the (vertical)F ss .
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region A region B

region C region D

region E region F

region G region H

Figure 45. Configuration of the invariant manifolds of the saddle-node fixed point in the regions
indicated in figure 41.
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Figure 46. The curves of inner (ω0) and outer (ω5) cubic tangency to the strong stable foliation
at the saddle node, together with the curves of inner (ω3) and outer (ω1) homoclinic tangency.
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Figure 47. Several bifurcation curves forβ = −0.35.

the curves corresponding to equal absolute value of the eigenvalues (62β1/2 in the notation
of section 2.4 forβ > 0 and60 for β < 0) and the curves6−1−β corresponding to the
flip bifurcation of the fixed points. Apparently the behaviour of the curves is similar for
β > 0 and there are several possible configurations forβ < 0. This will be important when
determining the smoothness and the destruction of the invariant circle.

To be more concrete, in figures 47–51 the lines labelleda, b and c correspond to
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Figure 48. Several bifurcation curves forβ = −0.3.
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Figure 49. Several bifurcation curves forβ = −0.25.

fold, equal eigenvalues (in absolute value) and flip bifurcations, respectively. That is, for
simplicity, a stands for0β0,2, b stands for62β1/2 (if β > 0) and for60 (if β < 0), andc
stands for6−1−β . Linesd, e andf (the latter displayed only in figure 47) denote quadratic
homoclinic tangencies. Forβ > 0 the lineg corresponds to the last homoclinic tangency.
The lineh denotes a cubic tangency to the strong stable foliation. In figure 48 consider lines
d ′, e′ and f ′. They correspond to heteroclinic tangencies between the unstable manifold
of the saddle and the strong stable one of the node. We note thate′ and f ′ meet in a
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Figure 50. Several bifurcation curves forβ = 0.1.
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Figure 51. Several bifurcation curves forβ = 0.3.

cusp point, corresponding to a cubic heteroclinic tangency. In figure 50 linese′ andg′ are
shown, which correspond to a first and last heteroclinic tangency of the type described in
figure 48.

In view of the invariant circle, if it is not destroyed by phenomena related to other fixed
or periodic points, we have the following scenario. Let us begin with figure 47. In the
interior of the region bounded bya, b andh the circles are smooth curves, the degree of
differentiability decreasing when going froma to b (see sections 2.4 and 5.3.1). When either
b or h are reached, the invariant curve is justC0 (with a sudden jump of differentiability if
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h is reached). The curve persists while remaining in the region bounded bya, c andd. In
figure 48 a part of the role ofd is taken bye, whichever is reached first, and in figure 49
it is fully taken bye.

For β > 0, in figures 50 and 51, linesa, b andh have the same role as before, but the
boundary of existence ofC0 invariant curves is now made by the corresponding parts of the
lines a, c ande.

On the fold the curvesh, g, d, e and f begin atω0(β), . . . , ω4(β), respectively. See
conjecture 5.1.

5.3. Global aspects

We now come to deal with several global phenomena appearing in the fattened Arnold
family F = Fα,ω,β . We consider the loss of smoothness, namely the destruction of the
invariant circle, accumulation of the tongues, the occurrence of strange attractors and the
coexistence of various types of attractors.

5.3.1. The invariant circle. Two numerical tests have been (repeatedly) carried out
involving the genericity property on the differentiability of the invariant circle when the
rotation number is rational, that is, inside the Arnold tongue.

Both tests use the fact that the invariant circle exactly consists of the closure of the
unstable manifoldWu

S of a periodic saddleS. Indeed, this is a piecewise analytic curve,
where the smoothness is only lowered at the nearby periodic nodes, where different branches
of Wu

S enter. LetN be such a node, with eigenvalues 0< λ1 < λ2 < 1. By Wss
N ,W

s
N we

denote the strongly stable and the (weakly) stable invariant manifolds ofN , associated to
λ1 andλ2. According to the results of [14], ifr := log(λ1)/ log(λ2) 6∈ N then there exists
an unique analyticWs

N . Generically this does not coincide with the circleWu
S , which is one

of the things checked by the tests. Nevertheless we can useWs
N as a local reference for the

branches ofWu
S to be compared.

For both tests we select parameters such thatr 6∈ N and we start as follows.
• First S is computed andWu

S is obtained by means of local (Taylor) expansions.
• The manifolds (branches) are globalized by taking a suitable number of points in a

fundamental domain and iterating under our mapF .
Now we describe the first test. Up to an affine change of variables, we may assume

N at the origin and the coordinate axes such that the tangents toWs
N and toWss

N , at N ,
are in thex and y directions, respectively. The manifoldWs

N can either be generated as
the graph of an analytic function,y = g(x), or by means of a parametric representation
p(t) = (x(t), y(t)) such thatF(p(t)) = p(λ2t). An advantage of the latter representation
is that, asF is an entire function, the analyticity ofWs

N implies thatp is entire.
Consider points inWu

S close toN with coordinates(x̄, ȳ). There is a value,̄t , of t in
the parametric representation,p, such thatx(t̄) = x̄ and now we consider and compute the
error in y:

1y := ȳ − y(t̄).
When genericity holds,|1y| must behave asA|x|r (1+ o(1)) asx → 0. Taking logarithms
yields z := log(|1y|

log(|x|) = r + log(A)+o(1)
log(|x|) . Therefore, by plottingz versus 1

log(|x|) for the unstable
branches ofWu

S enteringN from the right and from the left, one must see lines tending tor as
1/ log(|x|) tends to zero. Furthermore, if the limit slopes, log(Ar) and log(Al) are different,
the invariant curves are justCr . This is illustrated in figure 52 forω = π/10, β = 0.1
andα taking the values 0.54 and 0.545. In these casesN andS are fixed points. We note
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Figure 52. Genericity test using the order of contact between the invariant circle andWs
N at the

node.ω = π/10,β = 0.1. (a) α = 0.54; (b) α = 0.545. See the text for additional explanation.

that the rounding errors prevent taking|x| too small. The horizontal lines correspond to the
limit value r.

The second test concerns the Fourier expansion of the invariant circleWu
S ∪ {N}. As

before it is analytic except at a finite number of points (the periodic nodes) where we test
whether it is exactly of classCr, r 6∈ N. Let Wu

S be represented asy = h(x), h being
a 2π -periodic function. Let

∑
n>0 hn,c cos(nx) + hn,s sin(nx) be the Fourier series ofh,

and definehn = (h2
n,c + h2

n,s)
1/2. Then one hashn = B(1+o(1))

nr+1 whenn → ∞. By taking

logarithms one hasz := log(hn)
log(n) = r + 1+ log(B)+o(1)

log(n) . Therefore, the representation ofz

versus 1
log(n) must tend tor + 1 as 1

log(n) goes to zero. The steps to follow are as follows.
• It is convenient to have points(x, y) on the invariant circle for equally spaced values

of x. This is obtained by interpolation from a suitable set of points produced by iteration
from a fundamental domain ofWu

S .
• Then a Fourier analysis is carried out using a standard FFT procedure. The moduli

of successive harmonics are obtained. The computations are stopped wheneverhn is below
10−14, to prevent the effect of rounding errors. Otherwise, up to 220 harmonics have been
computed.

A small sample of results is displayed in figure 53 forω = π/10, β = 0.1 andα taking
on the values 0.45, 0.50, 0.54 and 0.5463. The latter is rather close to the value ofα

giving λ1 = λ2 (α = 0.546 389 627 623. . .). As in the previous figure, the horizontal lines
correspond to the limit valuer + 1.

In all the cases we obtained results as to be expected. Hence, there is strong evidence
for generic behaviour of the smoothness of the invariant circle.

On the other hand, if we take a fixed value ofβ, there is a way to obtain an approximation
of the set of parameter values(ω, α) for which anr-normally hyperbolic invariant circle
exists.

Indeed, letpα,ω be ap/q-periodic attractor with(α, ω) ∈ Iβp/q and letλ1 and λ2 be
its eigenvalues, such that|λ1| 6 |λ2| < 1. We know thatλ1λ2 = βq . If there exists
an r-normally hyperbolic invariant circle then|λ1|/|λ2|r < 1. So, let us consider the set
6̃p/q,r ⊂ Iβp/q defined as

(α, ω) ∈ 6̃p/q,r :⇔ trDFqα,ω,β(pα,ω) < sign(βq)|β|rq/(r+1) + |β|q/(r+1),

for the relatedp/q-periodic point. So for all(ω, α) 6∈ 6̃p/q,r the global attractor� is not
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Figure 53. Genericity test using the asymptotic behaviour of the coefficients of the Fourier
expansion of the invariant circle.ω = π/10, β = 0.1. (a) α = 0.45; (b) α = 0.50; (c)
α = 0.54; (d) α = 0.5463. See the text for additional explanation.

an r-normally hyperbolic invariant circle. Therefore the set of parameter values(α, ω) for
which� is anr-normally hyperbolic invariant circle is contained in∩p/q∈Q6̃p/q,r .

In order to compute the set∩p/q∈Q6̃p/q,r it is sufficient to compute for every tongueIβp/q
the curves6t ⊂ Iβp/q , as defined in proposition 2.10. We have performed these computations
for all tongues of period less than or equal to 17. In figure 54 there is a representation
in the (ω, α) plane of the set∩p/q | 0<q617, 0<p6q/26̃p/q,1 for the values ofβ 0.9, 0.3,−0.3
and−0.9. The curves are approximations of the upper boundary of the sets for which
the global attractor can be just a continuous invariant circle. (These are obtained by first
computing the corresponding flip curves.) However, the reader should be aware that for
some regions below these curves, other mechanisms, such as homo/heteroclinic tangencies,
can also destroy the invariant circle.

5.3.2. Accumulation of tongues.One of the interesting global phenomena is the
accumulation of tongues on curves of homoclinic bifurcation. This accumulation
phenomenon seems to take place for all|β| < 1.

Again, we present most of the results for the main tongue. The curves0
β

p/q,i , i = 1, 2
with p = 1 or at leastp fixed, originating at(α, ω) = (0, 2πp/q), seem to accumulate
on two different curves: the left-hand curves (i = 1) accumulate on one curve and the
right-hand ones on another. For this it is required thatq →∞. We only considerp/q > 0,
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Figure 54. Existence of invariant circles. The curves shown are approximations of the upper
boundary of the sets for which invariant circles exist. Top: leftβ = 0.9, rightβ = 0.3. Bottom:
left β = −0.3, right β = −0.9. In the horizontal and vertical directions the variables areω and
α, respectively.

the other case being obtained by symmetry. We distinguish between the three casesβ = 0,
β < 0 andβ > 0. There is an increasing complexity of the tongues whenβ approaches−1.

(1) Caseβ = 0. Here the behaviour of the tongues seems very simple. One of the
branches of the boundary,00

p/q,1, accumulates on the homoclinic bifurcation curve called

T
2,0

0 in figure 11. The other branches accumulate at the boundary of the (main) Arnold
tongue corresponding to fixed points, that is at0

0,2
0 . In figure 55 we show all the tongues

corresponding to periods less than or equal to 10, as well as the flip bifurcation curves inside
these tongues. Moreover, we give the curve of homoclinic tangency, denoted byT

2,0
0 .

(2) Caseβ > 0. This case is more involved. As in the previous case, the curves0
β

1/q,1

appear to accumulate atT 2,β
0 , the curve of first homoclinic tangency. However, the other

curves0β1/q,2 now seem to accumulate at a homoclinic bifurcation curve starting at another
fold homoclinic bifurcation, namely at the last homoclinic tangency. Following the notation
of conjecture 5.1, the latter curve seems to begin at(α, ω) = ((1−β)ω1(β), ω1(β)) ∈ 0β0,2.

We shall denote this curve bySβ1 . In figure 2 the caseβ = 0.3 is shown, see section 1.
One can recognize the curvesT 2,0.3

0 andS0.3
1 in figure 2 as the curvese andg in figure 51.

In figure 3, also in section 1, two magnifications are presented of the rectangles in figure 2.
Here the accumulation of the tongues is demonstrated more clearly.

(3) Caseβ < 0. We distinguish two cases:β0 < β < 0 andβ < β0. The valueβ0 is
as defined in the previous section.
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For β > β0 (but not too close to 0) we computed tongues corresponding to rotation
numbers 1/i from i = 1 to i = 11. The boundaries of these tongues have full curves in
figure 56. Inside every tongue of period> 4 a fold (saddle-node) bifurcation curve appears
of the same rotation number with an ‘inner’ cusp. We show these curves as broken curves.
Moreover, three homoclinic bifurcation curves show up, that we callT

2,β
1 , T 2,β

0 andT 2,β
2 .

Compare these curves withd, e andf in figure 47 for a nearby value ofβ. These curves
are born at the saddle-node curve0β0,2 respectively in the pointsτ1 = ((1−β)ω2(β), ω2(β)),
τ0 = ((1− β)ω3(β), ω3(β)) andτ2 = ((1− β)ω4(β), ω4(β)). We note thatω2 < ω3 < ω4.

In this case the branches0β1/q,2 tend to0β0,2 as q → ∞. The left fold curves0β1/q,1
seem to approximate to the curveT 2,β

0 as in the caseβ > 0, for q not too large (q 6 7),
while for q large enough it seems that they tend to the homoclinic bifurcation curveT

2,β
1 .

For the other saddle-node bifurcation curves, born at the inner cusp, the left branches tend
to T 2,β

1 asq →∞ and the right branches tend toT 2,β
2 . In figures 57 and 58 one sees details

of figure 56.
It is important to note that the first periodq for which the left branch of the tongue

boundary,0βp/q,1, is near the curveT 1,β
1 increases asβ decreases. The behaviour of these

curves is related to the existence of two codimension 3 bifurcations of fold type for any
branch0p/q,1. We described these types of bifurcations in section 5.1 in the item about
the transition of saddle-area to cross-road area. The fold bifurcation curve with a cusp that
played a role there, is the same we have considered here for every tongue. In table 1 we
give the value ofβ for which the bifurcation corresponding to the tangency of the branches
emanating from the cusps occurs. From table 1 it seems to follow that these values increase,
asq tends to∞, like −c1 − c2n

−c3 with constantsci > 0. One can estimate the values of
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Figure 56. Arnold tongues forβ = −0.3365. Also three homoclinic bifurcation curves are
shown, all of these beginning in the saddle-node bifurcation curve.

Table 1. Values ofβ for which a codimension three cusp exist for rotation numbers 1/q.

q β q β q β q β

50 −0.2580 24 −0.2640 17 −0.2719 10 −0.3018
30 −0.2611 23 −0.2646 16 −0.2739 9 −0.3128
29 −0.2614 22 −0.2655 15 −0.2764 8 −0.3285
28 −0.2618 21 −0.2664 14 −0.2794 7 −0.3518
27 −0.2622 20 −0.2675 13 −0.2831 6 −0.3899
26 −0.2627 19 −0.2688 12 −0.2878 5 −0.4592
25 −0.2634 18 −0.2702 11 −0.2938 4 −0.6046

ci as 0.2562, 4.5 and 2, respectively. We have no explanation for this phenomenon.
The behaviour of the tongues forβ < β0, and at least forβ nearβ0, seems to be quite

similar. The main difference is that the curvesT 2,β
0 and T 2,β

2 collide in a point in0β0,2
for β = β0. (Recall that this value ofβ corresponds to a cubic tangency of the invariant
manifolds of the saddle node.) Forβ < β0 these two curves form one unique curve with a
cusp point. The latter point corresponds to a cubic tangency of the saddle fixed point. If
againT 2,β

0 denotes the left branch of the new curve andT 2,β
2 the right branch, then they

play the same role as in the previous case.
Finally, we wish to emphasize that all these phenomena can also be observed for tongues

of another rotation number. Figure 59, for example, shows tongues of rotation numbers
n/(3n−1) andn/(3n+1) for n = 1, . . . ,10, in the caseβ = 0. These exhibit accumulation
of boundaries with respect to the tongue of rotation number 1/3,I 0

1/3, similar to what we
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Figure 57. Magnification of rectangle A in figure 56. The rotation number associated to every
bifurcation curve is shown. Window: [1.2, 2.0]× [1.6, 2.8].

described before regarding the tongueI 0
0 . Now the symmetries of theI 0

0 case disappear,
but the meaning of ‘right’ and ‘left’ curves of homoclinic tangencies is still clear.

5.3.3. ‘Large’ attractors. In this global model, next to ‘small’ strange attractors also ‘large’
attractors show up. We now discuss their occurrence. First, we define an attractorS to be
‘large’, if for eachx ∈ S1 there exists any ∈ R such that(x, y) ∈ S, so if it winds around
the entire annulus.

One example of a ‘large’ attractor is the circle attractorCα,ω,β of section 2. In view of
the creation of ‘large’ strange attractors we met several theoretical scenarios in section 3.
The most familiar of these involves the transition of a node into a focus. At that moment
the circle is only of classC0. After that the eigenvalues can go to the negative half-plane,
leading to a cascade of flips. We will not pursue this at this moment, but we shall return to
it in section 5.4.1.

Another scenario develops near a quadratic critical cycle. Referring to section 4 for
theoretical considerations and references, we here claim to have found such a ‘large’ strange
attractor, see figure 4, section 1. We note that this attractor occurs for a parameter point
near, but still outside, the tongueIβ0 .

In some scenarios strange attractors seem to exist close to the boundary of the parameter
domain with invariant circles, perhaps even in its closure. This seems reasonable in several
cases. Indeed, if the destruction of an invariant curve with rational rotation number is due
to a homoclinic tangency, just after the tangency strange attractors should appear (cf the
end of section 4.3). If, on the one hand, its occurrence is due to the leaving of a tongue,
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Figure 58. Magnification of rectangle B in figure 56. Window: [5.7, 5.75]× [7.45, 7.75].

its shape can be as in figure 4. If, on the other hand, the invariant curve has an irrational
rotation number and is destroyed by an obstruction phenomenon (cf the end of section 3.1),
the periodic orbits involved in the destruction can give rise to a homoclinic tangle creating
a strange attractor.

It is also easy to find ‘large’ strange attractors that are in the tongue boundary
corresponding to period 1 that display many ‘turns’ in terms ofx as an angle variable.
To obtain these we only have to consider larger values toω. As an example, see figure 5,
section 1.

5.3.4. Coexistence of attractors.By the work of Newhouse [38], also see Palis and Takens
[45], it is known that for certain parameter values there is coexistence of infinitely many
periodic attractors (sinks). Numerically one can see as many of these as the precision of
the computer allows. An example of this in our map can be found near the homoclinic
bifurcation line where tongues accumulate, see section 5.3.2. For the case of coexistence
of infinitely many strange attractors see the nice results of [46] in a quite different context.

For the coexistence of invariant circles and periodic attractors, or strange attractors and
periodic attractors forβ > 0, we consider values of the parameters inside the tongueI

β

0 and
beyond theSβ1 curve of outer homoclinic tangencies. Here the invariant manifolds of the
saddle fixed point can behave as those of figure 17 in cases (b), (c) or (d). In a case like
figure 17(b) we have found coexistence of a ‘large’ strange attractor and an attracting fixed
point for β = 0.1, α = 2.34 andω = 2.57. In figure 60 we depict this strange attractor and,
with broken curves, the invariant manifolds of the saddle fixed point. The corresponding
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node is at the end of the left branch of the unstable manifold. The right branch of the
unstable manifold is in the basin of attraction of the strange attractor.

In a case like figure 17(d) we detected coexistence of an invariant circle and an attracting
fixed point forβ = 0.9, α = 0.12 andω = 0.7 (see figure 61). Here an invariant curve
is shown, and in broken curves also the invariant manifolds of the saddle fixed point. The
left branch of the unstable manifold tends to the focus and the other branch is in the basin
of attraction of the invariant circle.

We note that the strange attractor of figure 60 is destroyed when the parameters move
to the other side of the curveSβ1 and that the invariant circle of figure 61 will be destroyed
for parameters corresponding to a cubic external tangency as in figure 17(c).

There is an easy way to see coexistence of quasiperiodic or strange attractors and
periodic attractors, namely by taking values ofβ near the anticonservative case,β = −1
(see appendix C). In the first picture (case 1) of figure 62 we show the orbits of 10
points: (0,−2), (0,−4), (3.8579,−4.3082), (5.67,−1.97), (0.95,−1.44), (1.75,−4.48),
(1.82,−4.35), (1.61,−4.57), (0, 0.893 04), (0, 0.82). We distinguish two 4-periodic elliptic
islands (one with three invariant circles displayed and the other with two), an invariant
circle (of, say, ‘snake’ type) and a 24-periodic elliptic island near the invariant circle in the
middle of the picture. Moreover, there are 24-periodic elliptic points in the two borders of
the external chaotic region. In the next picture we see the invariant circle in more detail as
well as the small invariant circles that surround the 24-periodic elliptic orbit. We remark
that the chaotic zones generated from(0,−2) and (0,−4), as well as the two families of
large islands and the period 24 small external islands, go up and down jumping over the
snake curve because of the reversion of orientation. A ‘period two’ very wild invariant
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Figure 60. Coexistence of a ‘large’ strange attractor and an attracting fixed point forβ = 0.1,
α = 2.34 andω = 2.57.

circle seems to exist between the two chaotic zones (in the narrow white area in between,
not included in the figure). The snake curve is invariant under the map, but as noted in
appendix C (see, e.g. figure 79) these invariant circles are far from Lipschitz graphs. For
an analysis of the generic existence of non-Lipschitz invariant curves for perturbations of
integrable non-twist maps we refer to [53].

In case 2, where the map is weakly dissipative (β = −0.999), the invariant circle almost
coincides with the previous one and the elliptic orbit has been transformed in an attracting
periodic orbit. In cases 3 and 4 the invariant circle has been destroyed and instead there is
a large strange attractor. In case 4 there is also a period 24 attracting periodic orbit. The
numbers presented on top of every picture are, respectively, the values ofω, α andβ. All
values are inside the Arnold tongue of period 4.

If we takeβ = 1 infinitely many elliptic periodic orbits exist. By takingβ = 1−1β,
1β > 0 and sufficiently small, as many as desired (but a finitely many!) of these periodic
orbits should persist as sinks. One open problem is whether for the present family it is
possible to have coexistence of as many strange attractors as desired. If1β is sufficiently
small, a large number of the infinitely many periodic hyperbolic points present forβ = 1,
will persist as saddles. Another open problem is whether, under the perturbation, these
will give rise to strange attractors (eventually, to small attractors) or whether their unstable
manifolds will be captured by nearby periodic attractors (sinks).

In figures 60–62 we discovered periodic attractors coexisting with an invariant circle or
with a strange attractor. An open question is whether a strange attractor and an invariant
circle can coexist.
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Figure 61. Coexistence of an invariant circle and an attracting fixed point forβ = 0.9, α = 0.12
andω = 0.7.

5.4. Additional facts

We end this section with some additional material found in the numerical exploration of the
fattened Arnold family. This exposition certainly again stresses the dynamical richness of
this map.

5.4.1. A sample of attractors.We begin with a sample of the attractors as they occur in
our example. Figures 63–65 display several types of attractors as observed, most of which
are strange attractors (SA). In each case four numerical values are displayed. The first three
areβ, ω/(2π) andα, so indicating how we move through the parameter space. The last
number is the vertical semiamplitude of the window. The horizontal scale is always [0, 2π ];
the horizontal axis is also displayed for reference.

Case 1 shows a 6-pieces SA (much like this could appear in the Hénon family) which
globalizes in case 2. Cases 3 and 4 show the fusion of a 2-pieces SA into one single piece.
Case 5 shows a large SA shortly after some heteroclinic tangency has globalized it. By a
stronger density of points, one may still detect the shape of the previous SA. Case 6 shows
a SA which can be considered as a typical ‘folded’ curve, produced after the last homoclinic
tangency of a saddle. Case 7 is similar to case 5, but for a larger value ofβ and a much
larger vertical window. Some concentrations of points also give evidence of a ‘previous’,
smaller, SA.

The remaining cases correspond to negative values ofβ. From case 8 to 9 one sees
a globalization produced by heteroclinic tangency, case 8 originating by repeated period
doubling of an attracting fixed point. It looks like a parabola. Shortly after, the lower
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Figure 62. Several orbits (attractors in case 2–4). See explanations in the text.

branch of the parabola becomes as large as the upper one: it has an heteroclinic tangency
with the stable manifold of the saddle point created at the same time as the sink. Case 9
frequently suffers destruction to (periodic) sinks, which again become an SA. A figure like
case 9 (but slightly larger) reappears when we increaseα, keeping the other parameters
fixed. Observe that case 9 is quite similar to figure 5, section 1.

Inspired by the logistic family (and also by the Hénon case), we believe that for fixed
ω andβ, the set ofα-values for which a sink exists, is dense. However, in certain regions,
this set can have very small relative measure.
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Figure 63. Some attractors. See explanations in the text.

Cases 10–13 show the fate of an invariant circle when it is folded. It may give rise to
a large SA, as in cases 12 and 13, or be broken into pieces as in case 11. Case 13 shows
an ‘onion’-like structure, reminiscent of figure 85 (see appendix D). This kind of structure
systematically appears also in attractors of three-dimensional (3D) diffeomorphisms (see
[32]). Cases 14 and 15 display a globalization of a 3-pieces SA. Case 16 (symmetric since
ω = 0) shows just one SA, but most of the iterates are still located near what, previously,
was a 4-pieces SA.

For values ofβ closer to−1, very wild patterns appear. Case 17 shows a wild invariant
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Figure 64. Continuation of the previous figure.

curve, becoming an SA in case 18, starting to display an onion-like character, to be thickened
in case 19. In case 20 we see a multipieces SA (58 pieces!). A small variation ofα yields
case 21, where a stronger density is seen close to a ‘curve’ obtained by joining the previous
pieces. Case 22 is similar to 17 but even wilder. However, in this case, we have preferred
to show an SA, coming from an invariant curve which looks quite similar. Case 23 is again
a very thick onion-like structure (maybe even closer to an artichoke!). Finally, case 24
displays a connected chain of five onion-like structures. Some of the pictures also have a
nice artistic component!
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Figure 65. Continuation of the previous figures.

5.4.2. Basins of attraction. We briefly discuss and illustrate some principles regarding
basins of attraction and their numerical detection. By hetero- and homoclinic bifurcation
these basins can change dramatically.

Keepingβ, ω and α fixed we start our iterations in various initial points. Figure 66
shows the(x, y)-plane with several basins of attraction of periodic attractors. For this choice
of parameter values, the periods are 1, 2, 3, 4, 5, 7, 8, 11, 13, 14 and 24. Each grey tone
corresponds to exactly one basin of attraction.

The principle for production of the different basins is as follows. Assume that, by some
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Figure 66. Basins of attraction of the fattened Arnold family forα = 1, β = 0.99 and
ω = 0.38× 2π . The values of(x, y) are in the rectangle [0, 2π ] × [−3, 3].

fold bifurcation, a node and a saddle are created. The node then becomes a local attractor
which may bifurcate further (e.g. by a cascade of flips giving a strange attractor). The basin
of this local attractor is bounded by the stable manifold of the companion saddle (at least
close enough to the bifurcation). One branch of the unstable manifold of this saddle is
attracted by the local attractor, while the other may go to another attractor. If this happens
to be the same, we should look for other unstable manifolds as boundaries of the basin.
When several sinks and their companion saddles are interacting, different basins can appear,
as shown in figure 66.

By moving parameters, all invariant manifolds change and may give rise to hetero- and
homoclinic bifurcations. This causes changes of basins, destruction or fusion of attractors,
etc. The pictures can look extremely different, but the mechanims are quite simple.

5.4.3. Lyapunov exponents.Important for the detection of (quasi)periodicity and chaos are
the Lyapunov exponents and it is interesting to see how they behave in the fattened Arnold
family.

Here we report on a sample of computations, where as an ‘arbitrary’ initial point we took
(x, y) = (0.123 456 789, 0.987 654 321). The maximal Lyapunov exponent was obtained by
iteration of the differential (derivative) map. The computation is typically stopped when,
after obtaining some estimate, for 105 additional iterates the variation of the estimate is less
than 10−3. Initially some transient regime (of 105 iterates, unless we ended on a periodic
orbit) was used.

Figures 67 and 68 display some results, forβ = 0.5,ω ∈ [0, π ] andα ∈ [0, 4]. The first
figure shows the parameter values(ω, α) for which the maximal Lyapunov exponent seems
to be zero. Numerically these values obtained range in [−10−5, 10−5] and, therefore, it is
reasonable to assume that they correspond to a quasiperiodic circle-attractor. In figure 68
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Figure 67. Values of(ω, α) for β = 0.5, for which the maximal Lyapunov exponent seems to
be zero. They correspond to quasiperiodic attractors. Window [0, π ] × [0, 4].

Figure 68. Values of(ω, α) for β = 0.5, for which the maximal Lyapunov exponent seems to
be positive. They correspond to strange attractors. Window [0, π ] × [0, 4].

we display the values of(ω, α) for which the maximal Lyapunov exponent seems to be
positive, using the bound 10−3. They should correspond to strange attractors. Also compare
a global figure, like figure 1, as it occurs for a smaller value ofβ and for a larger range of
α.
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Figure 69. The maximal Lyapunov exponent forβ = 0.5, α = 4 andω ∈ [π/8, π/4], showing
windows which frequently seem to interrupt the parameter domain of strange attractors.

In figure 68 it seems that whole segments exist with positive maximal Lyapunov
exponent. To check this phenomenon we selected the segment [1

16,
1
8] as a range ofω/(2π).

In this interval 160 000 equispaced values ofω/(2π) were taken and the Lyapunov exponent
was recomputed with this small step size. The result appears in figure 69, where the
Lyapunov exponent is plotted againstω. Indeed, there are still ranges where the exponent
is positive for almost all values in the lattice, but they are also interrupted by parameter
values with negative exponent, corresponding to periodic attractors (sinks).

Points appearing neither in the first figure nor in the second, correspond to values of
(ω, α) for which our initial point evolves to a periodic attractor.

5.5. A summarizing ‘movie’. . .

Many readers often find themselves looking at a computer screen displaying dynamics,
particularly concerning a family of 2D maps. As said in the introduction (also see
appendix A), the present, fattened Arnold family, is not ‘just another dynamical system’,
but extremely representative for the case of 2D maps. We claim that, in view of this paper,
the corresponding phenomenology should contain no further secrets. Indeed, the reader is
invited to sit in front of his computer screen and join us in the following experiment. If
necessary the appropriate software can be obtained from the authors.

We follow the fate of attractor(s) for different values of(β, ω) and α ranging in a
suitable interval, so moving along a number of representative paths. The attractor(s) are
obtained as follows by iteration of the map. If for given parameter values a saddle point
occurs, we start the iterations at two different initial points located in the corresponding
unstable manifold. In all other cases we take our favourite ‘arbitrary’ initial point
(x, y) = (0.123 456 789, 0.987 654 321). We first perform a transient of 105 iterates, and
then observe the attractor(s) obtained by 104 consecutive iterates. The values ofα for which
a bifurcation is produced are only given approximately.
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(1) β = 0.2, ω = 0.4× 2π .
(a)α ∈ [0, 0.9]. In these cases the attractor is an invariant circle (IC) with either rational

or irrational rotation number. Ifα is small we can only observe the IC with irrational rotation
number. If the rotation number is rational the minimal attractor is periodic and it occurs
inside an Arnold tongue. This periodic attractor starts at a fold (saddle-node) bifurcation.
Later the node can become a focus if the width of the tongue is large enough, but this has
not been observed in the present exploration. The saddle created at the fold bifurcation
persists as a saddle until, when leaving the Arnold tongue, it again joins the node in another
fold bifurcation.

(b) α ∈ [1, 1.23]. When α ≈ 1 we enter a 5-periodic Arnold tongue. The 5-
periodic node turns into a focus, later a node with negative eigenvalues and then a saddle
with reflection. Increasingα further leads to a typical cascade of flip (period doubling)
bifurcations. The IC is preserved until the first flip bifurcation.

(c) α ∈ [1.23, 1.25]. After the cascade of flips there is an inverse cascade of fusions of
SA. In this cascade 2n×5 pieces merge to 2n−1×5 pieces, finally arriving at a 5-pieces SA.
This attractor is the closure of the unstable invariant manifold of the saddle with reflection
as mentioned in item (b).

(d) α ∈ [1.26, 1.4]. For α = 1.26 a heteroclinic tangency occurs of the unstable
manifold of the 5-periodic saddles mentioned under (b) and the stable manifold of the
5-periodic saddles which appeared under (a). This produces the birth of a large SA, the
invariant measure of which, is concentrated mainly near the ‘old’ 5-pieces SA. Values of
α inside the interval [1.26, 1.4] exist, for which periodic attractors or SA, consisting of
several pieces, occur. This phenomenon is due to heteroclinic intersections associated to
other periodic points (cf [50] in the case of the Hénon map).

(e) α ∈ [1.41, 1.65]. The same phenomenon as described in the two previous items
occurs for other periods.

(f) α ∈ [1.66, 2.18]. We again see the birth of a periodic attractor of period 2 undergoing
a cascade of flips, followed by an inverse cascade of SA. However, there is a difference in
this case. Forα = 2.010 61. . . we enter the Arnold tongue of period 1. Then we observe a
2-pieces SA and, after the fold bifurcation, a fixed point attractor. Moreover, the branch of
the unstable manifold of the companion saddle (see (a)) that does not tend to the node is in
the basin of attraction of the SA. In this case, the invariant manifolds of this point behave
as in figure 17(b) (after the last homoclinic tangency). Again, the existence of heteroclinic
intersections produces a large SA that, in this case, coexists with an attracting fixed point.
The large SA is destroyed forα = 2.185 by an outer homoclinic intersection of the fixed
point.

(g) α > 2.186. The same phenomena occur for fixed and other periodic points: existence
of cascade of bifurcations, inverse cascades of a SA and creation or destruction of a large
SA.

(2) β = 0.9, ω = 0.25× 2π .
(a) α ∈ [0, 0.156]. One sees an IC of rational or irrational rotation number.
(b) α ∈ [0.157, 0.86]. The parameterα enters the Arnold tongue of period 1 and an

attracting fixed point coexists with an IC. The unstable manifold of the saddle which appears
at the fold bifurcation has a transversal intersection with the strong stable foliation of the
saddle, as in figure 17 (d).

(c) α ∈ [0.87, 0.93]. A periodic attractor of period 13 shows up that undergoes a cascade
of period-doubling bifurcations followed by an inverse cascade of SA. Finally there appears
a large SA. For these values ofα the unstable manifold mentioned in the previous item
has quadratic tangencies with the strong stable foliation. We note that apart from these
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attractors, a 4-periodic attractor exists.
(d) α > 0.94. There appear more periodic attractors and SA, as in the caseβ = 0.2.
(3) β = −0.2, ω = 0.05× 2π .
(a) α ∈ [0, 0.377]. A quasiperiodic attractor exists for most of the values checked,

which is in accordance with the very small size of the Arnold tongues in this zone of the
parameter space.

(b) α ∈ [0.378, 3.594]. Whenα = 0.378 the parameters enter the 1-periodic Arnold
tongue. Then, asα increases, the IC loses differentiability. Forα = 1.65 there is a flip
bifurcation and the IC is destroyed. Then the typical flip cascade occurs and finally a 1-
piece SA appears. For larger values ofα this SA is destroyed by other attractors, as usual,
or it coexists with other periodic or strange attractors. For example, forα = 3.52 there
simultaneously are a 1-piece and a 2-pieces SA.

(c) α > 3.594. For this value ofα the first homoclinic bifurcation occurs for the saddle
that first appears at the fold. Then the 1-piece SA becomes a large SA. After this we find
strange or periodic attractors.

(4) β = −0.9, ω = 0.05× 2π .
(a) α ∈ [0, 0.59]. There is a globally attracting IC.
(b) α ∈ [0.6, 0.6925]. The parameters enter the 1-periodic Arnold tongue. The invariant

curve loses differentiability as explained before, until it is only continuous.
(c) α ∈ [0.6926, 2.195 456]. There is a flip bifurcation at the first value ofα after which

the IC disappears. For this range of the parameter one finds many ‘windows’ of different
periodic attractors (with quite varying periods) coexisting with the 2-periodic attractor, 4-
periodic attractor, etc which appear in the usual cascade of flips. Forα = 2.194 the cascade
finishes and an SA of several pieces appears. For instance, forα ∈ [2.1954, 2.195 455] we
find a 8-pieces SA. This attractor becomes a large SA via a heteroclinic bifurcation with
the stable invariant manifold of the saddle created at the fold bifurcation of period 1. This
occurs, approximately, forα = 2.195 455.

(d) α > 2.195 455. For values near 2.195 455, the invariant measure of the SA seems
to be concentrated mainly near the ‘old’ 8-pieces SA. Increasingα again, the distribution
on the SA is more ‘homogeneous’. (The measure is quite well distributed on the related
unstable manifold.) After this, more periodic and (both small and and large) SA show up.
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Appendix A. Modelling the return map near homoclinic tangency

We give a heuristic derivation of the fattened Arnold family as a return map near homoclinic
bifurcation, in an appropriate setting. Let a diffeomorphismF on the plane be given with
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Figure 70. Non-conservative perturbation of a symplectic map: (a) The timeε mapϕHt=ε of a
Hamiltonian vector field, (b) a conservative perturbationϕHt=ε + O(ε2), (c) a non-conservative
perturbation which ‘pulls up’ the unstable manifold.

a hyperbolic fixed point such that the corresponding stable and unstable manifolds are near
a homoclinic tangency. Furthermore, for simplicity, assume thatF is near the identity and
relatively near conservative. This means that the map is close to the timeε flow (for ε
small) of a vector field on the plane, and this vector field is nearly Hamiltonian. In summary
this means that

F = ϕHt=ε +O(ε2),

for a HamiltonianH . All elements are assumed to be real analytic. We shall consider the
following three steps to construct the diffeomorphism.

(1) We start with the timeε flow of a Hamiltonian,ϕHt=ε , with a homoclinic loop.
(2) This ‘integrable map’ first is perturbed by adding an O(ε2) terms maintaining

the conservative character. This generically gives an exponentially small splitting of
the separatrices (see [21]) such that, in a suitable parametrization, the unstable manifold
with respect to the stable manifold, is locally given by an expression of the form∑

n>1 an sin(nz + ϕn), where an = O(exp(−ncε−d)) for some positive constantsc and
d. Generically the first coefficient is bounded from below by exp(−c(1 + δ)ε−d) with
δ = δ(ε), δ ↘ 0 asε ↘ 0. Theϕn are suitable phases.

(3) Second we perturb in a non-conservative way, assuming that the main effect of this
perturbation is to ‘pull up’ the unstable manifold with respect to the stable manifold (see
figure 70).

To model a return map we split the diffeomorphism as the composition of two maps,
one near the saddle, the other being the reinjection (figure 71).

Let u parametrize the stable manifold. Instead ofu we shall usez = 2π logu/ logλ2.
Hencez ∈ [0, 2π ] as u moves on a fundamental domain. Near the saddle, for simplicity,
we assume that our map is linear. Letv = (a − b cosz)λz/2π1 be the local expression of
the unstable manifoldWu. This is compatible with the linear behaviour of the map. The
parametera measures the distance betweenWs and an ‘averaged’Wu

av, while b measures
the size of the oscillations ofWu with respect toWu

av, due to the splitting. A pointP is
determined by the coordinates(z, w) and thenu = λz/2π2 , v = (w + a − b cosz)λz/2π1 .

After a suitable number of iterates,P is mapped toP̄ with u small andv ∈ [λ−1
1 , 1]. In

view of the reinjection, a region likeR is sent toR∗ and then shifted toR′. A point like
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Figure 71. A sketch of the derivation of the return map.

A is moved toA∗, with u coordinatem ∈ [λ2, 1) and then toA′. Again assuming linearity
in the passage fromAB to A∗B∗, a vector(s, 0) is mapped tos(p, q). In this set-up the
quantitiesλ1, λ2, a, b, m, p, q, completely describe the geometry of the return map.

An additional simplification is obtained by neglecting the effect ofp. It affects the final
value ofz only in a mild way. Then, an elementary computation gives the return map. We
assumeb > 0 and scalew by w = bη. We obtain, by changing the origin ofz:(

z

η

)
7→
( 2π

logλ2
logm+ z+ 2π

logλ1
log(a + b(η + sinz))mod 2π

q

b
m− logλ1/ logλ2(a + b(η + sinz))− logλ2/ logλ1

)
. (5)

After some rearrangement (5) can be written as(
z

η

)
7→
(
z+ ω̂ + A log(â + b̂(η + sinz))

(â + b̂(η + sinz))ψ

)
=
(
z′

η′

)
, (6)

depending on five parametersA, â, b̂, ω̂ andψ = − logλ2/ logλ1.
The above hypotheses imply thatψ = 1+ µ, with µ small. Hence

η′ = (â + b̂(η + sinz))µ(â + b̂(η + sinz)).

If â � b̂ andη is not too large (ηb̂ � â), the first factor inη′ is almost constant:

η′ ≈ âµ(â + b̂(η + sinz)).

As this is linear inη, if âµb̂ 6= 1 we can shift the origin ofη to cancel the independent
term, obtaining in this way a new vertical variableρ, and (6), withβ = âµb̂, becomes of
the form (

z

ρ

)
7→
(
z+ ω + A log(1+ b̄(ρ + sinz))

β(ρ + sinz)

)
, (7)

a map which depends only on the four parametersω, A, b̄ andβ. Finally, we again use the
fact that b̄ (= b/a) is small to expand the logarithmic term in (7). Keeping the first term
in the expansion and introducingα = Ab̄, we have the simplified final form given by(

z

ρ

)
7→
(
z+ ω + α(ρ + sinz)

β(ρ + sinz)

)
. (8)

This exactly is the fattened Arnold family of maps we consider in this paper.
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Remarks.
(i) We assumed thata + b sinz gives the typical behaviour ofWu with respect toWs

with the generic assumptionb > 0. A complete expression would be of the type

a + b sinz+
∑
j>2

O(bj ) sin(jz+ ϕj ).

Dividing by a leads to the form

1+ b
a

sinz+
∑
j>2

aj−1O

((
b

a

)j)
sin(jz+ ϕj ).

Hence, thej th order harmonic has a coefficient not only small, ifb/a is small, but even
small compared with(b/a)j if a is small. That is, the coefficient of sin(jz + ϕj ) is small
compared with thej th power of the one of sinz.

(ii) In contrast, going from (7) to (8), and assumingρ = 0 to make this consideration,

log(1+ b̄ sinz) = b̄ sinz− 1
2 b̄

2 sin2 z+ 1
3 b̄

3 sin3 z− · · · ,
and the coefficient of thej th harmonic has a size comparable with thej th power of the
one of sinz. This difference with the behaviour of the first item will have effects to be
considered in appendix B.

(iii) However, if we considerA large in (7) (which holds true if the map is close to the
identity, since thenA = 2π/ logλ1 andλ1 > 1 is close to 1) then the first harmonic has
coefficientα = Ab̄ and thej th one has O(Ab̄j ) = O(αj/Aj−1), again small with respect
to αj .

Figure 72 displays the bifurcation diagram of (7) forA = 5, β = 0.3, as a function ofω
(the horizontal coordinate ranging from 0 to 2π ) andb̄ (the vertical coordinate ranging from
0 to 5

4). The initial conditions are taken ‘arbitrarily’ as(z, ρ) = (0.123 456 789, 0) and the
transient is 104 iterates. Periods up to 34 have been recorded. The black part corresponds
to some iterate with negative argument in the logarithmic term in (7). The white region
in the lower part of the tongues, corresponds to quasiperiodic invariant circles. The upper
white region to strange attractors. Different grey tones correspond to attractors of different
periods.

The main idea of this approach is as follows. To study the return map near homoclinic
tangency (see [36, 38, 45]) captures just a small part of the dynamics. This approach,
certainly restricted with some limitations concerning the nonlinearities, tries to capture the
full dynamics on a fundamental domain and furthermore to make clear that, modulo some
deformations, there are relatively few parameters to describe the typical behaviour of a large
class of systems close to homoclinic tangency.

We note that if the initial diffeomorphism (as in figure 70(c)) has a negative compressing
eigenvalue,−1< λ < 0, the computations can be carried out in a similar way. After suitable
identifications the only difference in equation (8) is that nowβ < 0. This justifies why we
are also interested in the case of negativeβ.

Appendix B. Effective computation of the dominant coefficient in the Arnold tongue

In this section we reconsider the resonant normal form coefficientAp/q of the fattened Arnold
family (cf section 2.4). Indeed, the dynamical properties heavily depend on conjecture 2.8,
saying thatAp/q(0) 6= 0. Here we shall give strong evidence in favour of this.
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Figure 72. Bifurcation diagram for the map (8).

To computeAp/q(0) (or for shortness,Ap/q) we can parametrize the invariant circle by

x = ξ +
∑
j>1

αjuj (ξ), y =
∑
m>0

αmvm(ξ),

whereuj (ξ) =
∑
|k|6j,k−j=2̇,k 6=0 uj,ke

ikξ and vm(ξ) =
∑
|k|6m+1,k−m=2̇+1 vm,ke

ikξ , in such a
way that the map restricted to the invariant curve is given by

ξ 7→ ĥ(ξ) = ξ + ω + c1α
2+ · · · + αq(Bp/qeiqξ + B−p/qe−iqξ )+O(αq+1),

with B−p/q = Bp/q . ThenAp/q = 2|Bp/q |.
To ask for invariance we write

ĥ(ξ)+
∑
j>1

αjuj (ĥ(ξ)) = ξ +
∑
j>1

αjuj (ξ)+ ω

+α
(∑
m>0

αmvm(ξ)+ sin

(
ξ +

∑
j>1

αjuj (ξ)

))
,
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m>0

αmvm(ĥ(ξ)) = β
(∑
m>0

αmvm(ξ)+ sin

(
ξ +

∑
j>1

αjuj (ξ)

))
.

By equating the coefficients ofαj−1 in the second relation and ofαj in the first one, for
j = 1, 2 . . . , we obtain, recurrently,v0, u1, v1, c1, u2, v2, u3, v3, c2, u4, . . . . Due to the
special structure of thevm anduj functions, to obtainBp/q we proceed as follows.

Let ω = 2πp/q, (p, q) = 1, q > 1, 0 < p < q, fj = (eijω − β)(1 − e−ijω) =
(1+β)(cos(2πpj/q)−1)+ i(1−β) sin(2πpj/q), zj = 2iuj,jfj . Then, determinez1, . . . , zq
by equating powers ofρ in the relation

q∑
j=1

zjρ
j−1 = exp

( q−1∑
j=1

zj

2fj
ρj
)
+O(ρq),

that is,

z1 = 1, zj = 1

j − 1

j−1∑
k=1

(j − k)zkzj−k
2fj−k

, for j = 2, . . . , q.

We obtain in this way

z1 = 1, z2 = 1

2f1
, z3 = 1

4f1f2
+ 1

8f 2
1

, z4 = 1

8f1f2f3
+ 1

16f 2
1 f3
+ 1

8f 2
1 f2
+ 1

48f 3
1

, . . . .

The value ofAp/q coincides with|zq |/(1− β), computed withω = 2πp/q. For instance,

A1/2 = 1

4(1− β2)
, A1/3 = 1

24(1− β)
(7+ 13β + 7β2)1/2

(1+ β + β2)3/2
,

A1/4 = 1

96(1− β)
(41+ 18β + 41β2)1/2

(1+ β2)2
.

These coefficients can be considered, in particular, for Arnold’s circle map, whenβ = 0.
A comparison with the formulae given in [1, p 274] shows the agreement. In [25, p 304]
there is an obviousπ factor missing. This has been propagated to several textbooks.

It is immediate thatzq is of the form
∑

l γl/
∏q−1
i=1 f(ji ,l) and (ji, l) ∈ {1, . . . , q − 1},

the sum being finite andγl ∈ Q. It is also easy to check, by induction onj , that
zq can be expressed as the quotient of two polynomials,zq = P(β)/Q(β), whereP ,
Q ∈ Q(ep), ep being apth primitive root of the unity. More concretely, forQ(β) one
hasQ(β) = ∏q−1

j=1 f
[(q−1)/j ]
j , where [ ] denotes the integer part. For a fixedp/q one has

to seeAp/q 6= 0 as a function ofβ ∀β ∈ (−1, 1). For β = 1 we havefj < 0, and,
hence,zp/q 6= 0, and, therefore,Ap/q(β) becomes unbounded whenβ ↗ 1. Hence, given
p/q, conjecture 2.8 is true forβ ∈ (β∗, 1), whereβ∗ depends onp andq. A direct check
suggests thatAp/q 6= 0 for all β ∈ (−1, 1) and allp/q such that(p, q) = 1, 0< p < q,
q 6 250. For some selectedβ andp the checks have been done up toq = 50 000.

The numerical experiments seem to suggest that

log(Ap/q)

q logq
= 1− C(p, q, β)

logq
,

where for fixedp andβ, C(p, q, β) seems to have a finite limit forq → ∞. Figure 73
displaysC(p, q, β) versusp/q for several values ofβ and 0< p < q/2, (p, q) = 1,
q 6 250. However, if we allowp andq to vary,C(p, q, β) seems to increase, at most, as
logq.

Table 2 gives, forβ = ±0.3, the values ofAp/q for several values ofp/q and the values
α∗p/q such that up to this value the width (inω) of the corresponding tongue, differs from
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Figure 73. Behaviour ofCp/q . See the text for additional explanation.

Table 2. Values ofAp/q .

β = 0.3 β = −0.3

p/q Ap/q α10% Ap/q α10%

1/2 0.274 7253E+00 > 1 0.274 7253E+00 0.864
1/3 0.123 3341E+00 0.931 0.881 5748E−01 0.929
1/4 0.886 4480E−01 0.564 0.422 7401E−01 0.493
1/5 0.876 5090E−01 0.374 0.234 8492E−01 0.341
2/5 0.399 6585E−01 0.985 0.297 2281E−01 > 1
1/6 0.110 2128E+00 0.269 0.165 7611E−01 0.267
1/7 0.168 1969E+00 0.204 0.143 6092E−01 0.221
2/7 0.277 9286E−01 0.784 0.948 2976E−02 0.493
3/7 0.211 6816E−01 0.866 0.154 8412E−01 0.967
1/8 0.302 1543E+00 0.161 0.149 2875E−01 0.187
3/8 0.153 6294E−01 0.985 0.819 7756E−02 > 1
1/9 0.625 2427E+00 0.131 0.180 2122E−01 0.162
2/9 0.339 1009E−01 0.462 0.415 5330E−02 0.284
4/9 0.152 3261E−01 0.722 0.108 7782E−01 0.836
1/10 0.146 6228E+01 0.109 0.247 2099E−01 0.142
3/10 0.142 9592E−01 0.839 0.338 4015E−02 0.467

the theoretical value, 2Ap/qαq , by less than 10%. Figure 74 displays the corresponding
tongues up toα = 1. We also note that forβ = −1, if q is even andj = q/2 then
fj = 0. Hence, in principle, ifβ ↘ −1 andq is even, we shall have|Ap/q | ↗ ∞. The
only exception seems to occur whenq = 4 (p = 1 or 3), because the terms 1/(8f1f2f3)
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Figure 74. First Arnold tongues for the casesβ = 0.3 (top) andβ = −0.3 (bottom).

and 1/(8f 2
1 f2) almost cancel and limβ→−1A1/4 exists (= 1

96). For period two,p/q = 1
2,

it is easy to see that the saddle-node bifurcations (or, better, elliptic-hyperbolic) occur for
ω = π ± 1

2α, displaying a linear, instead of a quadratic, character inα. Whenα ↘ 0 then
the y coordinates of the 2-periodic points become unbounded.

To haveAp/q > 0 for all β ∈ (−1, 1) can seem also natural because of the following
consideration. As said before, to haveAp/q = 0 one must haveP(β) = 0 (using the
representationzq = P(β)/Q(β)). Forβ ∈ R we can writeP(β) = P1(β)+ iP2(β), P1 and
P2 having real coefficients. ThenAp/q = 0 requiresP1(β) = P2(β) = 0, two conditions to
be satisfied.
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In the caseβ = 0, the conjecture can be proved. We have the following.

Proposition B.1. Let β = 0, ω = 2πp/q, (p, q) = 1, q > 1, 0< p < q. ThenAp/q > 0.

Proof. First we note that in this casefj = λj−1, whereλ = exp(2π ip/q). Let zj be defined
as above, introduce auxiliar variablesuk = 2k−1zk, and lett = ρ/2. The previous relation
between thezj is expressed as

∑q

k=1 ukt
k−1 = exp(

∑q−1
j=1 uj t

j /fj )+O(tq). Expanding the

exponential we getuk =
∑ (u1/f1)

r1 ...(um/fm)
rm

r1!...rm! , where the sum is over all finite sequences
r1, . . . , rm of non-negative integers with

∑m
j=1 jrj = k − 1. This can be used to compute

recurrentlyuk, k = 1, . . . , q, with u1 = 1. It follows

uq = P(λ)

(q − 1)!(λq−1− 1) . . . (λ− 1)
,

where P is a polynomial with integer coefficients. This implies that, in this case the
expression ofuq is simpler than the one given before forzq as quotient of two polynomials.
This fact can be easily seen by introducingvj = f1 . . . fj−1uj . Then, the quadratic
recurrence reads asvj = 1

j−1

∑j−1
s=1(j − s)vsvj−sM(λ), whereM(λ) = f1...fj−1

f1...fs−1f1...fj−s−1fj−s
is

a polynomial with integer coefficients. Moreover, noting that for any sequencer1 . . . with∑
jrj = q − 1 other thanq − 1, 0, . . . we have that the productr1! . . . divides(q − 2)!, we

can write

P(X) = (X + 1)(X2+X + 1) . . . (Xq−2+ · · · + 1)+ (q − 1)Q(X),

whereQ(X) is a polynomial with integer coefficients.
We have to showP(λ) 6= 0. Suppose, in contrastP(λ) = 0. ThenP is divisible over

the integers by the cyclotomic polynomial8q = Xq−1+ · · ·+1. Let r be a prime factor of
q − 1. Then8q divides(X2− 1)(X3− 1) . . . (Xq−1− 1) over the fieldZr . But then some
root σ of 8q in a splitting field overZr must satisfyσ j = 1 for some 26 j < q, which is
impossible by the theory of cyclotomic extensions, sincer is prime toq. �

Now we go back to a map like (7)(
x

y

)
7→
(
x ′

y ′

)
=
(
x + ω + γ log(1+ α(y + sinx))

β(y + sinx)

)
.

Let us introduce a new variable,w, given byw = α(y + sinx). Then the map (7) reads(
x

y

)
7→
(
x ′

y ′

)
=
(
x + ω + γ log(1+ w)

β(y + sinx)

)
.

As we did before for the case of the fattened Arnold family, we look for an invariant curve
of the form

x = ξ +
∑
j>1

αjuj (ξ), w = ξ +
∑
m>1

αmwm(ξ),

whereuj , wm are trigonometric polynomials (depending onω, β, γ ) whose highest-order
harmonic isj (or m). The parameterξ of the invariant curve goes, under the map, to

ξ 7→ ĥ(ξ) = ξ + ω + c1α
2+ · · · + c[q/2]α

q + αq(Bp/qeiqξ + · · ·)+O(αq+1).

Let ω = 2πp/q+ δ. As before, asking for invariance, one can compute the coefficientsw1,
u1, w2, u2, etc recurrently. To obtainBp/q , let aj be the coefficient ofαjeijξ in uj , andbj
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the one inwj . Let bj = icj . Then the coefficientsaj , cj and, finally,Bp/q , are obtained by
equating powers ofψ in the formulae

Bp/qψ
q +

∑
j>1

ajψ
jeijω =

∑
j>1

ajψ
j + γ log

(
1+ i

∑
j>1

cjψ
j

)
,

i
∑
j>1

cjψ
jeijω = iβ

∑
j>1

cjψ
j + 1

2i
eiωψ exp

(
i
∑
k>1

akψ
k

)
,

where one has to useω = 2πp/q. Let

exp

(
i
∑
k>1

akψ
k

)
=
∑
j>0

Mjψ
j , log

(
1+ i

∑
j>1

cjψ
j

)
=
∑
j>1

Njψ
j .

One derives immediately the recurrence

M0 = 1, cj = 1/2

βe−ijω − 1
Mj−1, Nj = icj − i

j

j−1∑
k=1

(j − k)ckNj−k,

aj = γ

eijω − 1
Nj, Mj = i

j

j∑
k=1

kakMj−k, j > 1,

and thenBp/q = γNq , and the desired coefficientAp/q = A(p, q, β, γ ) = 2|Bp/q |. We
note that now the symmetry is broken and one has to consider all the values 06 p/q < 1.
First we have setγ = 1. The minimum value of 2Ap/q as a function ofβ, for β ∈ [−1, 1]
has been computed forq 6 125. The value ofC(p, q, βmin(p, q), γ = 1) is displayed in
figure 75, whereC(p, q, β, γ ) is defined in an analogous way to the previousC(p, q, β),
as a function ofp/q. Figure 76 displaysβmin(p, q) as a function ofp/q, showing nice
features and interesting scaling properties. Again forγ = 1 it seems thatA(p, q, β,1) is
non-zero for all 0< p/q < 1, |β| < 1. Allowing now γ to change, it is easy to see that
Bp/q = P(β, γ )/Q(β), Q being the same polynomial we had forzq before. As an example
we displayA1/2, A1/3:

A1/2 = γ ((1− β)2+ γ 2(1+ β)2)1/2
4(1− β)(1+ β)2 ,

A1/3 = γ

48(1− β)(1+ β + β2)2

×{[γ 2(−β2+ 5β + 5)+
√

3γ (−5β2+ β + 1)+ 2β2+ 2β − 4]2

+[
√

3γ 2(3β2+ 5β + 1)+ γ (−3β2+ 3β − 9)+ 2
√

3(−β2+ β)]2},
the value ofA2/3 being obtained by replacing

√
3 by −√3. The only zeros ofA1/3 occur

for the values of(β, γ ): (1, 0), (1, 1√
3
), (−1, 1

2(−
√

75+ √59)), (−1, 1
2(−
√

75− √59)).
Those ofA2/3 are obtained by changing the sign ofγ . But none of them occur in the
domain of interest:|β| < 1, γ > 0. When we increaseq it is easy to obtain many zeros
of Ap/q for suitable values of(β, γ ). Now we have two parameters at our disposal! For
instance, forp/q = 1

5, β ≈ 0.401 406 37,γ ≈ 0.812 890 41 a zero is found. We have
numerically checked the behaviour of the width of the corresponding Arnold tongue. It is
of the form width≈ 0.0101α7 for α small. The term inα5 sin(5ξ) is zero, and the next term
with sin(5ξ) is of orderα7. No terms inα6 sin(5ξ) appear due to the symmetries of sin.
Hence, when a degeneracy occurs, the tongue seems to be ‘as generic as possible’.

Table 3 displays some zeros ofA(p, q, β, γ ) for different values ofp/q (up toq = 10).
In agreement with the comments at the end of appendix A and with conjecture 2.8, it seems
that the zeros are confined to moderate values ofγ .
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Figure 75. Value ofC, for γ = 1, at the value ofβ which makesC minimum. See text for
additional explanation.
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Figure 76. Value ofβ where the minimum ofC is attained. See text for additional explanation.

Appendix C. Conservative cases

For values of|β| close to 1 the fattened Arnold family can be considered as a perturbation
of an area-preserving map, either orientation preserving or reversing. Certainly these maps
are far from trivial, so a general perturbation scheme can not be carried out, from the
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Table 3. Zeros ofAp/q(β, γ ) in β ∈ (−1, 1), γ > 0.

p q β γ p q β γ

1 4 0.520 917 1523E+0 0.720 552 3590E+0 1 9 −0.926 758 3111E+0 0.226 197 8268E+0
1 5 0.401 406 3687E+0 0.812 890 4108E+0 1 9 −0.448 427 3572E+0 0.470 694 3503E+0
3 5 −0.825 016 2406E+0 0.676 513 8685E+0 1 9 0.829 992 3829E+0 0.583 430 6941E+0
3 5 −0.827 598 5143E+0 0.969 831 3264E+1 1 9 0.581 664 5686E+0 0.721 250 5267E+0
1 6 −0.747 960 1390E+0 0.483 670 4164E+0 1 9 0.278 927 1515E+0 0.963 676 8552E+0
1 6 0.779 544 5817E+0 0.652 758 9239E+0 2 9 0.473 543 6843E+0 0.737 310 7065E+0
1 6 0.346 026 2395E+0 0.871 468 9495E+0 2 9 0.416 104 6436E+0 0.810 041 0664E+0
1 7 −0.602 018 2089E+0 0.534 942 0497E+0 5 9 0.627 950 6846E+0 0.455 619 0918E+0
1 7 0.678 882 3733E+0 0.680 281 2598E+0 5 9 −0.699 261 7653E+0 0.843 644 2044E+0
1 7 0.314 159 2592E+0 0.911 810 8079E+0 5 9 −0.742 530 9959E+0 0.105 828 1840E+2
2 7 0.880 399 6530E+0 0.556 815 1047E+0 5 9 −0.940 207 3440E+0 0.142 994 9638E+2
2 7 0.552 729 4751E+0 0.697 939 6894E+0 7 9 −0.918 399 1187E+0 0.411 697 9675E+0
4 7 0.724 064 3397E+0 0.426 696 2975E+0 7 9 −0.896 158 9007E+0 0.322 034 1449E+2
4 7 −0.737 188 1058E+0 0.788 297 7662E+0 1 10 −0.812 332 8485E+0 0.239 091 4636E+0
4 7 −0.772 304 2786E+0 0.103 388 5290E+2 1 10 −0.875 061 5100E+0 0.362 051 8098E+0
1 8 −0.509 283 1366E+0 0.502 864 0631E+0 1 10 −0.408 750 8972E+0 0.439 762 6348E+0
1 8 0.894 353 8222E+0 0.578 359 2289E+0 1 10 0.946 846 4224E+0 0.511 305 2658E+0
1 8 0.620 187 4945E+0 0.703 090 3335E+0 1 10 0.784 866 2948E+0 0.592 188 6540E+0
1 8 0.293 459 3517E+0 0.941 253 2552E+0 1 10 0.554 427 2103E+0 0.735 821 3085E+0
3 8 0.765 802 7497E+0 0.393 073 5769E+0 1 10 0.268 159 6467E+0 0.981 319 6328E+0
3 8 0.837 510 0805E+0 0.540 142 9290E+0 3 10 0.782 917 0714E+0 0.586 548 3069E+0
5 8 −0.923 110 9964E+0 0.642 662 7020E+0 3 10 0.567 973 0396E+0 0.691 520 0797E+0
5 8 −0.788 150 7906E+0 0.199 377 6346E+2 7 10 −0.934 968 7039E+0 0.266 550 4923E+0

7 10 0.831 784 4842E+0 0.304 359 1977E+0

conservative case, except in the case of smallα. We refer to the conservative cases
in section 5.3.4, to make evident that|β| close to 1 is a good candidate for having
several simultaneous attractors, and also in appendix D, to study the limiting behaviour
of homoclinic tangencies in the saddle node case forβ →±1.

However, it is interesting to display some facts for the conservative cases. To distinguish
them hereafter, we shall reserve the name ‘conservative’ only for the caseβ = 1, referring
to theβ = −1 as ‘anticonservative’.

In all cases forα = 0 the maps become integrable, with the phase space foliated by
invariant curves (easy to make explicit) ifω 6= 2kπ , for somek ∈ Z, or with all the orbits
unbounded (except for the fixed points), otherwise. Hereafter we takeα 6= 0.

In the conservative case the change of variables(X, Y ) = (x, ω + αy) allows us to
rewrite the fattened Arnold family as

(X, Y ) 7→ (X + Y + α sin(X), Y + α sin(X)),

the standard map in the 2-torus, independent of the value ofω. This is fairly well known
and we shall not pursue this way.

In the anticonservative case different values ofω lead to different families of maps.
The change of variables(X, Y ) = (x, αy) leads to

(X, Y ) 7→ (X + ω + Y + α sin(X),−(Y + α sin(X))), (9)

also a map inT2. If we introduce the new variables(ξ, η) = (X,X + Y + ω) the map can
also be written as

AC(ω,α)(ξ, η) = (η + α sin(ξ), ξ + 2ω),
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Figure 77. Limit flows, for α → 0, of the second and fourth power, respectively, of the
anticonservative map forω = 0 andω = π/2.

which makes clear that it isπ -periodic in ω. This fact, combined with the symmetries
displayed at the end of section 1.2, implies that only the rangeω ∈ [0, π/2] has to be
studied. Let us consider first the extrema of that interval looking for the square (double
iterate)AC(ω,α)2 which is a conservative family of maps depending onα.

If ω = 0 one has

AC(0,α)
2(ξ, η) = (ξ + α sin(η + α sin(ξ)), η + α sin(ξ)),

denoted as ‘twist map’ (TM) and introduced in [62]. Further information on this family
of maps can be found in [40] and in [52]. For values ofα small enough the map can
be approximated by the timeα flow of the HamiltonianH(ξ, η) = cos(ξ) − cos(η). An
illustration of this flow inT2 is given in figure 77. For the TM the heteroclinic connections
split for all α 6= 0. The special structure of these connections implies that all invariant
curves are homotopically trivial. Hence, some ‘diffusion’ can take place for all non-zero
values ofα. That is, if we do not consider in the original mapAC(0,α) the values ofY
modulus 2π , there are unbounded orbits.

For ω = π/2 it is better to consider the fourth power of the original map. Several
cancellations occur and the map, for small values ofα, can be approximated by the timeα2

flow of the HamiltonianH(ξ, η) = sin(ξ) sin(η). An illustration of this flow is also given in
figure 77. Again it seems that for all non-zero values ofα the heteroclinic connections split
and diffusion is present. A study of this map, mainly concerning hyperbolic and statistical
properties, can be found in [24].

For values ofω not too close to 0 or 2π the phase portrait looks familiar: there
are periodic islands and also invariant curves of rotational type (in the(X, Y ) variables
they perform one revolution in theX direction) under the square of the map. Under
the initial map the rotational invariant curves can be 2-‘periodic’ or 1-‘periodic’. That
is, the image under the map (not the square) can give a different (‘twin’) curve or the
same initial curve. But for moderate values ofα there is no diffusion. Increasingα
a sufficiently large amount, strongly depending onω, diffusion is found again, after all
the rotational invariant curves have been destroyed. A big difference with the standard
map case and other well known cases is that, after losing all the invariant curves for
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Figure 78. An approximation of the set of values of(ω, α) for which a rotational invariant
curve exists and, hence, no diffusion occurs. The window is [0, 2π ] × [1, 2].

some valueα = α1, some invariant curves can reappear forα = α2 > α1. In fact
the set of values of(ω, α) for which it seems there exists an invariant curve is rather
wild. It seems that there are values of the parameters(ω, α) for which no invariant
curve exists, completely surrounded by values for which these curves exist. A rough
picture is shown in figure 78, obtained by a combination of brute force iteration of
(9), visual inspection and some refined methods to approximate the ‘last’ invariant curve
(see [55] for a description of these methods). For completeness it is displayed forω in
[0, 2π ].

This irregular behaviour is easy to understand, because a main reason for destruction of
invariant curves is the appearance of relatively large chaotic zones if an invariant 1-‘periodic’
curve approaches a rational rotation number (cf appendix D in the case of period 1). This
is a ‘dangerous’ situation, because this resonance, having a big bump in the central part,
can destroy a bunch of invariant curves. Resonances at other places are not so dangerous.
By moving parameters (e.g. increasingα) the resonance can migrate to another place and
invariant curves can reappear.

When the values ofω approach to 0 orπ/2 the values ofα for which diffusion starts
to appear, seem to decrease to zero. It is suspected that in the boundary of the set of
couples for which a rotational invariant curve still exists, the behaviour ofω (or ω − π/2)
is exponentially small with respect toα.

Another characteristic fact of the map (9) is that it no longer has the ‘monotone twist’
character of the standard map. This is the source of invariant curves like the one shown
in figure 79, which are far away from Lipschitz graphs. The curve is shown together with
three successive magnifications. After the second magnification irregular behaviour is seen
with vertical oscillations of the order of 10−10 when 2×109 iterations are carried out, due to
rounding errors. Using higher-precision arithmetics it is possible to see that, for the initial
condition,(0, 2.099 884 725 07), used in figure 79, there are in fact two nearby curves, one
being the image of the other under the map. To this end it is convenient to take 1010 iterates
and use the window [1.484 056 17, 1.484 056 25]× [3.946 100 521 18, 3.946 100 521 22],
near the minimum of the figure displayed after the second magnification. These two curves
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Figure 79. An invariant curve forω = 0.07× 2π, α = 1.39 under the map (4). As an
initial condition we took the point(0, 2.099 884 725 07). In the lower right corner appears a
magnification of the small rectangle marked in the full figure, corresponding to the window
[1.46, 1.49] × [3.9, 4.1]. In the frame which appears on the mid lower part, there is a
magnification of the very small rectangle marked in the previous one. The corresponding
window is [1.4835, 1.4845]× [3.946, 3.947]. Above this frame there is another one with a
extremely small window (see text).

are shown in the third magnification as upper and lower curves. The vertical distance
between them is close to 2.74× 10−11. The best determination of the initial condition, to
have a single invariant curve, that we have found, is(0, 2.099 884 725 066 170 395). The
corresponding curve is the middle one in the third magnification.

In many cases the last invariant curve seems to be of the type shown. This implies that
after the last curve is destroyed the diffusion is quite fast. In the standard map case it is
hard to see any diffusion if the value of the parameter is increased by 0.01 from the critical
one. In some sense, it seems ‘difficult’ to cross the Aubry–Mather sets, despite the fact that
they no longer separate the phase space. For the map (9), after the destruction of the last
invariant curve, the diffusion is very fast.

Certainly these families of anticonservative maps deserve a thorough study!

Appendix D. Perturbations of conservative cases

The conservative case and orientation-preserving case,β = 1, is just a standard map under
a suitable change iny (see appendix C). KAM theory can be applied to show the persistence
of invariant circles, filling most of the space forα small. There also exist infinitely many
resonant zones in which very small islands exist. Furthermore, the homoclinic tangles fill
zones which are exponentially small inα.

Whenβ goes away from 1 at most one invariant curve can persist, but the number of
attracting periodic orbits, obtained by perturbation of the previous elliptic periodic points,
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can be as large as desired. This may require very small variations ofβ.
Further variation ofβ may make former elliptic points pass through a flip bifurcation.

Their invariant manifolds can have homoclinic intersections and give rise to periodic strange
(small) attractors. It is not clear to the authors if the number of coexisting strange attractors
can be arbitrary large in this family, but we conjecture that this is true. Compare the
discussion in sections 3.2 and 5.3.4 and appendix C.

We now turn to the behaviour of saddle-node homoclinic tangencies for|β| ↗ 1. To be
precise, we analyse, for our family of maps, the behaviour of the couples(ω, β) for which
a homoclinic tangency to a saddle node is produced, for values of|β| close to 1, but less.

We start nearβ = 1. Letβ = 1−ε. We recall that the fold is produced forα = (1−β)ω
and then the fold is at(−π/2,−β/(1−β)). The changesξ = x+π/2, η = 1+ε(y+sinx)
lead to the map(

ξ

η

)
7→
(
ξ̄

η̄

)
=
(

ξ + ωη
η + ε(−η + 2 sin2(ξ̄/2))

)
.

Let us look for values ofω = aε, a being a finite constant. Then the map can be
approximated by a limit flow such that, the difference between the map and the time-ε

flow is exponentially small. The proof of this is similar to the one used for Bogdanov–
Takens diffeomorphisms in [11]. The vector field of the limit flow isX = X0+ εX1+ · · ·,
with

X0 =
(

aη

−η + 2 sin2(ξ/2)

)
.

Now we look for the suitable value ofa to have a homoclinic connection. The fixed point
(0, 0) is a saddle node and we look fora such that the unstable branch of the saddle node
coincides with one of the branches of the stable manifold. Due to the form of the vector
field, this must be the upper branch. Rough bounds ona can be easily obtained. Due to the
form of X0, by increasinga, the vector field rotates (and change modulus) anticlockwise.
This also shows the uniqueness ofa. The stable manifold has a limit slope−1/a. Let
us consider the line through(0, 0) with slope−4/π . The segment of this line between
ξ = −π/2 andξ = 0 is crossed by the vector field going downwards ifa < π/8.

On the other hand, along the homoclinic conection (between, say(−2π, 0) and (0, 0))
one should have

2π =
∫ ∞
−∞
(ξ̇ + aη̇)dt = 2a

∫ ∞
−∞

sin2 ξ

2
dt = 2a

∫ 0

−2π
sin2 ξ

2

dξ

aη
>

2π

ηmax
,

where ηmax is the maximum value ofη along the connection. Hence, one should have
ηmax > 1. As the vector field is horizontal onη = 2 sin2(ξ/2), the unstable branch is
bounded byη = 1 if ξ ∈ (−2π,−3π/2). Moreover, on the lineη = −ξ/a the vector field
points to the upper part and the curve entering(0, 0) through the (strong) stable manifold
should remain below this line. Hence, ifa > 3π/2 we shall haveηmax< 1.

Therefore we have proved the following.

Proposition D.1. The line on the(ω, β) plane of internal homoclinic tangencies forβ
tending to 1 is of the formω = a(1− β)+O((1− β)2) with a ∈ (π/8, 3π/2).

Remarks.
(i) The same is true for the outer tangencies and for the cubic tangencies to the strong

stable foliation, the differences between all those lines being exponentially small in 1− β.
(ii) A direct numerical computation showsa ' 0.702 563 658 236. The behaviour is

shown in figure 80.
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Figure 80. Limit behaviour of the homoclinic connection nearβ = 1.

Now we pass to the caseβ ↘ −1. This is more involved because, to have a limit flow
as a good approximation, one has to work with the square of the map. We putβ = −1+µ,
µ small, and thenα = ω(2− µ).

Let u = x + π/2, v = 2(y − 1−µ
2−µ + sin2(u/2)). The map is expressed as(

u

v

)
T7→
(
ū

v̄

)
=
(
u+ ω(1− µ

2 )(v + 2s2)

−(1− µ)(v + 2s2)+ 2s̄2

)
,

wheres = sin(u/2), s̄ = sin(ū/2). We shall denote alsō̄s = sin( ¯̄u/2). For T 2 we obtain(
u

v

)
T 27→
( ¯̄u
¯̄v
)
=
(

u+ ω(1− µ/2)(µ(v + 2s2)+ 4s̄2)

(1− µ)2(v + 2s2)− (1− µ)4s̄2+ 2¯̄s2

)
.

The mapT has a saddle node at(0, 0) with stable eigenvalue−(1 − µ) and related
eigenvector(ω,−2).

First we consider the conservative case,µ = 0. ThenT 2 reduces to

T 2
c : (u, v) 7→ (u+ 4ωs̄2, v + 2(s2− 2s̄2+ ¯̄s2

)).

The origin has a centre manifold which contains an unstable and a stable branch (foru > 0,
u < 0, respectively, locally). No other manifold enters or leaves the origin.

Assumingω � 1 the mapT 2
c is a perturbation of the identity. It is possible to construct

a Hamiltonian such thatT 2
c is the time-1 flow of the Hamiltonian plus a remainder bounded

by exp(−c/ω) for a suitablec > 0 (cf Neishtadt [37, 11]). The Hamiltonian up to order 3
in ω is

H = ω4s2v + ω2(2csv2− 8cs5)+ ω3

(
v3

3
(1− 2s2)+ v

(
−12s4+ 40

3
s6

))
,

where, as before,s = sin(u/2) and c = cos(u/2). It is necessary to use, at least,
approximations to orderω3, lower order (inω) Hamiltonians being degenerate.
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Figure 81. Level lines of the Hamiltonian which approximatesT 2
c .
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Figure 82. Magnification of the previous figure near the origin.

In fact higher-order terms (inωk, k > 4) pruduce minor qualitative and quantitative
modifications to the dynamics. Also the term inω3v can be skipped to analyse the behaviour
of H .

The centre manifold through(0, 0) for H has the expressionv = 2ωcs3 + O(ω3). It
is a separatrix of the Hamiltonian. Along the separatrix one hasu̇ = 4ωs2(1+ O(ω2s2)).
Hence, the dominant temporal behaviour of the separatrix isu = 2 arccot(−2ωt), having
singularities att = ±i/(2ω).
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Figure 83. The stable and unstable manifolds of the fixed point underT 2
c in the(u, v) variables.

Figure 81 contains a plot of the level lines ofH for ω = 0.02× 2π and values of
the energy,h, between−10−8 and 10−8 with step 10−9. All the lines are rather close to
v = 2ωcs3 except in a neighbourhood of the origin, displayed in figure 82. Near the origin
the dominant terms are

H = ωu2v + ω2(uv2− u5/4)+ ω3v3/3.

A Newton polygon analysis shows that there is only one component ofH = 0. The flow
is vertical (̇u = 0) only at u + ωv = 0, and horizontal (̇v = 0) near 2u + ωv = 0. The
local maximum ofH = h is attained atu = −(3h

2 )
1/3 + o(h) and thenv ' 2

ω
( 3

2h)
1/3.

Furthermore, the period on the level linesH = h 6= 0 is of the form ctant/(ωh1/3), for h
andω small.

We return to the conservative diffeomorphismT 2
c . Using arguments similar to those

given in [21, 22] it is possible to show that the splitting of separatrices, that is the distance
between the stable and unstable manifolds of the origin for a fixedu, has an upper bound
of the formN(δ) exp(−(π − δ)/ω) for any δ > 0, uniformly in ω for 0 < |ω| < ω0. The
existence of homoclinic points is ensured by different considerations. The simplest one is
that, locally near the origin,Tc changes the sign ofv. Hence,Wu cannot remain at one
side ofWs . Another consideration is to look atT 2

c as a perturbation of the time-one flow
of H . As this last one is a twist map (singular at the levelh = 0) invariant curves exist for
ω small enough (andh not too small). Then area-preserving arguments show the existence
of homoclinic points. Generically (see again [21]) the oscillation ofWu with respect toWs

is modelled by a sinusoidal function (higher-order harmonics being much less important).
Figure 83 displays a plot ofWu and Ws for T 2

c . For the centre manifold a local
expression as a graph (see [51])v = g(u) =∑k>3,k=2̇+1 aku

k is used up to order 29. It is
easy to derive a recurrence for theak coefficients. This approximation gives small errors for
|u| < 0.620 18. A fundamental domainu ∈ [0.597 63, 0.620 18] has been chosen and the
points have been iterated for 24 001 times. Figure 84 showsWu, Ws on a magnification,
obtained by taking 1000 points in the fundamental domain and iterating 5000 times. Finally,
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Figure 84. Magnification of the previous figure to the left of the fixed point, showing the
oscillations of the unstable manifold.

Figure 85. Magnification of the invariant manifolds near the origin. See the text for additional
explanation.

figure 85 showsWu, Ws near the origin. It has been obtained with 5000 points on a
fundamental domain and 24 001 iterates, but only the iterates≡ 0, 1 (mod 1000) have been
displayed. Hence, it contains just one ‘wave’ every 500 ‘waves’.

The splitting can be measured as the maximum difference betweenWu andWs in one
wave. This depends on the value of the domain ofu where this is explored. See later
for the relation between the amplitudes of the waves at differentu ranges. We know this
amplitude is exponentially small inω. Guided by the results of Lazutkin [31] for similar
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Figure 86. Limit scaled behaviour of the stable manifold of the origin underT 2 for µ� ω � 1,
in the (r, s) variables.

phenomena we have looked at a behaviour of the amplitude likeAωβ exp(−π/ω). The
value B = −2 has been obtained experimentally, but it is possible to obtain this result
analytically (Gelfreich [23]).

Now we pass to the complete diffeomorphism,µ 6= 0, assumingµ � ω � 1. In fact,
we shall assumeµ exponentially small inω. The mapT 2 is again close to the identity and
can be written as the time-1 flow of a vector field plus a perturbation. In a vicinity of the
origin it is enough to keep, in the vector field, the terms of first and second degree inu, v
and the terms of first degree havingµ as a factor. We obtain

u̇ = ω(u+ ωv)2+ µωv,
v̇ = −2ωuv − ω2v2− 2µv.

Introducingv̂ = ωv, γ = µ/ω and scaling time byω we have

u′ = (u+ v̂)2+ γ v̂,
v̂′ = −2uv̂ − v̂2− 2γ v̂.

Now we introduce new scaled variables,r, s, by r = −(u+ v̂2/2)/γ , s = (v̂/4γ )2 and
scale time by−γ , obtaining the vector field with components(r2+4s, 4s(1− r)), which is
parameter independent. Going back one can check that the skipped terms modify the vector
field by an O(γ ) perturbation when(v, s) move on any compact ofR2, for γ small enough.
We want to obtain an approximation of the unstable manifold ofT 2 reaching the origin
with slope−2/ω. This is equivalent to looking at the unstable manifold of the last vector
field, leaving(0, 0) with slope 1. The equation can be written asds

dr
= 4s(1−r)

r2+4s . It is clear
that whenr goes from 0 to 1 the slope decreases monotonically from 1 to 0. Fromr = 1
on s decreases, but remaining positive for allr > 0. For r large one hass =∑r>4 ak/r

k,
a4 > 0. Numerically one obtainsa4 ' 37.853 1794. Figure 86 displays the behaviour ofs

versusr for that manifold.
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Figure 87. Numerical evidence of the asymptotic behaviour ofµ as exponentially small with
respect toω. See the text for additional explanation.

Figure 88. The stable manifold and some arcs of the stable one, at the homoclinic tangency.

Finally one has to derive the relation betweenµ andω to have an homoclinic tangency.
Going back to theu, v variables, the expression of the stable manifold forr large (compared

with γ ) is v ' 4µ3

ω4
a

1/2
4
u2 . This also gives how the amplitude of the waves of the unstable

branch with respect to the (weak) stable branch, behave with respect to the value ofu,
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u∗, where they are mesured. At different points,u∗1, u∗2 the respective amplitudes scale
like A1/A2 = u∗22 /u

∗2
1 . Figure 87 displays the experimental behaviour of the amplitudeA,

reduced tou∗ = 1. If we measureA at u∗, to have an homoclinic tangency one should
haveu∗2AωBe−π/3ω ' 4µ3a

1/2
4 ω−4, and hence

µ =
(
Au∗2

4a1/2
4

)1/3

ω(4+B)/3e−π/3ω.

Using B = −2 one hasµ = Dω2/3e−π/3ω. For ω = 0.02× 2π , for instance, one has
µ = 1.011 46× 10−4. This allows us to obtain the approximate valueD = 1.7. It fits with
the values ofµ(ω) determined numerically in the rangeω/2π ∈ [0.014, 0.03]. Smaller
values ofω produce numerical problems working with 16 decimal digits arithmetics.

Figure 88 displays the stable manifold of the origin forω = 0.02 × 2π , µ =
1.01146× 10−4, and one every each 2500 waves of the unstable one in the window
[−0.004, 0.0008]× [−0.02, 0.02]. Again local representations as graphs to order 29 have
been used for the manifolds, starting at order 2 for the unstable branch and 1 for the stable
manifold. Summarizing, and letting aside numerical facts, the value ofβ for which a
homoclinic tangency to the saddle node is produced, behaves likeβ = −1+ exponentially
small inω.
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[21] Fontich E and Siḿo C 1990 The splitting of separatrices for analytic diffeomorphismsErgod. Theor. Dynam.
Syst.10 295–318
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[50] Simó C 1979 On the H́enon–Pomeau attractorJ. Stat. Phys.21 (1979), 465-494
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