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Governance and Matching�

Tomas B. Klos
y

SOM Theme B: Inter-Firm Coordination and Change

Abstract

This paper is concerned with the organization of transactions of goods

and services between consecutive stages of activity. An economic theory

of organization, transaction cost economics (TCE)|which proposes that

organizational form (e.g. market and hierarchy) is adjusted to the at-

tributes of transactions|is extended with the idea that the governance

of transactions should be analyzed within the wider network of the �rms

they connect, and that agents' behavior is guided by adaptive learning

rather than by optimization.

An agent-based computer simulation model is developed and exper-

imented with, to study the patterns of governance that emerge from

interactions between agents making and breaking relations. In each of a

sequence of timesteps, a matching algorithm assigns buyers to suppliers

or to themselves, implementing their choices for market and hierarchy,

respectively. From each timestep to the next, the agents are allowed

to adapt their preferences for each other|that determine the outcome

of the matching|to their experiences. Patterns of economic organiza-

tion are thus `grown' as the outcome of processes of interaction between

boundedly rational agents adaptively searching for `good' organization.

Keywords: governance, trust, matching, arti�cial adaptive agents
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1 Introduction

This paper is concerned with the organization of transactions of goods or ser-

vices between stages of activity. Two consecutive stages might be brought

together within a single �rm|using hierarchy to organize transactions be-

tween the stages; or the di�erent stages could be distributed across separate,

specialized �rms|using the market to organize transactions between them.

Other organizational forms `between market and hierarchy' could also be used.

According to transaction cost economics (Coase 1937, Williamson 1985), the

decision between these alternatives is made by `aligning' organizational form

with the attributes of the transaction to be organized.

In the current paper, it is attempted to deal with Coase's (1998, p. 73) recent

observation that \[w]e cannot con�ne our analysis to what happens within a

single �rm", but that \[w]hat we are dealing with is a complex interrelated

structure" (Coase 1995, p. 245). Furthermore, although TCE builds its main

`discrete alignment hypothesis' on the assumption that economic agents are

boundedly rational and potentially opportunistic, we submit that it is precisely

their bounded rationality that may prevent economic agents from performing

this alignment successfully, especially in the context of the complex interre-

lated structures that Coase (1995) suggests we are dealing with. Therefore, in-

stead of searching for optimal mechanisms of governance that �rms should (but

may never) use, we use computer simulations to model the process by which

agents adaptively search for satis�cing|rather than optimal|organizational

forms, to generate hypotheses about which forms economic agents (come to)

use.

The next section discusses governance in more detail. Networks of �rms are

viewed as complex systems containing adaptive agents (Holland 1992, Holland

and Miller 1991), as discussed in Section 3. Section 4 introduces `matching',

the tool used to build Coase's (1995) complex interrelated structures from

individual �rms' preferences for di�erent organizational forms. Section 5 de-

velops the computer simulation model in which these complex interrelated

structures are build in each of a sequence of timesteps, while �rms may adapt

their preferences from each timestep to the next. Results from experimen-

tation with the simulation model are presented and discussed in Section 6.
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Section 7 concludes.

2 Governance

The unit of analysis in TCE, as its name suggests, is the transaction. \A

transaction occurs when a good or service is transferred across a technolog-

ically separable interface. One stage of activity terminates and another be-

gins" (Williamson 1981a, p. 552). Rather than focus on individual stages of

activity|viewing the �rm as a production function to be optimized|TCE

focuses on transactions between stages of activity and views the �rm as one of

the organizational forms that may be used to organize such transactions. The

core of the argument is that the �rm and the market are alternative forms for

organizing transactions, that transactions carry costs (transaction costs) and

that the various organizational forms have di�erential abibilities to economize

on these costs, so that for some transactions, it is economic to organize them

within a �rm's hierarchy rather than on the market.

The interchangeability of market and hierarchy in this respect was recog-

nized for the �rst time by Coase (1937), who received the 1991 Nobel Prize in

Economics for his discovery of the signi�cance of transaction costs in elucidat-

ing The Nature of the Firm; Olson (1965)1 and Williamson (1975) followed

up on Coase's insights, distinguishing market and hierarchy as alternatives.

Later on, Williamson (1979, p. 234) additionally acknowledged some \inter-

mediate modes of organization", \in which bilateral dependency conditions

are supported by a variety of specialized governance features (hostages, ar-

bitration, take-or-pay procurement clauses, tied sales, reciprocity, regulation,

etc.)" (Williamson 1991, p. 269).

Solving governance problems in particular circumstances requires, according

to TCE, that organizational form (`governance') is aligned with the attributes

of the transaction to be organized, in a discriminating|mainly transaction

cost economizing|way; in general, the trade-o� should be considered between

costs of transaction, organization and production. As for the attributes, a

transaction occurs with a certain frequency, is surrounded by a certain degree

1Olson (1965, p. 12) writes about \economic organizations that are mainly means through

which individuals attempt to obtain the same things they obtain through their activities on

the market".
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of uncertainty, and, most importantly, is supported by investments in assets

with a certain degree of speci�city, i.e. the extent to which those assets can

not be redeployed outside the transaction and make sustaining the transaction

a necessary condition for obtaining returns on investments in them. Because

of the �rst of TCE's two behavioral assumptions|that agents are boundedly

rational|contracts are necessarily incomplete, so that before the end of the

period during which the transaction needs to be sustained, unforeseen con-

tingencies may arise to which the parties will have to adapt. However, when

separate, autonomous �rms are involved, then because of TCE's second behav-

ioral assumption|that agents are potentially opportunistic|this adaptation

can not be assumed to be cooperative (i.e. in their mutual interest), but will

rather result in costly haggling over the distribution of the unforeseen gains

or losses (Williamson 1981a). When organizing a transaction between such

separate autonomous �rms, therefore, the potential loss of returns on invest-

ments in speci�c assets, as well as the probability of that loss, increase with

the speci�city of the assets. With increasing speci�city, the costs of safeguard-

ing against the expected loss eventually become so high that the transaction

should be removed from the market and organized within the �rm, where

adaptation is more likely to be cooperative and the costs lower.

3 Complex adaptive systems

3.1 Complex systems . . .

Recently, the founding father of transaction cost reasoning, Coase (1995, p.

245), noted that

\[t]he analysis cannot be con�ned to what happens within a single

�rm. The costs of coordination within a �rm and the level of

transaction costs that it faces are a�ected by its ability to purchase

inputs from other �rms, and their ability to supply these inputs

depends in part on their costs of coordination and the level of

transaction costs that they face which are similarly a�ected by

what these are in still other �rms. What we are dealing with is a

complex interrelated structure."
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Holland (1992) and Holland and Miller (1991) suggest to study economic sys-

tems as `complex adaptive systems', where a complex adaptive system (CAS)

\is a complex system containing adaptive agents, networked so that the envi-

ronment of each adaptive agent includes other agents in the system" (Holland

and Miller 1991, p. 365). The CAS approach thus appears to be ideally suited

to deal with Coase's (1995) observation, which is what is attempted in the

current paper.

3.2 . . . and adaptive agents

It is granted that TCE assumes bounded rationality, albeit for the sole purpose

of rendering problematic the combination of asset speci�city and opportunism;

all three are needed as conditions for the existence of �rms, i.e. conditions

under which the market looses (some or even all of) its advantage because of

increasing transaction costs.2 However, after assuming bounded rationality

(for this purpose), TCE goes on to hypothesize alignment of transactions

with governance structures, while it is precisely their bounded rationality that

may prevent economic agents from successfully performing this alignment,

especially in the context of the `complex interrelated structures' that Coase

(1995) suggests we are dealing with.

In this paper, therefore, a di�erent approach than the application of the

mathematical logic of economic optimization (or `alignment') will be taken to

generate propositions about how economic activity is organized. Individual,

boundedly rational economic agents are simulated in a computational model,

along with the decentralized trades they initiate between each other. As in

Vriend's (1995, p. 205) model, then, \market interactions depend in a crucial

way on local knowledge of the identity of some potential trading partners".

The agents themselves decide whether they want to make or buy. Moreover,

the option to `buy' really just consists of a number of alternatives to buy

from. A market has to be `made', before it can ever used as a governance

2These conditions, by the way, although necessary, are not necessarily su�cient. The

theory says that under these circumstances �rms may exist, but it does not explain how

they come into existence: it speci�es the conditions under which �rms have a comparative

advantage over markets, but not what is required for this advantage to be translated into

the actual emergence of �rms (cf. Axtell 1999), which is addressed in the current paper|it

can not be done within TCE's conceptual framework.
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form (Vriend 1995, Vriend 1996, Weisbuch et al. 1998). Rather than rely

on standard, anonymous random matching devices, these decisions are also

explicitely incorporated in the model. Agents are assumed to have di�erential

preferences for di�erent potential trading partners (Weisbuch et al. 1998).

Economic organization is studied from the bottom up (cf. Epstein and Axtell

1996); the resulting distribution of economic activity across di�erent organi-

zational forms emerges from processes of interaction between these agents, as

they adapt future decisions to past experiences. The system may or may not

settle down and if it does, the resulting equilibrium may or may not be trans-

action cost economic; in any case, \[i]t is the process of becoming rather than

the never-reached end points that we must study if we are to gain insight"

(Holland 1992, p. 19).

3.3 Agent-based Computational Economics (ACE)

\[T]he specialization to economics of the basic Complex Adaptive Systems

(CAS) paradigm"3 described above, goes under the name Agent-based Com-

putational Economics (ACE). This approach is used more and more often to

study problems in economics, such as in the repeated prisoner's dilemma (Klos

1999, Miller 1996, Stanley et al. 1994), social dilemmas (Glance and Huberman

1994) and on �nal-goods markets (Albin and Foley 1992, Vriend 1995), stock

markets (Arthur et al. 1997), industrial markets (P�eli and Nooteboom 1997),

whole-sale markets (Kirman and Vriend 1998, Weisbuch et al. 1998), labor

markets (Tesfatsion 1999), spatial political models (Kollman et al. 1992, Miller

and Stadler 1998), etc. As shown in the current application, the ACE-approach

is also very well suited for studying economic organization.

The essence of this approach is that economic phenomena are studied as

they emerge from actual (simulated) interactions between individual, bound-

edly rational, adaptive agents. They are not deduced from abstract models

employing representative agents, auctioneers or anonymous, random match-

ing, etc. Rather, whether an interaction takes place between any two given

agents is left for them to decide. What the agents subsequently do in that in-

teraction is their own|possibly sub-optimal|decision, that they make on the

3Quoted from the ACE website, maintained by Leigh Tesfatsion at:

http://www.econ.iastate.edu/tesfatsi/ace.htm
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basis of their locally available, incomplete information and as a result of their

own (cognitively-limited) processing of that information. Appropriate forms

of reasoning are induction and abduction, rather than deduction as used in

optimization models that are solved for `never-reached end points'.

4 Matching

The crucial insight underlying our model of �rms attempting to solve problems

of organization, is that their choices between market or hierarchy can also be

seen as the result of a process in which buyers are assigned to suppliers or

to themselves, respectively. Such a process, in turn, can be generated by

executing a so-called matching algorithm. The simulation model presented

in Section 5, therefore, uses such a matching algorithm;4 the current section

describes the algorithm in some detail.

A matching algorithm produces a set of matches (a matching) on the basis of

individual agents' preference rankings over other agents. Besides a preference

ranking, each agent maintains a `minimum tolerance level' that determines

which other agents are acceptable, namely those agents that are somehow

`better' than the agent's minimum tolerance level; agents will not (want to)

be matched to other agents they deem unacceptable. Finally, each agent has a

maximum number of matches it can be involved in at any one time (a quotum).

The algorithm used is Tesfatsion's (1996) deferred choice and refusal (DCR)

algorithm, which extends5 Gale and Shapley's (1962) deferred acceptance al-

gorithm.6 The DCR algorithm is used with some quali�cations. First of all,

only disjoint sets of buyers and suppliers are allowed, so that there are no

agents that can be buyer as well as supplier. So, although buyers may be

their own supplier, they can not supply to other buyers. Furthermore, we

4See (Roth and Sotomayor 1990) for an excellent introduction to and overview of matching

theory.
5To be precise, the DCR algorithm allows both sides of the market to be coincident,

overlapping or disjoint, and it also allows arbitrarily speci�ed o�er and acceptance quota.
6These algorithms produce stable matchings, which are matchings that have no blocking

(pairs of) agents, i.e. (pairs of) agents who can (bi- or) unilaterally improve upon their actual

situation under the matching by|rather than to their actual match|being matched to (each

other or) themselves. The DCR algorithm was used because it provides a way of assigning

agents to each other, not because it produces stable matchings; in the current application,

stability is just a side-e�ect.
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allow di�erent agents to have di�erent quota|i.e. di�erent maximum num-

bers of matches allowed at any moment in time|because di�erent buyers and

suppliers are likely to want di�erent numbers of partners. Finally, and most

importantly, unlike the DCR algorithm, we do allow buyers to be matched to

themselves, in which case they are their own supplier. Each buyer includes

itself as one of the alternatives in its preference ranking, and suppliers not

ranking higher than the buyer are unacceptable. This e�ectively endogenizes

the buyer's preferences for di�erent organizational forms; a buyer prefers to

remain single (and `make') rather than `buy' from an unacceptable supplier.

The argument is that buyers on industrial markets don't necessarily need a

supplier to make a pro�t; they can choose to make rather than buy what

they need. On �nal goods markets, the agents on both sides of the market

are qualitatively di�erent from one another: consumers are individual people

but �rms are groups of individuals; people can not do certain things that or-

ganizations can do. On industrial markets, the agents on both sides of the

market are �rms, so that a buyer-�rm may perform the same functions as a

supplier-�rm|albeit less e�ciently because the buyer does not specialize in

performing those functions|and thereby economize on the costs of coordinat-

ing the transaction with the supplier-�rm; determining whether the buyer-�rm

should or should not perform a function itself is at the heart of transaction

cost economic reasoning.7

The algorithm Buyers may have one or more suppliers and suppliers may

have one or more buyers; each buyer b has an o�er quotum, ob (� 1) and each

supplier s has an acceptance quotum, as (� 1). Before the matching, all buyers

and suppliers establish a strict preference ranking over all their alternatives.

The algorithm then proceeds in a �nite number of steps.

1. In the �rst step, each buyer sends a maximum of ob requests to its

most preferred, acceptable suppliers.8 Because the buyers typically have

7Recently, theories have been developed from the `competence perspective' (see, e.g.,

Nooteboom 1992, P�eli and Nooteboom 1997), that stress other arguments for �rms to set

up relations with other �rms. The extensions of transaction cost economics proposed in the

current paper also go in that direction.
8The algorithm structurally favors the agents that send the requests; buyers seem more

plausible than suppliers in that respect.
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di�erent preference rankings, the various suppliers will receive di�erent

numbers of requests.

2. The suppliers �rst reject all requests received from unacceptable buyers.9

Then, each supplier `provisionally accepts' a maximum of as requests

from its most preferred acceptable buyers and rejects the rest (if any).

3. Each buyer that was rejected in any step �lls its quotum ob in the next

step by sending requests to (ob minus the number of outstanding, pro-

visionally accepted, requests) next-most-preferred, acceptable suppliers

that it has not yet sent a request to.

4. Each supplier again rejects requests received from unacceptable buy-

ers and provisionally accepts the requests from a maximum of as most

preferred, acceptable buyers from among newly received and previously

provisionally accepted requests and rejects the rest. As long as one or

more buyers have been rejected, the algorithms goes back to step 3.

The algorithm stops if no buyer sends a request that is rejected. All provision-

ally accepted requests are then de�nitely accepted. An example-application

of this matching algorithm is presented in Appendix A.1.

5 The simulation model

Firms sell a di�erentiated product on a �nal-goods market; the simulation

model, however, really only captures the industrial market on which these

�rms are buyers, possibly interacting with suppliers. Governance pertains to

the transaction between the production and the sales of the product. Each �rm

always sells the product himself, and chooses to either produce the product

himself, or let a supplier produce it for him, in which case the �rm is a buyer.

These choices are generated by the DCR matching algorithm: each buyer

is either matched to a supplier or to himself, expressing his choice between

market- and hierarchichal governance, respectively. The simulation-dynamic

9For the moment, we assume that all buyers are acceptable to the suppliers; suppliers

do not, like the buyers, have any alternative, so they will rather supply to any buyer than

remain single. It might be investigated, however, whether for a supplier it is worthwhile to

also use a tolerance level for protection against being exploited by buyers.
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refers to the fact that the algorithm is applied in each of a sequence of discrete

timesteps. The outcome of the matching in each timestep is determined by the

agents' preference rankings over acceptable alternatives, while the agents may

change their preference ranking from each timestep to the next.

After the matching in each timestep, suppliers that are matched to a buyer

produce for their buyer(s), while buyers that are `self-matched' (not matched

to a supplier) produce for themselves. Assets that suppliers invest in for the

production for a certain buyer, are speci�c to that buyer to the extent that

the buyer's product is di�erentiated; the remainder of the assets is `general

purpose'. Suppliers enjoy scale-economies in accumulated general purpose as-

sets used in the production for multiple buyers. Furthermore, as their relation

lasts longer, a supplier becomes more e�cient at using speci�c assets in the

production for a particular buyer. After the production, all buyers sell their

products on the �nal-goods market. The events in this latter part of each

timestep|i.e., after the matching|may lead the agents to adapt their pref-

erence rankings, used by the DCR algorithm in the next timestep. The way

preferences are established is described in the next section (5.1). Section 5.2

discusses the implementation of the simulation.

5.1 Preferences

The preferences used in the matching process are based on so-called `scores'

that each agent x assigns to all the agents y it can possibly be matched to:

scorexy expresses the pro�t that x expects to make as a result of coordinating

a transaction with y (in a buyer's case, y may be equal to x). It is a function

of (1) the pro�t x can potentially make as a result of coordinating the trans-

action with y and (2) x's trust in y, which is interpreted as x's assessment of

the probability that y will let x realize that pro�t potential|i.e. the proba-

bility that y will not behave opportunistically. In order to be able to allow

agents to attach di�erent weights to pro�tability versus trust, however, simple

multiplication of the two is turned into a Cobb-Douglas functional form:

scorexy = pro�tability�xxy � trust1��x
xy ;

where scorexy is the score x assigns to y, pro�tabilityxy is the pro�t x may

make `through' y, trustxy is x's trust in y and �x 2 [0; 1] is the importance x
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attaches to pro�tabilityxy relative to trustxy, i.e. the `pro�t-elasticity' of the

scores that x assigns. It is the value of �x that xmay adapt from each timestep

to the next. The next two sections (5.1.1 and 5.1.2, respectively) describe how

pro�tability and trust are determined.

5.1.1 Pro�tability

A buyer's potential to generate pro�ts for a supplier is a function of the buyer's

position on the �nal market|where he is a seller|as expressed in the degree

of product di�erentiation on the market. A supplier's potential to generate

pro�ts for a buyer is determined by the supplier's e�ciency in producing for

the buyer.

Product di�erentiation The model allows for varying degrees of product

di�erentiation, i.e. price/cost ratios: not all the �rms in an industry sell the

same, homogeneous product, or at least, consumers perceive di�erent �rms'

products as being imperfect substitutes. Consumers have idiosyncratic tastes

and �rms' products have di�erent characteristics, which means that, relative

to its competitors' products, each �rm's product variant is more or less unique.

Because \consumers (. . . ) are prepared to pay more for variants that are better

suited to their own tastes" (Anderson et al. 1992, p. 1), �rms that sell those

particular variants have some degree of `market power': they can raise the

price for which they sell their product, without losing at least some of their

customers to competitors, as long as the extent to which their product is better

suited to those customers' tastes|relative to their competitors' products|

more than o�sets the price-increase. This degree of market power will be

expressed in a buyer-speci�c variable db 2 [0; 1] that determines the pro�t the

buyer will make when selling his products. We will be experimenting with

di�erent values for db to see how they a�ect the choices that buyers make.

E�ciency As set out above, a buyer's choice of organizational form pertains

to the transaction between the production of a product on the one hand, and

the sales of that product on the other hand. A buyer will either be self-matched

and produce the product himself, or be matched to a supplier who produces

11



it for him. A supplier, on the other hand, may be matched to multiple buyers

for which she produces a particular product.10

Whoever does it, producing a product requires assets to be invested in|1

unit of assets is required to produce 1 product, but increasing e�ciency may

decrease this amount. Since \asset speci�city is never valued by itself but

only because demand is thereby increased in design or performance respects"

(Williamson 1981a, p. 558), we will assume a relation between the di�eren-

tiation of a buyer's product, and the speci�city of the assets invested in to

produce that product. The rationale is that, if a buyer i's product is di�er-

entiated (di > 0), then, relative to consumers' tastes, i's product is di�erent

from his competitors' products. Assets invested in to produce i's product can

then not easily be switched to the production of those competitors' (di�erent)

products. In other words, those assets are then speci�c to the production of i's

product. On the other hand, if products are not di�erentiated, then they are

all the same, and assets invested in to produce the product for one buyer can

easily be switched to producing products for other buyers. The simplest way

to model this relation, is to assume that asset speci�city is equal to product

di�erentiation, i.e. the proportion of the asset required to produce a product

for a buyer that is speci�c to that buyer, is equal to the extent to which that

buyer's product is di�erentiated.

If a buyer produces for himself, it makes no sense to distinguish between

buyer-speci�c and non-speci�c assets.11 A buyer calculates his own score (his

minimum tolerance level) using e�ciency = 0, trust = 1 and � = 1. If a

supplier produces for one or more buyers, however, then the assets she invests

in, are split into two categories: buyer-speci�c and non-speci�c|i.e. general

purpose|assets. As explained above, the percentage of the 1 unit required

10A more general version of the model would allow for the possibility of multiple compo-

nents per product and for multiple sources per component. A buyer may then be matched

to the same or to di�erent suppliers for the production of the various components; a single

supplier may attain economies of scope in the production of di�erent components for the

buyer (see Williamson 1981b, note 18, p. 1547), whereas multiple suppliers may gain (exter-

nal) economies of cognitive scope in their production for the buyer (cf. Nooteboom 1992, P�eli

and Nooteboom 1997).
11Remember that overlap between both sides of the market is not allowed, which takes

away the possibility for buyers to replicate the market's production cost advantage by pro-

ducing for themselves as well as for their competitors.
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for each buyer that is speci�c to that buyer, is the same as the extent to

which that buyer's product is di�erentiated. The supplier adds the remaining,

general purpose part for each buyer, across all the buyers she is matched to.

We will assume that the supplier's continuous use of buyer-speci�c assets is

subject to learning-by-doing, and that the supplier's accumulation of general

purpose assets across the production for multiple buyers, is subject to scale

economies. Both these relations are modeled using the following function:12

y = max

�
0; 1�

1

ax+ 1� a

�
;

which is represented graphically in Figure 1 for di�erent values of a.
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Figure 1: E�ciency of scale and of learning-by-doing.

If the x-axis measures a supplier's accumulation of general-purpose assets

in the production for multiple buyers, then the y-axis gives the supplier's

scale-e�ciency in using those general-purpose assets. The number of general-

purpose assets that supplier j needs to produce for buyer i, is equal to (1 �

di)(1 � es;j), where di is the di�erentiation of buyer i's products and es;j is

supplier j's scale e�ciency, which is the function value in Figure 1 of supplier

12Di�erent values for the a-parameter may be used for the two functions. In the program,

the parameter for the scale-e�ciency function is scaleFactor, while the parameter for the

learning-e�ciency function is learnFactor.
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j's total number of general purpose assets, accumulated across all the buyers

she is matched to. If the x-axis measures the number of consecutive matches

between a supplier and a buyer, then the y-axis gives the supplier's buyer-

speci�c e�ciency in using assets, speci�c for that buyer.13 The number of

buyer-speci�c assets that a supplier j needs to produce for a buyer i, is equal

to di(1 � eil;j), where eil;j is supplier j's `learning e�ciency' (e�ciency due to

learning by doing) for buyer i, which is the function value in Figure 1, of the

number of consecutive matches between buyer i and supplier j.

The graph shows that a supplier can be more scale-e�cient than a buyer

producing for himself only if the scale at which she produces is larger than

the maximum scale with which a buyer might produce for itself: the graph is

positive only for more than 1 general purpose assets. Furhermore, a supplier's

buyer-speci�c e�ciency is 0 in their �rst transaction, and only starts to in-

crease if the number of transactions is larger than 1, which implements TCE's

fundamental transformation, according to which (Williamson 1981b, p. 1548),

\[w]hat may have been (and commonly is) an e�ective large-num-

bers-bidding situation at the outset is sometimes transformed into

a bilateral trading relation thereafter. This obtains if, despite the

fact that large numbers of quali�ed bidders were prepared to enter

competitive bids for the initial contract, the winning bidder realizes

advantages over nonwinners at contract renewal intervals because

nontrivial investments in durable speci�c assets are put in place

(or otherwise accrue, say in a learning-by-doing fashion) during

contract execution."

In the current model, the emphasis is put on the second option mentioned

(between brackets). The relative e�ects of investments in durable speci�c

assets vs. learning-by-doing advantages will be the subject of future work.

In summary: pro�tabilityxy The way pro�ts are made, then, is that

suppliers may reduce costs by generating e�ciencies for buyers, while buyers

may increase returns, when they sell more di�erentiated products. The pro�t

13For now, the same function is used for both relations, although a learning curve is usually

represented by a sigmoid function (cf. Simon and Blume 1994, p. 365).
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that is made resulting from both partners' contributions, is shared equally

between the buyer and the supplier involved.

5.1.2 Trust

TCE assumes potential opportunism. In the model, opportunism means that

an agent may break a `relation', i.e. a sequence of matches, without taking the

partner into account. If agents know that their partner may be opportunistic,

they can assign a probability to the event of their partner behaving opportunis-

tically. This probability is 1 minus the probability that the partner does not

behave opportunistically, which we will call the agent's trust in the partner.

Following Gulati (1995), we will assume trust to increase with the duration of

a relation: as a relation lasts longer, one starts to take the partner's behavior

for granted, and to assume the same behavior (i.e. commitment, rather than

breaking the relation) for the future. In the model, this increase over time

is implemented using a variation of the function presented in Figure 1. The

addition is a base-level of trust:

y = b + (1� b)

�
1�

1

ax+ 1� a

�
;

where b is the base-level of trust and x is the number of consecutive matches

the agents have been involved in. The parameter a is again a di�erent one

than in the functions for scale- and learning-e�ciency. In the program, this

parameter is called trustFactor.

Technically, a base-level is desirable because if � = 1, the exponent on

trust is 0, and the base-level prevents trust from becoming 0 (00 is unde�ned,

and makes the program crash). Theoretically, Hill (1990) also assumes that

a certain proportion of the population will never be opportunistic, so that

proportion may be taken as the agents' minimum probability-assessment that

their partner will not be opportunistic; another interpretation is that this

reects a certain elementary decency in the population. Figure 2 shows the

relation we assume between the past duration of a relation and agents' trust

in each other (depending on an agent-speci�c value for the a-parameter in the

function; i.c. a = :5).

A relation is broken if, during the matching, a buyer does not send any more

requests to the supplier or he does, but the supplier rejects them. If an agent
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y, involved in a relation with an agent x `breaks' their relation, then x's trust

in y decreases; in e�ect, x's trust drops by a certain factor (< 1) times the

distance between the current level and the base-line level of trust; it stays

there until the next time x and y are matched, after which is starts to increase

again.

5.2 Implementation

5.2.1 Agent-based, object-oriented programming

The simulation was developed in the general-purpose, object-oriented pro-

gramming language SIMULA (Birtwistle et al. 1973). The object-oriented

paradigm is very well suited for agent-based modeling (see McFadzean and

Tesfatsion 1996, Epstein and Axtell 1996), and for real-world modeling in

general, which was the philosophy underlying the development of SIMULA

as the �rst object-oriented language. Although the original language (SIM-

ULA I) was a SIMUlation LAnguage, the second and �nal version, SIMULA

67 (nowadays just called SIMULA), is a general-purpose language, and the

acronym now stands for SIMple Universal LAnguage. Object-oriented tech-

nology `simulates' the real-world, which gives it several desirable properties.

Object-oriented programs are modular; the modules are described in classes.
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These serve as `templates' for the creation (instantiation) of objects, which

represent actual objects in the real world. Classes consist of declarations of

data (properties, attributes) and methods (behavior) that operate on those

data. Subclasses may be de�ned that inherit the data and methods of the

superclass, and may be re-de�ned or supplemented with data and methods

speci�c for the subclass. Objects may also send messages to other objects.

Object-oriented programming thus consists of specifying classes. If a program

is run, the objects interact with each other by sending messages.

5.2.2 Simulation

The simulation proceeds as a sequence of discrete timesteps (see the pseudo-

code listing for the simulation program in Table 1). Such a sequence is called

a `run'; each simulation experiment may be replicated several times (multi-

ple runs), to reduce the inuence of draws from random distributions on the

results. During the step initialize simulation in Table 1, certain parame-

ters are set for the simulation as a whole. The user is prompted to supply the

number of buyers and suppliers, as well as the number of runs, and the number

of timesteps in each run. The program's random number generator is seeded

and �nally, the agents are instantiated and given a number for identi�cation.

There is a general class agent, from which two subclasses, buyerAgent and

supplierAgent are derived. The general class contains data and methods

(called `procedures' in SIMULA) that all agents have in common. They are

`inherited' by the two subclasses and supplemented with data and methods

that are speci�c for buyers and suppliers, respectively (see Appendix A.2).

5.2.3 Runs

The program then contains a set of nested for-loops, which control the required

runs and, per run, the required timesteps: the statement

For run:=1 Step 1 Until totalRuns Do: {...}

lets the {...}-part be executed totalRuns times|i.e. as many times as the

value of the variable totalRuns. The statement sets the variable run to 1 and

increments it with 1 (Step 1) at the end of each loop. As long as the value
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Begin simulation

initialize simulation;

For run:=1 Step 1 Until totalRuns Do:

f
initialize agents;

For timestep:=1 Step 1 Until totalTimesteps Do:

f
For agent:=1 Step 1 Until totalAgents Do:

f
choose a value for alpha;

calculate scores;

establish preference ranking;

g
matchAgents;

For supplier:=1 Step 1 Until totalSuppliers Do:

If matched Then produce and deliver;

For buyer:=1 Step 1 Until totalBuyers Do:

If not matched Then produce;

For buyer:=1 Step 1 Until totalBuyers Do:

sell;

For agent:=1 Step 1 Until totalAgents Do:

update;

g
g
End simulation;

Table 1: Pseudo-code for the simulations.

of run is smaller than or equal to the value of totalRuns, the {...}-part is

executed, otherwise the program continues after the closing }.

At the start of each run, each of the agents is initialized. For example, the

agents' pro�ts (from the previous run) are re-set to zero and the agents' trust

in other agents is re-set.14 After this agent-initialization, the actual simulation

starts, consisting of a sequence of timesteps.

14A complete overview of all the di�erent variables and parameters is given in Ap-

pendix A.3.
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5.2.4 Timesteps

The matching algorithm is applied to the agents in each timestep, while the

agents may adapt their preferences for other agents from each timestep to the

next. In each timestep, before matching takes place, each agent chooses a value

for � to calculate scores with, calculates scores, and ranks (potential) part-

ners on the basis of these scores, using randomdraws to settle the ranking of

alternatives with equal scores. Then, the agents are matched by the matching

algorithm; suppliers that are matched to a buyer produce for and deliver to

that buyer, while suppliers that are not matched do nothing; buyers that are

not matched produce for themselves. Then, the buyers sell their products on

the �nal-goods market|whether produced by their supplier or by themselves.

Finally, at the end of each timestep, the agents do some updating on the basis

of their experiences during the timestep.

The description of each of these events follows. What happens before the

matching in any timestep (except the �rst, in which this is trivial)15 is inu-

enced by the events after the matching in the previous timestep. These latter

events are therefore discussed �rst.

The matching Two 2-dimensional `arrays' (matrices) are maintained in the

program, in which connections (matches) before and after execution of the

matching algorithm are stored. Right before each matching, the entries in the

array of current connections are copied into the array of previous connections,

and the array of current connections is cleared: the matching algorithm starts

from scratch in each timestep and after it has �nished, the resulting matches

are stored in the array of current connections. Then, right after the matching,

the entries in the two matrices are compared for each pair of agents, and the

result of this comparison is classi�ed as one of the following events in the

life-cycle of a relation.16

15Before the �rst matching, all buyers are the same for each supplier and vice versa.

Because the matching algorithm needs strict preferences and random draws are used to

break ties between alternatives with equal scores, all agents' preference rankings in the �rst

timestep are random.
16If two agents are matched to each other neither before nor after the matching, then there

is, of course, no event in a relation's life-cycle that this corresponds to.
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Start: two agents start a relation if they are matched to each other in a

certain timestep, while they were not matched in the previous timestep.

Continue: two agents continue a relation if they are matched to each other

in a certain timestep, while they were also matched to each other in the

previous timestep. If a relation continues, the agents' trust in each other

increases, as does the supplier's e�ciency in using buyer-speci�c assets

(if any).

Break: a relation breaks if, while two agents were matched to each other in

the previous timestep, either the buyer does not send a request to the

supplier or he does, but the supplier rejects the request. If a relation

breaks, the trust of the agent who did not break the relation in the agent

who did, decreases.

These events and the agents' perception, interpretation and evaluation of them

may trigger reactions that may lead the agents to change their preference

ranking, which, in the next timestep, may change the outcome of the matching

and trigger the occurrence of further events.

Production and trade Producing one product requires (at most) one unit

of assets|increasing e�ciency decreases this amount. A buyer always pro-

duces with e�ciency 0 if he chooses to make,17 so he always needs 1 unit of

assets to produce one product, costing 1 monetary unit. Buyer i's prospects

when making, then, are as depicted in Figure 3. A supplier, on the other hand,

may enjoy economies due to scale and due to learning by doing, as explained

in Section 5.1.1. The di�erence between unity and the supplier's costs are

the savings that the supplier generates, and the prices at which the supplier's

production is traded with each of her buyers is such that these savings are

shared equally between the buyer and the supplier. Finally, when the buyer

sells his products, the price he receives is a function of the di�erentiation of his

products. If the buyer has bought, rather than made, then like the supplier's

17A buyer is not allowed to produce for and supply to other buyers (his competitors), so

he can not generate scale-economies. Learning-by-doing is also not possible for the buyer,

because savings resulting from this are assumed to be related to the advantage due to the

cognitive distance between the buyer and his supplier (cf. Nooteboom's (1992) external

economies of cognitive scope, and the simulations by P�eli and Nooteboom (1997)).
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Figure 3: A buyer's returns, costs, and pro�t when making.

savings, any returns resulting from di�erentiation are shared equally between

the buyer and the supplier. This means that when a buyer i buys from a

supplier j, the pro�ts they may make are equal:

�i = �j = 0:5di + 0:5die
i
l;j + 0:5(1 � di)es;j ;

where di is the di�erentiation of buyer i's products, eil;j is supplier j's learning

e�ciency for buyer i, and es;j is supplier j's scale e�ciency. If the buyer buys,

therefore, he faces the situation presented in Figure 4. The buyer's returns are

the same as in Figure 3; his costs are unity minus half of the supplier's savings

due to scale- and learning-e�ciency, and he also shares half of his returns from

product di�erentiation with the supplier (`costs(d)').

It follows, in Figure 5, that the buyer's pro�ts when buying fall anywhere

inbetween the lines `min.pro�t(b)' and `max.pro�t(b)'. Compared to the buy-

er's situation when making (the line `pro�t(m)'), buying is more attractive|in

terms of potentially attainable pro�ts|when di�erentiation (and therefore as-

set speci�city) is low, than when it is high, which is in line with transaction

cost intuition.

Updating An agent in a CAS is adaptive if \the actions of the agent in its

environment can be assigned a value (performance, utility, payo�, �tness, or
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Figure 4: A buyer's costs when buying. The plot for `costs(d)'|the buyer's

sharing of his returns from di�erentiation with the supplier|coincides with

the plot for `min.costs(learn)'.

the like); and the agent behaves in such a way as to improve this value over

time" (Holland and Miller 1991, p. 365; see also (Vriend 1995)). The adaptive

character of the arti�cial agents in the model refers to the possibility for the

agents to change the value they use for � from each timestep to the next, which

leads to a change in the scores they assign to di�erent agents and to a di�erent

preference-ranking. Each agent has several possible values for � 2 [0; 1]; the

number is a parameter in the simulation. To each value, each agent assigns a

strength,18 which expresses the agent's con�dence in the success of using that

particular value; the various strenghts always add up to a constant C.

The strength of the value that was chosen for � at the start of a particular

timestep (see below), is updated at the end of that timestep, on the basis of the

agent's performance during that timestep, which is assumed to be related to

the value of � used. Updating means that the agent adds the pro�t obtained

during the timestep to the strength of the value used for �. After this, the

three strengths are renormalized to sum to C again (see (Arthur 1993) for

18See (Arthur 1991, Arthur 1993, Kirman and Vriend 1998, Lane 1993) for discussions

and applications of these so-called `classi�er systems' to models in economics; good general

introductions are (Booker et al. 1989), (Goldberg 1989) and (Holland et al. 1986).
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Figure 5: A buyer's pro�ts when making or buying.

a discussion of this learning mechanism). This is done by multiplying each

of them with the ratio C=(C+pro�t). At this point, as an output of the

simulation, each agent x's weighted average value for �x|the `pro�t-elasticity'

of the scores that x assigns|is calculated:

X
�x=0;:::;1

�x � strength(�x):

This indicates where x's emphasis lies: because the value with the highest

strength pulls the weighted average in its direction, the emphasis lies on low

values for � if the weighted average �x is low and vice versa.

Choosing � The process of updating described in the previous paragraph

concludes each timestep. The next timestep starts with each agent choosing

a value to be used for � when calculating other agents' scores. The choice

between the di�erent possible values for � is probabilistic|a simple roulette

wheel selection|with each value's selection probability equal to its relative

strength, i.e. its strength divided by C.
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Calculating scores As explained above, scores are Cobb-Douglas functions

of pro�tability and trust:

scorexy = pro�tability�xxy � trust1��x
xy ;

where scorexy is the score x assigns to y, pro�tabilityxy is the pro�t x may

make `through' y, trustxy is x's trust in y and �x 2 [0; 1] is the importance x

attaches to pro�tabilityxy relative to trustxy, i.e. the `pro�t-elasticity' of the

scores that x assigns.

Before a matching, the agents determine other agents' scores on the basis of

suppliers' scale-e�ciency in the previous timestep. Only after the matching

does it become clear to how many and which buyers each supplier is actually

matched, and what the real extent of her scale-e�ciency is. Expectations

of the supplier's position on each buyer-speci�c learning curve, on the other

hand, will already be accurate before the matching|assuming, of course, that

the relation makes it through the matching.

6 Results: adaptive governance

Experiments were run with the parameters and variables as shown in the right-

most column of Table 4 in Appendix A.3. The value for product di�erentiation

was varied in 6 experiments, each of which was run for 250 timesteps and

replicated 25 times: results are typically presented as averages over those

25 runs. Before going to the results, it is worthwhile to consider what may

be expected from the simulations. The experimental variable `di�erentiation'

of the buyers' products is tied to the speci�city of the assets that suppliers

invest in to support their production for those buyers. Initially, therefore, the

buyers are confronted with the score-di�erentials given in Table 2. The values

in Table 2 are calculated as follows. The score that a buyer i assigns to a

supplier j, is

scorei;j = (0:5di + 0:5die
i
l;j + 0:5(1 � di)es;j)

� � tji
(1��)

;

with the supplier's initial learning-e�ciency for buyer i, eil;j = 0, the suppli-

er's initial e�ciency of scale, es;j = 0 and buyer i's initial trust in supplier
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d 0 0.25 0.5 0.75 1

0.25 0.50 0.23 0.06 -0.05 -0.13

0.35 0.40 0.17 0.01 -0.10 -0.18

0.45 0.30 0.11 -0.04 -0.15 -0.23

0.55 0.20 0.03 -0.10 -0.20 -0.28

0.65 0.10 -0.04 -0.16 -0.25 -0.33

0.75 0.00 -0.12 -0.22 -0.30 -0.38

Table 2: Di�erence between suppliers' initial scores and a buyer's own score

(= d) for di�erent values of di�erentiation and of the buyer's �.

j, t
j
i = 0:75. The score that buyer i assigns to himself is equal to di, be-

cause that is his pro�t when he makes and he uses � = 1 to calculate his

own score. The values in the table give the di�erence between these two;

initially (in the �rst timestep), these values are the same for all buyers. As

di�erentiation increases, the number of distinct values for � that yield a net

score-advantage for suppliers|which they need for buyers to consider them

acceptable|decreases. If d = 0:75, there is no value for � that gives suppliers

a net advantage so we may expect no outsourcing at all in that case. Notice

that for any d < 0:75, no matter how much smaller, the suppliers do have a net

advantage, which, furthermore, if matches do occur, increases over time with

suppliers' increasing learning e�ciency and also when suppliers are matched

to more than 1 buyer. The situation in Table 2, therefore, is likely to shift in

favor of suppliers as time progresses. In general, then, we would expect more

making (and less buying) when di�erentiation increases.

The proportion of economic activity under hierarchichal (as opposed to mar-

ket) governance in the di�erent experiments is shown in Figure 6. This shows

that, as expected, the proportion made is higher when di�erentiation is high

than when it is low, and if d = 0:75, nothing is bought; the buyers make

everything themselves (the plot for d = 0:75 coincides with the top border

of the graph). Notice however, that in all experiments, the proportion made

decreases during approximately the �rst 20 timesteps, after which it increases

and more strongly so, when d is higher.

The corresponding plot for the buyers' average normalized pro�ts is shown

in Figure 7|notice that the y-axis was re-scaled to 0.5{1 to make the results
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Figure 6: Proportion `made' (as opposed to `bought').

clearer. Again, the plot for the case d = 0:75 coincides with the top border of

the graph. This normalized pro�t is the buyers' pro�t divided by the maximum

attainable pro�t, which is the pro�t they would make in a relation with a

supplier with maximum scale- and learning-e�ciency.19 Figure 7 shows, �rst

of all, that the initial decrease in `proportion made' (see Figure 6) is `good'

for the buyers when di�erentiation is low (their normalized pro�t increases

during this initial period), but `bad' when di�erentiation is high, since the

theoretically most appropriate choice is to make when di�erentiation is high.

Eventually, this is also what the agents learn. Furthermore, in several of the

experiments, the agents are performing poorer than they could be. This is

because `perfomance as it could be' is based on pro�t made in a relation with

a supplier with maximum scale- and learning-e�ciency. Since each supplier

can have a maximum of 3 buyers (as = 3), this requires that the 12 buyers

together buy from only 4 suppliers. That this network con�guration does

nog always emerge, is shown in Figure 8, which depicts the buyers' average

normalized pro�ts in each of the 25 individual runs of experiment d = 0:35.

In this experiment, there are three levels at which average pro�ts `stabilize';

19This is corrected for the fact that the suppliers' scale-e�ciency is limited because their

acceptance quotum is set to 3; if as is unlimited, the system quickly settles in a state where
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Figure 7: Buyers' normalized pro�ts.

almost 1 (6 runs), and approximately 0.9 (15 runs) and 0.8 (4 runs). The �rst

of these levels corresponds to the situation where the 12 buyers buy from 4

suppliers (with their maximum of 3 buyers each) and no buyer makes anything.

The second level corresponds to the situation where 9 buyers are consistently

matched to 3 suppliers and the other three buyers are either making or buying,

but not all three from the same supplier at the same time. Also, there is

much switching between suppliers in this case, so these three buyers form no

long-lasting relations. The �nal level (0.8) corresponds to the situation when

even more buyers are not consistently buying from the same supplier who is

matched to her maximum number of buyers. If the simulation is re-run with

12 buyers but only 4 suppliers, most of the runs quickly lock in to the level 1

described above.

The corresponding weighted average � for the buyers, averaged over all buy-

ers, is displayed in Figure 9. The weighted average � goes up in all experi-

ments and more strongly when di�erentiation is higher. When d = 0:75, there

is hardly any e�ect on this variable: because there is no outsourcing at all

in this case, the pro�t that is made is the same no matter which value was

used for �, so no one value is better than the rest in this sense. Because the

all buyers buy from the same supplier.
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Figure 8: Buyers' normalized pro�ts in 25 runs of experiment d = 0:35.

buyers do attain maximum normalized pro�t when di�erentiation is higher,

the higher weighted average � that emerges in that case can be called optimal.

However, the buyers do not perform as well when di�erentiation is low, which

implies that the weighted average � may not be optimal (too high or too low),

although the agents may not be aware of this. The optimum may be out of

reach of the path-dependent process of interaction and learning that unfolds

among the agents. When looking at the 25 individual runs of the experiment

d = 0:25, it appears that relatively high pro�ts are correlated with no `making'

(only buying), and a relatively low weighted average �! Further research will

be done to investigate this further.

7 Conclusion

This study was motivated by the observation that, while the main hypoth-

esis of transaction cost economics is that agents are able to align organiza-

tional form with the attributes of transactions in a discriminating, (transac-

tion cost) economic way, the agents' bounded rationality may prevent them

from performing this alignment successfully, i.e. economically. An agent-based

computer simulation model was developed and implemented to generate al-
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Figure 9: Buyers' weighted average �.

ternative propositions about which organizational forms boundedly rational,

adaptive agents learn to use. It was shown that under some circumstances,

agents are indeed unable to optimize successfully, because the network they

form, along with other agents, may not evolve to an optimal con�guration. The

agents learn `individually', and in this case (as in many others), a population

of agents pursuing their own self-interest does not|by any invisible hand|

lead to a globally optimal outcome; consequently, some of the gains from trade

are not reaped. This may be interpreted as an example of how \the analysis

cannot be con�ned to what happens within a single �rm" (Coase 1995, p. 245).

An often-used technique in agent-based computational models is the genetic

algorithm (see (Holland and Miller 1991) for a discussion and (Miller 1996,

Tesfatsion 1999) for examples). A genetic algorithm (GA) is essentially a com-

putational search heuristic that simulates evolutionary processes of selection

and reproduction, operating on a population of potential solutions in its search

for the optimal solution. In ACE-models, it operates on individual agents' be-

havioral rules, and genetic operators are assumed to model cultural, rather

than genetic, transmission of ideas and behaviors. Using a GA, the optimal

distribution of economic activity may have been found in the current experi-

ments, but it is my opinion that a GA is not an accurate model of the learning
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of individual, boundedly rational agents that we have tried to capture in the

current application (cf. Klos 1999).

The appropriateness of GA's as a model of learning in economics is the sub-

ject of much debate (Brenner 1998, Chattoe 1998, Riechmann 1999); explicit

comparisons between social learning, modeled using a GA, and individual

learning are reported in (Klos 1999) and (Vriend 1998), among others. There,

it was shown that outcomes di�er signi�cantly between the two approaches.

The GA comes out on top, but, in my opinion, at the expense of some very

strong modeling assumptions|that many authors implicitely impose|about

the extent of the agents' perception and computational capacity (see Klos 1999,

for a more detailed discussion). Tesfatsion (1999, p. 13{14, emphasis added)

is aware of this, given her observation that

\[a]n important caution is in order here, however. Given the ex-

tent of information currently allowed to agents during the evo-

lution step|i.e., knowledge of the complete strategies of all other

agents of the same type, whether expressed in interactions or not|

the evolution step is more appropriately interpreted as an itera-

tive stochastic search algorithm for determining potential equilib-

rium strategy con�gurations rather than as a cultural transmission

mechanism per se. The resulting earnings outcomes will be used in

subsequent work as benchmarks against which to assess the e�ec-

tiveness of more realistically modelled cultural transmission mech-

anisms".

According to Vriend (1998, p. 11), also, \the computational modeling choice

between individual and social learning algorithms should be made more care-

fully, since there may be signi�cant implications for the outcomes generated".

As in (Klos 1999), I do not want to say that GA's should not be used anymore,

but the choice of using them should be made with caution and they should

be used for the right purposes. In the current paper, for example, if in some

circumstances agents are unable to organize optimally, it would be interesting

to �nd out what `optimal' would be in those settings, what is keeping the

agents from attaining it, and how they might go about reaching that opti-

mum. A GA might very well be used to �nd out what the optimum is, but

30



that result should not be interpreted as the outcome of a process of learning.

After all, it was because we question TCE's assumption that agents are able to

align optimally that the current project was undertaken, so we shouldn't then

use an optimization algorithm to model boundedly rational agents' adaptive

learning.
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A Appendix

A.1 Matching example

For an example of the operation of the matching algorithm, consider Table 3,

which lists randomly generated preference rankings of 5 buyers over 5 suppliers

and vice versa. In addition, the buyers were placed at randomly generated

supplier

buyer 1 2 3 4 5

1 4,2 5,1 2,4 1,1 3,1

2 1,4 -,2 -,1 -,2 -,5

3 3,1 -,4 4,2 2,4 1,3

4 -,3 -,5 -,5 1,3 2,2

5 -,5 -,3 -,3 -,5 -,4

Table 3: Example preference-rankings in Gale and Shapley's (1962) format.

Buyer 1 ranks supplier 4 �rst, 3 second, 5 third, etc. Supplier 1 ranks buyer

3 �rst, 1 second, 4 third, etc. Buyer 2 has only one acceptable supplier (1); a

`-' means `unacceptable'.

positions on their own rankings (expressing their tolerance level) and suppliers

whose ranking was not higher than the buyer's own ranking are not acceptable

and therefore not listed.

If all agents are allowed only one partner (ob = as = 1), the algorithm

produces the following steps.

1. Buyers 1, 2, 3 and 4 send requests to their most preferred suppliers, i.e.

4, 1, 5 and 4, respectively. The suppliers that receive only one request

accept those provisionally, while supplier 4 rejects the request from buyer

4 and provisionally accepts the request from buyer 1.

2. Buyer 4 sends a request to its next most preferred supplier, 5, who

accepts buyer 4's request and rejects buyer 3's already provisionally ac-

cepted request, because supplier 5 prefers buyer 4 to buyer 3.

3. Buyer 3 now sends a request to its next most preferred supplier, 4, which

request is rejected, because supplier 4 prefers its already accepted buyer

(1) to buyer 3.
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4. Buyer 3 now sends a request to the next supplier on its list, which is

supplier 1, who accepts that request and rejects buyer 2's request, which

it had previously accepted provisionally.

5. Buyer 2 has no more acceptable suppliers so no buyer sends another

request, which stops the algorithm.

Buyers 1, 3 and 4 are now matched with suppliers 4, 1 and 5, respectively.

The algorithm is also able to handle cases where ob and/or as are greater

than 1. For example, the reader may verify that buyers 1, 2, 3 and 4 will

be matched to suppliers (3 and 4), (1), (1 and 5) and (4 and 5), respectively,

when ob = as = 2.

A.2 Agent-speci�cation

The program consists of a main loop (see Table 1), a procedure called match-

Agents, and the declaration of several classes. The class agent contains the

following procedures:

setAlpha This is the procedure that chooses a value to be used for �. A

random number between 0 and 1 is drawn like a roulette wheel being

spun. The wheel is divided like a pie in as many parts as there are

possible values for �, with the size of each part proportional to the

relative strength of the associated value for �.

updateWeights(alphaUsed,payoff) This procedure is called for updating

the strengths, associated with the di�erent possible values for alpha.

The parameter alphaUsed is the value that was used for � and of which

the strength needs to be updated. This is done by adding the value of

payoff to the strength. Then, each strength is multiplied with the ratio

C=(C + payoff), to ensure that they add up to C again.

From the class agent, the classes buyerAgent and supplierAgent are de-

rived. These subclasses inherit all data and methods from the class agent. In

addition, data and methods are declared speci�cally for the two subclasses.

The subclass buyerAgent contains the following procedures:
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calculateSupplierScores This procedure calculate scores of suppliers and

self as Cobb-Douglas functions of pro�tability and trust, as described

above in Section 5.1. If the buyer's value for � is 0, then the supplier's

score is simply equal to the buyer's trust in the supplier. The buyer

calculates his own score using e�ciency = 0, trust is 1, and � = 1.

buyerProcess If not matched then make; in any case, sell. The suppliers'

equivalent process supplierProcess is executed before the buyers', so if

a buyer is matched to a supplier, that supplier will already have produced

for him.

increaseTrust(subject) This increases the buyer's trust in subject on the

basis of the number of previous times they have been matched.

decreaseTrust(subject) This decreases the buyer's trust in subject.

Besides the data and methods inherited from the class agent, the subclass

supplierAgent contains the following procedures:

calculateBuyerScores This procedure calculates the scores the supplier as-

signs to each buyer. As in the buyer's equivalent procedure, if a buyer's

pro�tability as well as the supplier's � are 0, the supplier's trust is used

as the buyer's score.

determineScaleEfficiency The supplier adds the general purpose assets re-

quired for producing for all the buyers she is matched to and calculates

the scale-function value of this number. This is the supplier's scale e�-

ciency.

climbLearningCurve(subject) On the basis of the number of times they

have been matched before, the supplier calculates her e�ciency in using

subject-speci�c assets.

increaseTrust(subject) This procedure increases the supplier's trust in

subject on the basis of the number of previous times they have been

matched.

decreaseTrust(subject) This procedure decreases the supplier's trust in

subject.
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produceFor(subject) Based on buyer subject's di�erentiation and the sup-

plier's (general) scale- and subject-speci�c e�ciency, the supplier ac-

quires the required assets and produces for subject.

supplierProcess Looking at each buyer in turn, if the supplier is matched

to that buyer, it produces for that buyer (see previous procedure).

A.3 Parameters and variables

This appendix gives a complete overview of all the parameters and variables,

used in the simulation; see Table 4.

value value

param./var. range used

general number of buyers, B f1; 2; : : :g 12

number of suppliers, S f1; 2; : : :g 12

number of runs f1; 2; : : :g 25

number of timesteps f1; 2; : : :g 250

per di�erentiation [0; 1] f0:25; 0:35; : : : ; 0:75g
buyer ob f1; 2; : : : ; Sg 1

number of values for � f2; 3; : : :g 5

C h0; : : :i 20

baseTrust h0; 1] 0.3

initTrust(subject) h0; 1] 0.75

trustFactor [0; 1] 0.5

per as f1; : : : ; Bg 3

supplier scaleFactor [0; 1] 0.5

learnFactor [0; 1] 0.5

number of values for � f2; 3; : : :g 5

C h0; : : :i 20

baseTrust h0; 1] 0.3

initTrust(subject) h0; 1] 0.75

trustFactor [0; 1] 0.5

Table 4: Parameters and variables in the simulation.
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