

 University of Groningen

VISSION
Telea, Alexandru; Wijk, Jarke J. van

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1999

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Telea, A., & Wijk, J. J. V. (1999). VISSION: An Object Oriented Dataflow System for Simulation and
Visualization. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute for
Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 20-06-2022

https://research.rug.nl/en/publications/cb12f8ed-d0e2-4aba-bf92-56fcbdd229f0

vission: An Object Oriented Dataflow System
for Simulation and Visualization

Alexandru Telea, Jarke J. van Wijk

1 Eindhoven University of Technology,
Den Dolech 2,Eindhoven 5600 MB, The Netherlands,

alext@win.tue.nl, http://www.win.tue.nl/math/an/alext
2 vanwijk@win.tue.nl, http://www.win.tue.nl/cs/tt/vanwijk

Abstract. Scientific visualization and simulation specification and mon-
itoring are sometimes addressed by object-oriented environments. Even
though object orientation powerfully and elegantly models many appli-
cation domains, integration of OO libraries in such systems remains a
difficult task. The elegance and simplicity of object orientation is often
lost in the integration phase, so combining OO and dataflow concepts
is usually limited. We propose a system for visualization and simula-
tion with a generic object-oriented way to simulation design, control
and interactivity, which merges OO and dataflow modelling in a single
abstraction. Advantages of the proposed system over similar tools are
presented and illustrated by a comprehensive set of examples.

1 Introduction

Better insight in complex physical processes requires the combination of the
visualization and interactivity (seen as the user ability to interrogate and modify
the simulated universe). This has led to the advent of computational steering
systems, which allow the user to change and monitor various parameters on-line
and perform direct manipulation on the visualized data. To extend the user’s
freedom from process steering to interactive process design, the dataflow concept
is often used: networks of computational modules exchanging data to perform
the desired task are created by connecting module icons in a visual programming
tool.

Object-oriented (OO) design is, on the other hand, the favourite technique
for building extensible and reusable component libraries. Making such libraries
available in a dataflow steering environment would give the end-users the con-
ciseness, elegance and reusability of OO code, often appreciated only by code
designers, but not used by the target system or lost at integration. Many environ-
ments offer steering, visualization, and code integration in various amounts, but
no single one addresses these and the extra requirement of existing OO libraries
integration in a unitary, easy to learn manner.

We addressed the above problem by designing vission, a general purpose en-
vironment for visualization and steering of simulations with objectual networks.
Dataflow modelling familiar to visualization scientists [4, 6] is completely merged

with the OO modelling used by component designers [5, 2] in a single new ab-
straction. Independently developed OO code integration is thus almost transpar-
ent, especially since vission automatically constructs its GUIs from the given
code, extending the approach presented in [7]. This paper presents vission from
a user perspective, its object-oriented design being detailed in [9].

This paper is organized as follows: Section 2 presents the main requirements
of generic simulation systems and the main limitations of existing systems. Sec-
tion 3 shows how vission fulfills these requirements. Applications of vission

are presented in Section 4. We conclude the paper presenting further research
directions.

2 Background

In the most demanding scenario, an open environment targets three user cat-
egories: end-users (EU) steer a simulation via virtual cameras, direct manipu-
lation, GUI widgets, or interpreted command languages. Application designers
(AD) build applications for a wide range of EU domains and thus require simple
to use, yet generic interactive tools to select and assemble domain-specific com-
ponents [15]. Component developers (CD) build these components and require
that existing code should be easily extensible and reusable as modular compo-
nents, and that the target environment should not constrain their design. Often
the same person goes through all three roles (e.g. a researcher who develops
his own code as a CD, then builds experiments to test algorithms as an AD,
and finally monitors and/or steers the final application as an EU). The cycle
repeats, (EU insight triggers application design revisions, which may ask for
new/specialized components), so the role transition should be transparent: CD’s
code should be immediately available to the AD, who should easily produce the
EU’s end-application.

There is hardly any visualization/simulation system which fulfills the above
requirements union and offers a simple, yet generic solution for the role tran-
sition. Turnkey systems (Fig. 1) have custom tools and GUIs to excel in spe-
cific tasks, are easy to learn and use, but are by definition not extensible or
customizable. OO libraries [2, 5, 3] are highly customizable and extensible, but
require manual programming of data flows and GUIs. Dataflow systems [4] are

 Application Turnkey
OOLibraries Systems

user interaction features +-

customizability / extensibility+ -

Fig. 1. A flexible system should combine the customizability/extensibility of OO li-
braries with the usability of the turnkey systems.

extensible and customizable, as simulations are interactively built by connecting
user-written modules, but still have limitations. Few support both by-value and

by-reference data transfer between modules (limitation L1), even fewer support
user-defined types for the modules’ inputs and outputs (limitation L2). Many
such systems use different languages for module implementation, user interface,
scripting, and dataflow control, making them hard to learn and use (limitation
L3). As there is often no way to map constructs from an (OO) language to
another, developers are forced to use the languages’ common subset(limitation
L4) [6, 5, 4], or to manually adapt their code (limitation L5). The set of system
GUI widgets is usually not extensible to reflect directly e.g. user-defined types
(limitation L6). L5 and L6 imply that GUI construction can not be automated
(limitation L7). Few systems allow writing new modules by reusing and/or com-
bining the existing ones and programming only the new features (no support for
module inheritance, limitation L8). Some systems enhance monolithic simula-
tions with dataflow-based tracking / steering features by manual insertion of
data transfer and synchronization code [16, 11, 10, 14]. These systems provide no
inherent support for the CD, as they have no ’component’ notion.

3 Overview of the System

The integration of dataflow/visual programming with component OO modelling
comes naturally as the presented requirements are fulfilled complementarily by
dataflow systems (interactivity,visual programming,GUI construction,steering)
and OO application libraries (customizability, extensibility,high-level modelling),
Some systems [4],[6] take this path, but none combine dataflow modelling and OO
modelling in a single abstraction, so the listed problems are merely alleviated.
vission completely merges OO and dataflow modelling in a new abstraction
called a metaclass, used as its fundamental concept. The following shows how
this addresses the outlined limitations and requirements.

3.1 The Metaclass Concept

From the OO modelling viewpoint, modules are implemented as C++ classes,
organized by the CD as various application domain libraries. From the dataflow
viewpoint, a module (called a metaclass) is an entity which enhances a C++
class with a dataflow interface, i.e. a set of typed input and output ports and
an update procedure. The ports and update procedure are specified in terms of
the C++ class’s public methods and members: when a port is read/written, a
C++ member’s value is read/written or a method is called and the return value
is used. Ports are typed by the C++ types of their underlying class members.
Metaclasses are object-oriented entities, so they can inherit from each other,
thus enabling the reuse of existing metaclasses to create new ones (addresses
limitation L8). All information needed to ’promote’ a C++ class to be directly
loadable by vission resides in its metaclass. Our solution differs fundamentally
from other systems asking the user to ’insert’ system calls in his code to make
it available to the framework [4],[10],[11] or to inherit from a system base class
[2], [5] and hence addresses limitation L5.

class IVSoLight
{ public:
 BOOL on;
 void setIntensity(float);
 float getIntensity();
 void setColor(IVSbColor&);
 IVSbColor getColor();
};

class IVSoDirectionalLight: public IVSoLight
{ public:
 void setDirection(IVSbVec3f&);
 IVSbVec3f getDirection();
};

node IVSoLight
{ input:
 WRPort "intensity" (setIntensity,getIntensity)

 editor: Slider
 WRport "color" (setColor,getColor)
 WRport "light on" (on)
}

node IVSoDirectionalLight: IVSoLight
{ input:
 WRPort "direction" (setDirection,getDirection)
}

Metaclasses: C++ classes:

Fig. 2. Example of C++ class hierarchy and corresponding metaclass hierarchy

Figure 2 exemplifies the above for two C++ classes and their metaclasses:
the IVSoLight metaclass has three inputs for a light’s color, intensity, and on/off
value, implemented by the corresponding class’s methods with similar names,
and of types IVSbColor (a RGB triplet), float, and respectively BOOL. IVSoDi-
rectionalLight extends IVSoLight with the light’s direction, of type IVSbVec3f
(a 3D vector). The user can easily specify other information in the metaclass,
such as GUI and widget preferences, and help data. The appropriate widgets are
automatically constructed based on the ports’ types (3 float typeins for the vec-
tor and the RGB color, a toggle for the boolean, and a slider, as the preference
specified, for the float). Separating this information from the C++ class lets us
enhance existing classes with dataflow/GUI features non-intrusively. It has also
let us develop a generic persistence scheme to save a simulation as a C++ source
file. This addresses limitation L4, as no custom file format was needed (see [8]
for a similar approach).

output port

input ports

 metaclass name
IVSoDirectionalLight

instance name
 obj0

Fig. 3. Left: Visual representation of a metaclass. The various graphical signs used for
the ports encode port C++ type, by value/by reference transfer, and other attributes.
Right: automatically constructed GUI for the metaclass

3.2 Features

vission allows the user to load the desired metaclass libraries, browse a palette
with the loaded metaclasses, create new nodes (i.e. instances of metaclasses),
connect, clone, or delete existing nodes in a GUI similar to [4, 6] (Fig. 4). The
fundamental differences between vission and similar systems appear as we look
at the dataflow semantics.

The Dataflow Mechanism The dataflow mechanism is entirely based on the
object-oriented typing offered by the C++ language, that is, data can be passed
by value, by pointers or by reference, and can be of any type (addresses lim-
itations L1 and L2). If class types are used, constructors and destructors are
properly invoked when data elements flow from the output to the input port.
Secondly, connections between ports obey the full OO typing of by C++: a port
of type A can be connected to a port of type B if the C++ type A conforms
to the C++ type B. All C++ type conversions [1] are used: trivial conversion,
subclass to baseclass, constructors, and conversion operators. The user interac-
tively builds networks using the same types, rules and checking he would use in
a C++ compiled program. We believe the above is a sound generalization of the
dataflow typing used by other systems: The Oorange system, based on Objective
C, offers by-reference but no by-value transfer. AVS/Express limits data types
to its own V language which is far less powerful than C++ (e.g. it lacks con-
structors, destructors and multiple inheritance). Compiled libraries (e.g. vtk) are
only statically extensible, as all types have to be known at compile time, which
makes them unsuitable for a dynamic, interactive modelling environment.

To cope with complex networks, vission offers node groups containing sub-
graphs up to an arbitrary depth, which can be interactively constructed by
adding nodes and ports to an empty group. This generalizes Oorange’s nodes,
AVS’s macros, and Inventor’s node kits. A less common feature is the support
for networks having several loops, which allows a very natural way to describe
iterative processes, or to implement direct manipulation as dataflows that go
’upstream’ from the camera modules to other ’data processing’ modules. We
make no distinction between up and down stream (as compared to [4]), as the
network traversal copes with any directed cyclic graph.

The GUI Interactors GUI interaction panels (shortly interactors) are pro-
vided to examine and modify the values of the nodes’ ports, connect or disconnect
ports, or perform actions on nodes. Interactors create the third object hierarchy
in the system, isomorphic with the C++ class and metaclass hierarchies. The
widgets of an interactor are based on the types of their ports: a float port can
be edited by a slider, a char* port by a textual type-in, a three-dimensional
VECTOR port by a 3D widget manipulating a vector icon in 3-space, a boolean
by a toggle button, etc (Fig. 5, 3). The set of GUI widgets for the basic types
can be extended by the AD with widgets for user-defined types. This allowed
us to provide GUI widgets for some types of specific libraries, such as 3D vec-
tors, colors, rotation matrices, light values, etc. This addresses limitation L6.

library
manager with
metaclasses

network
editor

graphics
representation
of a node

Fig. 4. The network editor and the dataflow graph. Nodes are created from metaclasses
shown in the library manager’s GUI.

vission automatically associates widgets with port types by picking out of the
basic/custom widgets the one whose type best matches the port’s type. The
AD can thus customize the look of an application GUI, either by creating new
GUI widgets or by associating the existing ones with other types (e.g. prefer a
float type-in instead of a slider for a float port), and still have the interactors
built automatically (this addresses limitation L7). Finally, the EU can instantly
change a port’s widget at run-time via a menu listing all widgets capable to edit
that port. Dynamically associating OO widgets to OO types enables thus the
creation of user interface libraries that can be transparently reused by vission

to steer any network reading/writing compatible types.

The system offers also a GUI for direct inspection and modification of the
C++ objects used by the metaclasses, similar to the visual class browsers of
several OO compilers or debuggers. This allows CDs to directly test their C++
classes bypassing the metaclass abstraction level. Finally, the EU can type com-
mands directly in C++ in a GUI window to be interpreted (Fig. 5), an interaction
mode preferred by some users over the widget metaphor, or load and execute
C++ source code. This allows the EU to write animations based on arbitrarily
complex control sequences directly in C++ without having to learn a new ani-
mation language (see Fig 7c for an example of a finite element simulation based
animation). Limitation L4 is addressed, as C++ is vission’s single language
used for application class coding, dataflow typing, run-time command-line user
interaction, and persistence.

Fig. 5. GUI widgets for interaction with metaclasses

3.3 Implementation

vission consists of three main parts: the object manager, the dataflow manager,
and the interaction manager (Fig. 6), based on two lower level components:
the C++ interpreter and the library manager, communicating by sharing the
dataflow graph. The key element (which enabled us to elegantly and easily re-
move the limitations exhibited by similar systems) is a C++ interpreter. Port
connections/disconnections, data transfer between ports, invocation of node up-
date methods, GUI-based inspection and modification of ports, automatic GUI
construction, and interpreted scripts are uniformly implemented as small C++
fragments dynamically sent to the interpreter. The interpreter cooperates with
the library manager to dynamically load application libraries containing meta-
class declarations and their compiled C++ classes, with the object manager to
create and destroy the metaclasses, and with the interaction manager to build
and control the GUIs. All application code is executed from compiled classes,
leaving a very small C++ code amount to be interpreted. The performance loss
as compared to a 100% compiled system was estimated to be lower than 2%,
even for complex networks intensively accessing the interpreter.

4 Applications

The following presents some of the applications we have built with vission.

Scientific Visualization We have chosen the Visualization Toolkit (shortly
vtk) [5], one of the most powerful freely available scientific visualization libraries,

Interaction ManagerC++ Interpreter

Editor Widnow

"type"

Center

Name
Value

ROTOR r1

12.45
-123.2
 60.66

Editor Widnow

Editor Widnow

End user

Dataflow Graph

Dataflow Manager

Library Manager

Application libraries

Application developer

Fig. 6. Architecture of the simulation and visualization system

and integrated it into vission. Since vtk is a C++ library, its integration didn’t
pose any problems (keeping the constraint of not modifying its source code).

As a rendering back-end we used Open Inventor, which we also fully inte-
grated. The EU can pick any vtk or Inventor class (of the total of approximately
250, respectively 70) in the visual browser, instantiate it, and connect it with
other nodes, without knowing C++ or even knowing they are written in C++.
We had to write a single ’adapter-like’ class of around 120 C++ lines to connect
all the Inventor rendering and direct manipulation facilities (superior to vtk’s
rendering classes, which we didn’t use) to the vtk pipeline.

Scalar, vector, tensor, and medical visualizations were created with the vtk-
Inventor metaclasses (Fig. 7 a,i,g, Fig 7 f, Fig 7 e, respectively Fig 7 j) with
practically the same ease as if using AVS or other similar system. The integration
required writing around 320 metaclasses, of an average length of 6 text lines,
and absolutely no change to the two libraries (of which, Inventor was not even
available as source code).

Global Illumination Radiosity simulation software often requires delicate tun-
ing of many input parameters, and thus can not be used as black box pipelines.
Testing new algorithms requires also the configurability of the radiosity pipeline.
These options are however rarely available to non-programming experts in cur-
rent radiosity software. We addressed this by including a progressive refinement
radiosity system written in C/C++ by us before vission was conceived, into vis-

sion. The 3D world tessellation with vertex intensities output was easily made
available for visualization in the Inventor library by the creation of an ’adapter’
module. Users can now change all the ’hidden’ parameters along the radiosity

pipeline, easily insert new algorithms for e.g. sharp shadow detection [12] by
subclassing, and visually monitor the process convergence (Fig. 7 d).

Finite Element Simulations Finite element (FE) applications mostly come
as packages that limit the user’s interaction input given as batch files, respec-
tively an output visualized in a post simulation phase. We addressed these lim-
itations by integrating our FE C++ library [7] in vission. Researchers can
specify and solve FE problems interactively, experiment with different numeri-
cal techniques, and monitor error and convergence rates, without quitting the
environment to redefine input files or recompile. Examples include 3D diffusion
problems (Fig. 7 a), time-dependent free convection problems (Fig. 7 c), wave
simulations (Fig. 7 h), or industrial steering turn-key software [13]. (Fig. 7 b).
Visualization is performed again by the Inventor library.

5 Conclusion

We have presented vission, a general-purpose visualization and computational
steering system built on an object-oriented foundation. vission is a generic envi-
ronment the specification, monitoring, and steering of simulations which removes
some limitations of similar systems by combining the powerful, yet so far inde-
pendently used OO and dataflow modelling concepts.

We have enhanced the traditional dataflow mechanism used by simulation
systems to an object-oriented one by introducing the metaclass concept, which
extends C++ classes with dataflow semantics in a non intrusive manner. Adding
application code to the system is greatly simplified as compared to similar sys-
tems. Application library design is clearly separated from the system-specific
dataflow information held in the metaclasses. We have provided a mechanism
for automatic GUI construction for application modules based on the OO meta-
class semantics, and a way to add type-specific, user-defined widgets, based on
OO typing.

Several applications illustrate the advantages of a fully object-oriented and
single language architecture. Component designers have included libraries for
scientific visualization and rendering (420 classes), radiosity (18 classes) and
finite element analysis (25 classes) in the system in a short time (approximately
2 months, 5 days, 10 days respectively), while application designers and end
users could effectively use the system in a matter of minutes.

Future work is aimed at the extension of vission’s OO aspects with features
such as class hierarchy browsing, automatic documentation, and a generaliza-
tion of the dataflow model to include also code flow, that is to have modules
synthesize, exchange, and execute C++ code fragments, creating multiple new
possibilities for modelling simulations. Parallel work targets the inclusion of other
application domains as numerical iterative solvers or computer vision interfaces
and their coupling with the already available libraries.

References

1. B. Stroustrup, The C++ Programming Manual, Addison-Wesley,1993.
2. J. Wernecke, The Inventor Mentor: Programming Object-Oriented 3D Graphics

with Open Inventor, Addison-Wesley, 1993.
3. A. M. Bruaset, H. P. Langtangen, A Comprehensive Set of Tools for Solving

Partial Differential Equations: Diffpack, Numerical Methods and Software Tools
in Industrial Mathematics, (M. Daehlen and A.-Tveito, eds.), 1996.

4. C. Upson, T. Faulhaber, D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom,

R. Gurwitz, and A. van Dam, The Application Visualization System: A Compu-
tational Environment for Scientific Visualization., IEEE Computer Graphics and
Applications, July 1989, 30–42.

5. W. Schroeder, K. Martin, B. Lorensen, The Visualization Toolkit: An Object-
Oriented Approach to 3D Graphics, Prentice Hall, 1995

6. C. Gunn, A. Ortmann, U. Pinkall, K. Polthier, U. Schwarz, Oor-
ange: A Virtual Laboratory for Experimental Mathematics, Sonderforschungs-
bereich 288, Technical University Berlin. URL http://www-sfb288.math.tu-
berlin.de/oorange/OorangeDoc.html

7. A.C. Telea, C.W.A.M. van Overveld, An Object-Oriented Interactive System
for Scientific Simulations: Design and Applications, in /textitMathematical Visu-
alization, H.-C. Hege and K. Polthier (eds.), Springer Verlag 1998

8. B. Meyer, Object-oriented software construction, Prentice Hall, 1997
9. A. C. Telea Design of an Object-Oriented Computational Steering System, in

Proceedings of the 8th ECOOP Workshop for PhD Students in Object-Oriented
Systems, ECOOP Brussels 1998, to be published

10. J. J. van Wijk and R. van Liere, An environment for computational steering, in
G. M. Nielson, H. Mueller and H. Hagen, eds, Scientific Visualization: Overviews,
Methodologies and Techniques, computer Society Press, 1997

11. S. Rathmayer and M. Lenke, A tool for on-line visualization and interactive
steering of parallel hpc applications, in Proceedings of the 11th International Par-
allel Processing Symposium, IPPS 97, 1997

12. A.C. Telea and C. W. A. M. van Overveld, The Close Objects Buffer: A Sharp
Shadow Detection Technique for Radiosity Methods, the Journal of Graphics Tools,
Volume 2, No 2, 1997

13. M. J. Noot, A. C. Telea, J. K. M. Jansen, R. M. M. Mattheij, Real Time
Numerical Simulation and Visualization of Electrochemical Drilling, in Computing
and Visualization in Science, No 1, 1998

14. D. Jablonowski, J. D. Bruner, B. Bliss, and R. B. Haber, VASE: The visu-
alization and application steering environment, in Proceedings of Supercomputing
’93, pages 560-569, 1993

15. W. Ribarsky, B. Brown, T. Myerson, R. Feldmann, S. Smith, and L.

Treinish, Object-oriented, dataflow visualization systems - a paradigm shift?, in
Scientific Visualization: Advances and Challenges, Academic Press (1994), pp. 251-
263.

16. S. G. Parker, D. M. Weinstein, C. R. Johnson, The SCIRun computational
steering software system, in E. Arge, A. M. Bruaset, and H. P. Langtangen, editors,
Modern Software Tools for Scientific Computing, pages 1-40, Birkhaeuser Verlag
AG, Switzerland, 1997

a

b

c

d

e f

g

h j
i

Fig. 7. Visualizations and simulations performed in the vission environment

