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Abstract

Suppose that we are given an instance of a combinatorial optimization problem
with min-max objective along with an optimal solution for it. Let the cost of a
single element be varied. We refer to the range of values of the element’s cost
for which the given optimal solution remains optimal as its exact tolerance. In
this paper we examine the problem of determining the exact tolerance of each
element in combinatorial optimization problems with min-max objectives. We
show that under very weak assumptions, the exact tolerance of each element
can be determined in polynomial time if and only if the original optimization
problem can be solved in polynomial time.
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1. Introduction

Sensitivity analysis of combinatorial optimization problems is a study of the effect of
changes in problem data on an optimal solution to a problem. Such a study is important,
not only due to the fact that it allows us to estimate the robustness of the optimal solu-
tion that we have at hand, but also due to the insights it offers regarding the nature of the
problem itself. There are several approaches to sensitivity analysis, the most common
being thetoleranceapproach and theparametric analysisapproach. In the tolerance
approach one tries to find the interval in which the value of a given parameter must lie
for the current optimal solution to remain optimal. In the parametric analysis approach,
the optimal objective value is studied as a function of the value of some problem pa-
rameter that is varied from a lower bound to an upper bound. A third approach is the
k-best solutionsapproach in which the bestk solutions to a problem instance is output.
This last approach has immense practical significance — it allows the decision maker
to choose between “good” solutions on the basis of criteria that may be subjective in
nature.

The earliest combinatorial optimization problems to be analyzed were the scheduling
problem, the knapsack problem, the generalized assignment problem and the facility
location problem (see Nauss [27]). The parametric analysis approach was used, and
the problems were analyzed more as special cases of the general integer linear pro-
gramming problem rather than as individual combinatorial problems. Geoffrion and
Nauss [15] and Nauss [27] provide comprehensive surveys of sensitivity analysis re-
sults till the mid 1970’s.

Individual combinatorial optimization problems have been actively studied since then.
In the 1970’s and ’80’s, the predominant approach was parametric analysis — a re-
stricted list of publications would include Karp and Orlin [22] for shortest path prob-
lems, Jenkins [21] for fleet mix problems, Jenkins [20] for knapsack problems, Richter
and Vörös [30] for lot-sizing problems, and Gusfield [18] for network flow problems.
Some of the papers from this period using the tolerance approach were Gusfield [19],
Shier and Witzgall [31], and Tarjan [38] on shortest path and network flow problems,
and Sotskov [32] on scheduling.

The literature in the 1990’s shows interesting trends. Most of the work reported seem
to use the tolerance approach, and are concentrated on two problems — the traveling
salesperson problem (see Libura [24], Sotskovet al. [34]) and the machine scheduling
problem (see Br¨aselet al. [4], Kravchenkoet al. [23], Sotskov [33], Sotskovet al. [35],
and Sotskovet al. [36]). Parametric analysis is used in Bunkard and Pfereschy [5], and
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Fernández-Baca and Srinivasan [13]. The k-best approach is used in Van der Poortet
al. [40] and Van der Poortet al. [41]. The related problem of stability analysis has also
received much attention (see, among others, Chakravarti and Wagelmans [7], Br¨asel
et al. [4], Fernández-Baca and Srinivasan [13], Libura [24], Sotskov [33], Sotskovet
al. [35], Sotskovet al. [36], Van der Poort [39] and Van der Poortet al. [42]).

The computational complexity of the sensitivity analysis problem for individual combi-
natorial optimization problems have also been studied. Cartensen [6] and Gusfield [19]
have reported complexity results for parametric analysis applied to network flow prob-
lems. Cartensen [6], in particular showed that the analysis could (at least theoretically)
be hard for some problems. Fern´andez-Baca and Slutzki [12] looked into the number
of breakpoints in special cases of independent set problems and dominating set prob-
lems. Van Hoesel and Wagelmans calculated the complexity of determining tolerance
of problem and performance parameters for the economic lot-sizing problems. Van der
Poort [39] and Van der Poortet al. [42] reported extensive studies on the complexity of
sensitivity analysis for the traveling salesperson problem.

For a comprehensive summary of work on sensitivity analysis published after 1977, we
suggest that the interested reader refer to Greenberg [17] or van Hoeselet al. [43].

The problem of sensitivity analysis of generic combinatorial optimization problems
and the complexity of such analysis have been address independently by Ramaswamy
and Chakravarti [29] and Van Hoesel and Wagelmans [45]. In both papers, the cost
coefficients of one of the elements in the ground set of the instance at hand is allowed
to vary. Although the results obtained are very similar, there are important differences
between the two papers. Ramaswamy and Chakravarti report results relating to the sen-
sitivity analysis of optimal solutions to combinatorial optimization problems with both
min-sum and min-max objectives, while Van Hoesel and Wagelmans consider tolerance
limits for both optimal andε-optimal solutions to combinatorial optimization problems
but with min-sum objectives only. Again in Van Hoesel and Wagelmans [45] the cost
coefficients are assumed to remain non-negative but Ramaswamy and Chakravarti [29]
do away with this assumption.

It is rather surprising to note that almost all the literature is concerned with linear (or
min-sum) objectives. In these problems, the cost ofall the elements in a solution con-
tribute towards the objective function, and so changes in the value of any element is
immediately detected. Sensitivity analysis results therefore, even in the case of general
combinatorial optimization problems with min-sum objectives, are easy applications of
the results in Libura [24]. In combinatorial optimization problems with min-max objec-
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tives, only a largest element contributes to the objective function. Sensitivity analysis
of these problems are therefore more complicated.

Most of the published work on min-max problems is in Russian. Sotskovet al. [34]
used the trajectory problem to provide a summary of this work. Gordeev and Leon-
tev [16] report results on the stability aspects of combinatorial problems with min-max
objectives. The current paper is an attempt to establish the complexity status of com-
binatorial problems with min-max objectives. In that direction it supersedes a part of
Ramaswamy and Chakravarti [29].

We define a generic combinatorial optimization problem with min-max objective as
follows.

Definition 1 A combinatorial optimization problem (COP) with min-max objective
is a collection of problem instances of the following form: we are given a finite ground
setG of elements where each elementej has a costcej

, a collectionF = {f} of subsets
of G, called feasible solutions (or simply solutions), and an objective function (or just
objective)c(f) = maxej∈f{cej

} : F → R. We are required to find an optimal feasible
solution (or just optimum), i.e.,fo ∈ F such thatc(fo) = min{c(f)|f ∈ F}.

An instance of a COP is referred to as beingfeasibleif F 6= ∅, and infeasible otherwise.

We make the following set of mild assumptions regarding COP’s that will hold for the
remainder of the paper.

1. Given an instanceI = (G, F, c) of a COPP and an arbitrary subsetf of G, it is
easy (i.e., possible in polynomial time) to check iff ∈ F.

2. It is easy (i.e., possible in polynomial time) to evaluatec(f) for any solutionf.
3. The empty set∅ ∈ F and has an arbitrary cost which we denote byc( ∅ ). It

is also easy to evaluatec( ∅ ) whenever∅ ∈ F. The time required to evaluate
c( ∅ ) will be denoted byT ∅ .

4. It is possible to find some feasible solution to each instanceI of P in polynomial
time.

5. Given an instanceI = (G, F, c) of a polynomially solvable COPP, all instances
I ′ = (G ′, F ′, c) in whichG ′ ⊆ G andF ′ ⊆ F are polynomially solvable.

Assumptions 1 and 4 are valid for most common COP’s. The time required to compute
the objective of a given solutionf is at worst|f| for min-max objectives, and so this
assumption is in fact trivial. Assumption 3 involves no loss in generality — if∅ 6∈ F
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then we can setc( ∅ ) =∞. Assumption 5 is an implicit assumption in all work on this
area. We list it here for the sake of completeness.

We will use the tolerance approach to sensitivity analysis in this paper. Recall that in
the tolerance approach we find the interval within which a problem parameter may
vary so that the current optimal solution remains optimal. This interval is commonly
described in the form ofexact upper and lower tolerances. We will formally define
these tolerances and the sensitivity analysis problem as follows.

Definition 2 Given an elemente in an instanceI = (G, F, c) of a COPP and an
optimal solutionfo to I, theexact upper tolerance (EUT)βe is defined as

βe = sup{δ|fo remains optimal whence → ce + δ}.

Theexact lower tolerance (ELT)αe is defined as

αe = sup{δ|fo remains optimal whence → ce − δ}.

Definition 3 The sensitivity analysis of a COPP is defined as follows.
Problem SA(P): Sensitivity Analysis for COPP
Input InstanceI = (G, F, c) of P, optimal solutionfo to I

Output αe andβe for eache ∈ G.

Notice that SA(P) consists of the following two component problems, corresponding
to eache ∈ G.

Problem LTOL(P): Lower Tolerance for COPP
Input InstanceI = (G, F, c) of P, optimal solutionfo to I, e ∈ G

Output αe.

Problem UTOL(P): Upper Tolerance for COPP
Input InstanceI = (G, F, c) of P, optimal solutionfo to I, e ∈ G

Output βe.

Obviously SA(P) is polynomially solvable, if and only if LTOL(P) and UTOL(P) are
both polynomially solvable for eache ∈ G.

In this paper, in Section 2 we provide characterizations of the ELT and EUT for an
arbitrary element of the ground set of min-max COPs. We then proceed in Section
3 to show that under very mild assumptions, the sensitivity analysis problem SA(P)
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is about as hard as the COPP itself, in the sense that polynomial solvability ofP

implies polynomial solvability of SA(P) and vice-versa. We use the example below in
Sections 2 and 3 to illustrate our arguments and algorithms. Finally Section 4 is a brief
concluding section.

Example 1. We consider an instance of a symmetric non-Euclidean bottleneck trav-
eling salesperson problem (BTSP) with the following distance matrix (c).

c(.) 0 1 2 3 4 5
0 – 14 2 6 17 15
1 14 – 4 18 16 6
2 2 4 – 11 6 8
3 6 18 11 – 15 1
4 17 16 6 15 – 17
5 15 6 8 1 17 –

In this example, the edges(u, v), u 6= v are the elements of the problem,G = {(0, 1),

(0, 2), . . . , (0, 5), (1, 2), . . . , (4, 5)}. Any solutionf is a collection of edges that form a
TSP tour, so thatF is a collection of all TSP tours. The objective functionc for a solution
f ∈ F is the cost of the longest edge inf. The optimal solution that we consider here is
fo = {(0, 3), (3, 4), (2, 4), (1, 2), (1, 5), (0, 5)}, so thatc(fo) = c(3, 4) = 15.

2. Characterizations ofαe and βe for the min-max objective

In this section we derive characterizations of the ELT and EUT for elements in COP’s
with min-max objectives.

Let f = {e1, e2, . . . , er} ∈ F be a feasible solution, wherece1
≥ ce2

≥ · · · ≥ cer . We
call each elemente ∈ f with ce = ce1

a largestelement off. Any elemente ′ ∈ f with
ce′ = ce2

is called asecond largestelement off and denoted byc(2)(f). If |f| = 1,
thenc(2)(f) = −∞. Note that there may be more than one largest and second largest
element in a given solution, and that a largest element may have the same cost as a
second largest element. Givene ∈ G andf ∈ F, we say thatf is e-critical if e ∈ f and
c(f) = ce, and thatf is abeste-critical solution if it ise-critical and no othere-critical
solutionf ′ hasc(2)(f ′) < c(2)(f). Pe = {pe} denotes the set of beste-critical solutions,
andPe = {pe} denotes set of best solutions not containinge.
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Example 2. (running example) In addition tofo, there are three other solutions with
an objective of 15. These aref1 = {(0, 1), (1, 5), (2, 5), (2, 4), (3, 4), (0, 3)}, f2 =

{(0, 1), (1, 5), (3, 5), (3, 4), (2, 4), (0, 2)}, andf3 = {(0, 1), (1, 2), (2, 4), (3, 4), (3, 5),

(0, 5)}. Notice thatc(fo) = c(f1) = c(f2) = c(f3) = 15, butc(2)(fo) = c(2)(f3) = 15,
while c(2)(f1) = c(2)(f2) = 14. If we considere = (0, 5), then fo and f3 are e-
critical but f1 andf2 are not. Further, bothf0 andf3 are beste-critical solutions. So
Pe = {f0, f3} andPe = {f1, f2}. However, ife = (3, 4), thenfo throughf3 are all
e-critical butf1 andf2 are the only two beste-critical solutions.

In order to derive expressions for the exact tolerances of elementse ∈ G, we need
to study the objective functionc(f) as a function ofce. It is trivial to see thatc(f) is
unaffected by changes ince if e 6∈ f. If e ∈ f, then there are two cases to consider. In
casef is e-critical, i.e.c(f) = ce, then an increase ince would cause an equal increase
in c(f). A decrease ince by an amount not more thanc(f)−c(2)(f) would decreasec(f)
by an equal amount. Ifce decreases further,f ceases to bee-critical, andc(f) remains
constant. In casef is note-critical, a decrease ince, or an increase ince by an amount
not more thanc(f) − ce will not affect c(f). If ce increases by an amount more than
c(f)− ce, thenf becomese-critical and increases linearly withce. Figure 1 showsc(f)
as a function ofce.

-

6
Obj. fn
value

e value
Case:f is e-critical
0

-

6
Obj. fn
value

e value
Case:f is note-critical

0

c(2)(f)

c(2)(f)

c(f) = ce

ce

.....................

..............................................................

.....................

.....................

c(f)

c(f)ce

Figure 1:c(f) as a function of thece whene ∈ f

We now characterize the exact tolerances of an arbitrary elemente i.e., itsαe andβe

values. In the proofs of the two propositions, we will consider cost transformations in
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which ce is increased or decreased by an amountδ. In each case the cost of a solution
f as a result of the transformation will be denoted bycδ(f).

Proposition 1 (Exact lower tolerances)

αe =




ce − c(2)(fo) if e ∈ fo, c(fo) = ce, ∃g ∈ F such thate ∈ g, c(g) = ce,

andc(2)(g) < c(2)(fo);

ce − c(fo) if e 6∈ fo, c(fo) ≤ ce, ∃h ∈ F such thate ∈ h, c(h) = ce,

andc(2)(h) < c(fo);∞ otherwise.

PROOF. Consider an elemente ∈ G. If ce < c(fo), then clearly there are noe-
critical solutions. Reducingce for such elements cannot affect the optimality offo. So
αe is trivially ∞ for all elementse with ce < c(fo). In the remainder of this proof
therefore, we consider only those elements withce ≥ c(fo).

Consider the cost transformationce → ce − δ, δ > 0. From Figure 2 it is clear that if
e ∈ fo andc(fo) = ce then

cδ(fo) =

{
c(fo) − δ if δ ≤ c(fo) − c(2)(fo);

c(2)(fo) otherwise.

If ∃g ∈ F such thate ∈ g, c(g) = ce andc(2)(g) < c(2)(fo), then ifδ > ce − c(2)(fo)

thencδ(fo) = c(2)(g) − δ, which affects the optimality offo. If no suchg exists, or if
c(fo) > ce (in which casecδ(fo) = c(fo)), thenδ can be arbitrarily large.

Next consider the same transformation but assume thate 6∈ fo, andc(fo) ≤ ce. It is
clear thatcδ(fo) = c(fo). If ∃h ∈ F such thatc(h) = ce then

cδ(h) =

{
c(h) − δ if δ ≤ c(h) − c(2)(h);

c(2)(h) otherwise.

If c(2)(h) < c(fo), then if δ > ce − c(fo), thencδ(h) < cδ(fo) which compromises
the optimality offo. If no suchh exists, or ifc(fo) > ce, δ can be arbitrarily large.

The proposition follows. 2

Proposition 2 (Exact upper tolerances)

βe =

{
{c(pe) − ce} if e ∈ fo;∞ otherwise.
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PROOF. Consider an arbitrary elemente ∈ fo. There are two cases to consider.

Case 1: c(fo) = ce. Letce → ce+δ, δ > 0; thencδ(fo) = c(fo)+δ. Note that since
e is a largest element offo, no solution containinge can be superior tofo. Thus
fo is no longer optimal if and only if∃pe ∈ Pe such thatδ > c(pe)−ce. In this
case the minimum value ofδ would be{c(pe) − ce}.

Case 2: c(fo) > ce. In this case we may increasece by an amountδ1 = c(fo) − ce

without changing the cost of any solution. The rest of the analysis is exactly as
in Case 1 above, i.e. we may further increasece by exactlyδ2 = {c(pe)−c(fo)}

without violating the optimality offo. The total permissible increase beforefo

becomes non-optimal is thusδ1 + δ2 = {c(pe) − ce} in this case.

If e 6∈ fo, increasingce leavesc(fo) unchanged. Since such an increase cannot cause
the cost of any solution to decrease,ce can be increased indefinitely without affecting
the optimality offo.

The proposition follows. 2

Example 3. (running example) Let us suppose that we want to calculate the ELT
and EUT for edges(3, 4) and(4, 5).

In case of edge(3, 4) ∈ fo, c(3,4) = 15 = c(fo). Note that bothf1 andf2 contain this
edge andc(2)(f1), c

(2)(f2) < c(2)(fo). Therefore eitherf1 or f2 can be the solution
g mentioned in Proposition 1, andα(3,4) = c(3,4) − c(2)(f1) = 15 − 14 = 1. If
c(3,4) decreases by more than1, thenf1 (and alsof2) become optimal andfo becomes
suboptimal. In our example, the solutionf = {(0, 1), (1, 4), (4, 2), (2, 3), (3, 5), (5, 0)}

is a member ofPe and soβ(3,4) = c(f) − c(3,4) = 16 − 15 = 1. If c(3,4) increases by
more than1, thenf becomes the new optimal solution.

In case of edge(4, 5) 6∈ fo, c(4,5) = 17 > c(fo). In our example we indeed have a
solutionf = {(0, 3), (3, 2), (2, 4), (4, 5), (5, 1), (1, 0)} with c(2)(f) = 14 < c(fo). So
α(4,5) = c(4,5) − c(fo) = 17 − 15 = 2. If c(4,5) reduces by more than this amount,
f becomes the new optimal solution. Since(4, 5) 6∈ fo, c(4,5) can increase indefinitely
without affecting the optimality offo, which meansβ(4,5) =∞.

From Proposition 1 we see that LTOL is non-trivial in COP’s with min-max objectives,
only for elementse ∈ G with ce ≥ c(fo). Given such an elemente, if e ∈ fo, it is
necessary and sufficient to determine if∃f ∈ F with e ∈ f, c(f) = ce andc(2)(f) <

c(2)fo in order to determine ifαe is finite. If it is finite, then it is necessary and sufficient
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to determinec(2)(fo) to determine the value ofαe. Hence solving LTOL fore ∈ fo is
equivalent to solving the following problem.

Problem LM1 : First Lower Tolerance Problem forP, Min-max Objective
Input InstanceI = (G, F, c) of COPP; optimum solutionfo to I; e ∈ fo

Output “YES” if ∃f ∈ F with e ∈ f, c(f) = ce andc(2)(f) < c(2)(fo);
“NO” otherwise.

Given, on the other hand, an elemente ∈ G \ fo with ce ≥ c(fo), we see that to
determineαe, it is necessary and sufficient to determine if∃f ∈ F with e ∈ f, c(f) = ce

andc(2)(f) < c(fo). Solving LTOL for e ∈ G \ fo is thus equivalent to solving the
following problem.

Problem LM2 : Second Lower Tolerance Problem forP, Min-max Objective
Input InstanceI = (G, F, c) of COPP; optimum solutionfo to I; e ∈ G \ fo

Output “YES” if ∃f ∈ F with e ∈ f, c(f) = ce andc(2)(f) < c(fo);
“NO” otherwise.

We next formulate below an evaluation problem LM, such that the polynomial solv-
ability of LM implies the polynomial solvability of both LM1 and LM2.

Problem LM : Evaluation Version of LM1 and LM2
Input InstanceI = (G, F, c) of COPP; optimum solutionfo to I; e ∈ G

Output c(2)(pe) if αe <∞;∞ otherwise.

Note that we do not includec(2)(fo) in the output of LM. In the optimization version
of LM, the output would be a beste-critical solution ifαe <∞, and∞ otherwise.

We can conclude from Proposition 2 that UTOL is non-trivial only for elements offo.
For each such elemente it is necessary and sufficient to determinec(pe) to be able to
determineβe. Solving UTOL for e ∈ fo is thus equivalent to solving the following
problem.

Problem UM : Equivalent Upper Tolerance Problem forP, Min-max Objective
Input InstanceI = (G, F, c) of COPP; optimum solutionfo to I; e ∈ fo

Output c(pe).

3. Complexity of SA for min-max problems

In this section we explore the relationship between polynomial solvability ofP and the
polynomial solvability of SA(P).
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First we assume that we have a polynomial time algorithm SOLVEP to solveP.
(SOLVE P is assumed to return∞ if P has no solution.) We will now show that we
can use this algorithm to obtain polynomial-time solution algorithms LMVIA P and
UM VIA P for LM and UM respectively. Givene ∈ G, algorithm LM VIA P listed
below polynomially solves LM by examining the effect of loweringce to a very low
value on the optimality offo.

Algorithm LM VIA P
Input: InstanceI = (G, F, c) of COPP; an optimal solutionfo of I; e ∈ G

Output: c(2)(pe) if αe <∞;∞ otherwise
begin

co ← c(fo);
M ← mine∈G{ce}; /* M is the cost of a smallest element of G */
s ← ce; /* store the cost ofe */

a1: ce ← M − 1;
call SOLVE P to findC, the cost of the best solution ofI;
if C < c(fo) then

if C = M − 1 then
begin

ce ← s; /* restoring the cost ofce */
return−∞;

end
else
begin

ce ← s; /* restoring the cost ofce */
returnC;

end
else

begin
ce ← s; /* restoring the cost ofce */
return∞;

end
end.

Example 4. (running example) We will illustrate the working of some of the cases
in this algorithm, other cases can be worked through in a similar manner.

Let us input the distance matrix,fo, and the edge(0, 3) to LM VIA P.M = c{(3, 5)} =

1. But since there are no(0, 3)-critical solutions,C = 15 even whenc(0,3) is set to0.
Hence LMVIA P returns∞.
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Let us suppose that we input the edge(3, 4) instead of(0, 3). In this case, tooM =

c(3,5) = 1. If c(3,4) is set to0, c(fo) still remains 15 (due to the presence of the edge
(0, 5) ∈ fo. ThusC = 15 = c(fo) and so LMVIA P returns∞. An inspection offo

shows thatα(3,4) =∞, precisely due to the edge(0, 5) ∈ fo).

Let us finally input the edge(4, 5) (not in fo) instead. Here tooM = c(3,5) = 1. If
c(4,5) is set to0, SOLVE P causesC to be set to14 (refer to the previous portion of
this example on page 6). Therefore LMVIA P returns14 in this case, which actually
is c(2)(p(4,5).

The following theorem shows that this algorithm is correct and polynomial.

Theorem 1 Algorithm LM VIA P correctly solves LM in polynomial time.

PROOF. From Proposition 1 it follows thatαe, if finite, cannot exceedce − M, and
hence that the cost transformation in Stepa1 affects the optimality offo if and only
if αe < ∞. The output produced is clearly correct ifαe = ∞. If αe < ∞ then
αe ≤ ce − c(2)(fo) < ce − M + 1, so that the new optimum must be a solutionpe

in Pe, with a cost equal to that of the largest element inPe \ {e}, which is just the
value ofc(2)(pe) at the outset of the algorithm. Finally,C equalsM − 1 if and only if
the solution whose cost is found by SOLVEP is {e}. In this casec(2)(pe) = −∞ by
definition. Correctness of the algorithm follows.

Noting that computingM requiresO(|G|) time, and assuming that SOLVEP requires
polynomial time, we conclude that the running time of LMVIA P is polynomial.

2

In a similar fashion, we may easily devise algorithm UMVIA P which, given any el-
emente ∈ G, uses SOLVEP to polynomially find the cost of the best solution not
containinge by settingce to a very high value so that the best solutions toP are pre-
cisely those inPe.

Thus we see that ifP is polynomially solvable, then LM and UM are also polynomially
solvable. This gives us the following result.

Theorem 2 LetP be a COP with a min-max objective. IfP is polynomially solvable,
then SA is also polynomially solvable.
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We next assume that SA is polynomially solvable, i.e. we have available polynomial
time solution algorithms for LM1 and LM2. We will use these to obtain a polynomial
time solution algorithm forP, under the weak assumption 4 in the introductory section.
Recall that this assumption, which will remain in force for the remainder of this sec-
tion, states that each instance ofP is feasible and that it is possible to find some feasible
solution in polynomial time. It is unnecessary to assume the existence of a polynomial
time solution algorithm for UM. Our approach is to begin by constructing a polyno-
mial time algorithm for solving the optimization version of LM, which we then use to
construct a polynomial time algorithm forP.

We transform the costs in the following manner: assign each smallest element a cost 1,
each next larger element a cost 2 and so on. We will refer to this transformation asΨ

and refer to the cost of an edgee after this transformation ascΨe. Ψ can be completed
in O(|G|log|G|) time and clearly preserves optimal solutions.

Lemma 1 Let I = (G, F, c) be a min-max COP with optimumfo. For an arbitrary
but fixed numberL < c(fo), consider the cost transformationT : ce′ → L for each
e ′ ∈ fo with ce′ > L. Then

1. T leavesfo optimal with costL;
2. for eache ∈ G with αe < ∞ beforeT , αe < ∞ after T if and only if L >

c(2)(pe).

PROOF. 1. Trivial.
2. Consider an elemente ∈ G for whichαe <∞. Denote byc(2)

T (f) the cost, after
T , of a second largest element of a solutionf. There are two cases to consider.
Case 1: e ∈ fo. Sinceαe < ∞ beforeT , it follows from Proposition 1 that

ce = c(fo) and thatc(2)(pe) < c(2)(fo). If L > c(2)(pe), then, sinceL <

c(fo) = c(pe) we havecT(pe) = L andc(2)(pe) = c
(2)
T (pe) < c

(2)
T (fo).

From Proposition 1 we conclude thatαe is finite.

To prove the converse, supposeL ≤ c(2)(pe). Thenc
(2)
T (fo) = L, since

αe < ∞ and soc(2)(pe) < c(2)(fo) which implies thatL < c(2)(fo).

However,c(2)
T (pe) ≥ L and the result follows from Proposition 1.

Case 2: e 6∈ fo. Sinceαe < ∞ beforeT , it follows from Proposition 1 that
c(2)(pe) < c(fo). We also havecT(pe) = ce. If L > c(2)(pe), then

c(2)(pe) = c
(2)
T (pe) < cT(fo) = L. From Proposition 1 we conclude that
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αe is finite. To prove the converse, supposeL < c(2)(pe). ThencT(fo) =

L ≤ c
(2)
T (pe) and the result follows from Proposition 1.

2

Algorithm OPTLM below solves the optimization version of LM in polynomial time,
given polynomial algorithms SOLVELM1 and SOLVELM2 for LM1 and LM2 re-
spectively. It uses a two phase procedure. In Phase 1, Lemma 1 is used to determine
c(2)(pe). In Phase 2, we examine the effect of suitably raisingce′ for eache ′ ∈ G

with ce′ ≤ c(2)(pe) (these are the only candidate elements ofpe) onαe: if αe remains
unchanged, then we may look for a solution inPe not containinge ′; if αe increases (it
actually becomes infinite), thene ′ must belong to each best solution containinge.

We present the algorithm for the casee ∈ fo ; for the casee 6∈ fo, “SOLVE LM1”
is replaced by “SOLVELM2” throughout. In order to improve the readability of the
pseudocode, we will assume that the cost transformationΨ has already been applied to
the element costs before invoking this algorithm.

Algorithm OPT LM
Input: InstanceI = (G, F, c) of COPP; optimum solutionfo to I; e ∈ G

Output: pe if αe <∞; ∅ otherwise
Assumption: The element costs have already been transformed by the cost transformationΨ

begin
/* begin preprocessing */
if SOLVE LM1(P, fo, e) returns “NO” then

return∅; /* αe is infinite */
/* end preprocessing */
/* begin initialization process */
for e ′ ∈ G do

se′ ← ce′ ; /* storing the cost vector */
IN ← {e};
OUT ← ∅ ;
LIST ← ∅ ;
L ← c(fo);
/* end initialization process */
for eache ′ ∈ G do

ke′ ← ce′ ; /* store the value ofce′ */
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Phase 1: L ← L − 1;
f1: for eache ′ ∈ fo with ce′ > L do

begin
ce′ ← L;
LIST ← LIST + e ′;

end
if SOLVE LM1(P, fo, e) returns “NO” then

go to Phase 2;/* c(2)(pe) = L */
else

go to Phase 1;
Phase 2: for eache ′ in LIST do

ce′ ← ke′ ; /* restore original costs */
f2: for eache ′ ∈ G with ce′ ≤ L /* these are the only candidate elements ofpe \ {e} */

begin
ce′ ← c(fo); /* fo remains optimal */
if SOLVE LM1(P, fo, e ′) returns “NO” then
begin

IN ← IN + e ′;
ce′ ← ke′ ;

end
else

OUT ← OUT + e ′;
end
returnIN;

end.

Example 5. (running example) We illustrate the working of OPTLM. After the cost
transformationΨ, the distance matrix (cΨ) looks as below.

cΨ(.) 0 1 2 3 4 5
0 – 7 2 4 10 8
1 7 – 3 11 9 4
2 2 3 – 6 4 5
3 4 11 6 – 8 1
4 10 9 4 8 – 10
5 8 4 5 1 10 –

Let us assume we inputfo and edge(4, 5) to OPTLM. Note thatα(4,5) = 2. Initially
IN = {(4, 5)},OUT = LIST = ∅, andL is set to10. The assumed polynomial algo-
rithm SOLVE LM2 confirms thatα(4,5) is indeed finite and we start off with Phase 1.
At the end of Phase 1,L = 7, andLIST = {(0, 4), (0, 5), (1, 3), (1, 4), (3, 4), (4, 5)}.
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In Phase 2, we first restore the costs of the members ofLIST to their cΨ values.
This step is strictly not necessary for the correctness of this algorithm, but is essen-
tial if this algorithm is being called by any other. Let us consider the Phase 2 pro-
cess for the element(0, 1) (cΨ(0,1) = 7 ≤ L). If cΨ(0,1) → 8, then SOLVELM2
will return∞, since none of the(4, 5)-critical solutions have their second largest el-
ements less than8 after this transformation. Hence(0, 1) gets added toIN. If we re-
peat the Phase 2 procedure for all the elements not inLIST , we end up withIN =

{(0, 1), (0, 3), (1, 5), (2, 3), (2, 4), (4, 5)} which is a best(4, 5)-critical solution.

The next theorem shows that OPTLM is correct and polynomial.

Theorem 3 Algorithm OPTLM correctly solves the optimization version of LM in
polynomial time.

PROOF. We first verify the correctness of the algorithm. The caseαe =∞ is trivial.
Consider the caseαe < ∞. Correctness of Phase 1 (i.e., thatL equalsc(2)(pe) at the
end of Phase 1) follows from Lemma 1; it suffices therefore to prove the correctness
of Phase 2. We prove by induction that at each execution of thefor loop f2, there is a
solution inPe that contains each element ofIN and no element ofOUT . This is trivially
true at the beginning off2 whenIN = {e} andOUT = ∅ , sincePe 6= ∅ . Assume the
induction hypothesis to be true at some stage off2, and lete ′ be the next element to
undergo the transformationce′ ← c(fo). Sincece′ < c(fo), this transformation leaves
fo optimal. Thus SOLVELM1 (SOLVE LM2 if e 6∈ fo) correctly predicts whether
αe is finite. Sinceαe was finite before the transformation and since each element of
OUT has costc(fo), it follows thatαe is now infinite if and only if each solution inPe

contains an element ofOUT + e ′. Hence the induction hypothesis holds at the end of
f2. At termination, however,OUT is identical withG \ IN. Correctness of OPTLM
follows.

We turn now to the running time. Sincec(fo) ≤ |G|, by virtue of the cost transformation
Ψ, thego tostatement is executed no more than|G| times. Eachfor loop in the algorithm
loopsO(|G|) times at each invocation. Phase 1 thus takesO(|G|2) time. In Phase 2,
either SOLVELM1 or SOLVE LM2 is called once during each execution off2. Phase
2 thus takesO(|G|R) time whereO(R) is the greater of the assumed running times of
SOLVE LM1 and SOLVELM2. So OPTLM runs in timeO(|G|{R + log|G|}) and the
proof is complete. 2
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We now show that COPP can be solved polynomially using the polynomial algorithms
SOLVE LM1, SOLVE LM2 and OPTLM. The idea behind the proposed algorithm is
the following. We start with a feasible solutionfo of the instanceI of P, and make it
optimal by raising the cost of eache ∈ G with ce < c(fo), to c(fo). Next, for each
elemente whose cost was thus altered, we determined if lowering its cost to its original
value will violate the optimality offo. If it will, then we findpe using OPTLM, lower
ce to its original value, and declarepe as the new optimal solution. Proceeding this
way, we restore all element costs to their original values, and terminate with an optimal
solution toI.

Algorithm P via LM
Input: InstanceI = (G, F, c) of COPP

Output: A best solution ofI
begin

LIST ← ∅ ;
find a feasible solutionfo of I; /* assumed possible in polynomial time */

l1 for eache ∈ G with ce < c(fo) do
begin

LIST ← LIST + e;
ke ← ce;
ce ← c(fo); /* fo is now an optimal solution ofI */

end
l2 for eache in LIST do

begin
call SOLVE LM and findαe;
if αe ≥ c(fo) − ke then

ce ← ke; /* fo remains optimal */
else
begin

call OPT LM to find pe, a beste-critical solution;
ce ← ke;
fo ← pe; /* pe is now an optimal solution */

end
end
returnfo;

end.

Example 6. An initial feasible solution is easy to find for the BTSP in our example.
We will choose the solutionfo = {(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (0, 5)} with cost
c(fo) = 17. At the beginning of thefor loop l2 therefore,LIST = {(0, 1), (0, 2), (0, 3),

(0, 5), (1, 2), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5)}. Assuming thatl2 picks
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out elements in the same order, the costs of(0, 1) through(2, 5) are restored to their
initial values, sinceαe for any of these edges is infinite. When Pvia LM considers the
edge(3, 4), it finds thatα(3,4) < 17 − 15 = 2 and calls OPTLM after settingc(3,4) to
15. OPT LM returns with the solution{(0, 1), (1, 5), (5, 2), (2, 4), (4, 3), (3, 0)} which
becomes the newfo (with cost15). This is an optimal solution for the example at hand,
and remains unchanged whenc(3,5) is considered and restored to its original value.

Theorem 4 LetP be a COP with a min-max objective. If LM1 and LM2 are polyno-
mially solvable, thenP is polynomially solvable whenever a feasible solution to each
instanceI of P can be found in polynomial time.

PROOF. We first prove that the solutionfo returned by Pvia LM is indeed an op-
timal solution toI. The proof is by induction. The algorithm generates a sequence
{I1, I2, . . . , I} of instances ofP, terminating in the original instanceI. Assume that at
some stage of the algorithm,fo is the optimal solution to the current instanceIk. This
is trivially true for the casek = 1 since the cost of each element inG is ≥ c(fo). Let e
be the element picked fromLIST in thefor loop l2. If αe ≥ c(fo)−ke thenfo remains
optimal on decreasingce from c(fo) to ke. Suppose on the other handαe < c(fo)−ke.
This implies, that decreasingce from its present valuec(fo) to ke will renderpe opti-
mal, i.e., an optimum ofIk+1. The result follows by induction.

Since the total number of calls made to each of SOLVELM and OPTLM by Algorithm
P via LM is clearly no more than|G|, P via LM is a polynomial algorithm if LM1 and
LM2 are polynomially solvable. 2

This leads us to the following important corollary.

Corollary 3.1 If SA is polynomially solvable, thenP is polynomially solvable when-
ever a feasible solution to each instanceI of P can be found in polynomial time.

4. Conclusion

In this paper we have shown that under the weak assumptions that testing feasibility and
evaluating a feasible solution is easy, the sensitivity analysis problem (viz., the prob-
lem of determining exact upper and lower tolerances) for an arbitrary combinatorial
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optimization problemP with a min-max objective is easy, i.e., polynomially solvable,
if the original combinatorial optimization problemP is itself easy. Our proofs are con-
structive and provide a polynomial method for solving the sensitivity analysis problem
whenever a polynomial time algorithm for solvingP is available. Better methods may
of course be available for determining tolerances for specific combinatorial optimiza-
tion problems. We have also shown that under the additional assumption that it is easy
to determine an initial feasible solution, sensitivity analysis is easy only ifP is easy. We
have illustrated all our results using an instance of a non-Euclidean bottleneck traveling
salesperson problem as an example.

Our results imply that unlessP = NP polynomial time algorithms for sensitivity anal-
ysis for many well-knownNP-hard combinatorial optimization problems such as the
bottleneck traveling salesperson problem is not possible.
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