
 

 

 University of Groningen

String theory limits and dualities
Schaar, Jan Pieter van der

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2000

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Schaar, J. P. V. D. (2000). String theory limits and dualities. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 13-02-2023

https://research.rug.nl/en/publications/16c66521-016e-498e-8f61-2a5abc3e50f3


Chapter 5

String solitons and the field theory
limit

In this chapter we will study the soliton solutions appearing in the supergravity
actions more carefully. Most importantly this will involve putting in the string
theory parameters and a study of the near–horizon region. We will introduce a
special metric frame, called the dual frame, in which the special properties of
the near–horizon geometry are most easily detected. After that we will study a
string theory limit which will leave us with the decoupled soliton worldvolume
field theory on the one side, and a (well behaved) near–horizon supergravity on
the other side, which are conjectured to be dual descriptions of the same system.
From the outset our analysis is valid in an arbitrary number of dimensions and for
very generic brane solutions. To obtain well behaved near–horizon supergravities
we will need a constraint on our parameters, leading us to consider mainly Dp–
branes and their intersections. We will end by presenting some examples. This
chapter is based on work done in [107], which generalizes work done in [108]
and [109]. Dualities between (conformal) field theories and (Anti–de Sitter) near–
horizon supergravities were first discussed in [110]. Many good review articles on
the subject have appeared and we refer to [111] for a nice pedagogical introduction
and to [112] for an extensive overview.

5.1 String soliton geometries

We want to take a closer look at the geometries of all kind of solitons appearing
as solutions to the low energy effective actions of string and M–theory. This in-
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Chapter 5. String solitons and the field theory limit

terest is motivated by the fact that the physics of p–branes can be described in
two (different) ways. On the one hand, when the target spacetime supergravity
(also called the bulk supergravity) is decoupled, the p–brane fluctuations can be
described by a (effective) worldvolume field theory living on the worldvolume of
the p–brane. In another, semiclassical, regime we are also allowed to describe
the physics of the p–brane by probing the p–brane background with supergravity
fields. A priori one might think these two descriptions are valid in completely dif-
ferent string theory regimes. However, in the previous chapter we encountered an
example of a worldvolume field theory of N D0–branes which was able to describe
gravitational physics. This suggests that there exist string theory regimes where
both descriptions describe the same physics. This is also suggested by the string
interactions of Dp–branes, which from one point of view describe exchanges of
closedstrings leading to bulk supergravity physics, or from another point of view
describe vacuum diagrams of openstrings which lead to worldvolume (quantum)
field theory physics (see Figure 2.6).

We want to understand this phenomenon in more generality and detail. As a
first step towards that understanding we will need to analyze the p–brane geome-
tries again. We want to study a string theory limit in which the bulk supergravity
decouples and which leaves us with a non–trivial worldvolume field theory. As
we will see this limit takes us into the near–horizon region of the corresponding
p–brane solution. Let us therefore first discuss p–brane near–horizon geometries.

5.1.1 Near–horizon geometries of p–branes

Our starting point will be a slightly different action than the one given in (3.48).
We will replace the rank p+2 field strength in (3.48) by its rank D� p�2 Hodge
dual and look for p–brane solutions which are magnetically charged with respect
to the Hodge dual potential (so they are electrically charged with respect to the
rank p+1 gauge potential). This will turn out to be useful as we go along. Besides
that it will also be important to keep track of all factors of gs appearing in the
action. We refer to Appendix A for the details of how to obtain the appropriate
scalings with gs, but basically these can be read off from the exponential dilaton
factors in the string frame action. Our action then is

SD =

Z
dDx

p
g

1

(

p
α 0)D�2g2

s

h
R�

4
D�2

(∂Φ)
2�

g(4�2k)
s

2(d̃+1)!

�
eΦ

gs

��a

F2
d̃+1

i
;

(5.1)
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5.1. String soliton geometries

where we introduced a parameter d̃ and we will also introduce a parameter d,
which are defined by�

d = p+1 dimension of the worldvolume ;
d̃ = D�d�2 dimension of the dual brane worldvolume :

(5.2)

We note that d+ d̃ = D�2. Also notice the change in sign in the dilaton coupling
parameter a in (5.1), which is a result of performing the Hodge duality transfor-
mation (3.49). We also introduced a parameter k, which is related to a;d and D in
the following way (see appendix A)

k=
a
2
+

2d
D�2

(5.3)

and which determines the scaling with gs of the rank d̃+1 field strength. Notice
that when k = 1 the overall scaling with gs vanishes in front of the field strength.
This is the appropriate scaling for a Ramond–Ramond field strength. For k = 2
and k = 0 we find the appropriate scaling of Neveu–Schwarz field strengths and
their Hodge duals respectively.

We will consider the following class of “two–block” p–brane solutions of the
action (5.1)

ds2
E = H� 4d̃

(D�2)∆ dx2
d +H

4d
(D�2)∆ dx2

d̃+2 ;

eΦ
= gsH

(D�2)a
4∆ ; (5.4)

g(2�k)
s F =

r
4
∆

�
(dH ^dx1^�� �^dxd) ;

where � is the Hodge operator on D–dimensional spacetime. This is the magneti-
cally charged analog of (3.50) where we now took care of the appropriate scalings
with gs. The parameter ∆ is the same as in (3.54), which expressed in terms of d
and d̃ equals

∆ =
(D�2)a2

8
+

2dd̃
(D�2)

: (5.5)

The function H is harmonic on the d̃+ 2 transverse coordinates if d̃ 6= 0;�2 and
can be expressed using d̃ as

H(r) = 1+
� r0

r

�d̃
; (5.6)
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Chapter 5. String solitons and the field theory limit

where rd̃
0 is related to the charge (and mass) of the p–brane. Looking at (5.4) it

follows that the charge should scale as g(2�k)
s

1. We note that codimension one
objects, which have d̃ = �1 and are usually called domain–walls, are included
in (5.4) as opposed to codimension 2 objects. The magnetically charged field
strength belonging to a domain–wall is a rank 0 object, a cosmological constant.
In fact, the solution involving linear harmonic functions presented in (5.4) is not
uniquely defined for domain–walls. It will be useful to discuss these objects sep-
arately in section 4.1.2.

The Dp–branes and NS–branes in D = 10 and M–branes in D = 11 are in-
cluded in (5.4), but also two–block p–branes in dimensions D < 10. These can
arise in string theory by considering string compactifications. We will mainly be
interested in two–block BPS p–branes which can be obtained from an intersection
of the basic BPS p–branes in D = 10 or D = 11. When the relative transverse di-
rections of such an intersection are all wrapped on a torus Tr with r the number of
relative transverse directions, the result will be a two–block p–brane in D= 10� r
(or D = 11� r). Supersymmetry preserving BPS p–brane solutions in any dimen-
sion are distinguished by having ∆ = 4=n with n an integer (3.55) denoting the
number of participating (higher–dimensional) branes [38].

To discuss the near–horizon geometry of these p–branes, we want to consider
a limit in which the constant part in the harmonic function (5.6) is negligible,
which means

r � r0 for d̃ =�1 ;

r � r0 all other cases : (5.7)

The p–branes are positioned at r = 0 so this limit brings us close to the brane when
d̃ > 0. When d̃ = �1, so for domain–walls, this limit actually takes us far away
from the brane. We will still refer to this limit as a near–horizon limit. Strictly
speaking, because we are considering extremal BPS p–branes, near–“horizon” is
not good terminology even in those cases where d̃ 6= �1. This is because the p–
brane Einstein frame metric in (5.4) is singular at r = 0, except for some special
cases where the dilaton is constant (e.g. the D3–brane in D = 10 Type IIB su-
pergravity). Therefore it would perhaps be more suitable to call this a near–core
limit. We will soon see however that this singularity in the metric at r = 0 can be
removed by a conformal transformation (3.31) to a special frame called the dual
frame, in which the hypersurface at r = 0 has become a non–singular horizon.

1To obtain natural units we still have to divide with the gravitational constant κD ∝ g2
s (3.29),

giving the expected scaling of the charges and tensions of the different p–branes ∝ g�k
s .

112



5.1. String soliton geometries

This can be understood by noting that e�Φ is singular at r = 0 as well and there-
fore we can perform a conformal transformation “canceling” the singularity in the
metric. Of course we are still left with a singularity in e�Φ, but the limit (5.7) can
in this sense be referred to as a near–horizon limit.

In the limit (5.7) the Einstein metric and the dilaton can be written as

ds2
E =

�r0

r

�� 4d̃2
∆(D�2)

dx2
d +

�r0

r

� 4dd̃
∆(D�2)

dx2
d̃+2 ; eΦ

= gs

�r0

r

� (D�2)ad̃
4∆

: (5.8)

Let us now introduce the conformal transformation which will factor off the sin-
gularities in the above metric. The following conformal transformation will do
exactly that

gµν
D =

�
eΦ

gs

�a=d̃

gµν
E ; (5.9)

where we divided by gs to not introduce (extra) gs dependence in the metric. This
conformal transformation will have the following effect on the action (5.1)

SD =

Z
dDx

p
gD

1

(

p
α 0)D�2g2

s

�
eΦ

gs

�δ h
RD+γ(∂Φ)

2�
g(4�2k)

s

2(d̃+1)!
F2

d̃+1

i
; (5.10)

with

δ =�
(D�2)a

2d̃
; γ =

D�1
D�2

δ2�
4

D�2
: (5.11)

So the dual frame can be characterized by saying that all fields in the action are
multiplied with the same eΦ factor. We note that this would not have been true
if we had used electrically charged potentials. Another special feature of this
frame, which explains the name dualframe, is that Hodge dual (D� p�4)–branes
probing the p–brane background solution couple naturally to the dual frame metric
without a dilaton term.

The regular dual frame metric is given by

ds2
D =

�r0

r

�2(1� 2d̃
∆ )

dx2
d +

�r0

r

�2
dr2

+ r2
0dΩ2

d̃+1 : (5.12)

Notice that the size of the transverse sphere Sd̃+1 no longer depends on r , it has
become constant with radius r0. Because the charge can be calculated by inte-
grating the flux over the transverse sphere, we conclude that the (dualized) field
strength in (5.4) can no longer depend on r either. Therefore we will not consider
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Chapter 5. String solitons and the field theory limit

the solution for the field strength and just consider the metric and the dilaton ex-
pression. The metric in (5.12) generically describes a d+1–dimensional Anti–de
Sitter spacetime times a d̃+ 1–dimensional sphere. Let us next consider coordi-
nate transformations to connect the metric (5.12) to more standard and familiar
parameterizations of Anti–de Sitter spacetimes.

Consider the following coordinate transformation redefining the radius r as�r0

r

�
= e�λ =r0 ; (5.13)

which transforms the metric and dilaton into

ds2
D = e�2(1� 2d̃

∆ )λ =r0dx2
d +dλ 2

+ r2
0dΩ2

d̃+1

Φ = ln(gs)�
(D�2)ad̃

4∆ r0
λ : (5.14)

As already mentioned the metric in (5.14) (generically) is a parameterization of
a d+1–dimensional Anti–de Sitter spacetime times a d̃+1–dimensional sphere,
in shorthand notation AdSd+1�Sd̃+1. The full p–brane geometry can therefore
be described as interpolating between an asymptotic flat Minkowski and a near–
horizon curved AdSd+1�Sd̃+1 geometry, connected by a throat as shown in Fig-
ure 5.1. This interpolating property of two–block p–branes (5.4) was first dis-
cussed in [41, 42] and generalized in [113, 114]. The only exception occurs when
1�2d̃=∆ = 0, because then the metric describes a d+1–dimensional Minkowski
spacetime times the same sphere. Another special case is when a = 0, giving
a constant dilaton background. A nice feature of the stereographic coordinates
(5.13), as they are called, is that the dilaton depends linearly on the radial coordi-
nate λ .

We can also use horospherical coordinates to parametrise the AdSd+1�Sd̃+1

spacetime, which are defined as

uβ =
rβ

rβ+1
0

; (5.15)

with the dimensionless parameter β given by

β =
2d̃
∆
�1 : (5.16)

These coordinates clearly do not make sense when β = 0. Comparing with (5.14)
we see that this is exactly when the near–horizon spacetime becomes Minkowski
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5.1. String soliton geometries

Anti-de Sitter

Minkowski

Figure 5.1: The p–brane solutions interpolating between Minkowski and Anti–de Sitter
geometries.

and that is why the horospherical coordinates can only be used to describe AdS
spacetimes.

We note that u carries dimensions of [l ]�1
= [m], which defines an energy

scale. This will have interesting consequences. Rewriting the dual frame solution
(5.12) using the horospherical coordinates we obtain

ds2
D = r2

0

"
(uβ)

2dx2
d +

�
1

uβ

�2

du2
+dΩ2

d̃+1

#

eΦ
= gsr

� (D�2)a
8

�
β+1

β

�
0

(uβ)
� (D�2)a

8

�
β+1

β

�
: (5.17)

We will prefer these coordinates when analyzing the string limit in which the
worldvolume field theory decouples. In the metric (5.17) the u= 0 hypersurface
is a non–singular horizon and u! ∞ corresponds to the boundary of AdS. We
will say more about some of the properties of AdSspacetimes in section 4.1.2.

Summarizing, we showed that in the dual frame, defined by (5.9), all p–branes
solutions in (5.4) generically have a AdSd+1�Sd̃+1 near–horizon geometry and a
non–trivial dilaton. Special cases arise when β = 0 or when a= 0. The constant
sphere allows for a reduction of the D–dimensional fields. All the indices of the
non–trivial field strength lie on the sphere, so this will give rise to a cosmological
constant in d+ 1 dimensions and so does the curvature of the sphere. Therefore
the reduced solution (throwing away the sphere part), generically consisting of an
AdSmetric and a non–trivial dilaton, solves the equations of motion of an action
with a cosmological constant. The reduced object indeed has p = (d+ 1)� 2
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Chapter 5. String solitons and the field theory limit

spatial extended directions and this is what we called a domain–wall. Before
actually performing a (truncated) reduction [115], we would first like to discuss
domain–wall solutions in general.

5.1.2 Domain–walls and Anti–de Sitter spacetimes

Domain–wall spacetimes [116] solve the equations of motion obtained by vary-
ing a (super)gravity action with a cosmological constant Λ and a dilaton. They
correspond to p–branes with worldvolume dimension d = p+1 which is one less
than the dimension D of the target spacetime they live in (this also means that
d̃ = �1). Although domain–wall solutions do appear in (5.4), it turns out that
these are not the most general solutions one can write down. Because all p–brane
near–horizon solutions are described by a domain–wall in d+1 dimensions (when
reduced over the sphere), it will be useful to study domain–wall solutions more
carefully to make a connection with p–brane near–horizon solutions.

Again performing a Hodge dualization, which replaces the cosmological con-
stant Λ by a rank d+1 field strength Fd+1 in (5.1), we can naturally discuss objects
of codimension one coupling to a d-form potential, defining a domain–wall. In
terms of the field strength Fd+1 the action is now given by

SE
d+1 =

Z
dd+1x

p
g

1

(

p
α 0)d�1g2

s

h
R�

4
d�1

(∂Φ)
2�

g(4�2k̃)
s

2(d+1)!

�
eΦ

gs

�b

F2
d+1

i
:

(5.18)
We introduced a different dilaton coupling parameter b to stress the difference
with (5.1) and k̃ equals

k̃=
�b
2

+
�2

d�1
; (5.19)

which is just the appropriate modification of (5.3) to this domain–wall case using
an electrically charged potential. The equations of motion following from the
action (5.18) can be solved using the general p–brane Ansatz (3.50) involving
harmonic functions, but not uniquely. The solutions are

ds2
E = H

� 4ε
(d�1)∆DW dx2

d +H
�4εd

(d�1)∆DW
�2(ε+1)

dy2
;

eΦ
= gsH

�(d�1)bε
4∆DW ; (5.20)

g(2�k̃)
s F01:::d�1y =

s
4

∆DW
∂yH

ε
;
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5.1. String soliton geometries

where ε is now an arbitrary parameter as opposed to ε =�1 for ordinary p–branes
(when using electrically charged potentials). The parameter ∆DW is defined by

∆DW =
(d�1)b2

8
�

2d
d�1

; (5.21)

which is just (5.5) with d̃ =�1 and a! b.
The function H is harmonic on the 1-dimensional transverse space with coor-

dinate y and equals

H(y) = 1+Q+ y 8y> 0 ;

H(y) = 1+Q� y 8y< 0 ; (5.22)

with Q� constants and we fixed an arbitrary integration constant c to equal 1. The
equations of motion allow for a discontinuity and so Q+ and Q� do not have to
be equal2. It is understood that the domain–wall is positioned at the discontinuity
y= 0. The value of Q� on any side of the domain–wall can be expressed in terms
of a mass parameter m� in the following way

Q�ε = m� ; (5.23)

where m� is related to the cosmological constant through the equation

Λ� =
�2m2

�
∆DW

: (5.24)

So a domain–wall is an object which interpolates between two different cosmo-
logical constant vacua. The charge Q� should not be associated with the physical
charge or mass of the domain–wall because it cannot be measured, which follows
from the dependence on the arbitrary parameter ε . The physical mass and charge
of a domain–wall have to be proportional to the (discontinuous) change in the
cosmological constant. This is the only way to detect such an object.

We saw that use of the Ansatz (3.50) allows for an undetermined parameter ε
in the domain–wall solution. The origin of this parameter is the fact that there are
coordinate transformations, labeled by ε , that keep the solution within the same
Ansatz. The explicit form of these coordinate transformations is given in [20].
Another way of understanding this is that the Ansatz (3.50) is not a suitable one

2Strictly speaking this is only true when using the rank d+1 field strength formulation as we
did.
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Chapter 5. String solitons and the field theory limit

in the domain–wall case because it does not uniquely specify the solution. This
also means that it should be possible to consider coordinate transformations that
get rid of the free parameter ε .

We will now focus on one side of the domain–wall, let us say y> 0 and define
Q�Q+ (from here on we will also drop the + subscript on all parameters related
to Q). Let us also assume that we are far away from the domain wall disconti-
nuity3. This is what we called a “near–horizon” limit in the previous section and
allows us to neglect the constant 1 in the harmonic function (5.22). We can get rid
of the free parameter ε by making the following y! λ coordinate transformation

Qy= e�Qλ
: (5.25)

The domain-wall solution in the new stereographic λ coordinate reads

ds2
E = e

mλ
�
(d�1)b2

4∆DW

��
e
�2mλ

� 2+∆DW
∆DW

�
dx2

d +dλ 2
�

Φ = ln(gs)+
(d�1)bm

4∆DW
λ : (5.26)

This is a solution of the action (5.18) with Λ given by (5.24). The overall term in
the metric can be removed by performing a conformal transformation to the dual
frame, which is now defined as

gµν
D =

�
eΦ

gs

��b

gµν
E ; (5.27)

which is just (5.9) with d̃=�1 and a! b. The solution in the dual frame becomes

ds2
D = e

�2mλ (
2+∆DW

∆DW
)
dx2

d +dλ 2

Φ = ln(gs)+
(d�1)bm

4∆DW
λ : (5.28)

This is just (5.14) with d̃=�1, m= 1=r0 and a! b and generically the dual frame
domain–wall metric describes an AdSd+1 spacetime [117]. When ∆DW = �2 the
metric becomes flat Minkowski spacetime, which is equivalent to taking β = 0,
d̃ =�1 and a! b in (5.14).

3We could also perform a shift coordinate transformation, but this would also shift the position
of the discontinuity changing the range of the transversal coordinate y.
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5.1. String soliton geometries

Near–horizon spacetimes of p–branes should fall in this category of domain–
wall solutions after the reduction over the sphere. To make this connection we
have to relate the original parameters of the p–brane solution a;d; d̃ and r0 to the
parameters of the d+1–dimensional domain–wall which are just b;d and m. Re-
ducing just the fields participating in the solution (5.4) in the dual frame will only
replace the field strength by a cosmological constant whose value is determined
by the Ricci curvature of the sphere and the charge of the original p–brane

SR
d+1 =

Z
dd+1x

p
g

1

(

p
α 0)d�1g2

s

�
eΦ

gs

�δ h
R+γ(∂Φ)

2
+g(4�2k)

s Λ
i
: (5.29)

This action should be a truncation of a gauged supergravity action which presum-
ably can be obtained by reducing the complete higher–dimensional supergravity
action on a sphere [115]. To compare with (5.18) we have to perform a conformal
transformation to the Einstein frame and rescale the dilaton Φ! Φ=c to obtain
the standard normalization of the dilaton kinetic term. The scale factor c equals

c2
=

2d̃2

∆(d̃+1)�2d̃
: (5.30)

We can then read off the domain–wall dilaton coupling parameter b

b= a
(d+ d̃)

(d�1)d̃
c: (5.31)

This is all we need to express ∆DW (5.21) in terms of the parameters of the original
p–brane4. We find

∆DW =
�2d̃∆

∆(d̃+1)�2d̃
: (5.32)

Comparing the reduced p–brane solution in the Einstein frame with (5.26) we
conclude that m and r0 are related as follows

m=
�d̃
r0

: (5.33)

As a consistency check we should find c2
= 1;a = b;∆DW = ∆ and m= 1=r0

when d̃ = �1, in which case the original p–brane is already a domain–wall. The
relations (5.30), (5.31), (5.32) and (5.33) indeed satisfy this requirement.

4The parameter ∆ is only invariant under toroidal reductions and not under reductions on
spheres. This explains why ∆DW 6= ∆.
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Chapter 5. String solitons and the field theory limit

Using these relations we can express the value of the cosmological constant Λ
in terms of the original p–brane parameters. We just use (5.24) and plug in (5.33)
and (5.32). This gives

g4�2k
s Λ =

d̃
2r2

0

�
2(d̃+1)�

4d̃
∆

�
: (5.34)

The first term in this expression originated in the reduction of the D–dimensional
Ricci scalar and the second term comes from the reduction of the magnetically
charged rank d̃+ 1 field strength curvature. Analyzing this expression we find
that all p–brane near-horizon geometries give a Λ > 0 (with 1 � d̃ � (D� 3))
except for the domain-walls, which have d̃ =�1 and a sign change occurs, giving
Λ < 0. We note that this is not in contradiction with the fact that all p–branes
(including the domain–walls) have AdS geometries, which are defined by having
Λ > 0, in the near–horizon limit. The dilaton kinetic term in (5.18) will contribute
to an effectivecosmological constant which is always positive, as can be most
easily seen using stereographic coordinates when the dilaton is a linear function
of λ (5.28)5.

So we have now related all near–horizon geometries of p–branes in (5.4) to
domain–wall solutions. In the dual frame the generic domain–wall metric de-
scribed an AdSd+1 spacetime, with one Minkowski spacetime exception when
∆DW =�2. Let us now discuss some of the special properties of AdSspacetimes,
for a more extensive discussion we refer to [118].

Anti–de Sitter metrics describe spacetimes of constant negative curvatures.
By considering a d+1–dimensional Einstein–Hilbert action with a cosmological
constant term we find

Rµν � 1
2gµν R = Λgµν )

R = �
d+1
d�1

Λ) (5.35)

Rµν = �
Λ

d�1
gµν :

So these spaces have the property that the Ricci tensor is proportional to the metric
tensor, which is the definition of Einstein spacetimes. When Λ > 0 and d > 1 the
solutions describe spacetimes of constant negative curvature and to obtain AdSwe

5As one might expect one obtains a flat Minkowski near–horizon geometry when the effective
cosmological constant vanishes.
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5.1. String soliton geometries

need maximal symmetry implied by demanding

Rµνρσ =
R

d(d+1)
(gνσ gµρ�gνρgµσ) : (5.36)

It is possible to embed AdSd+1 in a d+2–dimensional flat space. The metric
of this d+2–dimensional flat space is

ηab = diag(�;+;+; : : : ;+;�) : (5.37)

The d+2–dimensional spacetime therefore has two times, or signature (2;d). The
invariant distance or length (positive for timelike worldlines) is defined as

�l2 �
i=d

∑
i=1

(yi
)

2� (y0
)

2� (yd+2
)

2
: (5.38)

We note that this length is preserved by a generalization of the Lorentz group rota-
tions into SO(2;d). An AdSd+1 embedded surface is then defined as a hyperboloid
with l2

=R2
= constant

�R2
=

i=d

∑
i=1

(yi
)

2� (y0
)

2� (yd+2
)

2
: (5.39)

The length scale R can be interpreted as the embedding radius of the AdSd+1
surface. Through this embedding equation (5.39) the isometry group of an AdSd+1
spacetime obviously is SO(2;d), which has 1

2(d+1)(d+2) generators6. Quantum
theories on AdSd+1 should therefore have an SO(2;d) invariance. We note that the
group of conformal transformations in d dimensions is also SO(2;d). The AdSd+1
embedding equation (5.39) also implies the existence of closed timelike curves in
the embedded surface. This can be avoided by considering the universal cover
of the AdSd+1 geometry (which means we introduce an infinite set of AdSd+1
geometries allowing timelike curves to pass through different AdSd+1 geometries
avoiding closed timelike curves).

We can now choose suitable coordinates on AdSd+1 satisfying the embedding
constraint (5.39) and defining an induced AdSd+1 metric. For example let us de-
fine

u0 � yd+2
+yd

; v� yd+2�yd (5.40)

6Notice that the number of generators is the same as the Poincaré group in d+1 dimensions.

121



Chapter 5. String solitons and the field theory limit

where we picked out yd as one of the spacelike coordinates in (5.39). Also define
the left–over coordinates as

yµ �
u0

R
xµ µ 2 [0;1; : : : ;d�1] (5.41)

and introduce a flat d–dimensional metric ηµν with usual Minkowski signature to
lower the Greek indices on the x coordinates. The induced (mostly plus) AdSd+1
metric is just

ds2
= dyµdyµ �du0dv: (5.42)

Working out the differentials and expressing v in terms of u and xµ through the
embedding equation (5.39) we obtain

ds2
=

�
u0

R

�2

dxµdxµ +

�
R

u0

�2

du02 : (5.43)

This can be recognized as the horospherical parameterization of AdSd+1 (5.17) if
we identify u0 � ur2

0 and

R �
r0

β
=

∆ r0

2d̃�∆
: (5.44)

An important property of AdSd+1 is that it has a “projective boundary”. This
has the effect that in many (physical) situations AdSd+1 spacetime acts as a finite
volume box. Lightlike trajectories can reach this AdSboundary in finite time as
opposed to timelike trajectories. Considering the embedding (5.39) and defining
new coordinates Ry0 with R very large, the boundary can be parametrized (ap-
proximately) as

�
�
R

R

�2

! 0 =

i=d

∑
i=1

(y0i)2� (y00)2� (y0d+2
)

2
: (5.45)

Since tR with t 2 R is just as good as R, we should consider the boundary as a
projective equivalence class defined as

0 =

i=d

∑
i=1

(y0i)2� (y00)2� (y0d+2
)

2

y � ty: (5.46)

We can use the scaling equivalence to fix one of the coordinates and this means
the boundary is a d–dimensional surface, as it should be. For example we can fix
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5.1. String soliton geometries

y0d+2 � 1. In that case we find that

1 =

i=d

∑
i=1

(y0i)2� (y00)2
; (5.47)

which means the topology of the boundary is S1�Sd�1 7. Considering the univer-
sal cover of AdSd+1 decompactifies the S1, avoiding closed timelike curves. An
important property of the boundary of AdSd+1 is that the isometry group SO(2;d)
acts precisely as the conformal group on Minkowski space. The conformal group
consists of the usual Poincaré group together with the following conformal trans-
formations

� Dilations or scale transformations acting as

xµ ! λ xµ
; λ 2 R : (5.48)

� Special conformal transformations acting as

xµ ! x0µ ; such that
x0µ

x02
=

xµ

x2 +aµ
: (5.49)

Together with the Poincaré group these make up the group SO(2;d). It is not
very hard to see that some infinitesimal SO(2;d) isometries, namely infinitesimal
translations u0 ! u0 + a (using horospherical coordinates (5.40)), indeed repro-
duce dilations on the boundary, which follows from the equivalence class condi-
tion (5.46) of coordinates on the boundary. For a more extensive discussion on
this point we refer to [111]. We conclude that SO(2;d) AdSisometries can be
identified with conformal transformations from the boundary point of view.

We found that generic p–brane near–horizon geometries have AdSmetrics,
but the complete generic solution is also described by a non–trivial dilaton. A
non–trivial dilaton breaks the SO(2;d) isometries of the complete solution. For
example infinitesimal SO(2;d) translations will not leave the value of eΦ invariant,
breaking the symmetry. From the boundary point of view this has to correspond
to broken conformal or scale invariance. Only when the dilaton background is

7This result only refers to the topology of the boundary and does not mean that the boundary
is a curved geometry. Rather the boundary is a flat Minkowski geometry which can be thought of
as the infinite radius limit of a sphere.
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Chapter 5. String solitons and the field theory limit

constant do we expect the complete background solution to be invariant under the
SO(2;d) isometries of AdSd+1. In that case we also find supersymmetry enhance-
ment in the near–horizon limit [41, 42, 119], meaning that a pure AdSbackground
solution preserves all of the supersymmetries, just like flat Minkowski space.

Let us end this section by discussing the two special near–horizon cases in the
dual frame.

� Flat Minkowski near–horizon spacetime. This requires

β = 0 or 2d̃ = ∆ : (5.50)

We will only consider supersymmetry preserving cases, which means ∆ =

4=n with n an integer. It is important to note that the parameter d̃ is invariant
under double dimensional reductions. This means that once we found a p–
brane satisfying the constraint (5.50), p–branes with r legs compactified
on a Tr giving a p� r–brane in D� r dimensions, will also satisfy the
constraint (5.50). So we find families of solutions. Because d̃ has to be
an integer solutions can only be found for n = 1 and n = 2. Relating our
results to existing branes in string– or M–theory we find the 10–dimensional
p= 5–branes for n= 1. When n= 2 we find p= 5–branes in D = 9, which
can be obtained from reduction of D = 10 Kaluza–Klein monopoles in the
N = 1 supergravity theories.

� Pure Anti–de Sitter backgrounds. This requires

a= 0 or
2dd̃
∆

= (d+ d̃) : (5.51)

This condition can be satisfied for the cases where we preserve some su-
persymmetry or equivalently ∆ = 4=n. We summarized the results [41, 42,
120, 119] in Table 5.1.

The p–brane listed in Table 5.1 with ∆ = 2 in D = 6 can be traced back to
an intersection of 2 Dp–branes in D = 10, hence the terminology. The same
holds for the p–branes in D = 5 with ∆ = 4=3, which are related to intersec-
tions of 3 M–branes. Finally, the 0–brane or extreme Reissner–Nordström
black hole in D = 4 is related to an intersection of 4 Dp–branes in D = 10.
Notice that only three possible values of β occur: 1

2 ;1 and 2. Remember

that β defines the ratio of the radius r0 of the transverse sphere Sd̃+1 to
the radius r0=β of the embedded AdSd+1. Considering D = 10 Dp–branes
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D β ∆DW ∆ Name
11 1

2 –12/5 4 M5–brane
2 –3 4 M2–brane

10 1 –8/3 4 D3–brane
6 1 –4 2 d1–brane
5 1

2 –4 4/3 m1–brane
2 ∞ 4/3 m0–brane

4 1 ∞ 1 RN black hole

Table 5.1: The Table indicates the values of β , ∆DW and ∆ for all p–branes that have a
pure AdSnear–horizon background.

or their reduced intersections we always find this ratio to be 1. Considering
D= 11 M2–branes or M5–branes and their reduced intersections we always
find 2 and 1

2 respectively.

Finally notice that p= 0 is special because ∆DW blows up and using (5.35)
we find that Λ � 0. However we can still consider maximally symmetric
Einstein spaces of constant negative curvature and the AdS2 metric satisfies
these requirements.

This finishes our discussion on p–brane near–horizon geometries and their
relation to domain–wall and Anti–de Sitter spaces. We will next introduce a
string theory low energy limit which leads us into the p–brane near–horizon re-
gion, decoupled from the asymptotic Minkowski supergravity. From the p–brane
worldvolume theory point of view the same low energy limit also decouples bulk
Minkowski supergravity and leaves us with the non–trivial field theory living on
the p–brane. This will lead to the surprising and interesting conjecture that p–
brane field theories can be mapped to closed superstring theories on (p–brane
near–horizon) domain–wall backgrounds. By now the best understood and check-
ed example is that of N D3–branes in Type IIB string theory, which was first
discussed by Maldacena, together with the other pure AdSbackgrounds, in [110].
This was generalized to the other D = 10 Dp–branes in [108] and somewhat later
in [109] using the dual frame metric.
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Chapter 5. String solitons and the field theory limit

5.2 The field theory limit

In this section we will set up the limit taking us into the near–horizon region, fixing
the worldvolume field theory coupling constant and energy scale. We will work
out this limit for the general class of p–branes described by (5.4). To obtain well–
behaved near–horizon background solutions we need a constraint on our p–brane
parameters. The result will be that dualities relating domain–wall supergravities
having a 6= 0 to large N worldvolume field theories are only well–behaved for
Dp–branes and their reduced intersections. We will first try to be as general as
possible, only excluding the flat Minkowski near–horizon spacetimes, which will
not be treated in this thesis.

5.2.1 The general setup

A string low energy8 limit will always involve

u2 α 0! 0 ; (5.52)

as explained in section 2.2, where we substituted u for U to denote the natural en-
ergy scale. There are two ways to interpret this limit (5.52). One usually considers
u! 0 and keeps α 0 fixed. However one can equivalently consider fixed energies
u and consider the limit α 0! 0. We will use the last option and therefore consider
the limit

α 0! 0 ; (5.53)

keeping fixed a natural energy scale u. We will also assume that from the outset gs

is small, in order for the p–brane soliton solution to make sense in a string theory
low energy limit.

In one regime the system we want to analyze consists of N p–branes described
by a worldvolume theory, coupled perturbatively to a Minkowski bulk supergrav-
ity theory (so we neglect the back reaction of the N p–branes on the spacetime
geometry). The dynamics of the (effective) field theory on the corresponding p–
brane should be non–trivial. This means that at least one field theory coupling
constant should be fixed in the limit (5.53). The field content of the p–brane
worldvolume field theory determines the dimensions of the different coupling
constants (scalars have dimensions different from vectors), which can be easily
read off from the different kinetic terms. The dependence on gs is fixed through

8It should be clear that when we consider M–theory we just replace the string length scale by
the Planck length scale and we lose the string theory coupling constant.
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5.2. The field theory limit

the scaling of the effective tension of the p–brane under consideration, which is
denoted by the parameter k (5.3). A p–brane soliton solution must be thought of
as a stack of N microscopic single p–branes. We will fix (generalized) ’t Hooft
coupling constants9, which involve this integer N. In general we will assume the
following structure of a p–brane worldvolume (’t Hooft) coupling constant

g2
f = cpNgk

s (
p

α 0)x
; (5.54)

with cp some (dimensionless) constant. When considering M–theory branes, the
gs dependence is of course absent10. We introduced the parameter x to denote the
dimension of the coupling constant, which is unconstrained (for now). Both cp

and x depend on the specific p–brane worldvolume theory fields under considera-
tion. When considering Yang–Mills coupling constants of Dp–branes, x is equal
to p�3. On the other hand, when considering scalar coupling constants x= p�1.
We want the coupling constant (5.54) to stay fixed in the limit (5.53). Depending
on the sign of x this has the following consequences

x< 0 ! Ngk
s �

p
α 0�x! 0

x> 0 ! Ngk
s �

p
α 0�x! ∞ : (5.55)

We will only be considering p–branes with k > 0. This is reasonable because
otherwise the effective tension would scale with a positive power of gs, saying
that in a weak string coupling limit the tension of such an object would vanish.
This implies the absence of solitonic solutions to the string effective equations
of motion which are only defined in a weak coupling limit, and so we arrive at
a contradiction because we do want to consider the existence of p–brane soliton
solutions. Positive k and gs � 1 imply that in order to keep gf fixed we need
gs! 0 when x< 0 and N! ∞ when x> 0.

The non–trivial worldvolume field theory will be decoupled from the bulk
Minkowski supergravity theory when the gravitational coupling constant vanishes
in the limit (5.53). The gravitational coupling constant in D spacetime dimensions
is proportional to

GD ∝ (

p
α 0)D�2g2

s ; (5.56)
9These are called ’t Hooft coupling constants after ’t Hooft’s idea to treat U(N) Yang–Mills

theories in a 1=N expansion. The suggestion was that these theories might simplify when the
number of colors N is large, because only planar Feynman diagrams contribute in a large N limit.
If one could solve the theory with N=∞ exactly, the hope was that one could analyze SU(3) QCD
beyond the perturbative weak coupling expansion by doing an expansion in 1=N = 1=3 < 1.

10In fact the α 0 dependence also disappears in that case because the worldvolume field theories
are scale invariant.
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Chapter 5. String solitons and the field theory limit

which clearly vanishes in the limit (5.53) and u and gf fixed, as long as we do not
consider taking gs! ∞. We conclude that in the limit described above, which we
will refer to as the field theory limit, we end up with a bulk Minkowski supergrav-
ity theory decoupled from a non–trivial p–brane low energy effective worldvol-
ume theory.

Now consider the p–brane supergravity soliton solution (5.4). We have to de-
fine a natural energy scale with respect to the p–brane solution which coincides
with the one in the worldvolume field theory and which should be kept fixed in
the limit (5.53). We already encountered an energy scale when we discussed the
AdSd+1 horospherical coordinates, where we defined a parameter u with the di-
mensions of mass (5.15). This can be shown to be the natural energy scale associ-
ated to a massless supergravity field probing the p–brane near–horizon geometry
[121]. That energy scale could only be defined when β 6= 0 (5.16), so we will only
be discussing p–branes with AdSd+1 near–horizon geometries (in the dual frame).
The cases with β = 0, resulting in a dual frame flat Minkowski near–horizon ge-
ometry, can be treated but we refer to [108, 109] and [122] to learn more about
the holographic duality conjectures in these special cases.

We want to replace all quantities appearing in the harmonic function by the
fixed parameters in the field theory limit. All r dependence will be replaced by u
and we also need to express r0 in terms of the appropriate string theory parameters.
In Appendix A we deduce that

rd̃
0 = (dpNg2�k

s )

p
α 0d̃

; (5.57)

where we introduced a dimensionless constant dp. We can now rewrite the har-
monic function H(r) in terms of the fixed quantities u and g2

f , extracting powers
of α 0 and gs which are left–over. This gives

H = 1+(

p
α 0)

x�d̃
β (gs)

2(k�1)
β

�
g2

f (uβ)
d̃
�

dp

cp

���1=β
: (5.58)

The field theory limit will take us into the p–brane near–horizon region when

x� d̃
β

< 0 : (5.59)

The power of gs could still spoil this behavior, but we will soon constrain our
parameters in such a way that this possibility is excluded.
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5.2. The field theory limit

Let us for the moment assume that the constraint (5.59) is fulfilled and the
field theory limit takes us into the p–brane near–horizon geometry. We will use
the dual frame metric solution written in terms of horospherical coordinates and
we will not give the expression for the field strength, which is of less importance.
Expressing the p–brane near–horizon solution in terms of the fixed quantities,
removing all the α 0 dependence in the dilaton, we find

ds2
= (dpNg2�k

s )
2=d̃ α 0

"
(uβ)

2dx2
d +

�
1

uβ

�2

du2
+dΩ2

d̃+1

#

eΦ
= g

1+ (D�2)a
2∆β (k�1)

s

�
Ngk

s

� a(D�2)(d̃�x)
4∆βx

"
(g2

f )
1=x

(uβ)

 
d1=d̃

p

c1=x
p

!#�(D�2)a
8

�
β+1

β

�

:(5.60)

We can rescale the metric to lose the factors (dpNg2�k
s )

2=d̃ and α 0. This will

introduce (extra) α 0 and (dpNg2�k
s )

2=d̃ dependence in the dual frame action (5.10).
Collecting all α 0 dependence, we find the important result that all α 0’s drop out.
All gs dependence nicely combines into the eδΦ in front of the dual frame action.
After the rescaling our action (5.10) becomes

SD =

Z
dDx

p
gD(dpN)

(D�2)=d̃eδΦ
h
RD +γ(∂Φ)

2�
1

2(dpN)2(d̃+1)!
F2

d̃+1

i
:

(5.61)
This means that if the dilaton expression is non–singular in the field theory limit,
we are left with a near–horizon supergravity theory with a finite Planck length
and a finite string coupling constant defined by eΦ! This strongly suggests that
in the field theory limit on the supergravity soliton side, we end up with a super-
string theory on the AdSd+1�Sd̃+1 p–brane near–horizon background with new
(finite) parameters α̃ 0 and g̃s. The field theory limit decouples this near–horizon
superstring theory from the asymptotic Minkowski superstring theory we started
with.

The special cases a = 0 imply a constant dilaton and the supergravity back-
ground carries an unbroken SO(2;d) isometry. This should match with a con-
formal symmetry group in the worldvolume field theory description, meaning the
fixed coupling constant (5.54) should be dimensionless or x = 0. Those cases
(which include the M–branes) do not require a parameter restriction and will be
discussed separately in 4.2.2. When a 6= 0 non–singular dilaton expressions in the
field theory limit require a restriction on our p–brane parameters. We will now

129



Chapter 5. String solitons and the field theory limit

constrain our p–brane parameters such that the near–horizon limit (5.59) is guar-
anteed and the new string coupling constant eΦ is finite or independent of the old
string coupling constant gs.

In the analysis of the effect of the field theory limit on the supergravity soliton,
we defined a fixed energy scale u. A priori there is no reason for this fixed energy
scale to be the same as the natural energy scale in the worldvolume field theory. To
be able to compare both descriptions we need related or better, equivalent fixed
energy scales. To determine these relations we need to probe the system under
consideration in both descriptions by the same objects or fields. Suppose we are
dealing with N Dp–branes probed by a single Dp–brane. Then we know how
to relate a natural energy scale in the Dp–brane Yang–Mills worldvolume field
theory to the length of stretched strings, defining a distance scale in the bulk. Open
strings stretching from the probe brane to the system of N Dp–branes correspond
to energy scales equal to

U =
r
α 0 ; (5.62)

which is just the distance between the probe and the system of N Dp–branes times
the open string tension (see 1.1.5). This is obviously not the same as the definition
of the energy scale u (5.17), which we kept fixed when considering the field theory
limit in the supergravity soliton description. The two energy scales are related in
the following way

uβ = α 0 x+d̃�∆
∆ g

4(k�1)
∆

s

�
dp

cp
g2

f

��2
∆

Uβ
: (5.63)

We would like u and U to be related through fixed quantities only. Otherwise fixed
energy scales U in the worldvolume field theory would correspond to diverging
energy scales u in the supergravity soliton description and vice versa. Looking at
(5.63) this is only possible when

k= 1 ; x= ∆� d̃ : (5.64)

The first constraint k = 1 just confirms our restriction to Dp–branes in any di-
mension. The second constraint is interesting, because it tells us which coupling
constant in the worldvolume theory we should keep fixed. Until now we kept x as
a free parameter, but now we see we have to fix it in order to connect the Dp–brane
supergravity soliton and Dp–brane field theory energy scales. When D = 10 and
∆ = 4 we find x= p� 3, telling us that we should keep fixed the ’t Hooft Yang–
Mills coupling constant (5.54). The connection between the two energy scales

130



5.2. The field theory limit

was discussed extensively in [121]. There it was observed that u is the natural
energy scale for supergravity probes (instead of Dp–brane probes), which could
also be obtained in the worldvolume field theory by considering the self–energy
of a point charge. The point charge is the interpretation of the stretched string
from the worldvolume gauge theory point of view, which has energy U . How-
ever, the self–energy is also proportional to the effective strength of the Coulomb
interaction and this will reproduce (5.63). To get the correct holographic relation
between the number of degrees of freedom on both sides of the duality [123], the
energy scale u should be used and therefore this parameter is also called the holo-
graphic energy scale. This also means that from the holographic point of view,
the supergravity fields are the natural holographic probes of the AdSgeometry.
In [109] it was noted for the first time that the holographic energy scale u is the
natural energy scale coordinate for AdSspacetimes obtained as the near–horizon
geometries of Dp–branes in D = 10 in the dual frame. We have seen that this
phenomenon extends to p–branes in arbitrary dimensions.

Using the restriction (5.64) first of all drops all gs dependence in (5.58), and the
power of α 0 (5.59) becomes�∆. Because we only consider ∆> 0, it is guaranteed
that the field theory limit takes us into the near–horizon region. Importantly, using
the constraints (5.64) we find the following expression for eΦ in the field theory
limit

eΦ
=

1
N

"
(g2

f )
1=x

(uβ)

 
d1=d̃

p

c1=x
p

!#�(D�2)a
8

�
β+1

β

�

: (5.65)

Remember that x= ∆� d̃ in this expression. This is finite (at least when we do not
consider N ! ∞) and defines a new string coupling constant independent of the
old Minkowski string coupling constant gs. From (5.65) we conclude that this new
coupling constant is proportional to 1=N. So in a large N limit we obtain a weakly
coupled string theory and string theory quantum corrections are 1=N effects.

We are now ready to state the conjecture naturally following from the above
analysis, restricting the parameters as in (5.64) when a 6= 0. Fixing an energy
scale u and a ’t Hooft coupling constant gf , the low energy limit α 0 ! 0 decou-
ples Minkowski supergravity in both descriptions. We are left with a p–brane
worldvolume field theory on one side and a well defined domain–wall supergrav-
ity solution on the other side. Choosing a fixed energy scale and ’t Hooft cou-
pling constant we can now either describe the system of p–branes by a closed
superstring theory on a domain–wall background, or by the p–brane worldvol-
ume field theory and both descriptions are conjectured to give the same results.
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Chapter 5. String solitons and the field theory limit

This automatically leads to the conjecture that closed superstring theory on a
DWd+1�Sd̃+1 p–brane near–horizon background is dual to the d–dimensional
p–brane worldvolume field theory. These kind of relations we will very often call
domain–wall/quantum field theory dualities (or in short DW/QFT dualities). The
suggestion to go beyond the supergravity approximation is based on the fact that
we found finite Planck length and string coupling in the supergravity analysis.
Of course when considering M–branes we loose the dilaton (and thus the string
coupling) and we should replace “closed superstring theory on a DWd+1�Sd̃+1

p–brane near–horizon background” by “M–theory on a pure AdSd+1�Sd̃+1 M–
brane near–horizon background”.

Let us explain what we mean when we say that the two descriptions are dual to
each other. This will become clear when we start analyzing the regions of the fixed
quantities u and gf (and usually N) where the different descriptions are in their
perturbative, calculable, regime. We will first analyze the perturbative regime of
the worldvolume field theory giving a restriction on the quantities u and gf and
after that deduce the restriction needed on the quantities u and gf (and N) to be in
a perturbative closed string regime.

Although the field theory description is in principle defined non–perturbati-
vely, in practice we (almost always) need a perturbative expansion which is only
defined for small effective dimensionless coupling constant. This effective di-
mensionless coupling constant in the worldvolume field theory can be constructed
from the energy scale u and the coupling constant g2

f and should be much smaller
than one, giving

g2
eff = g2

f ux� 1 : (5.66)

Depending on the sign of x the perturbative field theory description will either be
valid when u� 1 or u� 1. This effective coupling constant determines the (clas-
sical) scaling of the supersymmetric d–dimensional quantum field theory under
consideration. We note that this is the combination of u and gf that appears in the
dilaton background (5.65).

The situation is different for the string theory (as explained in 1.1.6), which
first of all is only definedfor weak string coupling. Also the domain–wall back-
ground solution on which the string theory is defined can only be trusted as long
as the spacetime curvatures are small and finite size corrections can be neglected.
We can use a supergravity approximation (neglecting string loop diagrams) when
the string coupling and the curvature of the background are both small. Let us
investigate the regions in the p–brane near–horizon background solution where
we can trust this supergravity approximation.
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Small curvature (as seen by closed strings) can be translated in demanding that
the effective tension in the dual frame times the characteristic spacetime length
is large. The characteristic spacetime length is determined by the dual frame
AdSd+1�Sd̃+1 metric and is of order one (in α̃ 0 units). Calculating the effec-
tive string tension in the dual frame (using (5.9) and (2.1) we find small curvature
when

τs =

�
dpNe(2�k)Φ

�2=d̃
� 1 : (5.67)

We note that we did not yet use the constraint k= 1 in the above expression.
Small string coupling, which is defined by the dilaton expression (5.65) after

the constraint (5.64), can be translated into the constraint

eΦ
=

1
N

"
g2

eff

 
βxd1=d̃

p

cp

!#�(D�2)a
8

�
β+1
βx

�

� 1 : (5.68)

This last constraint can always be satisfied for generic u (except for the special
points u! 0 or u! ∞) by taking N very large. This is a general feature of
DW/QFT dualities, a supergravity approximation at least requires a large N limit.
We note that when we take k= 1 in (5.67) the overall N dependence will drop out.
This means that generically we can only expect supergravity to be a good approx-
imation within a finite region of the complete background [108, 109]. Quantum–
gravitational corrections can be included by taking into account string loop di-
agrams (which as we already mentioned can be identified with 1=N effects) and
this string loop expansion will be restricted to the same region on the domain–wall
background.

As we will see, in most cases the region where supergravity is a valid descrip-
tion is not overlapping with the region in which the perturbative field theory is a
good description. This means that at a particular scale u and coupling constant
gf there only exists one perturbatively well–defined theory which, through the
conjecture, can be mapped to a non–perturbative regime in the other theory. So a
strongly coupled theory can be mapped to a weakly coupled (different) theory and
it is precisely in this sense that the theories are said to be dual to each other. In
fact we could have expected that, because sure enough we know that perturbative
quantum field theory is very different from any (super)gravity theory.

This new kind of duality between large N SYM field theories and closed su-
perstring theories (including quantum gravity) can be used to study non–pertur-
bative physics on either side. First of all, although we did not show this here,
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in the procedure leading to the conjecture we can also introduce a small non–
extremality parameter (giving rise to some excitation energy) in the background
solution breaking the supersymmetry. This will correspond to a finite tempera-
ture configuration on the dual field theory side. Such a background solution has a
true horizon and will Hawking radiate (a quantum process) towards thermal equi-
librium11. Using the conjectured duality we can map this semiclassical gravity
result to a process in a finite temperature large N SYM field theory, which means
that Hawking radiation can be described by a unitary process associated with 1=N
effects in the large N quantum field theory.

On the other hand we could also use the duality map to learn about large N
quantum field theory, using (semiclassical) supergravity. Let us also remark that
this duality is an explicit manifestation of the holographic principle [105, 106]. It
was shown in [123] that the number of degrees of freedom in AdSspace satisfy the
holographic bound of one per surrounding Planck area. The way the two theories
are related is by identifying the coordinate u on the domain–wall supergravity side
with the scale parameter in the quantum field theory. Moving from u = 0 to the
boundary at u= ∞ in the AdSspacetime should be interpreted as going from the
infrared (IR) to the ultraviolet (UV) in the quantum field theory. This also means
that large distances (IR) in the quantum field theory correspond to small distances
in the domain–wall supergravity (near the center) and vice versa. The special
properties of AdSmetrics allow for this so–called UV–IR connection. Let us next
discuss more specific examples present in our general setup. Along the way we
will give some more details of the duality map.

5.2.2 The AdS/CFT examples

In this subsection we will take a better look at the pure AdSexamples, which
require a constant dilaton. This means that the dilaton coupling parameter a= 0.
Remember that we do not need the constraint (5.64) now. Also remember that we
want a= 0 to cover M–branes as well, in which case the string coupling constant
is non–existent and we should replace the string length scale by the appropriate
M–theory Planck length scale.

The complete background will have unbroken SO(2;d) isometries, which will
correspond to invariance under the conformal group in the dual field theory. The

11For a black p–brane in Minkowski spacetime this means that the p–brane will evolve into
the extremal BPS p–brane. In AdSspacetimes, which act as finite volume boxes, the equilibrium
situation will be the one where the temperature of the black p–brane equals the temperature of the
surrounding gas of emitted Hawking radiation.

134



5.2. The field theory limit

dual field theory therefore has to be a superconformal field theory, which means
the parameter x should vanish (otherwise the coupling would classically run). For
∆ and β we find in this case

β =
d̃
d

; ∆ =
2dd̃

d+ d̃
: (5.69)

Using these results we find that the harmonic function in the field theory limit can
be written as (5.58)

H = 1+(l f )
�d
�
g2

f (uβ)
d̃
�

dp

cp

���1=β
; (5.70)

where we replaced the
p

α 0 by the appropriate fundamental length scale l f under
consideration (which is the Planck length in M–theory and the string length in
string theory). Because d > 0 always, the field theory limit is guaranteed to take
us into the near–horizon region of the background solution. All the branes listed
in Table 5.1 are covered by this analysis, which were studied in the paper by
Maldacena [110].

When embedded in a string theory we always find β = 1, which also means
d= d̃ and ∆=d through (5.69). Using (5.3) we can also conclude that k= 1, so the
branes under consideration have to be D–branes. This also means the constraint
(5.64) is satisfied and using (5.63) we find that u ∝ U , so in this case the two
energy scales are essentially equivalent. The fixed conformal field theory coupling
constant is proportional to

g2
f ∝ Ngs: (5.71)

This coupling constant has to be small if we want to obtain perturbative confor-
mal field theory results. In theories without supersymmetry classical conformal
invariance is usually broken by quantum effects, as is represented by the Wilso-
nian renormalisation group equations. In supersymmetric theories however the
conformal invariance can be maintained at the quantum level, which is necessary
for the AdS/CFT duality. Looking at the condition for small AdScurvature (5.67)
we find

τs ∝ (gsN)
2=d

= (g2
f )

2=d � 1 : (5.72)

The new string coupling constant can be written as gs = g2
f =N, which has to be

small in a supergravity approximation. Combining these two requirements we
conclude that we need large N � g2

f � 1 for the supergravity approximation to
be a valid description. String quantum corrections are governed by the string
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coupling constant and are therefore 1=N corrections, as we concluded before. The
size of the sphere Sd̃+1 and the radius of the AdSd+1 embedding are both equal to
r0 and therefore proportional (in α̃ 0 units) to

r0 ∝ (gsN)
1=d

= (g2
f )

1=d
: (5.73)

We can use (5.34) to translate this into the value of the cosmological constant

Λ ∝
d(d�1)

(g2
f )

2=d
: (5.74)

We clearly obtain small Λ� 1 or large r0 � 1 in the supergravity approximation.
Similar equations hold for M–branes. We loose the constraint of small string

coupling, gs disappears altogether and the fixed conformal field theory coupling
constant is just proportional to N. The only requirement for a supergravity ap-
proximation is now small curvature and this will involve taking a large N limit.
For M–branes the parameter β can take on two values. For M2–branes (or inter-
sections) we find β = 2 and for M5–branes (or intersections) we find β =

1
2 . The

energy parameter u (5.15) can be written as

uβ =
rβ

(dpN)(β+1)=d̃l (β+1)
11

: (5.75)

When β =
1
2 this energy scale can be interpreted as the squareroot of the distance

scale between M5–branes times the tension of a membrane TM2 ∝ 1=l3
11. So in

the field theory limit we keep the length of stretched membranes fixed. This is of
course very similar to Dp–branes in string theory and confirms the interpretation
of M5–branes as topological defects on which open supermembranes can end. For
β = 2 we do not find such a nice interpretation.

Because of exact conformal invariance these dualities are not restricted to par-
ticular regimes in the AdSbackground. The coupling constants are independent
of the scale parameter u, and so the supergravity approximation constraints can be
satisfied on the complete AdSd+1�Sd̃+1 background by just considering a large N
limit. Conformal invariance also makes it easier to perform tests of these dualities,
basically because some observables (like 2– and 3–point functions) satisfy very
stringent constraints because of conformal invariance. This ensures that some per-
turbative properties on the conformal field theory side can be extended to strong
’t Hooft coupling. These results can then be compared with (semiclassical) AdS
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supergravity results to test the conjecture. Of course we need a specific relation
between the fields on both sides of the conjecture to be able to compare results.
The general AdS/CFT duality map was first constructed by Witten in [124] and
was suggested earlier for D3–branes in [125]. These maps position the confor-
mal field theory on the boundary of AdSd+1 and couple boundary values of AdS
supergravity fields to conformal operators living on the boundary. The choice for
the boundary of AdSis a natural one because the AdSisometries indeed act on the
boundary as ordinary conformal field theory transformations, as we discussed in
4.1.2.

A first requirement for the duality to be possible is that the symmetries match
on both sides. These can be checked case by case and should include the isome-
tries from the sphere Sd̃+1, giving a SO(d̃+ 2) global symmetry group on the
supergravity side. These global symmetries are indeed also found as the so–called
R–symmetry group on the superconformal field theory side. Conformal sym-
metry and the number of supersymmetries also match up in all cases. Using the
duality maps many checks were made of the AdS/CFT conjecture, mainly for the
D3–brane and the self–dual string (a D1–D5 intersection) in D= 6. Especially the
D3–brane case, where the dual field theory is a D = 4 superconformal Yang–Mills
theory, attracted a lot of attention. All these checks so far confirmed the AdS/CFT
conjecture and for more details we refer to the review paper [112] and references
therein.

The examples which are not yet understood are the five– and four–dimensional
Reissner–Nordström extremal black holes. Those cases are conjectured to give
rise to an AdS2�S2 and AdS2�S3/CFT1 duality respectively. The field theories in
these cases should reduce to supersymmetric conformal quantum mechanics mod-
els [126, 127], which are difficult to construct. An immediate problem that arises
is that, as opposed to higher dimensional field theories, a (conformal) quantum
mechanics model does not describe any internal dynamics if we have to assume
that all the BPS particles lie on top of each other. The same problem occurs in the
conjectured dual AdS2 supergravity description which displays a mass gap, telling
us that small excitations of the AdS2 supergravity fields can not exist. The dual-
ity conjecture therefore reduces to a map between two non–dynamical theories,
which does not seem very interesting. Another basic problem refers to the fact
that AdS2 has two boundaries and the question then arises on which boundary the
dual conformal quantum mechanics model should live [128]. Another problem
was discussed in [129], where it was observed that the AdS2 spacetime is not a
stable background vacuum solution, but instead can fragment into multiple AdS2
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spacetimes.
Although potentially these AdS2/CFT1 dualities could teach us a lot about (ex-

tremal) black hole dynamics, as advocated in in [130, 131], the situation at this
moment is not well understood. What has become clear is that the AdS2/CFT1 case
requires an understanding of what the duality conjecture means which is different
from all the higher–dimensional cases. More recent progress in constructing su-
persymmetric conformal quantum mechanics models and the interpretation of the
duality can be found in [132, 133, 134, 135] and in the review paper [136].

5.2.3 Non–trivial dilaton Dp–branes in D= 10

Let us first discuss all ten–dimensional Dp–branes, except for the already covered
D3–brane. These were first discussed in [108, 109], except for the special case of
the D8–brane. The only difference with the pure AdScases is the appearance of a
non–trivial dilaton, forcing us to use the constraint (5.64) and signalling the break-
ing of the conformal isometry group of the complete background solution. The
non–trivial dilaton, turning the background solution into a generic domain–wall, is
also responsible for the breaking of supersymmetry. The number of broken super-
symmetries is obviously the same as the number of broken supersymmetries in the
original Dp–brane solution, which is 1

2 of the maximum number 32. Remember
that the pure AdSvacuum solution preserved all of the supersymmetries and with
respect to the original p–brane soliton solution this represented supersymmetry
enhancement in the near–horizon geometry.

The string coupling constant will depend on the (radial) AdSenergy scale u
and therefore naturally represents a (classically) running coupling constant in the
dual field theory. This also means that when we want to use a supergravity approx-
imation we will be forced into a region (an energy scale u interval) of the complete
domain–wall supergravity background where the string coupling is small. Simi-
larly the spacetime curvature of the background, when probed with strings, is no
longer constant because the dilaton scalar will now contribute as well. Therefore
it is non–trivial to find energy regions where supergravity will be a good approxi-
mation.

The constraint (5.64) for D = 10 and ∆ = 4 gives k= 1 and more importantly
x= p�3. The fixed ’t Hooft coupling constant (5.54) therefore equals

g2
f = cpNgs

p
α 0(p�3)

= Ng2
YM ; (5.76)

which is the appropriate scaling for a coupling constant of a p+ 1–dimensional
Yang–Mills gauge theory. We will keep this quantity fixed, which for p> 3 means
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we have to take N!∞ if we want to be sure that the bulk supergravity decouples.
From the Yang–Mills theory point of view this is the ’t Hooft limit of an infinite
number of colors. The supersymmetric Yang–Mills theory under consideration
will of course be the one obtained as a low–energy limit of Dp–branes, which as
we discussed in section 2.3.2 can all be obtained from a toroidal reduction of the
D = 10 SYM theory. These include scalars which for p� 1 will be frozen into
their vacuum expectation values12 and will play no role in the actual dynamics.
Remember that even p D–branes are string solitons of IIA superstrings, whereas
odd p D–branes are part of IIB superstring theory.

Other D = 10 Dp–brane parameters we will need are

β =
1
2(5� p) ; a=

1
2(3� p) : (5.77)

For p= 5 we see that β = 0 and therefore the near–horizon geometry becomes d+
1–dimensional flat space in the dual frame metric. This excludes the D5–branes
from our discussion. Also remember that the IIB D7–brane is excluded because
d̃ = 0. The relation between the Dp–brane energy scale U and the holographic
energy scale u now becomes

U5�p
=

1
4(5� p)2

�
dp

cp

�
g2

f u2
: (5.78)

Plugging in the different D = 10 Dp–brane parameters the dilaton background
(5.65) becomes

eΦ
=

1
N

"
1
2 j5� pj(g2

f )
1

p�3 u

 
d1=(7�p)

p

c1=(p�3)
p

!# (p�3)(7�p)
2(5�p)

: (5.79)

Let us analyze for each Dp–brane where we can trust a supergravity approxima-
tion on the one hand and a perturbative supersymmetric Yang–Mills gauge theory
approximation on the other hand.

The effective dimensionless coupling constant (5.66) in the perturbative Yang–
Mills theory equals

g2
e f f = g2

f u(p�3)
: (5.80)

This represents the classical scaling of the coupling constant which because of su-
persymmetry should not be affected by quantum effects in the field theory. Nec-
essarily a perturbative field theory analysis can only be trusted in the following

12Put differently, for p� 1 the positions of the N Dp–branes are fixed and determine the gauge
theory vacuum.
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energy regimes

u � (g2
f )

�1
(p�3) 8 p< 3

u � (g2
f )

�1
(p�3) 8 p> 3 : (5.81)

In a supergravity approximation we need small curvature (5.67) and at the
same time small string coupling eΦ (5.79). Small curvature means13

τs ∝
�
g2

e f f

� 1
(5�p) � 1 : (5.82)

Similarly small string coupling (5.79), when rewritten using ge f f, gives the con-
dition

eΦ ∝
1
N

�
g2

e f f

� (7�p)
2(5�p) � 1 : (5.83)

Translating the conditions (5.82) and (5.83) into conditions on the energy scale u
we find

u � (g2
f )

�1
(p�3) 8 p< 3

u � (g2
f )

�1
(p�3) 8 3 < p< 5 (5.84)

u � (g2
f )

�1
(p�3) 8 p> 5 ;

for small curvature. Notice that these regimes are opposite to the perturbative field
theory regimes (5.81) for p< 5. For p> 5 these regimes overlap. Small string
coupling (5.83) translates into

u � (g2
f )

�1
(p�3) N

(p�3)(7�p)
2(5�p) 8 p< 3

u � (g2
f )

�1
(p�3) N

(p�3)(7�p)
2(5�p) 8 3 < p< 5

u � (g2
f )

�1
(p�3) N

(p�3)(7�p)
2(5�p) 8 5 < p< 7 (5.85)

u � (g2
f )

�1
(p�3) N

(p�3)(7�p)
2(5�p) 8 p> 7 :

Combining the conditions (5.84) and (5.85) to find the regions where supergravity
is a good approximation, will necessarily give a condition on N to be able to
satisfy both conditions at the same time (except for the D8–brane). We find

N

��� (p�3)(7�p)
2(5�p)

���� 1 8 p< 7 : (5.86)
13In our analysis of small curvature and string coupling we suppress all constants of order 1,

e.g. p, cp and dp.
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g  >>1s

u u gN

SUGRA

R >>1

S-dual PQFT

IR UV

Figure 5.2: Different regimes in the energy plot for Dp–branes with 0 � p < 3 and
N� 1. The terminology should be self–explanatory and was discussed in the main text.

A supergravity approximation therefore always involves a large N limit. The only
exception being the D8–brane, but remember that in that case we had to take
N! ∞ anyhow to keep g2

f fixed and to decouple gravity. The D8–brane was first
discussed in [107].

The D= 10 Dp–branes can be divided into four types of qualitatively different
behavior [108, 109, 107].

� Dp–branes with 0 � p< 3. Summarizing the previous discussion we find
that the supergravity approximation is valid in the IR when

uN = (g2
f )

�1
(p�3) N

(p�3)(7�p)
2(5�p) � u� ug = (g2

f )
�1

(p�3)
; (5.87)

which implies large N. The perturbative quantum field theory description
applies in the UV, when

u� ug : (5.88)

We end up in a strongly coupled string theory regime when

u� uN : (5.89)

In the inequality (5.87) we defined the two critical points uN and ug, where
the subscript refers to their (different) dependence on the fixed quantities.
The critical point ug describes the crossover from small to large curvature
(R� 1) in the string theory description and the transition from perturba-
tive (PQFT) to non–perturbative in the field theory description. The critical
point uN describes the crossover from weak to strong string coupling. When
N = 1 the two critical points become equal and the separation between ug

and uN increases with N, which motivates the subscript N on uN. We plotted
the different regimes in Figure 5.2.
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Depending on whether we are in Type IIA (p = 0 and p = 2) or Type IIB
superstring theory (p = 1) we can invoke M–theory or S–dual Type IIB
theory respectively to try to obtain another weakly coupled description of
this system of Dp–branes in the far IR. The Dp–brane background itself
should then also be transformed. For the D2–brane the solution transforms
into the M–theory M2–brane, which we already discussed in the AdS/CFT
subsection. It follows that the (2+ 1)–dimensional field theory flows to a
conformal fixed point in the IR, which has a dual description as the AdS4�
S7 M2–brane near–horizon supergravity in the large N limit [108].

The S–dual background for the Type IIB D1–brane is the fundamental (k=

0) Type IIB F1–brane, which has a curvature singularity at u= 0 and there-
fore a supergravity approximation is not possible in the far IR. However the
(1+ 1)–dimensional Yang–Mills gauge theory flows to a conformal fixed
point in the IR [75]. This suggests that the curvature singularity in the
S–dual F1 background is an artifact and is resolved by a description as a
conformal fixed point in the 1+1–dimensional gauge theory [108].

The S–dual D0–brane background is the M–wave, which just represents
D = 11 momentum. Wrapping the M–wave on a light–like compact direc-
tion with N units of momentum will give the N D0–branes near–horizon
solution [137]. The S–dual gravitational theory in the IR is therefore M–
theory on a compact light–like direction with N units of momentum. This
is the strongly coupled region of the dual N D0–branes quantum mechanics
model. This quantum mechanics model is nothing but the Matrix model
and we now conclude that only the strongly coupled IR limit of the Matrix
model will describe DLCQ M–theory. We can now also understand why
we reached a different conclusion in section 3.1.1. When we “deduced” the
Matrix model we neglected the gravitational backreaction of the N units of
M–theory momentum. The agreement between perturbativeMatrix model
results and DLCQ M–theory (in a supergravity limit) should probably be
understood as a consequence of non–renormalisation theorems due to su-
persymmetry. The Matrix theory conjecture has now been reduced to a
special example of the more general DW/QFT correspondence [137, 138].
Although the above sketched scenario seems plausible, a remaining prob-
lem is that we do not understand the duality map between quantum mechan-
ics models and DW2 backgrounds very well. These problems were already
explained in section 4.2.2 where we discussed the AdS2/CFT1 examples.

The established relation between the (uncompactified) Matrix model and
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u g u N

g  >>1s

IR UV

S-dualPQFT SUGRA

R >>1

Figure 5.3: Different regimes in the energy plot for the D4–brane with N� 1.

the more general DW2/QFT1 correspondence seems to break down when we
consider Matrix model compactifications. According to the Matrix model
conjecture p+1–dimensional Yang–Mills theory defined on a torus Tp will
describe DLCQ M–theory on the T–dual torus. At first sight these Matrix
model conjectures can not be obtained as special examples of the DW/QFT
correspondence if p > 0. Supposedly a relation should exist [138], but a
detailed understanding seems to be missing so far.

� The D4–brane. The supergravity regime is defined in the UV by

ug = (g2
f )
�1 � u� uN = (g2

f )
�1 N

3
2 : (5.90)

The D = 5 perturbative quantum field theory description applies in the IR,
when

u� ug : (5.91)

Strong string coupling is encountered in the far UV when

u� uN : (5.92)

We plotted the different regimes in Figure 5.3.

In the strong string coupling regime we can try to go to the S–dual de-
scription, which would be the M–theory M5–brane. In the UV regime
we therefore obtain the AdS/CFT duality between AdS7 �S4 supergrav-
ity and a (5+1)–dimensional conformal field theory. This also means that
the (4+ 1)–dimensional gauge theory of the D4–branes should flow in the
UV to a (5+ 1)–dimensional conformal fixed point theory. This was also
suggested earlier in studies involving Matrix theory on T4 and T5 [61, 62]
. To decouple gravity and to fix the ’t Hooft coupling constant we men-
tioned that we had to take N!∞ and small gs. However in this case we can
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g  >>1s

u N u g

IR UV

R >>1

SUGRAS-dual
PQFT

?

Figure 5.4: Different regimes in the energy plot for the D6–brane with N � 1. The
question mark represents our lack of knowledge for both the QFT and the string theory
in the UV. When N! ∞, uN ! 0 and the S–dual string theory region will shrink to zero
size.

take gs! ∞ and finite N to fix the coupling constant and decouple eleven–
dimensionalbulk gravity to leave us with the (conformal) M5–brane world-
volume field theory. Classically this is a self–dual rank 2 gauge theory,
whose quantum version is not yet understood.

� The D6–brane. In the IR there exists a valid supergravity regime bounded
by

uN = (g2
f )

�1
3 N

�3
2 � u� ug = (g2

f )
�1
3 ; (5.93)

which partially overlaps with the perturbative field theory regime, defined
by

u� ug : (5.94)

At the same IR end of the energy spectrum, when

u� uN ; (5.95)

we end up in a region of strong string coupling. We plotted the different
regimes in Figure 5.4.

The strong string coupling regime can perhaps be resolved by going to
eleven–dimensional M–theory. This will amount to considering Kaluza–
Klein monopoles, their near–horizon region and their worldvolume field
theory description. This time it is impossible to consider a limit gs ! ∞
and finite N to fix the worldvolume field theory coupling constant and de-
couple eleven–dimensionalgravity. So the best we can do is consider the
limit N ! ∞. Essentially this excludes the appearance of a strong string
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u g u N
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?

Figure 5.5: Different regimes in the energy plot for the D8–brane with N � 1. The
question mark represents our lack of knowledge for both the QFT and the string theory.
When N! ∞, uN ! ∞ and the S–dual string theory region will shrink to zero size.

coupling regime and describes a free string theory limit. The DW/QFT du-
ality then suggests that in the IR a perturbative ’t Hooft limit (N ! ∞) of
the (6+ 1)–dimensional (non–renormalizable) gauge theory equalsa free
string theory on the domain–wall background. Different interpretations of
the correspondence in this D6–branes example, although investigated in a
slightly different context, were pointed out in [108, 121].

� The D8–brane. This case is rather special, although somewhat similar to the
D6–brane discussion. As we already pointed out the supergravity approx-
imation does not need to involve a large N limit and is valid in the energy
range

u� ug = (g2
f )

�1
5 ; (5.96)

which becomes larger in the limit of large N. The perturbative gauge theory
regime is bounded by

u� ug ; (5.97)

which is the same energy range as in the supergravity approximation. Large
string coupling is encountered in the UV when

u� uN = (g2
f )

�1
5 N

5
6 ; (5.98)

which gets larger when N is increasing. We plotted the different regimes in
Figure 5.5.

Again we would like to go to M–theory to resolve this regime. We need
M9–branes for that but these solutions will still have large curvature in the
UV, so a supergravity approximation does not exist in that regime. Also the
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worldvolume theory of M9–branes is not yet well understood [20, 23]. As
in the case of the D6–brane it is again impossible to take the limit gs! ∞
and finite N to fix the worldvolume coupling constant and decouple eleven–
dimensionalgravity. So we have to consider the limit N!∞, which is a free
string theory limit. The analysis above suggests that in the IR a ’t Hooft limit
of the (8+1)–dimensional (non–renormalizable) gauge theory can also be
described by a free string theory on the domain–wall background.

This ends our discussion on D = 10 Dp–branes. We will now move on to their
six–dimensional analogues.

5.2.4 Non–trivial dilaton dp–branes in D= 6

The examples in D = 6 were first discussed in [107]. The p–brane solutions in
D= 6 we will treat all have ∆= n= 2, where n is the integer counting the (higher–
dimensional) constituents which make up the D = 6 p–brane solution. This can
be understood as follows. In ten dimensions one can consider intersecting or
overlapping Dp–branes, let us say we consider a Dp–brane intersecting with a
Dq–brane with p0 common worldvolume directions. These solutions are stable
and BPS, breaking 1=4 of the 32 supersymmetries, only when the number of rela-
tive transverse directions14 equals 4 [139, 140]. Reducing all 4 relative transverse
directions on a torus T4 we end up in D = 6 with a p0–brane solution. Reducing
on the T4 relative transverse space also means the constituent branes are delocal-
ized, the solution can not depend on the relative transverse directions anymore.
All information of the D = 10 intersection is hidden in the 4 small compact direc-
tions, from the D = 6 point of view this can not be distinguished from an ordinary
p0–brane solution. To obtain a solution with just one harmonic functions we will
decide to identify the D = 10 Dp– and Dq–brane charges. This means we iden-
tify the number N1 of Dp–branes and the number N2 of Dq–branes to equal the
number N of p0–branes. The resulting D = 6 p0–brane can be found in our gen-
eral solution (5.4) if we take D = 6 and ∆ = 2 and inherits many properties of the
D = 10 Dp–brane parents, so we decide to call them dp0–branes. For example
their tension again scales as 1=gs, which is customary for D–branes.

It is also possible to give these string solitons an interpretation without re-
ferring to D = 10 Dp–brane intersections. Instead we can relate them directly
to D = 10 Dp–branes by considering K3 compactifications. A K3–manifold is

14These are transverse directions of one of the constituent branes and worldvolume directions
of the other brane.
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Figure 5.6: Intersecting D–branes and some different open string excitations.

a 4–dimensional Calabi–Yau manifold breaking 1=2 of the D = 10 supersymme-
tries. Compactification of Type IIA or Type IIB superstrings on a K3–manifold
gives a corresponding D = 6 superstring theory with 16 supersymmetries. String
solitons in this D = 6 theory will break another half and therefore correspond to
supergravity soliton solutions preserving 8 supersymmetries. When we consider
Dp–branes in Type IIA or Type IIB superstring theory and compactify the theory
on a K3–manifold, the D = 6 dp0–branes with ∆ = 2 will arise naturally.

The worldvolume theory of these dp0–branes can not be the same as their
Dp–brane parents. For one thing they should preserve a smaller number of super-
symmetries. To construct them the easiest approach is to use their interpretation
as intersections of Dp–branes in D = 10. Open strings, which will determine the
worldvolume field theory fluctuations, now have the possibility to stretch from the
Dp–branes to the Dq–branes, see Figure 5.6. These will give rise to extra states
in the worldvolume field theory. Extra fermions and scalars denoting the relative
position in the intersection space (which is the space of relative transverse direc-
tions), called a supersymmetry hypermultiplet, will appear on both the Dp–brane
and Dq–brane worldvolume theory. These scalars and fermions will transform in
the fundamental representation of the (different) gauge groups. The appearance
of the hypermultiplet will break the supersymmetry of the system to one preser-
ving only 1=4 of the maximum of 32 supersymmetries. Most important for our
discussion will be that the D = 6 dp0–brane worldvolume field theory will have
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Chapter 5. String solitons and the field theory limit

extra hypermultiplet scalars which after identification of the number of branes
transform in a single fundamental representation of the U(2N) gauge group.

We already encountered one example of a D = 6 dp–brane in our AdS/ CFT
discussion, where we described the D = 6 self–dual string (p = 1) as the pure
AdS3�S3 near–horizon geometry example which is dual to a 2–dimensional con-
formal field theory. The d2–brane is the special flat Minkowski spacetime near–
horizon geometry example, the d3–brane has d̃ = 0, so we will discuss the d0–
brane and the (domain–wall) d4–brane as new examples of DW/QFT dualities in
D = 6.

Interestingly enough the constraint (5.64) tells us that in this case

x= p�1 ; (5.99)

which means that the dimension of the fixed coupling constant (5.54) is that of a
scalar field theory15. This is a very important difference as compared with the D=

10 Dp–branes. It means that the Yang–Mills coupling constant gYM ! ∞ in the
field theory limit. Generically the dp–brane worldvolume field theory will be in a
vacuum with non–zero vacuum expectation values for the hypermultiplet scalars,
which is called the Higgs branch16. This will give rise to a Higgs effect giving
mass to all the vector bosons on the worldvolume proportional to the Yang–Mills
coupling constant. Because the Yang–Mills coupling constant diverges in the field
theory limit, all vector bosons will become infinitely massive and decouple. The
effective field theory which is left–over is a worldvolume scalar field theory (with
the necessary fermions of course to make it supersymmetric). These kinds of
limits were discussed earlier in the context of Matrix theories [141, 142] and in
the context of the D = 6 self–dual string AdS/CFT duality in [110].

In principle the dynamics of the positions of the dp–branes, represented by the
vector multiplet scalars (as opposed to the hypermultiplet scalars) is now included
as well, which is called the Coulomb branch when the hypermultiplet scalars have
vanishing expectation values. In [141, 142] it is argued that the Coulomb branch
decouples and one should only consider the Higgs branch scalar field theory. We
will assume this conclusion to be correct and will only consider, when needed, the
Higgs branch of the corresponding dp–brane worldvolume field theory.

Let us now analyze the D = 6 supergravity near–horizon backgrounds. We are
mainly interested in the dilaton–expression which governs the analysis of where

15This is of course consistent with the fact that the p= 1 case should be a conformal field theory.
16Strictly speaking, this is only called the Higgs branch if the scalars in the vector multiplet

have vanishing expectation values, which means that all the dp–branes are on top of each other.
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we will be able to use a supergravity approximation. We are going to repeat the
analysis done for the D = 10 Dp–branes, just replacing the D = 10 parameters by
the appropriate six–dimensional ones. Using that ∆ = 2 and D = 6 we find

β = 2� p ; a= 1� p: (5.100)

The D–brane constraint (5.64) gives the following relation between the D–brane
energy scale U and the holographic energy scale u

U2�p
= j2� pj

�
dp

cp

�
g2

f u: (5.101)

The singular case p = 2 is the one with the flat Minkowski near–horizon region,
as the p= 5 case in D = 10. The effective dimensionless coupling constant equals

g2
e f f = g2

f u
p�1

: (5.102)

In terms of this effective coupling constant the dilaton background (5.65) can be
expressed as

eΦ
=

1
dpN

j2� pj
(p�1)(3�p)

2(2�p)

 
dpg2

e f f

cp

! (3�p)
2(2�p)

: (5.103)

This is of course very similar to the expression in (5.83).
From (5.102) it follows that a perturbative field theory analysis is valid when

u � (g2
f )

1
(1�p) 8 p< 1

u � (g2
f )

1
(1�p) 8 p> 1 : (5.104)

The supergravity approximation requires us to satisfy the following two conditions
simultaneously (we neglect constants of order 1, e.g. p, cp and dp)

τs ∝
�
g2

e f f

� 1
(2�p) � 1

eΦ ∝
1
N

�
g2

e f f

� (3�p)
2(2�p) � 1 : (5.105)

It should be clear that the first condition represents small curvature and the sec-
ond condition represents small string coupling. Translating these conditions into
conditions on the energy u will give us the energy regimes where supergravity
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g  >>1s

u u gN

SUGRA

R >>1

S-dual PQFT

IR UV

Figure 5.7: Different regimes in the energy plot for d0–branes with N� 1. The termi-
nology should be self–explanatory and was discussed in section 4.2.3.

is a good description. For p = 0 these conditions can again only be satisfied si-
multaneously by taking a large N limit, whereas for p = 4 a large N limit is not
implied by (5.105). However, we need to take N! ∞ in the d4–brane case to fix
the coupling constant (5.54) and to decouple the worldvolume field theory from
gravity.

Below we discuss the two D = 6 DW/QFT examples in more detail.

� The D = 6 d0–brane. A supergravity approximation can be used in the
following IR energy regime

uN = g2
f N

�4
3 � u� ug = g2

f ; (5.106)

which can only be satisfied for large N. In the UV we can use perturbative
field theory

u� ug ; (5.107)

which in this case reduces to a quantum mechanics model. We therefore
find the typical DW/QFT behavior that the supergravity regime and the
perturbative field theory regime do not overlap, avoiding inconsistencies. In
the far IR, when

u� uN ; (5.108)

the string coupling becomes large and we could try to use an S–dual de-
scription. The different regimes are plotted in Figure 5.7.

The d0–brane is related to the D4–brane by considering a IIA compactifi-
cation on a K3–manifold. It is conjectured (and by now well established)
that Type IIA superstring theory on a K3–manifold is S–dual to Heterotic
superstring theory on a T4 [26]. On the Heterotic side the S–dual soliton so-
lution would be a fundamental state (k = 0) and has a curvature singularity

150



5.2. The field theory limit

u g u N

g  >>1s

IR UV

SUGRA
PQFT

S-dual

R >>1

?

Figure 5.8: Different regimes in the energy plot for the d4–brane with N � 1. The
question mark represents our lack of knowledge for both the QFT and the string theory.
When N! ∞, uN ! ∞ and the S–dual string theory region will shrink to zero size.

at u= 0, so a supergravity approximation will not make sense. The situation
resembles the D1–brane case in D = 10 Type IIB theory. There the curva-
ture singularity in the S–dual F1–brane solution was resolved by the strong
coupling conformal fixed point of the (1+ 1)–dimensional gauge theory.
It is suggestive to propose the occurrence of a similar phenomenon in this
case. It would therefore be interesting to determine the strongly coupled IR
limit of the corresponding quantum mechanics model. As mentioned in sec-
tion 4.2.2 and 4.2.3, we will have to deal with the problems involving the
interpretation of the DW2/QFT1 correspondence if we want to understand
this d0–branes example in all its detail.

� The d4–brane. Just like the D = 10 D8–brane this is a special case, because
it is a D = 6 domain–wall solution. The supergravity regime is bounded
from above by

u� ug = (g2
f )

�1
3 (5.109)

and we do not need large N. The perturbative field theory is valid in

u� ug ; (5.110)

so supergravity and perturbative field theory are valid in the same regime,
which seems implausible. Large string coupling is encountered in the UV
when

u� uN = (g2
f )

�1
3 N

4
3 : (5.111)

We plotted the different regimes in Figure 5.8.

As in the D8–brane case however, we should remember that we had to take
N ! ∞ to fix the coupling constant and to decouple gravity. So the state-
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ment should be that the IR ’t Hooft limit of the (4+1)–dimensional (non–
renormalizable) field theory can equivalently be described by a free string
theory on the corresponding domain–wall background. Again we can not
consider a limit in which we take gs! ∞ and keep N finite to decouple an
S–dual gravity theory (like we could for the Type IIA D4–brane). In the
UV, after taking the limit N ! ∞ which shrinks the S–dual region to zero
size, a well–defined description is unknown. This is also suggested by the
non–renormalizability of the worldvolume field theory.

At the end of this subsection let us make the following remarks. We did not
present a detailed investigation of the dp–brane worldvolume field theories. Our
discussion was focussed on the dp–brane geometry in the field theory limit and the
search for well–defined supergravity regions. We showed that the near–horizon
geometries of the D = 6 dp–branes indeed have regions where a supergravity ap-
proximation seems valid and the analysis is strikingly similar to that of the D= 10
Dp–branes. We did make some general remarks on the nature of the field theory,
which is governed by scalar dynamics, presumably in the Higgs branch of the
p+ 1–dimensional gauge theory, consisting of supersymmetry vector multiplets
and hypermultiplets.

We should point out that other work was done on localizedDp–brane intersec-
tions and the field theory limit [143, 144, 145]. In these investigations a limit is
considered taking one into the near–horizon geometry of the lower–dimensional
D–brane in the intersection and the dual field theory should then also be the one
living on the lower–dimensional D–brane. Although the field theory limit in that
case fixes the Yang–Mills coupling constant, there could be a connection with the
results presented here in the sense that both investigations start off with the same
intersecting D–brane system.

The status of these DW/QFT dualities, in D = 10 as well as in D = 6, is not
entirely clear at this moment because they are hard to check explicitly. Basically
this is because the supergravity approximation and the perturbative field theory
are generically valid in opposite energy regimes, making it very hard to perform
explicit checks of the duality conjecture. What can be checked of course are the
symmetries and it is not very hard to show that these match in all examples pre-
sented. However, the very general mechanism leading to these proposed dualities,
the explicit checks of the AdS/CFT duality and the string theory interpretation
of Dp–branes as discussed in 1.1.5, can all be considered strong circumstantial
evidence for the correctness of the DW/QFT duality conjecture.

This ends the chapter on string solitons and the field theory limit. In the next
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concluding chapter we will summarize our results presented here and in the previ-
ous chapter and try to establish a common understanding of these results, appar-
ently teaching us that gravity and gauge field theories, as limits of an underlying
string theory, are connected in a very interesting way.
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