
 

 

 University of Groningen

Towards an implementation of a multilevel ILU preconditioner on shared-memory computers
Meijster, Arnold; Wubs, Fred

Published in:
HIGH PERFORMANCE COMPUTING AND NETWORKING, PROCEEDINGS

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2000

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Meijster, A., & Wubs, F. (2000). Towards an implementation of a multilevel ILU preconditioner on shared-
memory computers. In M. Bubak, R. Williams, H. Afsarmanesh, & B. Hertzberger (Eds.), HIGH
PERFORMANCE COMPUTING AND NETWORKING, PROCEEDINGS (pp. 109-118). (LECTURE NOTES
IN COMPUTER SCIENCE; Vol. 1823). Springer.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 20-06-2022

https://research.rug.nl/en/publications/a0290b66-148a-4074-a010-1e9ba7dcbdb6


Towards an Implementation of a Multilevel ILU

Preconditioner on Shared-Memory Computers�

Arnold Meijster1 and Fred Wubs2

1 Computing Centre of the University of Groningen
A.Meijster@rc.rug.nl, http://www.rug.nl/hpc/people/arnold

2 Research Institute of Mathematics and Computer Science
P.O. Box 800, 9700 AV GRONINGEN, The Netherlands
F.W.Wubs@math.rug.nl, http://www.math.rug.nl/~wubs

Abstract. Recently, substantial progress has been made in the develop-
ment of multilevel ILU-factorizations. These methods are attractive for
very large problems due to their good convergence properties. We con-
sider the parallelization of the instance MRILU, where we restrict to a
version intended for scalar problems. The most time consuming parts in
using MRILU are repeated multiplication of two sparse matrices in the
construction phase and the multiplication of a sparse matrix and a full
vector in the solution phase. Algorithms for these operations, as well as
matrix transposition, are presented and have been tested on a Cray J90.

1 Introduction

Many physical phenomena can be described by partial differential equations
(PDEs). Irrespective whether one likes to compute eigenvalues, to use implicit
time-integration methods or to do continuation on a steady solution one ends
up with a linear system to be solved, which is often very large and sparse.
In almost all cases, the solution thereof forms the bottleneck with respect to
computation time. For such problems, users like to have the availability of a
black-box linear-system solver, which can handle complicated systems of PDEs
reasonably efficient. Developing a special purpose solver may take too much time
and a direct solver is far too expensive.

An important class of iteration methods for linear systems form precondi-
tioned CG methods and among the preconditioners Incomplete LU factoriza-
tions play a dominant role. If we consider the problem Ax = b then for the
ILU-factorization holds A = LU +R and the CG-type method is applied to the
preconditioned system

L−1AU−1x̃ = L−1b, x̃ = Ux

For the classical ILU and modified ILU factorization using the same fill as the
original matrix, the number of flops needed to gain a fixed amount of digits
increases with the grid size which is unfavorable for very large problems.
� This research has been supported by the Stichting Nationale Computerfaciliteiten
(National Computing Facilities Foundation, NCF).

M. Bubak et al. (Eds.): HPCN 2000, LNCS 1823, pp. 109–118, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

http://www.rug.nl/hpc/people/arnold
http://www.math.rug.nl/~wubs


110 Arnold Meijster and Fred Wubs

The ideal case would be if the preconditioned matrix L−1AU−1 is close to
identity, which is obviously the case if R is small or in other words if the factor-
ization is nearly exact. This is accomplished in the multi-level ILU factorization.
As accelerator, the classical CG method can be used when the preconditioned
matrix is symmetric positive definite and e.g. Bi-CGSTAB or GMRES when it
is not. However, it is our experience, that the choice of accelerator is far less
critical than the preconditioning.

Our multilevel ILU method MRILU (for details see [3]) has already suc-
cessfully been applied to the incompressible Navier-Stokes equations (in some
cases extended with a k-ε turbulence model), to Rayleigh-Bénard flow, and to
convection-diffusion problems in two and three dimensions. For a comparison of
a variety of solvers including MRILU on Laplace-like equations see [2]. Similar
methods like MRILU are described in [1,8,10]. Furthermore, there is also a link
to algebraic multigrid, e.g. [7].

As was recognized also by others, e.g. [8], multilevel ILU methods can be
parallelized. The basic steps in the factorization phase form the search of an
independent set, multiplication of two sparse matrices, transposition, and for
the solution phase the multiplication of a sparse matrix with a full vector. It
appeared that the construction of the independent set is least critical, hence we
confined our attention to the other parts. We parallelized already existing code,
in which sparse matrices are stored in CSR format (section 3), and did not want
to rewrite the whole code. We thus decided to stick to the CSR format1.

The experiments in this paper have all been carried out on a Cray J90.
Loops which can be parallelized are coded such that the compiler automatically
generates parallel tasks for these loops. During run time execution the creation of
these tasks is handled by the operating system and does involve some overhead.
At the end of the loops all tasks have to synchronize (i.e. wait until all tasks
have finished). This introduces some overhead as well.

In the remainder of the paper we will describe MRILU and indicate the parts
to be parallelized (section 2). In section 3 we introduce data structures for storing
sparse matrices, and an extension of this format for concurrent computation.
Section 4 discusses parallel multiplications using these formats. In section 5 a
parallel transposition of a matrix is presented. The latter two sections contain
practical results obtained on a Cray J 90. Conclusions are drawn in section 6.

2 MRILU

In this section the multi-level ILU method MRILU (MR stands for matrix renum-
bering) will be described in short and we will comment on the parallelization
aspects. A more detailed description can be found in [3]. In Algorithm 1 the
basic steps in the factorization process are given. For a sparse matrix the par-
titioning of step 1 can always be made by extracting a set of unknowns that

1 Though the matrix-vector multiplication using CSR format is becoming part of
sparse BLAS, it is currently not implemented for the Cray J90.



Multilevel ILU Preconditioner on Shared-Memory Computers 111

Set A(0) = A
for i=1..M
1. Reorder and partition A(i−1), to obtain

[
A11 A12

A21 A22

]
,

such that the matrix A11 is sufficiently diagonal dominant.
2. Approximate A11 by a diagonal matrix Ã11.
3. Drop small elements in A12 and A21.

4. Make an incomplete LU factorization,

[
I 0

Ã21Ã
−1
11 I

] [
Ã11 Ã12

0 A(i)

]
,

where A(i) = A22 − Ã21Ã
−1
11 Ã12 (Schur complement of Ã11).

endfor

Make an exact (or accurate incomplete) factorization of A(M).

Algorithm 1. The basic steps of MRILU.

are not directly connected, the so-called independent set. By allowing also weak
connections, which are deleted in step 2, this set can be enlarged.

The dropping strategy used in steps 2 and 3 is based on the ratio of the
element at hand and the diagonal element, and on the amount dropped so far
in the corresponding row and column.

Since Ã11 is diagonal, also its inverse and consequently the new Schur comple-
ment constructed in step 4 will be sparse, which makes it possible to repeat the
process. However, the fill slowly increases in subsequent steps.

Let us discuss briefly the parallelization aspects of the respective steps. The
independent set needed to create the ordering in step 1 is not unique, and finding
the largest one is even an NP-complete problem. Hence, one usually uses some
greedy algorithm to find an independent set. This process is sequential in nature
and hence hard to parallelize, however some attempts have been made [5,6] but
we expect that this leads to smaller independent sets. Since in our case the
independent set selection is not the most critical part we did not parallelize it.

The parallelization of the dropping in steps 2 and 3 is straight-forward. The
construction of the Schur-Complement is the more difficult one, especially the
multiplication of the two sparse matrices Ã21 and Ã−1

11 Ã12 (the multiplication
with the diagonal matrix is easy). So in general we are interested in speeding up
the multiplication of two sparse matrices.

In the solution phase the L and U factor have diagonal blocks. So solving a
system with these matrices amounts to multiplication of a sparse matrix and a
full vector (see also the level-scheduling idea in [9]). We studied this step already
for scalar equations in [4] but we will reconsider it here.

3 Data Structure

We have chosen to adopt two storage schemes. The CSR format (Compressed
Sparse Row), which stores matrices row-wise, and the CSC format (Compressed



112 Arnold Meijster and Fred Wubs

Sparse Column), which stores matrices column-wise. The reason for using two
formats is the difficulty one will encounter in creating the L matrix in CSR
format. In this matrix one wants to store A21 in each reduction step. If L were
to be in CSR format then in each step A21 has to be merged with the hitherto
formed L, which can be avoided by transposing A21 into CSC format and storing
it thus in L. Efficient transposition is discussed in section 5.

3.1 CSR/CSC Format

The CSR data structure consists of a 5-tuple (nr, nc, cf, col, beg), where nr and
nc are integers representing the number of rows and columns, respectively. The
elements cf , col, and beg are arrays. The array cf contains the non-zero entries
of the matrix, stored row-wise. These values are floating-point numbers. The
array col is of the same length as cf , and beg has length nr + 1. Both arrays
are integer valued. For entry cf(i), its corresponding column number is found in
col(i). Since entries of the same row are stored consecutively in cf , we only need
to know the index of the first entry of this row, and the index of the last entry.
Therefore, rows are not stored explicitly (as in the case of columns), but only
the index of the first element of each row is stored in the array beg. The index of
the first element of row i is stored in beg(i), while the index of its last element
is beg(i + 1) − 1. The array beg has length nr + 1, since we need to know the
index of the last element of row nr. In the next section this format is extended
for use on shared memory architectures. An example of the format is given at
the end of that section. The CSC format is a sort of natural dual of the CSR
format. Instead of storing entries row-wise, they are stored column-wise.

3.2 Extension for Parallelism

If we try to implement algorithms on these data structures using multiple proces-
sors (cpu’s), it is natural to split the data representation in as many (preferably)
equal sized chunks as there are cpu’s. Each cpu is assigned a chunk, from now
on called its private chunk. On a shared memory computer, each cpu can access
each memory location. In view of this machine model, it might appear a bit
strange to split these data structures in chunks, since each processor can access
the entire structure. Still it is useful to do this, for two reasons. The first is to
reduce the amount of synchronization as much as possible. If each cpu may only
modify a ‘private’ part of a shared resource, there is no need to protect this
shared resource against simultaneous updates of this resource by more than one
cpu. Such a protection is always expensive, regardless whether we program these
protections explicitly ourselves (using semaphores), or let a compiler generate a
data-parallel executable by using loop-parallelism. A second reason is that this
data-layout mimics to some extent the distributed memory model, and thus the
resulting algorithms are, with some effort, likely to be portable to distributed
memory machines using message passing.

Assuming that the most frequently used operations are multiplications of
matrices with vectors, it is natural to distribute the CSR data structure row-wise.



Multilevel ILU Preconditioner on Shared-Memory Computers 113

We assume that the distribution of non-zero entries in the matrix is reasonably
uniform, i.e. the number of non-zero elements per row does not vary very much.
Thus, if we assign to each processor (almost) the same number of rows in its
chunk, we probably get a reasonable load-balance.

Let us assume that we deal with a matrix consisting of nr rows, and have
the availability of P cpu’s, numbered p1, . . . , pP . Then, we distribute the matrix
as follows. We compute c = �nr/P �. If P is a divisor of nr each processor is
assigned a chunk with exactly c rows. If P is not a divisor of nr, we compute the
remainder r = nr − c ∗ P . It is possible to assign a single processor to deal with
these r extra rows, but this might introduce significant load-imbalance (worst
case r = P − 1). Therefore, we decide that each cpu which has a processor
identification number less or equal to r is assigned c + 1 rows, resulting in an
imbalance of only a single row. This results in the following simple algorithm to
compute the lower bound (lwb) and the upper bound (upb) of the chunk assigned
to processor p if the number of rows is n:

procedure chunk (n, p, nprocs : integer ; var lwb, upb : integer);
c := n / nprocs; r := n - c ∗ nprocs;
if p ≤ r
then lwb := (p − 1) ∗ c + p; upb := lwb + c
else lwb := (p − 1) ∗ c + r + 1; upb := lwb + c - 1

end

Thus, we augment the CSR format with an integer array par which has length
P + 1, which has basically the same structure as the array beg. For processor
p, the starting row of its chunk can be found in par[p], and the last row of its
chunk can be found in par[p + 1]− 1. The augmented CSR structure will from
now on be called the PCSR (parallel CSR) structure.

As an example, using P = 3, we would find for the 5 × 5 matrix A the
following PCSR representation2.

A =




a 0 b 0 0
c d e f 0
g 0 h 0 0
i 0 0 j k
l 0 0 m n




nr 5
nc 5
par 1 3 5 6
beg 1 3 7 9 12 15
cf a b c d e f g h i j k l m n
col 1 3 1 2 3 4 1 3 1 4 5 1 4 5

For the CSC format, the same distribution technique is used on the columns of
the matrix. This format will from now on be called the PCSC format.

4 Matrix Multiplication Algorithms

One of the most common operations on (sparse) matrices is multiplication. Two
variants are needed. Let A, B, and C be sparse matrices, and x, y be full vectors.
We have to deal with the following two cases.
2 The entries are deliberately chosen to be symbolic, instead of actual numbers, in
order to avoid confusion between entries and indices.



114 Arnold Meijster and Fred Wubs

– y := A × x, i.e. a sparse matrix times a full vector, and the result is stored
in a full vector.

– C := A × B, i.e. a sparse matrix times a sparse matrix, and the result is
stored in a new sparse matrix.

4.1 Multiplication of a Sparse Matrix with a Full Vector

We have to perform nr inner products between the rows of A, and the vector
x. We choose therefore to represent A using the PCSR format. In this format
the entries are stored consecutively, and the first and last element of a row is
directly accessible, which makes the algorithm for performing this multiplication
relatively simple. The sequential algorithm is given below(left). A direct paral-
lelization of this algorithm is to distribute the outer loop using the par field of
the PCSR structure, and use private variables for r, and c resulting for cpu p in
the algorithm on the right.

for r := 1 to nr →
y(r) := 0
for c := beg(r) to beg(r + 1)− 1 →

y(r) := y(r) + cf(c) ∗ x(col(c))

for r := par(p) to par(p + 1) − 1 →
y(r) := 0
for c := beg(r) to beg(r + 1) − 1 →

y(r) := y(r) + cf(c) ∗ x(col(c))

Assuming reasonable load-balancing, we expect a speedup linear in the number
of processors on shared memory machines. If the architecture employs vector-
pipes to speed up vector operations the algorithm ought to be modified to gain
performance from parallelization as well as vectorization. The inner loop is vec-
torizable, however the length of this loop is of size beg(r + 1) − beg(r), which
is in practical cases smaller than the length of the vector pipes. Therefore we
try to lengthen the inner loop as much as possible. This is unfortunately only
partly realizable, since row-wise addition is unavoidable. We introduce on each
cpu a private auxiliary array tmp, and initialize it such that tmp(i) = x(col(i)),
and distribute its initialization out of the inner loop, such that we can unroll
it completely. When this array has been constructed an element-wise product
tmp := cf ∗ tmp can be computed in a fully vectorizable loop. From this new
result, it is easy to compute the final result using simple summation, in smaller
vectorizable loops. This leads to the following algorithm for processor p:

lwb := beg(par(p));
upb := beg(par(p+ 1));
for r := lwb to upb − 1 →

tmp(r) := x(col(r));
for r := lwb to upb − 1 →

tmp(r) := tmp(r) ∗ cf(r);
for r := par(p) to par(p+ 1)− 1 →

y(r) := 0;
for c := beg(r) to beg(r + 1)− 1 →

y(r) := y(r) + tmp(c)

Although the length of this algorithm is
longer than the trivial parallel solution,
the amount of computational work is the
same. The compiler, however, can vec-
torize the last two loops, and thus per-
formance increase might be expected.
The amount of extra memory needed is
linear in the total number of non-zero
entries, i.e. the size of the array cf .

We performed a performance test, the results of which are shown in the
following table. Since absolute timings give only a measure of the performance



Multilevel ILU Preconditioner on Shared-Memory Computers 115

of the cpu’s, and not of the algorithm itself, we only present speed-up factors
(i.e. T1/Tp, where Tp is the absolute time measured using p cpu’s). We computed
y = Ax, where A is a 104 × 104 matrix, with on average 10 non-zeroes per row.

NCPUS 1 2 4 6 8 10 12 14 16
Speed-up 1.0 1.9 3.7 5.0 6.1 7.0 7.7 8.2 8.8

On a small number of cpu’s the algorithm scales almost linearly in the number
of processors. If we use more than 4 cpu’s some degradation is observed, which
can mainly be accounted for by the fact that the data structure uses several
indirections, which easily results in slightly different running times per cpu. The
total execution time however, is equal to the running time of the task which ran
longest. Also the creation of processes results in some operating system overhead.
However, even on 16 cpu’s an efficiency of more than 50% is achieved.

4.2 Multiplication of Two Sparse Matrices

We consider the ‘assignment’ C := A ×B, where A and B are sparse matrices.
We start with explaining how the parallelization can be done by means of a
multiplication of two full matrices in order to not obscure the approach by details
on the handling of the sparsity. The sequential algorithm for multiplying an
M ×N matrix A, with an N ×R matrix B consists of three nested loops.

for r := 1 to M → (∗ rows of A ∗)
for c := 1 to R → (∗ columns of B ∗)
c(r, c) := 0
for i := 1 to N → (∗ dot product ∗)
c(r, c) := c(r, c) + a(r, i) ∗ b(i, c)

Clearly, each iteration of the outer loop can be performed independent of all other
iterations, which allows a direct parallelization. We simply use the partitioning
of the data using the PCSR format. It is useless to parallelize the second loop
as well, since it would only interfere with the parallelization of the outer loop.

lwb := parA(p);
upb := parA(p+ 1);
for r := lwb to upb− 1 →
for c := 1 to ncB → (∗ initialize row r of C ∗)
c(r, c) := 0

for i := 1 to ncA → (∗ adapt row r of C ∗)
for c := 1 to ncB → (∗ all columns of B ∗)
c(r, c) := c(r, c) + a(r, i) ∗ b(i, c)

In the actual implementation we have to deal with the sparsity. On each
processor we introduce a temporary full array d in which we will store all the
intermediate contributions. Using reference arrays we keep precisely track of
where elements in d are stored. To limit the length of the presentation we have
not included these operations in the following code.



116 Arnold Meijster and Fred Wubs

lwb := parA(p); upb := parA(p+ 1);
for c := 1 to ncB → (∗ initialize temporary full row of C ∗)

d(c) := 0;
initialize reference arrays for d
for r := lwb to upb − 1 →
for i := begA(r) to begA(r + 1) − 1 → (∗ adapt row r of C ∗)
for c := begB(colA(i)) to begB(colA(i) + 1)− 1 →

d(colB(c)) := d(colB(c)) + cfA(i) ∗ cfB(c);
adapt referencing d;

copy d to begC(p), colC(p), cfC(p) using the reference arrays;
reset d and reference arrays;

The resetting in the last step can be done using the same reference arrays in
a time proportional to the fill. In the actual implementation this is performed
together with the copying as shown in the previous program line. Indeed in this
line we see that every processor has its own begC, colC and cfC array. This is
necessary since we do not know in advance the number of nonzero entries of C
on a certain processor. Hence, afterwards we assemble the parts of the sparse
matrix into the global begC, colC and cfC array, which can be executed in
parallel apart from a loop with length of the number of tasks.

We note that due to the fact that the reference arrays are constructed in
order of occurrence of a new fill in d that the column numbers on a row are not
necessarily ordered, which does not affect the remainder of the program.

We studied the speed-up of this algorithm on the product of two sparse
matrices of order (103 × 103) with an average fill of 10 per row.

NCPUS 1 2 4 6 8 10 12 14 16
Speed-up 1.0 1.6 3.3 4.8 6.3 8.2 8.8 9.9 11

The speed-up is reasonable. This time, performance degradation is less severe
on a larger number of cpu’s. This can be explained by the fact that the amount
of computation per task is a lot larger. The waiting time at the synchronization
point at the end of the tasks is about the same as in the previous case (matrix
times vector), but it has become relatively small compared to computation time.

5 Transpose of a PCSR Matrix

In this section we consider the transposition of a sparse matrix. The input and
the output of the algorithm is a matrix stored in PCSR format. The process
of transposing a PCSR matrix consists of three stages. The first, and the last
being highly parallel, while the middle is purely sequential. The sequential part,
however, is negligible in computation time.

Let us assume we deal with an m × n matrix (m rows) A and we want to
implement B := AT using P processors. A problem is to determine the beg and
par array corresponding with the destination array B. The computation of these
arrays is done in two stages. In the first stage, each processor computes a private
histogram of the number of elements per column in its private part of the source



Multilevel ILU Preconditioner on Shared-Memory Computers 117

5

1

3

4

2

sum

2 31h h2 3

2

0

1

1

1

1

0

0

1

2

h1

2

1

0

2

1

i i i

prefsum

H

3

7

9

1

6

7

beg: 1 6 7 10 14 16

1

5

7

10

14

11

14

12

15

10

Fig. 1. Parallel transpose of a matrix using PCSR format.

matrix. This is a trivial linear time loop. The size of a histogram is n integers,
and thus the total amount of extra memory is P × n. Clearly, each processor
can compute its private histogram, without any communication with any other
process. Since the amount of work per processor is almost the same, we expect
each processor to finish the first stage at approximately the same time. In Fig. 1
at the left side three histograms (h1, h2, h3) are given. In the second stage, these
histograms are summed resulting in the histogram H which shows the number
of elements per column for the whole source matrix, and therefore the number
of elements per row of the destination matrix. The summing of these histograms
can only be performed when all ‘private’ histograms have been computed, i.e.
each cpu has finished the first stage. This summing is performed in the second
stage, on only one cpu. From the summed histogram H the beg array for B
is easily obtained as follows. Shift the histogram H by one index, and insert 1
at H(1). Then we have beg(i + 1) =

∑i
k=1 H(i) (a so-called prefix-sum), and

beg(1) = 1. This beg array gives also the begin locations of the columns to be
built by the matrix part on the first processor (i1). For the second processor we
simply have to add i1 and h1 to find the begin locations for the columns of the
matrix on that processor. Similarly i3 is the sum of i2 and h2. In the last stage,
all the elements of the source matrix are visited and copied into the destination
matrix using the data structure obtained in the previous stage. This stage, just
like the first one, scales linearly in the number of cpu’s.

We computed B = AT , where A is a 104 × 104 matrix, with on average 10
non-zeroes per row. The speed-up results are in the table below.

NCPUS 1 2 4 6 8 10 12 14 16
Speed-up 1.0 1.7 3.6 3.9 4.4 5.1 5.1 4.9 4.6

Two stages are highly parallel, while the middle stage is sequential. Hence, the
processes have to wait for each-other when all processes have computed their
private histograms and when the global histogram H has been computed. The
merging of the private histograms into the global histogram is performed by
process 1, which also creates the other processes at startup. The speed-ups are



118 Arnold Meijster and Fred Wubs

similar to the expected ones considering Amdahl’s law. However, they are slightly
decreasing for a large number of cpu’s, due to process creation overhead. Besides
the amount of computation is far less than in the previous algorithms, making
the middle section relatively even more a bottleneck.

6 Conclusions

In this paper the parallelization of three essential parts of MRILU is studied:
the product of a sparse matrix with a full vector, the product of two sparse
matrices and the transposition of a sparse matrix. The matrices are all in CSR-
format which we extended to a parallel format PCSR by giving each parallel
task a number of rows of the matrix. We found that the smaller the parallel
tasks the sooner the speed-up drops as the number of processors grows. For the
transposition the speed-up drops if more than 4 processors are used and even the
runtime becomes constant due to a small sequential part. A maximum speed-up
of about 5 was observed. The matrix-vector product scales linearly for up to 4
processors and after that the speed-up increases more slowly. On 16 processors
a speed-up of about 9 was observed. The matrix-matrix multiplication has the
largest parallel task and there a speed-up of 11 on 16 processors is observed.
Thus, on average we found a speed-up of about an order of magnitude, which
will, once implemented seriously improve the performance of MRILU.

References

1. R.E. Bank and C. Wagner. Multilevel ILU decomposition. Numer. Math., 82:543–
576, 1999.

2. E.F.F. Botta, K. Dekker, Y. Notay, A. van der Ploeg, C. Vuik, F.W. Wubs, and
P.M. de Zeeuw. How fast the Laplace equation was solved in 1995. Appl. Numer.
Math., 24:439–455, 1997.

3. E.F.F. Botta and F.W. Wubs. Matrix Renumbering ILU: An effective algebraic
multilevel ILU-preconditioner for sparse matrices. SIAM J. Matrix Anal. Appl.,
20(4):1007–1026, 1999.

4. E.F.F. Botta, F.W. Wubs, and A. van der Ploeg. A fast linear-system solver for
large unstructured problems on a shared-memory computer. In O. Axelsson and
B. Polman, editors, Proceedings of the Conference on Algebraic Multilevel Itera-
tion Methods with Applications, pages 105–116, Nijmegen, The Netherlands, 1996.
University of Nijmegen.

5. M.T. Jones and P.E. Plassman. A parallel coloring heuristic. SIAM J. Sci. Com-
put., 14(3):654–669, 1993.

6. M. Luby. A simple parallel algorithm for the maximal independent set problem.
SIAM J. Comput., 4:1036–1053, 1986.

7. A. Reusken. On a robust multigrid solver. Computing, 56(3):303, 1996.
8. Y. Saad. ILUM: A multi-elimination ILU preconditioner for general sparse matri-

ces. SIAM J. Sci. Comput., 17(4):830–847, 1996.
9. Y. Saad. Iterative Methods for Sparse Linear Systems. PWS, 1996.
10. Y. Saad and J. Zhang. BILUM: Block versions of multi-elimination and multi-

level ILU preconditioner for general sparse linear systems. Technical Report UMSI
97-126, University of Minnesota, Minneapolis, 1997.


	Introduction
	MRILU
	Data Structure
	CSR/CSC Format
	Extension for Parallelism

	Matrix Multiplication Algorithms
	Multiplication of a Sparse Matrix with a Full Vector
	Multiplication of Two Sparse Matrices

	Transpose of a PCSR Matrix
	Conclusions

