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Abstract 

The performance of two well-known texture operators 
(based on Gabor energy and the cooccurrence matrix) is 
compared with the performance of a new, biologically mo- 
tivated texture operator, the dot-pattern selective cell oper- 
ator. The comparison is made using a quantitative method 
based on the Mahalanobis distance. Together with some 
classification experiments the comparisori shows a clear su- 
periority of the new operator in dot-pattern texture prob- 
lems. 

1. Introduction 

Neurophysiologists discovered cells in the visual cortex 
of monkeys that responded exclusively to dot-patterns [ 101. 
Elsewhere we proposed a computational model of this type 
of cell and demonstrated that it is capable of reproducing 
the results of neurophysiological experiments [6,71. In this 
paper we use this model as a basis of an image process- 
ing operator that we call the dot-pattern selective cell oper- 
ator. We show that this operator is specifically effective in 
processing dot-pattem texture. The features extracted with 
it are compared with commonly used texture features ob- 
tained with cooccurrence matrix and Gabor energy opera- 
tors. For this comparison we use the Mahalanobis distance 
between clusters of feature vectors derived from different 
types of texture [4, 51. This method enables a quantitative 
evaluation of the texture discrimination properties of fea- 
ture extraction operators. The method differs from the com- 
monly used texture feature performance evaluation method 
which is based on the comparison of classification results 
[l, 8, 9, 111. The problem with the traditional comparison 
method is that it mixes together the discrimination proper- 
ties of the feature extraction operator with the performance 
of a classifier. In our method, the discrimination properties 
of the feature extraction operator can be separated from the 
performance of a subsequent classifier. For completeness, 
we use the features obtained with the dot-pattem selective 

cell operator also in segmentation experiments and compare 
the results with the results achieved with Gabor energy and 
cooccurrence matrix features. 

2. Spot detector model 

Though most of the cells in the primary visual cortex 
(VI) are orientation selective, about 10-20% of the cells do 
not show any orientation preference. Most of these 'centre- 
surround cells' have a receptive field profile which can be 
modelled by means of a Difference-of-Gaussians (DOG) 
function as follows: 

where x and y specify the position of a light impulse in the 
visual field and (, Q, (T and y are parameters as follows: 

The centre of the receptive field within the visual field is 
specified by the pair (t, 7). The parameters a and y specify 
the standard deviations ac = ya (y < 1.0) and as = a of 
the centre and the surround Gaussians, respectively. In our 
experiments we used a value of y = 0.5. The normalisation 
factor $ in front of the centre Gaussian is used to obtain 
a function with a zero DC component. With this value of 
y, the radius of the central region T, is approximately equal 
to a: r, = 0.96a. In our experiments we used two types 
of spot detectors: one with a positive (excitatory), and the 
other with a negative (inhibitory) central region. These cells 
are modelled by a two-stage model consisting of a first, lin- 
ear filtering stage and a second, non-linear stage which in- 
cludes thresholding and contrast normalisation. The linear 
stage consists in computing an integral 

where f(z, y) is the intensity distribution of an input image. 
In the second stage, contrast normalisation is performed by 
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Figure 1. The single image in top-left position is a synthetic input image, which includes features 
of different form, size and contrast. Each row in the 4 x 5 block of images corresponds to an oper- 
ator tuned to a given optimal size of the spots to be detected. The images in the first column are 
the results of convolutions with centre-surround receptive field functions of four different sizes (a). 
The results which are normalised for contrast are shown in the second column (b). The effect of 
lateral inhibition and winner-take-all competition on the responses of spot detecting subunits are 
illustrated by the third (c) and fourth (d) columns, respectively. For illustration purposes, in the fifth, 
rightmost column (e), the responses of the spot detecting subunits shown in (d) are replaced by the 
corresponding optimal size stimuli. 

dividing the linear response ~.c,,,,,,,~ by the weighted aver- 
age gray level of the image within the receptive field of the 
modelled cell. The weighted average gray level at,,,,,, is 
computed as follows: 

In order to implement contrast normalisation, we use the hy- 
perbolic ratio function to calculate the output of the centre- 
surround cell from the ratio 2t,,,,,,r = ':;;-' which is pro- 
portional to the local contrast within the receptive field of 
the cell: 

where x ( z )  = 0 for z < 0, x ( z )  = z for z 2 0 (threshold- 
ing) and R and C are the maximum response level and the 
semi-saturation constant, respectively. 

The modelled centre-surround cell will react strongly to 
a light spot which is located entirely in the centre, excita- 
tory region of the receptive field, though the cell will also 
react to other features in its receptive field such as lines or 
edges. The function of an ideal spot detector is, however, 
to signal spots only. Our computational model of spot de- 
tectors is based on a lateral inhibition mechanism. A spot 
detecting subunit v:,,,,,,,~ gets its input from the modelled 
centre-surround cell v.c,,,,,,,-, and a number of nearby similar 
cells with the same preferred spot size. The concerned sub- 
unit has the same output as the centre-surround cell with the 
same location (& 7) if the nearby cells show no response. 
Other image features may also invoke a reaction of the cell, 
but they will cause a reaction of nearby cells as well. In 
that case, the output of the spot detecting subunit v; ,~, , , ,~ 
is influenced by the outputs of nearby centre-surround cells 
in such a way that, if at least one of these cells reacts, the 
subunit response is suppressed, i.e. the response is set to 
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zero. In our model the lateral inhibition scheme involves 
a fixed number of nearby centre-surround cells lying in a 
circle around the centre of the receptive field (t, 77): 

- 
v;,,,u,7 - 

v ~ , , , ~ , ~  if'di, i E { l . . N } ,  
VS+ACi,v+Aqi,c,r ' P V S , V > ~ > ~  

0 otherwise 

( 5 )  

where p is a fixed factor (in our experiments we used p = 
0.8) and Rlat is the distance between the centre of the con- 
sidered cell and the nearby cells. We choose Rlat = 1.360. 
The number of nearby cells that are involved in the inhibi- 
tion process is set to N = 15. This value is high enough 
to guarantee that the spot detectors do not react to features 
other than spots. 

In our experiments we use spot detecting subunits with 
different values of Q to achieve detection of spots on dif- 
ferent scales. This introduces a coding redundancy since 
spot detecting subunits on more than one scale, but with re- 
ceptive fields centred at the same position, will react to a 
spot in their receptive field. This redundancy can be elimi- 
nated by suppressing all outputs of non-optimal spot detect- 
ing subunits at the same position. This is implemented by 
a winner-takes-all mechanism across all subunits with the 
same receptive field centre but with different values of the 
size parameter a. The ultimate response of a spot detecting 
subunit i j ~ , , , ~ , ~  is computed as follows: 

The winner-takes-all mechanism will cause the information 
conceming the location of spots in the image to be sepa- 
rated into different channels, depending on the size of the 
spots. The sensitivity of the dot-pattem selective cells to 
spots with different sizes will therefore depend on the sam- 
pling on the scale-range. In our experiments we used four 
different scales. 

The processing of visual information by this model is il- 
lustrated in Fig. l, together with the results at intermediate 
stages. The intensity of a pixel in a result image represents 
the response of the corresponding part of the model with a 
receptive field centred at that pixel. As can be seen from 
the intermediate results after convolution of the input im- 
age with a centre-surround receptive field function (Fig. la), 
there is a response not only to spots, but also to other image 
features. At this stage, the strength of the response depends 

on the local contrast of the features. This dependence is 
eliminated by the contrast normalisation step (Fig. lb). The 
lateral inhibition eliminates the response to non-spot stimuli 
(Fig. IC). Finally, the winner-takes-all mechanism across all 
channels suppresses all responses to sub-optimal spot stim- 
uli and ensures that each spot is detected in one channel 
only (Fig. Id) 

3 Dot-pattern selective cell model 

In the second stage of our model, the outputs of the spot 
detecting subunits are combined by so-called spot-pattern 
subunits using an AND-type nonlinearity. In the final stage, 
the actual dot-pattern selective cells sum the responses of 
a large number of spot-pattern subunits in the vicinity of 
their receptive field centre. This means that modelled dot- 
pattem selective cells will only react if a number of spots 
with a specific size are present in their receptive fields. The 
response increases with the number of spots up to a given 
maximum. This model is next explained in more detail. 

The activity of a so-called spot-pattern subunit t~,,,,,~,c 
with position (t, 77) and preferred spot size specified by a, 
is calculated as follows: 

tC,,P,,S = 
1 if C a r d { c ~ + ~ c ~ , , + ~ r l ~  : 

i = l . . . n :  
% + A ~ ~ , ~ + A V ~ , - ~ T  0) L 3 

0 otherwise 

(8) 
{ 

where the position of the involved spot detecting subunits is 
taken at random within the neighbourhood of ( E ,  7): 

A& = a(( + T ~ ) C O S ( Y ~  

Aqi = a(( + ~ i )  Sinai , i = 1 . .  .n (9) 
where a( is a fixed radius (5 specifies the density of the 
spots in the pattem) and ri are random numbers taken from 
a normal distribution with zero mean and standard deviation 
0.5 and ai are random numbers taken from a uniform distri- 
bution between 0 and 2n. The number of locations n which 
are taken into account in the determination of dot-pattem 
presence in the receptive field is larger than the number of 
spots to be detected. In our experiments we set the number 
of inspected locations to 30. The dot-pattem subunit is ac- 
tivated only, if three or more spots are detected in these 30 
locations. 

Finally, the response of a dot-pattem cell b ~ , ~ , ~ , ~ , c ,  
which is centred at position (5,q in the visual field and has 
preferred spot size specified by a, is computed by weighted 
summation of the dot-pattern subunits: 
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Together with U, the parameter p specifies the size of the re- 
gion in which the weighted summation takes place. Larger 
values of p result in a uniform response in a dot-pattem area 
even with larger discontinuities in the dot pattem. The func- 
tion of the operator is illustrated in Fig. 2. The operator is 
available at http://www.cs.rug.nl/"imaging/. 

Figure 2. Input images (upper row) and result 
images computed by a dot-pattern selective 
cell operator (lower row). The operator does 
not react to single dot stimuli and to non-spot 
image features as lines and edges (a). Irreg- 
ular dot-patterns of optimal spot size and av- 
erage density result in a small response (b). 
The detection capability of dot-pattern selec- 
tive cell opeartor is illustrated in (c): the op- 
erator reacts only in the area filled with a dot- 
pattern texture. 

4. Texture features and the Mahalanobis dis- 
tance 

The quantities computed with a set of dot-pattem selec- 
tive cell operators can be used as texture features. We next 
compare the following sets of features: 

Dot-pattern selective cell features: A set of dot- 
pattem selective cell operators with four different pre- 
ferred spot sizes, three values of the spot density and 
selective for both black and white spots, is applied to 
an image, yielding a vector of 24 features in each point. 

Gabor energy features: A popular set of texture fea- 
tures is based on the use of Gabor filters [3]. In this 
case, an image is filtered with a set of Gabor filters with 
different orientations, spatial frequencies and phases. 
Using eight orientations and three preferred spatial- 
frequencies and combining the results of symmetric 

0 

The 

and anti-symmetric filters, this multi-channel filtering 
scheme yields a feature vector of 24 Gabor energy 
quantities [ 5 ] .  The preferred orientations and spatial- 
frequencies are chosen in such a way that the filters 
cover the spatial-frequenc y domain. 

Cooccurrence matrix features: A classic method for 
texture segmentation is based on the gray-level cooc- 
currence matrices [2]. In each point of a texture image, 
a set of gray-level cooccurrence matrices is calculated 
for different orientations and lengths of the inter-pixel 
displacement vector. From these matrices, a number 
of features is extracted which characterise the neigh- 
bourhood of the concemed pixel. In our experiments 
eight gray-level cooccurrence matrices were calculated 
in each point using a neighbourhood of size 12 x 12. 
From each of the matrices three features (energy, iner- 
tia and entropy) were extracted, resulting in a vector of 
24 features in each image point [ 5 ] .  

feature vectors computed at different points of a texture 
image using a given operator are not identical. They rather 
form a cluster in the multi-dimensional feature space. The 
larger the distance between two clusters which correspond 
to two different types of texture, the better the discrimina- 
tion properties of the texture operator which produced the 
feature vectors. The distance has, of course, to be related to 
the (spread) size of the clusters. In order to determine the 
distance between two clusters of feature vectors, relative to 
their compactness, we use the Mahalanobis distance 

where p1 and p2 are the means of the clusters and S is their 
pooled covariance matrix. 

5. Performance evaluation and comparison 

The performance of the concemed texture operators is 
evaluated by measuring the separability of pairs of nine test 
images, each containing a single dot-pattem texture (parts 
of these single texture images are used in the composite im- 
age shown in Fig. 3a). The separability is measured in the 
following way: a given vector operator is applied to each 
image, resulting in a 24-dimensional feature vector field. 
The pooled covariance matrix is calculated for each pair of 
images using 1000 sample feature vectors from each image 
and then the Mahalanobis distance is evaluated according to 
eq.( 11). 

Table 1 shows some statistics of the values of the Maha- 
lanobis distance for the three concemed texture operators. 
The values listed are the minimum, the maximum and the 
average Mahalanobis distance of all 36 possible pairs of test 
images. The average Mahalanobis distance for all operators 
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Figure 3. An input image containing nine different textures (a) and its exact segmentation (b). The 
three right-most images show the segmentation results based on the dot-pattern selective cell fea- 
tures (c), the Gabor energy features (d), and the cooccurrence matrix features (e). 

is 4.38 or higher. This is enough to enable a linear sep- 
aration of the textures based of the resulting feature vector 
fields. The minimum values obtained with the cooccurrence 
matrix operator and the Gabor energy operator, however, 
are too small to allow a linear discrimination. The mini- 
mum value listed is 1.02, obtained for a certain pair of test 
images using the Gabor energy features. Assuming normal 
distribution, this means that for the concemed image pair, 
the projected feature vector clusters overlap for about 48%, 
which with certainty does not allow a linear separation of 
these clusters. 

As can be seen from the table, the average Mahalanobis 
distance between clusters of feature vectors computed with 
the dot-pattern selective cell operator is three times larger 
than the average computed with the Gabor energy opera- 
tor. In tum, the average Mahalanobis distance based on the 
Gabor energy operator is two times larger than the average 
obtained with the cooccurrence matrix operator. From these 
results it may be concluded that the dot-pattem selective cell 
operator has better discrimination properties with respect to 
dot-pattem textures than the other two operators. 

Table 1. Statistics of the Mahalanobis dis- 
tance values. 

Feature type Avg Min Max 
Cooccurrence matrix feat. 4.38 2.40 6.34 

Gabor energy feat. 8.83 1.02 32.38 
Dot-pattem selective cell feat. 29.5 1 5.47 159.35 

Finally, Fig. 3 shows the results of pixel classification 
using K-means clustering of the generated feature vectors. 
The results confirm the comparison results based on the Ma- 
halanobis distance. The dot-pattem selective cell operator 
clearly has better discrimination and segmentation proper- 
ties with respect to dot-pattem textures than the other two 
operators. 
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