

 University of Groningen

Concurrent determination of connected components
Hesselink, Wim H.; Meijster, Arnold; Bron, Coenraad

Published in:
Science of computer programming

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2001

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hesselink, W. H., Meijster, A., & Bron, C. (2001). Concurrent determination of connected components.
Science of computer programming, 41(2), 173-194.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 06-06-2022

https://research.rug.nl/en/publications/b0d1333c-296a-4778-8c5e-305e4e47eb88

Science of Computer Programming 41 (2001) 173–194
www.elsevier.com/locate/scico

Concurrent determination of connected components

Wim H. Hesselink ∗;1, Arnold Meijster 2, Coenraad Bron
Department of Mathematics and Computing Science, University of Groningen, P.O. Box 800,

9700 AV Groningen, Netherlands

Received 4 September 1998; received in revised form 5 August 2000; accepted 5 August 2000

Abstract

The design is described of a parallel version of Tarjan’s algorithm for the determination of
equivalence classes in graphs that represent images. Distribution of the vertices of the graph
over a number of processes leads to a message passing algorithm. The algorithm is mapped to
a shared-memory architecture by means of POSIX threads. It is applied to the determination
of connected components in image processing. Experiments show a satisfactory speedup for
su;ciently large images. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Connected components; Parallel algorithm; Pthreads; Mutex; Condition variable

1. Introduction

In many image processing applications, one of the =rst steps is to compute the
connected components of the image. For this purpose one usually takes the simple
breadth =rst scanning algorithm, which stems from the corresponding problem in graph
theory. This algorithm has the disadvantages that it requires a FIFO-queue the size of
which is a priori unknown, and that it is hard to parallelize. The number of pixels
involved is often large, say more than a million, and for real-time applications often
several images must be processed per second. It is therefore important to have an
e;cient parallel algorithm for this task. This is con=rmed by the fact that there are
many articles on parallel image component labelling. Most of these articles aim at
distributed memory architectures, e.g., cf. [2,7,9].

Two classical sequential algorithms that explicitly use the fact that the graph is an
image, are given in [11,13]. The main drawback of these algorithms is the use of
a large equivalence table. Inspired by these two algorithms and Tarjan’s disjoint set
algorithm [15], we here present an algorithm that does not need such a large table, and

∗ Corresponding author.
E-mail addresses: wim@cs.rug.nl (W.H. Hesselink), a.meijster@rc.rug.nl (A. Meijster), cb@cs.rug.nl

(C. Bron).
1 http:==www.cs.rug.nl=˜wim
2 http:==www.rug.nl=hpc=people=arnold

0167-6423/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S 0167 -6423(01)00007 -7

174 W.H. Hesselink et al. / Science of Computer Programming 41 (2001) 173–194

that can elegantly be parallelized. The sequential algorithm on itself is not new [8],
but as far as we know there does not exist a parallel implementation of this algorithm,
which is the main focus of this paper. The algorithm can be implemented on distributed
as well as shared memory machines.

The algorithm determines a directed spanning forest for an undirected graph by
placing links that are not necessarily along the edges of the graph. It is meant for
large graphs, the nodes of which are distributed over a relatively small number of
processes, preferably in such a way that most of the edges belong to only one process.
In this respect, the situation diGers from settings as investigated in [12,16], where the
processes are in one-to-one correspondence with the nodes. Indeed, a typical setting
for our algorithm could be a medical application used by medical specialists to analyse
3-D CT-images of a brain. In that case, the graph may have in the order of 108 points
and the computation can be distributed over, say, four up to 16 processors.

Although we are especially interested in the application to images, we present the
algorithm for general undirected graphs. The design goes through four stages. We
=rst give a version of Tarjan’s sequential algorithm, then distribute this over several
processes with message passing. This design is then mapped to a shared memory
architecture by means of mutual exclusion and synchronization. Finally, the mutual
exclusion and synchronization are implemented by means of POSIX thread primitives.

The resulting algorithm is a concurrent one in which the amount of communication
is decided at runtime. Such algorithms are very error prone. Our presentation may
seem to focus on logic, but that is not the case. Since we want a working algorithm,
our focus is on correctness, i.e., preservation of invariants, avoidance of deadlock, and
guarantee of progress. Logical formulae are the only way to unambiguously express
the properties needed.

Since we want to avoid unnecessary communication, we use no path compression
beyond the parts of the graph under control of a single process. If the vertices of
the graph are distributed randomly over the processes, this leads to bad worst case
performance (i.e. quadratic in the lengths of the paths). In practice, however, there is
often a natural way to distribute the nodes over the processes such that most edges
adjacent to a node belong to only one process. In that case, the performance of the
algorithm is quite good.

We =nally describe the application to the determination of connected components in
images. Since images are usually more or less constant locally, we sketch an optimiza-
tion that can reduce the number of communications needed signi=cantly. The results
show that the algorithm makes distribution quite eGective.
Overview: In Section 2 we give the abstract problem and develop a sequential solu-

tion. In Section 3, the algorithm is distributed over several processes in an asynchronous
way. In Section 4, we specialize to a shared memory architecture in bounded space
with atomicity brackets and await statements. In Section 5, these constructs are im-
plemented by means of POSIX thread primitives. Section 6 describes the =nalization
of the algorithm. Section 7 contains the application to image processing. We draw
conclusions in Section 8.

W.H. Hesselink et al. / Science of Computer Programming 41 (2001) 173–194 175

2. The problem and a sequential solution

In the image processing context, points of an image are regarded as directly con-
nected if they are neighbours and have (nearly) the same colour or grey value. The
problem is to determine the connected components of the image. Since images contain
many points, and since one may want to process many subsequent images in real time,
there is reason to consider distributed solutions. Graph theory is the proper abstract
setting for any discussion of connected components.

We therefore let the image be represented by an undirected graph. The aim is to
determine its connected components by means of a distributed algorithm. Our =rst step
is the design of a sequential algorithm, which is a variation of Tarjan’s algorithm, cf.
[15, Chap. 2; 14, 12.3].

Let (V; E) be an undirected graph. We regard E as a (symmetric binary) relation.
The connected components of the graph are the equivalence classes of the reJexive
transitive closure E∗ of E. The idea is to represent the components by rooted trees by
means of an array variable

par : array V of V ;

which stands for “parent”. We de=ne function root : V →V by

root(n) = if par[n] = n then n else root(par[n]) fi :

Since V is =nite, function root is well de=ned if and only if the directed graph in-
duced by the arrows of par has no cycles of length ¿1. We want to establish the
postcondition that function root is well de=ned and satis=es

Q: (∀m; n :: (m; n) ∈ E∗ ≡ root(m) = root(n)) :

In order to establish Q, we introduce the equivalence relation Con given by

(m; n) ∈ Con ≡ root(m) = root(n) :

Now Q is equivalent to E∗ =Con.
We assume that the initialization establishes par[n] = n for all n ∈ V . Then function

root is well de=ned and relation Con is equal to the identity. We shall modify array
par in such a way that function root remains well de=ned and that relation Con is
only extended. We therefore only modify par by assignments of the form par[x] := y
under one of the preconditions

P0(x; y): (∃k : k ¿ 1 : park [x] = y) ;

P1(x; y): par[x] = x ∧ root(y) �= x :

Here, park [x] is obtained by k subsequent applications of par on index x. In the
case of P0(x; y), node y is an ancestor of x and the assignment par[x] := y does not
modify relation Con. Such an assignment is called path compression, cf. [1]. In case

176 W.H. Hesselink et al. / Science of Computer Programming 41 (2001) 173–194

of P1(x; y), node x is a root and not an ancestor of y. Since y becomes the parent of
x, relation Con is strictly extended.

We now come to the edge relation E of the graph. Since we do not want to store
every unordered pair twice, we assume that relation E is represented by a set edlis of
pairs of nodes via the initial relation E = sym(edlis) where function sym is de=ned by

(m; n) ∈ sym(R) ≡ (m; n) ∈ R ∨ (n; m) ∈ R :

We take edlis to be a program variable and introduce the loop invariant

J0 : E∗ = (Con ∪ sym (edlis))∗ :

Predicate J0 holds initially, since then sym(edlis) = E and Con is the identity. If edlis
is empty, J0 implies predicate Q since Con is an equivalence relation. We therefore
take edlis �= empty as the guard of the loop.

Now the abstract sequential algorithm is

A: while edlis �= empty do
fetch (u; v) from edlis ;
Extend

od ,

where command Extend has to restore predicate J0 if it is falsi=ed by the removal
of (u; v) from edlis. Restoration can be done by placing a par pointer between the
components of u and v. We therefore search for elements x, y, connected to u and v,
that satisfy P1(x; y). We thus introduce the predicate

JE : (u; x); (v; y) ∈ Con ∨ (u; y); (v; x) ∈ Con

and describe Extend by

Extend: if (u; v) =∈ Con then
choose x; y with P1(x; y)∧ JE;
par[x] := y

fi .

It is easy to see that in this way J0 is preserved and that, consequently, algorithm
A is correct. So it remains to implement Extend. Since relation Con is not directly
available, we implement Extend by means of a loop with JE as invariant. Since Con
is an equivalence relation, JE ∧ x = y implies (u; v)∈Con. We can therefore re=ne
Extend as follows.

Extend: x := u; y := v {JE} ;
while x �= y∧¬P1(x; y) do

modify x; y while preserving JE
od ;
if x �= y then par[x] := y fi .

W.H. Hesselink et al. / Science of Computer Programming 41 (2001) 173–194 177

For the ease of distributed veri=cation of the inequality root(y) �= x in P1(x; y), we
assume that the set V has a total order 6 and introduce the additional invariant (cf.
[14, p. 261]):

J1: par[n] 6 n :

Here and henceforth, we use the convention that all invariants are universally quanti=ed
over the free variables they contain (here n).

We now decide that the loop in Extend preserves the invariant JE ∧ x ¿ y. We
therefore assume that the pairs in edlis are ordered by

J2: (m; n) ∈ edlis⇒ m ¿ n :

In the body, we replace x by par[x] and, if necessary, restore x ¿ y by swapping.
Now the guard of the loop can be simpli=ed since J1 ∧ x ¿ y implies

P1(x; y) ≡ par[x] = x ∧ x �= y :

It follows that

x �= y∧¬P1(x; y) ≡ x �= y∧ par[x] �= x

and thus we obtain

Extend: x := u ; y := v ;
while x �= y∧ par[x] �= x do

x := par[x] ;
if x¡y then x; y := y; x fi

od ;
if x �= y then par[x] := y fi .

Since V is =nite, it is easy to see that the loop terminates.
The e;ciency of algorithm A can be improved considerably by path compression,

i.e., by extending the =nal then branch of Extend with assignments par[z] := y for
all nodes z on the par paths of u and v. This optimization preserves all invariants.
A simple version of it only adds par[u] := y and par[v] := y. In our application this
seems to be just as eGective.

3. Distribution

In this section, we distribute algorithm A over a system of sequential processes
that communicate by message passing. We use the following convention with respect
to private variables. If x is a private variable of process p, we refer to it as x in
the code and as x:p if p is not obvious from the context. Let Process be the set of

178 W.H. Hesselink et al. / Science of Computer Programming 41 (2001) 173–194

processes. We assume that the set V is distributed over the processes by means of
a function owner : V →Process. We assume that process p is allowed to inspect and
modify par[x] if and only if p = owner(x).

We assume that edlis is distributed over the processes as well. So, each process
p has its own set edlis(p) and we regard edlis as an alias for the union of the sets
edlis(p). We introduce the invariant

J3: (m; n)∈ edlis(q) ⇒ owner(m) = q :

Since the loop in Extend can only be executed by process p as long as owner(x) = p,
we introduce the local search command

Search: x := u ; y := v ;
while owner(x) = self∧ x �= y∧ par[x] �= x do

x := par[x] ;
if x¡y then x; y := y; x fi

od ,

where self stands for the executing process. Since the guards are evaluated from left
to right, par[x] is not inspected if owner(x) �= self. Execution of Search establishes the
postcondition

owner(x) �= self ∨ x = y ∨ par[x] = x:

It is now clear that each process should repeatedly execute

fetch (u; v) from edlis(self) ;
Search ;
if x �= y then

if owner(x) = self then par[x] := y
else put(x; y) into edlis(owner(x)) fi

fi .

This program fragment preserves J0 ∧ J1 ∧ J2 ∧ J3, i.e., indeed, J0, J1, J2, J3 are
invariants. It terminates for the same reason as in the case of the sequential algorithm.

In this way, the sets edlis(p) become buGers with one consumer and many producers.
Process p fetches elements from edlis(p) and other processes may put elements into
it. These actions therefore require communication: the last line of this fragment can be
read as “send (x; y) to the process that owns x”.

Since communication is expensive in performance, we partition the set edlis(p)
into two parts edlis0(p) and edlis1(p), and assume the invariant edlis(p) = edlis0(p)∪
edlis1(p) with initially

edlis0(p) = {(u; v)∈ edlis(p) | owner(v) = p} ,
edlis1(p) = {(u; v)∈ edlis(p) | owner(v) �= p} .

W.H. Hesselink et al. / Science of Computer Programming 41 (2001) 173–194 179

We can therefore treat edlis0(p) in an initial program fragment A0, obtained from A
by substituting edlis0(p) for edlis.

A0: while edlis0(self) �= empty do
fetch (u; v) from edlis0(self) ;
Extend

od .

Since initially par[z] = z for all nodes z, fragment A0 preserves the invariant that
owner(par[z]) = p for all z with owner(z) = p.

During the treatment of edlis1(p), process p must be able to put elements into
edlis1(q) where q is some process with q �= p. As a consequence, process p must not
stop when its set edlis1(p) is empty since other processes may insert new elements in
edlis1(p). We declare for each process a private variable continue to indicate that new
pairs yet may arrive.

A1: while continue do
fetch (u; v) from edlis1(self) ;
Search ;

if x �= y then
if owner(x) = self then par[x] := y
else put(x; y) into edlis1(owner(x)) fi

fi
od .

The program for process p now becomes the composition of the two parts A0 and A1.
Part A0 needs no further re=nement. Part A1 primarily requires termination detection:
how to give the boolean variables continue the adequate values?

We assume that process p starts up with initial values for edlis0(p) and edlis1(p).
The size of the union of the sets edlis1(p) only shrinks. Every process can terminate
when all sets edlis(p) are empty and each process has =nished its local computation,
but not earlier. To keep track of the edges that have yet to be treated, we attach
a unique token t to each edge (u; v) in edlis1(p). This token serves to indicate the
originator of the pair (u; v) for the sake of termination detection. It is sent unmodi=ed
with the changing edge (u; v) as a message edge(u; v; t). When no triple is sent, the
token t is destroyed.

Each token shall belong to the process that creates it. We represent the assignment
of tokens to processes by a function origin :Token→Process. Each process gets a
private integer variable ctok to count its number of outstanding tokens. Whenever a
token is destroyed, a message down is sent to its origin. A process decrements ctok
when it receives a message down. We thus have the invariant that ctok of process q
is the number of messages edge(u; v; t) in transit with origin(t) = q plus the number of

180 W.H. Hesselink et al. / Science of Computer Programming 41 (2001) 173–194

down messages in transit to q. This can be expressed by

J4: ctok:q = #{edge(u; v; t) | origin(t) = q} + transit(down; q) ;

where we use transit(m; q) to denote the number of messages m in transit to q, and
#A to denote the number of elements of the set A.

We introduce a message stop to signal termination. Indeed, when all tokens of all
processes have been destroyed, all buGers are empty and every process may
terminate.

In order to decide that all tokens of all processes have been destroyed, we introduce a
global counter gc for the number of processes that are initializing or have ctok¿0. We
give one process, say adm, the additional task to administrate the value of gc, which
initially equals #Process. A process that reaches ctok= 0, sends a gcdown message
to adm. We postulate the invariant that gc equals the number of processes q with
ctok:q¿0 plus the number of gcdown messages in transit, i.e.

J5: gc = #{q | ctok:q ¿ 0} + transit(gcdown; adm) :

When process adm receives the message gcdown it decrements gc and, if gc becomes
0, it sends messages stop to all processes, as expressed in command GcDown:

GcDown: gc := gc−1 ;
if gc= 0 then

for all q∈Process do send stop to q od
fi .

A process that receives stop, sets continue to false. This leads to the invariants

J6: continue:q ≡ gc ¿ 0∨ transit(stop; q) ¿ 0 ;

J7: transit(stop; q) ¿ 0 ⇒ gc = 0 :

Fragment A1 is now replaced by

A1: Init1 ;
while continue do
in edge(u; v; t) →

Search ;
if x �= y ∧ owner(x) �= self then

send edge(x; y; t) to owner(x)
else

if x �= y then par[x] := y fi ;
send down to origin(t) ;

fi
[] down →

ctok := ctok −1 ;

W.H. Hesselink et al. / Science of Computer Programming 41 (2001) 173–194 181

if ctok= 0 then send gcdown to adm fi
[] gcdown → GcDown
[] stop → continue := false
ni

od .

The auxiliary command Init1 is treated below. The rest of A1 is a repetition that
consists of reception and treatment of messages. For this purpose, we use a variation
of the in...ni construct of the language SR of [4]. It involves waiting for the next
message to arrive, the choice according to the arriving message, and it introduces
formal parameters for the arguments of the message, if any. Note that this code implies
that a process may send asynchronous messages to itself. Such messages can easily be
eliminated. We have not done so for the sake of uniformity.

After the treatment of edge(u; v; t), the process may perform path compression along
the two paths it has investigated in its own part of the graph. In view of the communi-
cation overhead, we decided not to consider more extensive forms of path compression.

For the sake of uniformity, the initialization of A1 translates the edges in edlis1 into
edge messages from the process to itself. A1 is thus initialized by

Init1: ctok := 0 ;
continue := true ;
for all (x; y)∈ edlis1(self) do

create a token t with origin(t) = self ;
ctok := ctok +1 ;
send edge(x; y; t) to self

od ;
if ctok= 0 then send gcdown to adm fi .

In order to verify the invariants, we =rst need to describe the execution model.
Processes are concurrently allowed to receive and execute messages. Since the eGect
of execution of a message only depends on the message and the precondition of the
accepting process, we may (for the sake of the correctness proof) assume that the
messages are accepted by the processes in some linear order and that a message is
accepted only when the command associated to the previous message has been ex-
ecuted completely by the previous accepting process. In other words, in our model,
the acceptance of a message includes atomic execution of the associated command.
The invariants are predicates that are supposed to hold before and after each complete
acceptance of a message.

It is now straightforward to verify the invariants J4, J5, J6, and J7. Indeed, each
of these predicates holds when all processes have completed Init1. Acceptance of
a message edge leads to re-sending of a message edge or down. Therefore, J4 is
preserved. Acceptance of down by process p preserves J4 since ctok:p is decremented.
It also preserves J5, since gcdown is sent if ctok:p reaches 0. Acceptance of gcdown

182 W.H. Hesselink et al. / Science of Computer Programming 41 (2001) 173–194

by process adm preserves J5 since gc is decremented. It also preserves J6 and J7 since
stop is sent if and only if gc reaches 0. Acceptance of stop by process p preserves
J6 since continue:p is set to false and J7 implies gc= 0.

It follows from J4∧ J5 that, while there are edges to be processed, we have gc¿0,
so that J6 implies that all processes have not yet terminated. On the other hand, when
there are no messages in transit, then J4∧ J5 implies that gc= 0, so that J6 implies
¬ continue:q for all processes q. So, then, all processes have terminated.

4. Bounded shared memory

We now assume that the processes communicate by means of shared memory, and
that the size of this memory is bounded. We use the convention that shared variables
are in typewriter font. In this section we specify the requirement on atomicity and
synchronization by means of atomicity brackets and await statements. The next section
is devoted to the implementation of these constructs by means of the POSIX thread
primitives.

We eliminate the messages edge, down and stop, and replace them by procedures
PutEdge, Down, and Stop. The edge triples that are to be communicated between the
processes will be placed somewhere in the shared memory. Each process is equipped
with a private list of such triples and has a private variable head0 that serves as the
head of this list. The private list is empty iG head0= nil. Procedure GetEdge fetches
a triple from the private list.

We introduce a procedure AwaitEdge, the postcondition of which implies that head0
�= nil or Stop has been called. Then program fragment A1 is replaced by

A2: Init2 () ;
loop
AwaitEdge () ;
if head0= nil then exitloop fi ;
GetEdge (u; v; t) ;
Search ;
if x �= y ∧ owner(x) �= self then

PutEdge (owner(x), x; y; t)
else

if x �= y then par[x] := y fi ;
Down (origin(t))

fi
endloop .

In order to replace the messages down by a procedure Down, we replace the private
variables ctok by a shared variable

ctok : array Process of Integer ;

W.H. Hesselink et al. / Science of Computer Programming 41 (2001) 173–194 183

and we de=ne
procedure Down (q :Process) =

var b :Boolean ;
〈 ctok[q] := ctok[q] −1; b := (ctok[q] = 0) 〉 ;
if b then GcDown () fi

end .
Here, atomicity brackets 〈 〉 are used to specify that the command enclosed by them
shall be executed without interference. Now GcDown is a procedure given by

procedure GcDown ()=
var b :Boolean;
〈 gc := gc−1 ; b := (gc= 0) 〉 ;
if b then Stop () fi

end .

We replace the private variables continue by a shared array

cntu : array Process of Boolean ;

with initially cntu[q] = true for all processes q. We then de=ne procedure Stop by

procedure Stop () =
for all q ∈ Process do 〈 cntu[q] := false 〉 od

end .

Note that, in this way, the special process adm is eliminated.

Remark. One could of course replace the array cntu by a single boolean variable.
This would cause memory contention, however, when many processes try to access it
concurrently. We therefore prefer to use an array.

We =nally come to the central problem of a shared data structure where the processes
can deposit the edges destined for other processes. For this purpose, we assume that
there is a constant M such that #edlis1(p)6M for all processes p. Let N be the
number of processes. It then follows that we need at most N ∗ M tokens. We thus
de=ne the type Token= [0 . . N ∗ M − 1] and use this type as the index set for the
messages. We decide to store the triple (x; y; t) always at index t by means of the
shared variable

pair : array Token of V × V :

The message buGers are constructed as lists of pairs. For this purpose, we introduce a
value nil =∈Token to designate the empty list and declare the shared variables

next : array Token of Token ∪ {nil} ;

head : array Process of Token ∪ {nil} ;

184 W.H. Hesselink et al. / Science of Computer Programming 41 (2001) 173–194

with initially head[q] = nil for all q. We use head[q] as the head of the list for process
q where other processes can write. Now procedure PutEdge is given by

procedure PutEdge (q : Process ; x; y : V ; t : Token) =
pair[t] := (x; y) ;
〈 next[t] := head[q] ;

head[q] := t 〉
end .

Reading and writing of head[q] must be done under mutual exclusion. The assignment
to pair[t] is not threatened by interference, however, since we preserve the invariant
that there is always at most one process that holds token t.

Recall that every process also has a private variable head0 as the head of a private
list of tokens. A process fetches an element from its private list by the simple procedure

procedure GetEdge (var x; y : V ; var t : Token) =
t := head0 ;
head0 := next[t] ;
(x; y) := pair[t]

end .

In procedure AwaitEdge, the two lists of a process are swapped whenever the private
list is empty and the public one is not:

procedure AwaitEdge () =
if head0 = nil then

〈 await head[self] �= nil ∨ ¬ cntu[self] then
head0 := head[self] ;
head[self] := nil 〉

fi
end .

Here we use an atomic await statement as described in (e.g.) [3,5]. Note that, indeed,
AwaitEdge has the postcondition that head0 �= nil if cntu[self] holds.

We assume that processes are numbered from Process= [0 . . N −1]. We distribute
the tokens according to the rule that process p gets the tokens t with p∗M6t¡(p+1)∗
M . It follows that function origin is given by origin(t) = t divM . Then the initialization
is given by

procedure Init2 () =
var t := self ∗ M ;
head0 := nil ;
for all (x; y) ∈ edlis1(self) do

next[t] := head0 ;
head0 := t;
pair[t] := (x; y) ;

W.H. Hesselink et al. / Science of Computer Programming 41 (2001) 173–194 185

t := t + 1
od ;
ctok[self] := t − self ∗ M ;
if ctok[self] = 0 then GcDown () fi

end .

Here the assignments to ctok are not threatened by interference with Down, since the
tokens from process q are not yet available to other processes. The use of two lists for
every process enables us to treat the initialization of the processes as a private activity.

5. Using mutexes and condition variables

In this section, we implement the atomicity brackets and the await statement intro-
duced in the previous section by means of mutexes and condition variables as speci=ed
in the POSIX thread standard, cf. [6,10].

Mutexes serve to implement the atomicity brackets 〈〉. A mutex can be regarded as
a record with a single =eld owner of type Process; m:owner=⊥ means that the mutex
is free. The commands to lock and unlock a mutex m are given by

lock(m): 〈await m:owner =⊥ then m:owner := self 〉 ;

unlock(m): 〈await m:owner = self then m:owner :=⊥ 〉 :

The description of unlock is maybe slightly surprising: it enforces that only the owner
of the lock is able to unlock it. A thread that tries to unlock a mutex it does not own,
has to wait inde=nitely. For every mutex m, we use the initialization m:owner=⊥.
The commands lock and unlock are abbreviations of the POSIX primitives
pthread_mutex_lock and pthread_mutex_unlock.

After this preparation we come back to the synchronization of the program of the
previous section. In order to allow maximal concurrency, we introduce several mutexes
and arrays of mutexes for the protection of speci=c atomic regions. We introduce a
mutex mtok[q] to protect ctok[q] and a mutex mgc to protect gc. We thus declare

mtok: array Process of Mutex ;
mgc: Mutex :

The procedures Down and GcDown become

procedure Down (q : Process) =
var b : Boolean ;
lock (mtok[q]) ;
ctok[q] := ctok[q] − 1 ; b := (ctok[q] = 0) ;
unlock (mtok[q]) ;
if b then GcDown () fi

end .

186 W.H. Hesselink et al. / Science of Computer Programming 41 (2001) 173–194

procedure GcDown () =
var b : Boolean ;
lock (mgc) ;
gc := gc− 1 ; b := (gc = 0) ;
unlock (mgc) ;
if b then Stop () fi

end .

We use condition variables for the implementation of the await construct in Await
Edge. A variable v of type Condition is the name of a list Q(v) of threads that
are waiting for a signal. We only use the POSIX primitives pthread_cond_wait

and pthread_cond_signal, abbreviated by wait and signal. These primitives are
expressed by

wait (v; m) :
〈 unlock (m); insert self in Q(v) 〉 ;
lock (m) .

Command wait consists of two atomic commands: to start waiting and to lock when
released. Note that a thread must own the mutex to execute wait.

Command signal (v) is equivalent to skip if Q(v) is empty. Otherwise, it releases
at least one thread waiting at Q(v). This is expressed in

signal (v) :

〈if not isEmpty (Q(v)) then release some threads from Q(v) fi〉 :

Notice that, when some thread signals v and thus releases a waiting thread, the latter
need not be able to (immediately) lock the mutex. Some other thread may obtain the
mutex =rst.

Back to the program. We introduce a mutex gate[q] to protect head[q] and cntu[q]
in the procedures AwaitEdge, PutEdge, and Stop. We introduce a condition variable
cv[q] to signal process q that the condition it may be waiting for has been established.
We thus declare

gate: array Process of Mutex ;

cv: array Process of Condition :

The procedures PutEdge and Stop are translations of their counterparts in Section 4
extended with signals to the possible waiting processes.

procedure PutEdge (q : Process ; x; y : V ; t : Token) =
pair[t] := (x; y) ;
lock (gate[q]) ;
next[t] := head[q] ;
head[q] := t ;

W.H. Hesselink et al. / Science of Computer Programming 41 (2001) 173–194 187

signal (cv[q]) ;
unlock (gate[q])

end .

procedure Stop () =
for all q ∈ Process do

lock (gate[q]) ;
cntu[q] := false ;
signal (cv[q]) ;
unlock (gate[q])

od
end .

AwaitEdge is implemented in

procedure AwaitEdge () =
if head0 = nil then

lock (gate[self]) ;
if head[self] = nil ∧ cntu[self] then

wait(cv[self]; gate[self])
fi ;
head0 := head[self] ;
head[self] := nil ;
unlock (gate[self])

fi
end .

Note that, here, at most one process can be waiting at any condition variable. So, there
is no danger that a signal releases more than one thread. On the other hand, since the
waiting process is the only process that can invalidate it, the wait condition need not
be tested again.

Remark. If one removes the lock and unlock in Stop, the program becomes incorrect,
since then a process, say q, may observe that the guard in AwaitEdge holds true and
another process may falsify cntu[q] and signal cv[q] before q starts waiting.

It is also possible to implement the await construct in AwaitEdge by means of a
split binary semaphore, see e.g. [3].

6. Harvest

After execution of algorithm A or its shared memory version, the connected com-
ponents of the graph are determined by the function root. We collect this result in a

188 W.H. Hesselink et al. / Science of Computer Programming 41 (2001) 173–194

separate array

root : array V of V:

In view of invariant J1, a sequential algorithm to do this is

B: for all n ∈ V do in increasing order
if par[n] = n then
root[n] := n ;

else root[n] := root[par[n]] fi
od .

In this way, the connected components of the graph are characterized by a unique
representing element, the root of the par tree. Loop B is very e;cient, of order
O(#V).

When the graph is very large, distributed harvesting may be indicated. To enable
this, we decide that in harvest time all processes are allowed to inspect array par,
but inspections and updates of root[n] are only allowed for the owner of node n. We
therefore write V (p) to denote the set of nodes n∈V with owner(n) = p and we let
the processes perform

C: for all n∈V (self) do in increasing order
if par[n]∈V (self) then

if par[n] = n then root[n] := n
else root[n] := root[par[n]] fi

else
r := par[n] ;
while r �= par[r] do r := par[r] od ;
root[n] := r

fi
od .

Fragment C has the ine;ciency that root paths that leave V (p) may be traversed
repeatedly. We therefore introduce the following optimization. For each process, we
declare a private variable outList of the type list of nodes with the invariant

J8: x ∈ V (p) ∧ par[x] =∈ V (p) ⇒ x ∈ outList:p :

We take outList:p to be empty initially. Predicate J8 is preserved by program fragment
A0. In order to preserve J8 during A1 and A2, we now let the assignments par[x] := y
in A1 and A2 be accompanied by the instruction to add x to the private outList.

We now =rst set all values of root to some reserved value ⊥ and then determine
the roots of the elements of outList.

D: for all n∈V (self) do root[n] := ⊥ od ;
for all n∈ outList do

r := n ;

W.H. Hesselink et al. / Science of Computer Programming 41 (2001) 173–194 189

while r �= par[r] do r := par[r] od ;
root[n] := r ;

od .

After this loop, all points x∈V (p) with par[x] =∈V (p) have the correct value for
root[x], while the other points x∈V (p) have root[x] :=⊥. These remaining points
of V (p) are treated in the following loop:

E: for all n∈V(self) do in increasing order
if root[n] =⊥ then

if par[n] = n then root[n] := n
else root[n] := root[par[n]] fi

fi
od .

Here, we use the invariant J1. Since the points are treated in increasing order, we have
the invariant that root[x] has the =nal value for all x¡n. This property is preserved
by the body of loop E because of J1. The composition D ; E is our =nal version of
the harvest. This version is more e;cient than version C, since only the root paths of
points in outList are followed completely.

The list outList can be implemented most easily as a stack with maximal size equal
to the number of boundary points of the set V (p). Every element of outList:p is an
ancestor of a point of the boundary of V (p), with all intermediate points within V (p).
This implies that #outList:p is bounded by the number of elements of the boundary
of V (p).

7. Application to image processing

In this section we focus on the application to image processing. We =rst consider
a grey-scale image represented by a two-dimensional integer-valued array im[H; W]
(later we will consider three-dimensional ‘images’ as well), where H and W are
the height and the width of the image, respectively. The =rst coordinate (x) denotes
the row number (scan line), while the second coordinate (y) denotes the number of
the column. Since grey-scale images are discretizations of real black-and-white pho-
tographs there is an implicit underlying grid. We consider the case of 4-connectivity,
meaning that pixels (except for boundary pixels) have four neighbours (north, east,
south, west). Two neighbouring pixels that have the same image value, are considered
to be in the same connected component. So, the graph considered has the pixels as
nodes, and two pixels are connected iG they are neighbours and have the same image
value.

Since the graph under consideration is rectangular, we can distribute it over the N
processes by splitting it in equally sized slices. We have decided to distribute the image
on the last coordinate of a pixel. It follows that we split the image in (almost) equally
sized vertical slices. The test (x; y)∈V (p) becomes lwb(p) 6 y¡lwb(p + 1), where

190 W.H. Hesselink et al. / Science of Computer Programming 41 (2001) 173–194

lwb is given by

lwb(p) = (p · W) div N :

It follows that the corresponding function owner satis=es

owner(y) = ((N · (y + 1)) − 1) div W :

The parallel algorithm consists of three phases. In the =rst phase, algorithm A0 is
applied on the image slices. This is performed in a scan-line fashion, in which for
pixel (x; y) only the pixels (x−1; y) (north) and (x; y−1) (west) need to be inspected.

In the middle phase, algorithm A2 is applied to edges of the graph which cross the
boundaries of the distribution. In view of invariant J2, the list edlis1(p) must contain
the pixel pairs (x; y); (x; y − 1) with y = lwb(p) for which im[x; y] = im[x; y − 1]. It
follows that H is an upper-bound for the length of the edge lists edlis1(p). We can
therefore take M of Section 4 to be equal to H .

Since we deal with images, a very eGective optimization can be used to reduce the
sizes of the buGers edlis1(p). Indeed, we need not insert the pair (x; y); (x; y − 1)
into edlis1(p), if this list already contains the pair (x − 1; y); (x − 1; y − 1) while also
im[x; y] = im[x − 1; y]. Indeed, if this is the case, the pair consists of pixels connected
already, and we can therefore disregard the new edge. Experiments have shown that for
camera made images this optimization often reduces the size of the buGers signi=cantly.
The optimization is used in the initialization Init2, while the remainder of A2 is left
unmodi=ed. In the =nal phase, we use the harvesting routine (D;E) to compute the
output image.

The algorithm is easily adapted to ‘images’ of higher dimensionality. Apart from
choosing another distribution, indexing, and the corresponding functions lwb, owner and
origin, no modi=cations are necessary. We applied the algorithm to a three-dimensional
CT-scan data set im[D; H; W], where D is the number of 2-D image slices (depth) of
the data set. We used the same functions lwb and owner. In this case, the bound M
of the sizes of the lists edlis1 is D ·H .

7.1. Practical results

We applied the shared memory version of the algorithm on a set of seven 2-D test
images. We had the availability of two shared memory architectures, namely a Cray J90
vector computer consisting of 32 processors and 4 Gb shared memory, and a Compaq
ES40 with 4 Alpha-processors and 1 Gb shared memory. The processors of the Cray
J90 computer are shared with other users, and the scheduling of these is done by the
operating system, without any control to the user. It is therefore almost impossible to
acquire 32 processors without interference by other users. For this reason, we decided to
do time measurements up to 16 processors, which turned out to be reasonably available.
Each measurement was performed a 100 times, of which the 25 best and the 25 worst
measurements were discarded. The remaining 50 measurements were averaged. This

W.H. Hesselink et al. / Science of Computer Programming 41 (2001) 173–194 191

Table 1
Absolute timings in milliseconds on a single CPU for diGerent images sizes

Image ES40 CRAY J90

256 512 1024 256 512 1024

empty 10 42 172 381 1558 6260
vline 7 30 123 283 1145 4610
hline 6 28 114 287 1163 4801
comb 7 30 123 279 1139 4615
squares 10 42 173 374 1539 6228
music 10 42 172 361 1488 6080
CT 9 42 181 297 1370 5808

Fig. 1. Test images: (a) squares (b) music (c) CT.

way we hope to get a reasonable measurement. On the Compaq ES40, measurements
were performed simply 50 times and averaged immediately, since we were the only
user on the system. The absolute timings on a single CPU are shown in Table 1. Note
that the ES40 performs much better than the Cray. One may realize that the design
of the Cray is more than 5 years older than that of the ES40, and that the Cray is
a typical vector processor, which is not of any use in our algorithm. Besides, the
Compaq has a cache memory on each processor of 512 kB, while the Cray has no
cache whatsoever.

The image named empty is a trivial image of which all pixels have the same grey
value. The image vline is an image for which pixels im[x; y] = 1 if y is even, and
im[x; y] = 0 if y is odd. The image hline is the image vline rotated over 90 degrees.
The image comb is similar to the image vline except that the pixels on the last scan-
line have grey value 1, i.e. im[H −1; y] = 1. Clearly, these images are arti=cial images.
We also used some more realistic images, which are shown in Fig. 1. The =rst image
consists of 50 squares of random sizes, located at random positions. Each square has
a unique grey value. The second image is a camera-made image of handwritten music.
The third image is slice 50 of a 93× 256× 256 CT-scan of a head. The number of
grey values is reduced from 256 to 32 to reduce the inJuence of noise.

192 W.H. Hesselink et al. / Science of Computer Programming 41 (2001) 173–194

Table 2
Speedups for the test set on the ES40

Image 256× 256 512× 512 1024× 1024

S2 S3 S4 S2 S3 S4 S2 S3 S4

empty 1.7 2.0 2.3 1.8 2.3 2.7 1.9 2.6 3.2
vline 1.7 1.8 2.4 1.8 2.2 3.0 1.8 2.5 3.4
hline 1.4 1.4 1.3 1.7 1.9 2.0 1.8 2.4 2.7
comb 1.7 1.8 1.9 1.8 2.2 2.6 1.8 2.5 3.0
squares 1.7 2.0 2.2 1.8 2.3 2.7 1.9 2.6 3.2
music 1.5 1.7 1.8 1.7 2.2 2.4 1.9 2.6 3.2
CT 1.6 1.8 2.0 1.8 2.3 2.8 1.9 2.7 3.3

Table 3
Speedups for the test set on the Cray J90

Image 256× 256 512× 512 1024× 1024

S2 S4 S8 S16 S2 S4 S8 S16 S2 S4 S8 S16

empty 1.9 3.5 5.7 6.4 2.0 3.7 7.1 11.0 2.0 3.9 7.8 14.1
vline 2.0 4.0 6.9 9.6 2.0 3.9 7.4 12.2 2.0 4.0 7.7 15.4
hline 1.8 3.3 4.5 3.6 1.9 3.6 6.1 7.6 2.0 3.8 7.3 11.4
comb 1.9 3.4 5.2 5.4 2.0 3.8 7.0 10.9 2.0 4.0 7.8 13.5
squares 2.0 4.0 6.4 6.6 2.0 3.9 7.4 11.4 2.0 4.0 7.9 14.0
music 2.0 3.8 5.9 6.2 1.9 3.8 7.3 10.5 2.0 3.9 7.9 14.1
CT 1.9 2.8 4.4 4.5 2.0 3.6 6.8 10.7 2.0 4.0 7.9 14.7

For the arti=cial images, path compression is extremely eGective. For the more re-
alistic images path compression is worthwhile, but is less eGective. For these images,
it turns out that the running time of the algorithm is hardly dependent on the content
of the image. For most camera made images, the algorithm runs in approximately the
same time.

In Tables 2 and 3, we see the speedup using more than one processor. The mea-
surements are performed on the test set for diGerent image sizes. The number SN is
the speedup of the algorithm running on N processors relative to execution on one
processor, de=ned by SN = T1=TN , where TN is the running time on N processors. We
clearly see, that the speedup gets better if the computational task size increases. This
is to be expected, since the ratio between computation and communication gets in
favour of the computational side. This eGect is especially severe on the ES40, since
its processors are much faster than those of the Cray, while the memory speed (and
thus communication speed) is about the same.

On both machines we see that the image vline performs best. Again, this is to be
expected, since there is no communication needed at all. The image hline on the other
hand performs worst, since here the amount of communication is maximal among the
images considered. Even for this case, however, the speedups are satisfactory. The

W.H. Hesselink et al. / Science of Computer Programming 41 (2001) 173–194 193

Table 4
Speedups for the 3-D CT data set

ES40 CRAY J90
N SN N SN N SN N SN N SN N SN

2 1.8 2 2.0 5 4.6 8 7.2 11 9.2 14 10.9
3 2.4 3 2.9 6 5.6 9 7.9 12 9.9 15 11.5
4 3.1 4 3.8 7 6.4 10 8.6 13 10.5 16 12.7

image empty gains most from the optimization mentioned above. For this image, the
lists edlis1 initially contain each only a single pair.

For the more realistic images square, music and CT, we see very nice results. This
is of course the main goal of the algorithm. For large enough images, up to about 8
processors we see an almost linear speedup. If we add more processors, we see a slight
drop in the e;ciency as a result of relative increase of communication with respect
to the computational task. However, an e;ciency of generally more than 75% is very
satisfactory.

We also applied the 3-D version of the algorithm to a CT data set with sizes
93× 256× 256. In Fig. 1(c), we see slice 50 of this set. The amount of grey values
was reduced from 256 to 32 grey values. In Table 4, we present the results for both
architectures. The left-hand frame contains the results on the ES40, with T1 = 3:1 s.
The right-hand frame contains the results on the Cray J90, with T1 = 149 s. The results
show the same tendencies as the two-dimensional results.

8. Conclusion

The computation of the connected components of an image (2-D or 3-D) can ef-
fectively be distributed over a number of processors. The amount of communication
needed can only be determined at runtime, but is for most natural images quite modest.
We used a variation of Tarjan’s connected components algorithm. The communication
is based on message passing, but implemented in shared variables by means of POSIX
thread primitives. The experiments show a speedup that is often almost linear in the
number of processors.

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, Data Structures and Algorithms, Addison-Wesley, Reading, MA,
1983.

[2] H.M. Alnuweiri, V.K. Prasanna, Parallel architectures and algorithms for image component labelling,
IEEE Trans. Pattern Anal. Mach. Intell. 14 (1992) 1014–1034.

[3] G.R. Andrews, Concurrent Programming, Principles and Practice, Addison-Wesley, Reading, MA, 1991.
[4] G.R. Andrews, R.A. Olsson, The SR Programming Language, Concurrency in Practice,

Benjamin=Cummings, Mento Park, CA, 1993.
[5] K.R. Apt, E.-R. Olderog, Veri=cation of Sequential and Concurrent Programs, Springer, Berlin, 1991.

194 W.H. Hesselink et al. / Science of Computer Programming 41 (2001) 173–194

[6] J. Bacon, Concurrent Systems, Addison-Wesley Longman Ltd., 1998, ISBN 0-201-17767-6.
[7] N. Copty, S. Ranka, G. Fox, R.V. Shankar, A data parallel algorithm for solving the region growing

problem on the connection machine, J. Parallel Distributed Comput. 21 (1994) 160–168.
[8] C. Fioro, J. Gustedt, Two linear time union-=nd strategies for image processing, Theoret. Comput. Sci.

154 (1996) 165–181; 21 (1994) 160–168.
[9] S. Hambrusch, X. He, R. Miller, Parallel algorithms for gray-scale digitized picture component labelling

on a mesh-connected computer, J. Parallel Distributed Comput. 20 (1994) 56–68.
[10] S. Kleiman, D. Shah, B. Smaalders, Programming with Threads, SunSoft Press, Prentice-Hall,

Englewood CliGs, NJ, 1996, ISBN 0-13-172389-8.
[11] R. Lumia, L.G. Shapiro, O. Zuniga, A new connected components algorithm for virtual memory

computers, Comput. Vision Graphics Image Process. 22 (1983) 287–300.
[12] N.A. Lynch, Distributed Algorithms, Morgan Kaufman, San Francisco, 1996.
[13] A. Rosenfeld, J.L. Pfaltz, Sequential operations in digital picture processing, J. ACM 13 (1966)

471–494.
[14] J.L.A. van de Snepscheut, What Computing is all About, Springer, Berlin, 1993.
[15] R.E. Tarjan, Data Structures and Network Algorithms, Regional Conference Series in Applied

Mathematics, SIAM, Philadelphia, 1983.
[16] G. Tel, Distributed Algorithms., Cambridge University Press, Cambridge, 1994.

