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Restoration of Natural
and Semi-Natural
Wetland Systems in
Central Europe:
Progress and
Predictability of
Developments

Frank Klotzli!
Ab P. Grootjans?

Abstract

After almost 40 years of experience in wetland restora-
tion in Central Europe in which vegetation changes
have been monitored by means of permanent plots or
vegetation maps, some light can be shed on the intrin-
sic dynamics of such ecosystems, showing the limits
of restoration and constraints in its manipulation.
Sometimes such constraints in the restoration process
can be identified, mostly being constraints in nutrient
availability or in the water regime, but unexpected
changes can also be the result of intrinsic species fluc-
tuations or invasive species. Unexpected vegetation
developments are sometimes undesired, can be very
persistent and may indicate that environmental condi-
tions are not suitable for target communities. Unex-
pected developments also illustrate the limits in resto-
ration ecology. Very often the restoration process
simply proceeds along successional pathways we did
not anticipate. Theories about such alternative path-
ways can be explored using prediction models, such
as cellular automata, which can handle the results of
biomonitoring very efficiently. Biomonitoring during
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40 years, however, has also shown that a certain amount
of unpredictability has to be taken for granted, both in
natural wetlands and in areas under restoration.

Key words: bog, fluctuation, permanent plots, stable
states, succession.

Introduction

O ur knowledge on limits and feasibility—politi-
cally and scientifically—of wetland restoration
has increased considerably since the early 1970s when
restoration ecology made its first appearance in North-
west and Central Europe (Poschlod 1994; Wheeler &
Shaw 1995; Pfadenhauer & Klotzli 1996; Bradshaw 1997;
Briilisauer & Klotzli 19984; Pfadenhauer & Grootjans
1999). In many European countries, much practical knowl-
edge exists in the restoration of lakeshores, meandering
riverbeds or small streams. The restoration of such rather
dynamic systems is relatively easy and the results can be
very satisfying from an ecological point of view.

In the scientific sector, much time has been spent
studying the response of wetland ecosystems to restora-
tion measures. We have learned much about the way
these systems respond to perturbations and how we
can counteract unwanted effects (Wheeler 1995). Be-
cause our scientific knowledge has increased, the qual-
ity of prediction models, based on best professional
judgement, has also improved (Pickett & White 1985;
Witte et al. 1992; Prach et al. 1999). In this respect, the
situation has greatly improved since the early days of
restoration ecology. Much information has become
available on constraints of the restoration process: (1)
the role of nutrient fluxes (Powlson 1994; Verhoeven et
al. 1996; Briilisauer & Klotzli 1998b); (2) peat deteriora-
tion and loss after drainage (Blankenburg 1993; Schmidt
1995; Pfadenhauer & Grootjans 1999); (3) the role of
seed banks and dispersal mechanisms (Nilsson et al.
1991; Poschlod 1995; Bakker et al. 1996b; Galatowitsch
& van der Valk 1996; Bekker et al. 1997; Poschlod &
Bonn 1998); and (4) the role of extrinsic disturbances
(van Andel et al. 1987; Grootjans & van Diggelen 1995).
This first wave of research on restoration ecology in Eu-
rope was partly accompanied by many studies on deg-
radation of protected nature areas due to disturbances
triggered by humans (van Dorp et al. 1985; Glenn-
Lewin & van der Maarel 1992; Agnew et al. 1993; Fojt &
Harding 1995; Klétzli 1995, 1997; van der Maarel 19964,
1996b; Luken & Thieret 1997, Winkler & Klotz 1997;
Peco et al. 1998; review in Klotzli 2001). Many of these
authors had monitored vegetation changes using per-
manent plots and/or regular vegetation mapping. An
inventory by Schmidt (1974) revealed that over 800 per-
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manent plots were (unevenly) spread over several Eu-
ropean countries (Bakker et al. 1996a) to monitor exter-
nal noxious influences on natural areas. We may expect
that this large amount of data on vegetation dynamics,
originating from both repeated vegetation mapping
and permanent plots, should at least shed some light on
the natural fluctuations of species within plant commu-
nities. Analysis of such time series indeed showed much
insight in species fluctuations under stable conditions
(Watt 1971) and in conditions where succession had oc-
curred (Roozen & Westhoff 1985; De Leeuw et al. 1990;
Ellner & Turchin 1995). It was often observed that, al-
though many species fluctuations could be explained
after identification of changes in environmental condi-
tions (van Noordwijk-Puijk et al. 1979; Olff et al. 1993),
many other fluctuations were quite unforeseeable (K16t-
zli 2001).

After 3040 years of experience in wetland restora-
tion in Central Europe, it seems appropriate to look
back on successes and failures and try to understand
why unforeseen vegetation developments occur in many
restored and even in natural wetlands. In this paper we
will focus on unexpected species fluctuations in wet-
lands, while discussing vegetation changes observed in
permanent plots in reference sites as well as partly re-
stored sites. We will give special attention to the unde-
sired and persisting vegetation stages, which may point
to constraints in the restoration process.

Dynamics in Permanent Plots

The evaluation of long-term permanent plots provides
not only more insight on their specific dynamics (Her-
ben 1996), but unexpected peculiarities may also lead to
questioning of ecological theories or formulation of
new ecological concepts (Glenn-Lewin et al. 1992; van
der Maarel & Sykes 1993; Grootjans et al. 1996; Klotzli
2001). Monitoring vegetation changes in permanent
plots usually detects changes in the vegetation and gen-
erates hypotheses on possible causes of the observed
changes. Only in exceptional cases do the plots show
stable ecosystems (Sasser 1994). Figure 1, for instance,
illustrates how individual species in a spring alder
wood fluctuated widely during 23 years, while no clear
change in species composition was observed. Gener-
ally, however, the following types of species response
can be observed in permanent plots where changes in
the environmental conditions have occurred (Fig. 2): (1)
persistent or constant species that do not appear to react
to changes in the environment (example: Peucedanum
palustre [milk parsley]); (2) fluctuating without a clear
trend (Holcus mollis [creeping soft-grass]); (3) increasing
(Poa trivialis [meadow grass]); (4) decreasing (Sphagnum
recurvum); and (5) intermittent (“undecided”) appear-
ance (Dryopteris cristata [fern species]).

The study of long-term permanent plots has made it
particularly clear that the vegetation development in
many ecosystems under restoration was very different
from the final state that was anticipated (Berendse et al.
1992; Beltman et al. 1995; Klotzli 1997). Quite often the
plots showed developments with clear shifts to unde-
sired and long-lasting stable states.

Unexpected Vegetation Changes During Restoration

Unexpected vegetation changes may be due to unfore-
seen causes, which afterwards may or may not be ex-
plained when all information is available. A properly
monitored restoration project sometimes offers addi-
tional information on constraints (water, nutrients, pH)
that may have caused this unexpected development
(Roelofs et al. 1996), but in other cases constraints for
successful regeneration could only partly be identified
(van Duren et al. 1998). Monitoring the results of hydro-
logical amelioration of the river Reuss (Switzerland)
showed clear signs of rewetting in an old riverbed
which contained remnants of litter meadows with the
endangered Iris sibirica (Klotzli & Zielinska 1995; Klotzli
1997). The plots covered a time span of almost 40 years
and several plots showed a sudden increase in tall nitro-
philous herbs and sedges in later years, which started to
fluctuate without a clear trend, particularly at the bor-
ders between vegetation types. A detailed analysis of
vegetation maps revealed that shifts in vegetation types
were most evident at the lower end of the height gradi-
ent. The observed changes could be related to nearby
agricultural activities and to the amount of precipitation
influencing the fluctuations of water levels. This exam-
ple shows that we underestimated the effects of the hy-
drological reconstruction in the river Reuss and the role
of eutrophication from agricultural use in adjoining ar-
eas (Schot & van der Wal 1992). At present the nutrient
flow from agricultural areas is well under control, and
the vegetation appears to be in a more or less stable
state, i.e., fluctuating around a moderately eutrophi-
cated vegetation type. This example also shows that it is
very difficult to restore plant communities that we have
known from the past, because environmental conditions
may change in an unforeseen way.

Biological interactions may also change in an unfore-
seen way. Sudden changes in performance of dominant
species can be caused by the occurrence of pathogenic
reactions within plant communities, as was reported
from dry coastal dunes, where Hippophae rhamnoides
(sea-buckthorn) and Ammophila arenaria (marram grass)
were attacked by soil nematodes during certain stages
in the succession (Zoon 1986; van der Putten 1989). Sim-
ilar fluctuations in species performance have been reg-
istered in savannah areas (Klo6tzli et al. 1995) within a
period of 12-14 years. Several species that were very
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Figure 1. Vegetation dynamics in an Alder Spring Carr (Alnus glutinosa) at the northeastern part of the Liineburger Heide in north-
ern Germany (Ahrberg near Garlstorf am Walde). The species composition is fluctuating with no successional trend. M = moss

species.

common between 1974 and 1980 were restricted to spe-
cific vegetation types in 1992. Common species became
rare, while rare species became common. These rather
abrupt changes could not be related to wet or dry years
or other changes in environmental conditions (such as
drought, fire or grazing) that can be responsible for mo-
saic vegetation patterns in savannah ecosystems (Jeltsch
et al. 1998). The authors suggested that the apparent
changes in site preferences of species might be con-
nected with pathogenic reactions.

Other unexpected changes in permanent plots are
caused by invaders from other continents that have es-
tablished in the restoration site. Ample literature exists
on this phenomenon (Drake et al. 1989; Berling 1995;
Pysek et al. 1995; Klotzli et al. 1996; Luken & Thieret
1997; Starfinger et al. 1998). Well-known examples are
herbs such as Solidago canadensis, S. gigantea (golden rod
species), Reynoutria japonica (Sukopp & Sukopp 1988;
Pysek et al. 1995) and shrubs, such as Cornus stolonifera

(red-osier dogwood) and Prunus serotina (wild black
cherry) (Sukopp & Trepl 1987). However, “invasive be-
havior” in restored wetlands is not restricted to alien spe-
cies, but is observed in native species as well. Examples
of invasive behavior after restoration are described by
Beltman et al. (1995) where Sphagnum species started to
dominate the vegetation after sod cutting aimed at re-
storing basiphilous wetland communities. Klétzli (1987)
reported on one of the first large-scale transplantation ex-
periments in Europe, where mesotrophic fen and fen
meadow vegetation was transplanted to an artificially
constructed wetland to make room for an airport near
Ziirich. He found that many native species, which were
present in small numbers in the original sward (Carex
hirta [hairy sedgel, Eupatorium cannabinum [hemp agri-
mony] and several Juncus [rush] species) expanded rap-
idly after some time. After much fluctuation, they finally
reached a state of relative stability. This example shows
that transplanted swards may reach stable states, al-
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Figure 2. Vegetation changes in a Juncus acutiflorus-poor fen situated in the northern part of the Liineburger Heide (near Undeloh,
Germany). The vegetation changes indicate a clear successional trend toward more eutrophic wet meadows. The fen vegetation is
changing due to the influences of a nearby brook, which is changing its course.

though their species composition differs from natural
swards, even after 20-30 years. Such invasions or rapid
expansion of dominating species can be decisive for fur-
ther development of the ecosystem. A single species
may initiate a vegetation stage that inhibits the devel-
opment of the target community, which was antici-
pated at the start of the project. Such “arrested succes-
sion” (Niering & Goodwin 1974) may last for decades
(van der Valk 1981, 1992).

The invasion of Phragmites australis (common reed) in
protected fen meadows with many endangered (Red
List) species is another example of this phenomenon
(Gilisewell & Klotzli 1998). Each stem of Phragmites aus-
tralis was connected with nutrient pools and fluxes else-
where in the stand (Haslam 1971). The abundance of
Phragmites in some areas was clearly related to in-
creased levels of soil nitrogen and phosphates (Briili-
sauer & Klotzli 1998b). Terrestrial stands of Phragmites

showed high levels of nitrogen near lakeshores or culti-
vated fields, suggesting perhaps that expansion of reed
may be triggered by eutrophication in nearby ecosys-
tems (Haslam 1971; Luken & Thieret 1997). Glisewell
and Klotzli (1998), however, found that the loss of en-
dangered fen meadow species was greater in fields
with a combined invasion of tall herbs and Phragmites,
compared to fields where either tall herbs or Phragmites
had spread alone. In fact, many fields showed no signif-
icant correlation between aboveground biomass of
Phragmites and occurrence of Red List species. The au-
thors suggested that Phragmites australis could perhaps
trigger a positive feedback mechanism to increase the
nutrient availability in the topsoil. This deep-rooting
species could transport nutrients from deeper layers to
the shoots, making nutrients available for fast-growing
sedges and tall herbs when Phragmites litter decom-
posed. Further experiments should solve this problem,
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but the observations show that interactions may exist
between different invasive species, which makes pre-
dictions on future developments difficult.

Semi-Stable States: Obstacles for Regeneration?

Restoration attempts in shallow aquatic ecosystems,
such as lakes and ponds, showed that unforeseen and
undesired semi-stable states could develop after resto-
ration measures were carried out. Such stable states are
the result of positive feedback mechanisms that stabi-
lize a certain development stage (Holling 1973; Scheffer
1998). This phenomenon differs from the successional
process of facilitation (Connell & Slatyer 1977), in which
plants make the environment suitable for their succes-
sors. A positive feedback switch occurs when a certain
vegetation state modifies its environment in such a way
that it becomes more favorable for itself. In terrestrial
ecosystems this phenomenon is well known (Odum
1971; Wilson & Agnew 1992; Agnew et al. 1993; van de
Koppel et al. 1997). Wilson and Agnew (1992) discussed
numerous switches in terrestrial ecosystems leading to
vegetation states that can persist for a very long time.
Switches can produce and maintain abrupt boundaries
between plant communities where no obvious differ-
ences in substrate characteristics exist. In restoration
projects very persistent semi-stable states are often con-
sidered as obstacles, because the goal usually is a full
regeneration of a former reference state (Klotzli 1991;
Wheeler & Shaw 1995; Bradshaw 1997). The occurrence
of such long-lasting, but not final, states during restora-
tion is not always clearly understood (Hobbs & Norton
1996). Certain dominating (partly invasive) plant spe-
cies may last for decades (Olff & Bakker 1998), unless
further perturbations change the site conditions tempo-
rarily or permanently. A bog restoration project in the
Schierhorner Moor in northern Germany is a good ex-
ample of the occurrence of such long-lasting intermedi-
ate stages. After raising the water table in an old pasture
with Alopecurus geniculatus (marsh foxtail; gramineae) in
1985, Juncus effusus (soft rush) became the dominant
species and Carex rostrata (beaked sedge), C. canescens
(gray sedge) and Agrostis stolonifera (creeping bent) were
very abundant (Fig. 3). Sphagnum species and Polytri-
chum commune reached the restoration area within three
years and spread over approximately 1 ha, even begin-
ning to form hummocks. Then the succession toward
bog vegetation stopped. A stable state with small sedges
and Sphagnum mats under the shade of tall J. effusus per-
sisted for many decades. Possibly J. effusus has a similar
strategy to dominate the vegetation as tussock species,
such as Molinia caerulea (purple moor-grass) and Erio-
phorum vaginatum (cotton grass) that can coexist with
Sphagnum swards for long periods of time. Both species

are able to reallocate nutrients very efficiently within
the tussock, thus monopolizing nutrients, while suc-
cessfully competing for light at the same time. Kooij-
man and Kanne (1993) reported on the occurrence of
semi-stable states in a fen restoration project. They
showed that Sphagnum fallax and P. commune rapidly
expanded in pioneer stages of eutrophic terrestrializing
fens and formed a vegetation stage, which was stable
for at least 10 years. Whether positive feedback mecha-
nisms are indeed operative in these examples, or envi-
ronmental conditions are simply unsuitable for typical
bog species, only can be discovered after carrying out
proper experiments. We must realize, however, that
such semi-stable states in a restoration project may
sometimes function as a necessary stage toward a final
target stage. The unexpected stage may function as a
mechanism to reduce easily available nutrients in the
soil and store them in living or dead plant tissue. Jas-
nowski and Kowalski (1978) reported on the establish-
ment of Sphagnum hummocks on top of a shallow layer
of Cladium mariscus (great fen-sedge) peat (53 cm). The
peat had been formed in depressions in exposed lake
chalk in the 100 years following an artificial drop in the
lake level of Lake Tchérzyno in western Poland. The
authors calculated that Cladium must have accumulated
20 tons of dry matter per hectare per year, which is very
high. After having monopolized practically all available
nutrients, some Cladium stands were recently invaded
by Sphagnum fimbriatum, which formed a shallow acidic
peat layer (10 cm) on top of dead remains of Cladium,
leaving few Cladium shoots alive.

e

Figure 3. Persistent vegetation phase with dominance of Jun-
cus effusus after rewetting a former agricultural grassland. Tar-
get species, such as Sphagnum recurvum and Polytrichum com-
mune, are present in the vegetation, but are overgrown by
Juncus tussocks.
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Unsuccessful Bog Restoration: Hysteresis or
Inadequate Rebuilding

In many areas of Central Europe, bogs have been nearly
eliminated during the last centuries, especially during
and after the Second World War. Therefore, at least the
restoration of bogs is highly sponsored in some coun-
tries of the over-cultivated areas of Central and Western
Europe (Vermeer & Joosten 1992; Wheeler & Shaw 1995;
Pfadenhauer & Klotzli 1996, Pfadenhauer & Grootjans
1999). The restoration of large cut-over bogs, however,
is not an easy task and few success stories have been re-
ported. In some extreme cases regeneration appeared to
be restricted by the mere absence of suitable peat moss
species (Poschlod 1994; Rochefort et al. 1995; Grosvern-
ier et al. 1997). In most areas with bog remnants, the
species are still present but growth of typical bog spe-
cies, such as Sphagnum spp., is stagnating, even after ex-
cessive rewetting. Results of many restoration studies
(Poschlod 1995; Wheeler & Shaw 1995; Grosvernier et
al. 1997) demonstrate the great number of problems in
maintaining appropriate water levels, manipulating nu-
trient fluxes and initiating bog formation. Some authors
blame increased atmospheric deposition of nitrogen
and sulfur for the failure of Sphagnum to successfully
compete with phanerogams, such as Molinia caerulea or

Eriophorum vaginatum (Bobbink et al. 1998). However, in
small acid fens spontaneous bog formation still takes
place within the same areas (northern Germany and the
Netherlands). By chance we have witnessed such a
“birth of a raised bog” while monitoring vegetation
changes in wet heathlands in northern Germany (Liine-
burger Heide). The plots were installed by Professor K.
Meisel in 1975. It was anticipated that water levels and
fluctuations in this part of the Liineburger Heide would
change after increased groundwater abstraction from
deep aquifers which was planned to produce more
drinking water for the city of Hamburg. We could not
detect clear signs of dryer conditions, but instead we
monitored a process of initial bog development (Klotzli
1999). This is illustrated in Figures 4 and 5, showing the
first establishment of typical bog species in wet heath-
land sites. One by one, the peat moss species such as
Sphagnum magellanicum and S. acutifolium and also An-
dromeda polifolia (bog rosemary, ericaceae; Fig. 5) ap-
peared, after S. recurvum mats had been formed. Gradu-
ally, small hummocks spread on the mire surface and
initiated, at least physiognomically, this first stage of a
bog (Fig. 6). So, Sphagnum growth as such is not a prob-
lem. Liitt (1992) and Liitke Twenhofen (1992) clearly
showed that several Sphagnum species grew rapidly in
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Figure 4. Vegetation development in a wet minerotrophic bog dominated by Myrica gale (bog myrtle) shrub. This permanent plot
shows the decline of Narthecium ossifragum (bog asphodel) and the development of a vegetation dominated by Sphagnum recurvum,

S. palustre and the typical bog species S. magellanicum.
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Figure 5. Vegetation development in a wet minerotrophic bog surface dominated by Eriophorum vaginatum, Sphagnum recurvum

and Narthecium ossifragum. This bog is surrounded by wet heathlands, alder swamp forest and Myrica gale shrub and situated close
to the Radebach, which is a small brook in the central part of the Liineburger Heide (near Undeloh, Germany). The permanent plot
clearly shows the development of Sphagnum magellanicum mats with S. palustre, and the establishment of S. acutifolium and Pleuro-

zium schreberi (on tussocks and hummocks).

peat cuttings and were stimulated by atmospheric ni-
trogen deposition.

Why then is the restoration of larger bog remnants so
difficult? There can be many different reasons for this,
depending on different local conditions, but they all
have in common that most large bog remnants have be-
come rather unsuitable sites to restart Sphagnum growth.
When we compare the successful process of bog forma-
tion in wet heathlands and terrestrializing fens (van Wir-
dum 1993; van Diggelen et al. 1996) with the clearly dif-
ferent process of regeneration in large bog remnants, we
seem to be dealing with “hysteresis.” Hysteresis is a pro-
cess in which a system evolves to another state after dis-
turbance, but when the disturbance (stressor) is re-
moved, the system does not immediately return to its
original level; instead, it takes a different and long-last-
ing route before it returns to its original state. It may be
questioned whether in complex terrestrial ecosystems
any system can return to its original state (Tallis 1991),
but if hysteresis does occur in bog restoration, rewetting
alone is insufficient, since the functioning of the bog as a
system is inadequate. Without restoring the living top-

soil (called acrotelm), consisting of living species of
Sphagnum and hardly-decomposed plants, bog growth is
impeded. Under such conditions repairing the bog is no
longer possible; it should be rebuilt (Wheeler & Shaw
1995). Solutions to this problem are numerous (Vermeer
& Joosten 1992; Wheeler & Shaw 1995), but one solution
is particularly effective and simple. If hydrological con-
ditions have become suitable for Sphagnum growth, a
mat of phanerogams, such as Carex or Eriophorum spe-
cies, can be artificially installed on the rewetted bog rem-
nant (Buttler et al. 1998). Its growth may even be stimu-
lated by fertilization. After establishing such an artificial
fen vegetation, several Sphagnum species, which prefer
growing on mineral soils, can also form extensive mats
on bog remnants under restoration and use the tall fen
species (Eriophorum vaginatum) for support (Liitt 1992;
Pfadenhauer & Klotzli 1996). In the study by Buttler et
al. (1998), an “invasive” species appeared to be an essen-
tial trigger for later stages. This was also suggested by
Hughes (2000), who found remnants of E. vaginatum and
Calluna vulgaris peat at the interface between fen and bog
peat. Sphagnum growth was preceded by a distinct fall in
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Figure 6. General view of the minerotrophic bog (see Fig. 5)
in the Liineburger Heide showing hummock formation of
Sphagnum magellanicum and Polytrichum strictum on former
Eriophorum vaginatum tussocks and Erica tetralix shrubs.

the groundwater table, which must have separated the
growing surface from the groundwater supply, leading
to a rapid spread of Eriophorum tussocks. In his view, the
establishment of E. vaginatum could well be one possible
way to restore acrotelm functioning. Eriophorum litter is
slow to decompose and contains tough leaf and rhizome
fibers, producing a peat with good water retention char-
acteristics. These examples show that certain unexpected
and undesired vegetation states can have a positive con-
tribution toward a desired and expected reference state.
The succession toward such an expected reference state
is very difficult to predict using only monitoring data
that have been gathered during the time of degradation
or during restoration. Such information can yield much
insight about ecological tolerance of Sphagnum species,
but provides little information on the conditions trigger-
ing rapid growth of bog species.

New Tools to Predict Wetland Development

Our ability to predict vegetation changes in wetlands is
mainly based on experience abstracted from permanent
plots and from repeated vegetation surveys, carried out
to assess prominent changes in areas under restoration.
Monitoring environmental conditions on a regular ba-
sis, combined with vegetation descriptions in perma-
nent plots, has provided much insight into the regener-
ation prospects of damaged ecosystems. Monitoring
offers opportunities to detect how species establish
populations and how they disappear. Descriptive re-
search does not provide information on mechanisms
behind these phenomena; however, it generates hy-
potheses on possible causes for unexpected vegetation
change (Ellner & Turchin 1995; Herben 1996). Both the

accumulated data and the new ideas derived from these
observations can be used in prediction models, such as
expert systems (Prach et al. 1999) and cellular automata
(Herben 1992; Silvertown et al. 1992; Wolfram 1994;
Belde & Richter 1997; Balzter et al. 1998). Cellular au-
tomata (CA), in particular, appear to be good instru-
ments to further explore theory on vegetation succession.
CA models can, for instance, predict the development of
an herb layer for the next 50-100 years when fed with
appropriate field data and ideas about relevant pro-
cesses. Data obtained from permanent plots that have
been monitored for 10-30 years appear to be very use-
ful for CA analyses (Gassmann et al. 2000).

Conclusions

Often the final goal of a restoration project is a full and
quick regeneration toward an original reference state.
Often we encounter numerous unexpected changes in
the vegetation, of which some can be explained after-
wards when analyzing all available data gathered dur-
ing the restoration process. Although much progress
has been made in the fields of intrinsic vegetation dy-
namics, nutrient demands and fluxes, peat deteriora-
tion, dispersal mechanism and seed banks, the failure to
predict deviations from regular vegetation develop-
ments during the process of ecosystem restoration illus-
trates some of the limits in restoration ecology.

Prediction models may help further explore theories
on vegetation succession. It is very stimulating to see
what the consequences of new ideas could be for the
restoration process 50-100 years from now. At the same
time we must realize that we have little knowledge on
why and how long-lasting semi-stable states occur dur-
ing restoration and how they can be influenced to
change in a desired direction. Such gaps in knowledge
can partly be filled by further experimentation, but we
may also anticipate further unexpected fluctuations in
the field during restoration, and we may move to
studying the insufficiently-explored field of pathogenic
cycles within plant communities.

After 40 years of monitoring, much progress has been
made in understanding bottlenecks in restoration projects,
but often nature does not seem to listen to our explana-
tions. We often find ourselves in a position where we
are puzzled by changing vegetation mosaics in the field
and records of our permanent plots are like sheets of an
illustrated calendar. We tear off the sheet, wondering
what the next day will bring.
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