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Abstract
A novel parallel algorithm for matrix multiplication is presented. It is based on a 1-D
hyper-systolic processor abstraction. The procedure can be implemented on all types of par-

allel systems. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Matrix multiplication; Hyper-systolic; Parallel computer

1. Introduction

Matrix multiplication is a fundamental operation in many numerical linear al-
gebra applications. Its efficient implementation on parallel computers is an issue of
prime importance when providing such systems with scientific software libraries [1].
Consequently, considerable effort has been devoted in the past to the development of
efficient parallel matrix multiplication algorithms, and this will remain a task in the
future as well.

The choice of a proper parallel algorithm strongly depends on the architecture of
the parallel computer on which the algorithm is to run. System aspects, such as
SIMD or MIMD mode of operation, distributed or shared memory organization,
cache or memory bank structure, construction, throughput and latency of the
communication network, processor performance and size as well as throughput of
local memory, etc., may render an algorithm which is highly efficient for one system
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rather impractical for another one. Even on a given system it may be necessary to use
different algorithms in different problem size domains.

As a consequence, one needs a variety of parallel algorithms for one and the same
operation. For this purpose systematic design approaches are needed which allow to
construct new algorithms or to modify existing ones in such a way that they suit both
a given system and problem size domain. In the following, one such design approach
is presented and applied to matrix multiplication. This approach is used to construct
a novel class of parallel matrix multiplication algorithms for distributed memory
computers with ring interconnection pattern. The approach is based on the hyper-
systolic parallel computing concept [2] which can be generalized for any kind of
commutative and associative operation on abstract data types [3]. The communi-
cation complexity of the considered class of hyper-systolic matrix multiplication
algorithms is O(n?p'/?), with n being the matrix dimension and p the number of
processors. It is thus comparable to the communication complexity of the best
standard parallel methods known.

Systolic arrays are cellular automata models of parallel computing structures in
which data processing and transfer are pipelined and the cells carry out functions of
equal load between consecutive communication events. Systolic algorithms are
parallel algorithms which, as far as abstract automata models are concerned, make
efficient use of systolic arrays. For more precise definitions of systolic algorithms and
arrays and for many examples, the reader is referred to the monographs in [4] and [5]
(for a number of systolic matrix multiplication algorithms see Chapter 3 of [5]).

The original motivation behind the systolic array concept was its suitability for
VLSI implementation [6,7]. Only a few systolic algorithms, however, have been
implemented in VLSI chips or hardware devices. With the advent of commercially
available distributed memory parallel computers, systolic algorithms found an at-
tractive implementation medium. Systolic algorithms can be implemented efficiently
even within the restricting SIMD model. Apart from these implementation issues, a
very attractive aspect is the availability of methodologies for the systematic design of
systolic algorithms. Projection of regular dependence graphs has evolved as one such
technique [4,5,8-17].

As shown elsewhere [18-20], systolic algorithms can easily be transformed into
data-parallel programs. Such a program has certain characteristic features. In par-
ticular, it consists of a sequence of identical steps organized in a loop whose counter
corresponds to the clock of the underlying systolic array automaton model. Further,
the local regular interconnection pattern of a systolic array results in the use of only
local synchronized communication in the respective data-parallel program as ex-
emplified by the shift-type operations (e.g. cshift and eoshift).

The concept of hyper-systolic algorithm has been introduced in order to reduce
the communication overhead of systolic algorithms [2]. The three main differences
are: (i) use of a changing interconnection pattern throughout the execution of the
algorithm, (i) use of multiple auxiliary data arrays for storage of intermediate re-
sults, and (iii) the possible separation of communication and computation. The
combination of these three features leads to a reduction of the communication
overhead.
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A changing communication pattern is used for the communication of data by
different strides along a 1-D ring. The regularity of the communication pattern is
however retained. As an example of a regular but changing communication pattern
one can think of an algorithm in which each processor of a ring communicates data
to its first, second, fourth, etc., neighbours in the first, second, etc., steps of the al-
gorithm, respectively.

Auxiliary data arrays are needed for temporary storage of intermediate results. In
conventional systolic algorithms such results are either accumulated in place or on
the move by shifting them from processor to processor. In a hyper-systolic algorithm
they are generated and kept in place for many cycles, using multiple auxiliary data
arrays, which are subsequently used to compute the final results.

The use of regular but changing communication patterns can be found in some
(conventional) systolic algorithms, such as the systolic implementation [5] of Ekl-
und’s matrix transposition algorithm on a hyper-cube [21]. Use of multiple data
arrays for solving specific tasks, e.g. problem partitioning, can also be found in
systolic algorithm literature (see Chapter 12 in [21]). However, the purposes of these
techniques differ from those aimed at in hyper-systolic algorithms: a substantial
reduction of the communication overhead.

The advantage of the hyper-systolic over the systolic data flow has already been
demonstrated elsewhere for the case of the so-called n’-problems which involve
O(n?) computation events on pairs of elements in a system of n elements [22].

The systolic computation of n?-problems on a parallel computer of p processors
involves O(np) communication events. The hyper-systolic algorithm can reduce the
communication overhead to O(np'/?), as has been successfully applied for a proto-
type n’-problem, that involves the computation of all n*> two-body forces for a
system of n gravitatively interacting bodies [22]. This progress makes us confident
that hyper-systolic processing can be applied to a variety of numerical problems
which lead to n*> computation events. An important application is found in astro-
physics where the investigation of the dynamics and evolution of globular clusters is
of prime importance [23]. Further examples of applications are protein folding,
polymer dynamics, polyelectrolytes, global and local all-nearest neighbours prob-
lems, genome analysis, signal processing etc. [24].

The paper is organized as follows: In Section 2, we illustrate the development of a
hyper-systolic matrix multiplication algorithm for a 1-D processor array. In Section
3, the concept of hyper-systolic algorithm which involves two moving data arrays is
introduced. In Section 4, we present a pseudo-code representation of the hyper-sys-
tolic matrix multiplication. Section 5 deals with blocking multiplication and the
mapping of the problem onto a parallel system. Finally, Section 6 presents results
from real implementations on both a SIMD parallel system and a workstation cluster.

2. Matrix multiplication on a 1-D processor array

Given an n x m matrix A and an m x n matrix B, the matrix-matrix product
C = AB reads
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Cij = Zai‘kbk‘/, ij=1,...,n (1)
=1

In this section, we develop a hyper-systolic matrix multiplication algorithm for a 1-D
processor array starting from an algorithm for a 2-D array which is related to the
algorithm of Fox [25]. The design approach is illustrated for the case of 4 x 4 ma-
trices.

2.1. Matrix multiplication on a 2-D processor array

2.1.1. Data alignment

In the following, we make use of the concept of an abstract processor array (APA)
as defined in HPF [26]. The grid of boxes shown in Fig. 1 represents such a 2-D APA
on which the matrices A, B and C involved in the operation C = AB are aligned in a
column-skewed fashion (i.e. the first column remains unchanged, the second is ro-
tated upward by 1 position, ..., the kth column is rotated upward by k£ — 1 posi-
tions). This allows to carry out the computation in parallel without even requiring
indexed addressing functionality for the target parallel computer. Furthermore, no
reordering is required in the course of the computation because the skew represen-
tation is preserved.

2.1.2. Semi-systolic algorithm

The algorithm consists of p (here p = 4) steps: in the first step, the matrix elements
bii,b22,...,b,, of the matrix B in the first row of the APA are broadcast to all the
processors in the corresponding columns and are subsequently multiplied with the
elements of the matrix A which reside in these processors. The products which are
shown in Fig. 2(a) are accumulated in the corresponding elements of the matrix C

a'11 a-zz a33 8.4 4
b11 bzz b33 b 44
Cy Cy c 33 Cus
b a21 b a’32 b a43 b al4
21 32 43 14
CZl C 32 C 43 Cc 14
a31 a42 a13 a24
b31 b42 b13 b24
Ca1 C 42 C 13 Cc 24
b a41 b a12 b a23 b a34
41 12 23 34
C 41 c 12 C 23 c 34

Fig. 1. Column-skewed distribution of the matrices A, B and C on a 2-D APA.
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8 b11 mE bzz S b33 mEX b44 & b21 S baz e b43 & b14

e b11 ™ bzz & b33 mE? b44 mE bz1 % bsz mE b43 T b14
bu bzz baa bzm b21 bsz b43 b14

8 b11 mE b22 s b33 @2 b44 mER b21 mE b32 mE" bAs 8 b14

—8n bu T8 bzz T b33 e b44 e bzl T8 baz @2 b43 T8 b14

(@ (b)

s bzl mEY b42 M@ b13 mED b24 Y b41 mEM b12 mED b23 s b34

RS b31 mE b42 & b13 & bz4 mE b41 e b12 & bzs s b34
b31 b42 b13 b24 b41 b12 b23 b34

mER b31 mEM b42 M2 b13 82 b24 mES b41 mE b12 mET b23 mE™ b34

84 b31 |8 b42 @ b13 s b24 mEm b41 —an b12 8 b23 8 b34

() (d)

Fig. 2. Computation of partial products on a 2-D APA. At the end of each step, the elements of A are
circularly shifted by one position to the left and downwards. (a) r =1; (b) r=2; (c) t = 3; (d) t = 4.

which are distributed as shown Fig. 1. At the end of the step, the elements of the
matrix A are circularly shifted by one position to the left along the rows and by one
position downwards along the columns (compare the positions of the elements of
matrix A in Fig. 2(a) and (b)).

In the second step, the processors of the second row of the APA broadcast their
corresponding elements of the matrix B to all the other processors of the corre-
sponding columns of the APA, Fig. 2(b). This operation is followed by the same
multiplication and accumulation operations and circular shifting of the elements of
A as in the first step.

The algorithm proceeds with similar steps in which the processors of the third
through pth row of the array broadcast in turn their elements of the matrix B, cf.
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Fig. 2(c)—(d). After a total number of p such steps all partial products which belong
to the elements of the matrix C are accumulated in the corresponding processors.

The algorithm is classified as semi-systolic because it involves broadcast opera-
tions as well as systolic nearest neighbour shift operations. For general definitions of
the term systolic and semi-systolic we refer to [5].

2.1.3. Semi-hyper-systolic algorithm

We next derive a semi-hyper-systolic algorithm from the semi-systolic algorithm
just described. The initial distribution of data is shown in Fig. 3. The distribution of
the matrices A and C is the same as the one shown in Fig. 1. The distribution of the
matrix B is obtained from the distribution shown in Fig. 1 by circular shifting of the
elements in the ith row of the processor array by a stride of (i — 1)modg, with K = 2
for p = 4. In the particular example of p = 4, the second and the fourth row of B are
shifted by one position.

The algorithm consists of p(4) steps as shown in Fig. 4. In every step, each pro-
cessor multiplies the element of the matrix A it holds with the element of the matrix B
which it receives via the associated broadcast line. The partial product result is ac-
cumulated in one of two local variables which are used to accumulate partial results
for the computations of the elements of the matrix C. The local variables represent
elements of two auxiliary arrays C" and C? which are distributed across the pro-
cessor array. Similar to the original semi-systolic algorithm the processors in the first,
second, .. ., pth row broadcast the elements of the matrix B which they contain, to all
the other processors of the corresponding columns in the first, second, ..., pth step
of the algorithm, respectively, see Fig. 4.

a a, a, a
bll " b22 ’ b33 ° b44 44
C 11 c 22 Cc 33 C 44
A A Ay a,
14 b21 b32 b43
b
[<C21 C32 c43 Cl4 T
a?l b a42 b a13 b a24
b31 42 13 24
C31 C42 C 13 Cc 24
a’41 b a12 b a23 b a34
b34 41 12 23
[<C41 C 12 C 23 C 34 T

Fig. 3. Initial distribution of data for a semi-hyper-systolic algorithm on a 2-D APA.
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an b11 azz bzz a33 b33 a44 b44

aAl b14 alz b21 a23 baz aﬁA bA3
aZl bll a’32 b22 a43 b33 a14 b44

a, b14 3z bz1 A bsz Ay baa

bu bzz b33 b44 b14 b21 b32 b43

a31 bll a42 b22 a13 b33 a24 b44

3y b14 3 b21 A3 baz ay, b43
a41 b11 alz bzz a23 b33 a34 b44

a31 b14 a42 b21 a13 b32 a24 b43
(@) (b)
a13 b31 a24 b42 aSl blB a42 b24

a43 b34 a14 b4l a21 b12 a32 b23
A b31 Ay bA2 Ay b13 a;, b24

a13 b34 a24 b41 a31 blz a42 b23

by, b, b, by, by, b, b, by

a33 b31 a44 b42 all b13 a22 b24

[ b34 3y b41 ay b12 a, b23
a43 b31 a14 b42 a21 b13 a32 b24

333 b34 a44 b41 all b12 aZZ b24
(c) (d)

Fig. 4. The products shown in the upper and the lower halves of the processors are accumulated in the
auxiliary arrays C" and C?, respectively. The elements of A are cyclically shifted downwards in every
step; next to this, they are cyclically shifted to the left by two positions in the even steps only. (a) r = 1;
®b)t=2;(c)t=3;(d) t=4.

At the end of each step the matrix A is cyclically shifted downwards by one po-
sition. Unlike the original algorithm the horizontal shift of the matrix A is performed
only every second step by a stride of two elements.

The algorithm is completed by elemental addition of the auxiliary arrays C" and
C? which is preceded by circular shifting of C® by one position to the left.

Note that, compared to the original semi-systolic algorithm, the number of
communication operations has been reduced: the elements of A are shifted in hori-
zontal direction only every second step. This is however achieved at the expense of
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increased memory usage. This is a general feature of the class of hyper-systolic al-
gorithms.

We emphasize that the algorithm features a regular communication pattern which
makes it similar to a systolic algorithm. The attribute “hyper” is added to refer to the
differences which are: data is moved in a regular but not necessarily local pattern,
both in space and time, and auxiliary arrays are used to store intermediate results.
For a more formal definition we refer to [24].

2.2. Matrix multiplication on a 1-D processor array

Next, we transform the semi-systolic and the semi-hyper-systolic algorithm given
above into full systolic ones for a 1-D processor array by mapping the processors in
each column of the 2-D array onto one processor of a 1-D array. The operations
which are executed in parallel in a given step by the processors in one column of the
2-D array are executed in series by the corresponding processor of the 1-D array.

2.2.1. Systolic algorithm for a 1-D array

The layout of the matrices A, B and C is shown in Fig. 5. The dotted lines indicate
the location of the elements in the processors of the original 2-D array.

The systolic 1-D algorithm needs p (here p = 4) steps. Since all elements of a given
column of B reside on one processor, broadcasting the elements of the matrix B is
not required. In the first step, the matrix elements b, ,b,5,...,b,, of the matrix B
which reside in the first, second, . .., pth processor, respectively, are multiplied with
those elements of the matrix A which reside in the corresponding processors. The
products (see Fig. 6(a)) are accumulated in the corresponding elements of the matrix
C, according to the arrangement shown in Fig. 5. At the end of the first step, the

a'11 a-zz a33 8.44
b11 bzz b33 b44
Cu Cz Ca Caa

b a21 b a32 b a43 b al4
21 32 43 14
70217 _ C32 P4§ C14
. a731 . a;z . a13 . a724
b31 b42 b13 b24
31 42 13 24
b4?41 b1?12 b§23 b§34
C41 ClZ CZS C34

Fig. 5. Data alignment on a 1-D APA. The rectangles correspond to abstract processors.
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a, bn 3y bzz Qg3 bas A b44 a;, b21 Q3 b32 A, b43 a, b14
a21 b11 a32 bzz a43 b33 a14 b44 azz b21 a33 b32 a44 b43 all b14
ay b11 a,, bzz a5 b33 ay, b44 3 b21 Q3 b32 a, b43 a, b14
a, b, a,, b, a,; b, a, b, a,, b, a,; b, a, b, a, b,
(@ (b)

a5 b31 3y b42 Ay b13 a, b24 a, b41 a, b12 s, bza Ay b34
3y b31 ™ b42 a, b13 a, b24 M b41 ay b12 a, b23 a; b34
g3 b31 Ay, b42 a,; b13 a,, b24 ) b41 a, b12 a,;, b23 Q3 b34
a43 b31 a14 b42 a21 b13 a32 b24 a44 b41 all blz a22 b23 a33 b34
(c) (d)

Fig. 6. Systolic computation of partial products on a 1-D APA. The products shown in one abstract
processor are computed in series in one abstract time step. (a) t =1; (b) t =2; (¢) t = 3; (d) t = 4.

elements of the matrix A are circularly shifted by one position to the left along the
rOws.

In the second step, the second row of the matrix B is involved in the computation
of partial products, see Fig. 6(b). Its elements are multiplied by the elements of A
which reside in the corresponding processors and the partial products are accumu-
lated in their proper locations, i.e., in the second step the products are copied to the
elements of C which are circularly assigned one position downwards. At the end of
the step, A is circularly shifted to the left by one position.

The algorithm proceeds with similar steps in which the elements of the third,
through pth row of the matrix B are multiplied with the elements of A, the products
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ball ba22 ba33 ba44
11 22 33 44
Cu Co _ Ca Cas _
[ Ay I ™ [ A
b14 bZl b32 b43
C%l _ §2 43 14
E bs?:il bSAZ b1?13 b2?24j
C?:l _ C472 0173 _ 24
A, I [ Ay [ A
b34 bAl blZ b23
41 12 23 34

Fig. 7. Initial distribution of data for the hyper-systolic matrix product on a 1-D APA.

being assigned to a row of C at locations which are circularly shifted i — 1 positions
downwards the row in the ith step. At the end of each step the elements of A are
circularly shifted to the left, cf. Fig. 6(c)—(d). After a total number of p steps all
partial products which belong to the elements of the matrix C are accumulated in the
corresponding processors (see Fig. 7).

2.2.2. Hyper-systolic algorithm for a 1-D processor array

Let us turn now to the 1-D realization of the hyper-systolic algorithm. The initial
data distribution is obtained in a similar way as in Figs. 3 and 4; here, each column is
assigned to one processor.

Step by step each processor multiplies the elements of the matrix A it contains
with the corresponding element of the matrix B. The partial products thus computed
are accumulated alternately in one of two local variables. In the ith step, the product
is assigned to a row located i — 1 elements downwards, cf. Fig. 8. The elements of A
are shifted only every second step in horizontal direction to the left by two ele-
ments. '

The algorithm is completed by elemental addition of the auxiliary arrays C'" and
C' which is preceded by circular shifting of C'® by one position to the left.

This mapping eliminates the broadcasting used in the semi-hyper-systolic 2-D
algorithm, and moreover, control structures become simpler. Downward shifts of A
are in reality merely a re-assignment within one processor and do not involve in-
terprocessor communication.

! For the general case with p processors, we will show below that, fgr p steps, the number of shifts is
reduced to a number K < p; the minimal possible number of shifts is K = ,/p.
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7a171 b}l a22 b22 7a3§ b33 aﬁf bim L L L L
o o o o a} 714 a72 21 a} 732 a§4 b43
a'zl b11 a32 bgz aAa b33 a14 b44 L - _ L - _ L - - L - -
_ _ _ _ a} ‘14 a72 21 a} ~32 a74 “43
a(n bu a42 bgz a13 b33 a24 b44 L - _ L - _ L - - L - -
o o o o a21 blA a} 21 a} ~32 aj ~43
a, b11 a;, bzz 7a2§ b33 A, b44 L - L - - L - L - _
a31 b14 a42 b21 a13 b32 a24 b43
@ (b)
7a1§ b§1 7a2f bﬂZ 7a371 b}3 7a42 bgl‘ L - _ L - _ L - _ L - _
o o o o a{a /34 alj Ja1, agl Y12 agz b23
aza b31 a34 bgz aAl b13 alZ b24 L - _ L - _ L - - L - -
o o o o a;a /34 ag4 Ja1, a§1 J12 a, b}3
Ay b31 Ay bAZ a, b13 3y bza L _ _ L _ _ L _ _ L _ _
I I - - - a23 b34 a§ 741 ail ‘12 afz 723
a43 b31 a14 bgz aZl b13 a32 b24 L - _ L - _ L - - L - -
a’33 b34 a44 b41 all blZ a22 b24
(©) (d)

Fig. 8. Partial products computed in the 1-D hyper-systolic algorithm (cf. Fig. 4). (a) t = 1; (b) t = 2; (¢)
t=3;(d)t=4.

2.2.3. Summary
Starting from an algorithm for a 2-D APA, we developed a hyper-systolic algo-
rithm on a 1-D APA, with the following properties:
e Regular interprocessor communication is used.
e The number of interprocessor communication operations is less or equal to that of
known 1-D systolic algorithms.
e The data layout is identical for the matrices A, B, and C.
Next we generalize the 4 x 4 problem to a p X p system, distributed on a p processor
array.
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3. Hyper-systolic bases

For matrix multiplication, the hyper-systolic algorithm involves two moving data
streams. Note that the hyper-systolic algorithm defined in [2] is formulated for
problems that involve only one moving data stream.

3.1. Recipe

Let X and Z be two 1-D arrays both of length n. Assume that functions
Ez@;:lf(xivzj)7 1'217...,}’[ (2)

are computed for each i, with @ being an associative and commutative operator. A
typical example encountered in n-body problems is the computation of the force F;
exercised on a particle with coordinates x; by all other particle. The computation F,,
i=1,...,n, can readily be carried out employing a systolic algorithm on a ring of
processors [22].

In a straightforward approach, the elements of the arrays X and Z are distributed
across n processors of a ring, one element of each array per processor. While the
elements of Z stay in place, the elements of ¥ are shifted cyclically by one position,
and after each shift, the function f'is evaluated for each pair (x;,z;) that is found in a
given processor together with a partial result of the function F.

The computation is completed in n steps. Note that while the memory require-
ments are minimal — one memory location is needed for each element of the arrays
involved — the communication is abundant. Each processor sends and receives data
in each step.

The communication can be reduced on the expense of increased memory re-
quirements. In an extreme case, one copy of the complete coordinate array could be
communicated to each processor and thus, each processor could compute one cle-
ment of the result array F without any further communication.

Hyper-systolic algorithms take on an intermediate position between the two ex-
treme cases in that they require less communication than the systolic method and less
memory than the last method.

In general, a number of copies of the arrays are needed in a hyper-systolic al-
gorithm. This number is, however, smaller than the number of processors involved.
These copies are shifted at different distances. The sequence of distances is called the
hyper-systolic base. Next, the scheme is explained in more detail.

The general recipe: R
1. From the array X, k replicas x;, 1 << k are generated. They are shifted by strides

a;, 1 <t <k with respect to x. .

For the array Z, k' replicas z;, 1 <¢ <k’ are generated. They are shifted by
strides b,, 1 <¢ <k’ with respect to Z.
2. The sequences of strides {a,}, | <t<k and {b,}, 1 <¢ <K/, called the hyper-sys-
tolic bases, are such that
2.1. each pair of data elements is present at least once on the processor array,
2.2. the total communication cost is minimized.
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3. After each communication event the computations can be carried out and the re-
sults are assigned to k£ + | intermediate result arrays j;'t, 1 <t<k+ 1. If elements
occur more than once they are accounted for by a multiplicity table in order to
avoid multiple counting. .

4. The intermediate result arrays y,, 1<t <k + 1 contain partial results that are
shifted to their proper location by strides a;,, 1 <¢<k . Therefore, an array y,
which collects intermediate results, is moved by strides that follow the inverse
of the sequence {a,}. In each step of the back-shift phase the required intermedi-
ate result arrays ¥, are added to y.

3.2. The hyper-systolic optimization problem

Contemporary parallel machines support circular shifts of 1-D data arrays. The
time needed for such an operation is a function of the shift distance which depends
on the underlying communication structure. In general this function is non-linear
and not necessarily monotonously increasing. On a hyper-cube, for instance, all
shifts with strides that are powers of two take the same amount of time.

The optimal sequence of strides for minimal interprocessor communication will
depend on the interprocessor communication cost for a given stride. In order to
minimize the communication cost effect on a given machine, we introduce a cost
function C(a;), as a function of the stride a;.

For the sake of argumentation, let us first assume the costs of communication for
each array X and Z on the systolic ring to be constant for any stride a;, b;.
C(a;) = C(b;) = const.

Definition 1 (Optimization problem for C(a;) = C(b;) = const.). Let I be the set of
integers m={0,1,2,...,n—1} € Nj,n € N. Find the two ordered multi-sets
Ay = (a() =0,ay,ay,as,... ,ak) € Ng“ of k+ 1 integers and By = (b() =0,by, by,
bs,...,by) € fo“ of k' 4+ 1 integers, with k + &’ being a minimum, where each m € I,
(0<m<n—1), can be represented at least once as the sum of two ordered partial
sums

m=(a;+ am1 + -+ ;) + (b + by + -+ byj), 3)
with

0<i+j<hk, i,jeNy, 0<i+j <k, i,jeN,. 4)

3.2.1. Lower bound on k + k'
A lower bound for the minimal number of non-zero elements of 4; can be derived
that will deliver optimal complexity.

Theorem 1. Let A; and By be two bases solving the optimization problem for the hyper-
systolic algorithm with 2 arrays. Then the minimal length k + k' is given by

k=K =n—1. (5)
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Proof. The total number of combinations required is #n> as each element of the first
array must come into contact with the n elements of the second array. Let the ma-
trices #'; and #, be realized by £k — 1 and &’ — 1 shifts, respectively. In that case
each element of the first matrix can be combined with &’ elements of the second
matrix, therefore the possible number of combinations will be nkk’. Given n = kk/,
the minimum number of circular shifts k + &’ is attained for k =k = /n—1. O

Therefore, the complexity for the interprocessor communication of a hyper-sys-
tolic algorithm for C(a;) = C(b;) = const. is bounded from below by 3(y/n—1)
shifts, where we have already included the costs for the back-shifts.

We next assume that the cost for a circular shift is a function of the strides a;,
C(a;) and C(b;) # const. The optimization problem of definition 1 is modified only
slightly, however, the construction of an optimal base can be quite complicated.

Definition 2 (Optimization problem for C(a;) = C(b;) # const.). Let I be the set of
integers m={0,1,2,...,n—1} € Nj,n € N. Find the two ordered multi-sets
Ak = (ao = O,al,az,ag, - ,ak) € N](;Jrl of k+1 integers and ka = (bo = 07b1,b2,b3,
..o by) € Ng*l of k' + 1 integers, with the total cost

Ctotal = Z C(ai) + Z C(bi) (6)

being a minimum, where each m € I, (0 <m < n — 1), can be represented at least once
as the sum of two ordered partial sums

m = (ai +ai+-+ ai+j) + (bi + bi+1 +oeet bi+}')a (7)
with

0<i+j<k, i,jeNy, i+j<Kk, i,jeN,. (8)
3.3. Regular bases

The 4 x 4 matrix multiplication problem presented in Section 2 uses so-called

regular bases. This prescription turns out to be optimal for equal cost of any stride
executed in circular shift operations on the ring. Regular hyper-systolic bases are
advantageous as they require only two distinct strides.
Definition 3 (Regular Bases). The regular bases are given by

Arga=[0,1,1,...,1 | Bug,=|0KK, .. K| KxK=n (9
—— ——

K-1 K-1

The completeness of a base pair is defined in terms of the s-range of the base, a
notion borrowed from additive number theory [27,28]:
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Theorem 2. The h-range of a regular base is n.

Proof. Let
r:=mmodg — r < K, (10)

where KK = n. There are K — 1 elements ¢; = 1 € 4,. Thus any r with 0 <r <K — 1
r € Ny can be represented as partial sum by the elements a; = 1, a; € A;. The partial
sums of By,

J J
Sob=KY 1=(j-i+DK<n, (11)
I=i I=i

are integer multiples of K. Adding the partial sums to r we can therefore represent
any element m € I. Thus, the h-range of the base pair A;_x | and B,_;_, is n, i.e., the
base pair is complete. [

Theorem 3. The lower bound to the minimal length of the regular bases for a given h-

range n is K = K = \/n.
Proof. The regular base 4; is complete.

k:K+K—lak:K+%—L (12)
Differentiation gives K = /n. O

Theorem 4. The communication gain factor R that compares the regular hyper-systolic
to the systolic algorithm is:

n—1 Vn
= 13
2K+K -3 3 (13)

Proof. One needs K — 1 shifts by 1 and K — 1 shifts by K in forward direction and
again K — 1 shifts by 1 in backward direction, respectively; therefore, the total
number of shifts required is

T=(2K+K -3). (14)

The standard systolic computation requires n — 1 shifts altogether. [

4. Hyper-systolic matrix product

Next we present the general formulation of the systolic and hyper-systolic matrix
product in terms of a pseudo-code. The size of the matrices is p x p and the 1-D
processor array consists of p nodes.
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4.1. Systolic algorithm

The systolic version of the matrix product of two matrices A and B is given in
Algorithm 1. The matrices are represented in skew order.

Algorithm 1 (Systolic matrix-matrix multiplication).
DO j=1,p
C = C+ CSHIFT(A,DIM = 1,SHIFT = | — j) % SPREAD(B(j,:), DIM = 1)
A = CSHIFT(A,DIM = 2,SHIFT = 1)
ENDDO

The algorithm is completely regular. Each cell executes one compute operation to-
gether with an assignment followed by a circular shift of the matrix A in each systolic
cycle. The skew order is not destroyed during execution of the algorithm. Note that
for each processor inner cell assignment operations CSHIFT operations of columns
are executed using equal strides in a given step of the parallel algorithm. Hence, one
global address suffices and further address computations are not required!

4.2. Hyper-systolic algorithm

4.2.1. Regular bases
We employ the regular bases constructed for the hyper-systolic system. We add a
third base C to account for the back-shifts:

Ak:f(—l = (OvKaKa“'?K)
Bk’:Kfl :(07_15_17""_1) (15)
Ck’:Kfl = (0715 1)’1)

4.2.2. Hyper-systolic matrix multiplication

Algorithm 2 (Hyper-systolic matrix multiplication).
! pre-shift of matrix B
B(j,:) = CSHIFT(B(j,:), SHIFT = MOD(Il — ,K))
! multiplication and shift of matrix A
DO j=1K-1
DO/=1,K
C(:,:,0) = C(:,5, 1) + CSHIFT(A,DIM = 1, SHIFT = 1 — (j — 1) * K —[) «
&
SPREAD(B((j— 1) * K+1,:),DIM=1)
ENDDO
A = CSHIFT(A,DIM = 2,SHIFT =K)
ENDDO
DO/=1K
CG,.,)=C(,:, ) + CSHIFT(A, DIM=1, SHIFT=1 — (k -1 « K-1) x &
SPREAD(B((K — 1) * K+1,:),DIM=1)
ENDDO
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! back-shift and accumulation
DO;j=1,K-1

C(:,:,K —j) = C(;,:,K — j) + CSHIFT(C(K — j + 1),DIM = 2, SHIFT = 1)
ENDDO

The hyper-systolic matrix multiplication, as given in Algorithm 2, proceeds within
three steps. In the first part of the algorithm, matrix B is shifted K — 1 times by
strides of 1 along the systolic ring and stored as B, 0<i<K — 1. However, as
motivated above, for the case of matrix products, we can spare communication: it
suffices to shift B in K row blocks of K rows each, where within each block the first
row is shifted by a stride of 0 and the last by a stride of K — 1.

After the preparatory shifts of B, the computation starts. K times, the multipli-
cation of A with K rows of the pre-shifted matrix B is carried out. After each step, A
is moved to the left by a shift of stride K. The result is accumulated within K matrices
C.

Finally, the K intermediate result matrices C' are shifted back according to base
Cy while summed up to the final matrix C. The algorithm is very regular. The skew
order is not destroyed during execution, and in any stage, only global addresses are
required.

4.2.3. Complexity
The gain factor for the matrix product reads (note that matrix B is only partially
shifted):

Theorem 5. The gain factor R that compares the regular hyper-systolic matrix mul-
tiplication to the systolic algorithm is

p—1 N/Z
=—r = ~¥Y 16
K+K-—1 2 (16)

Proof. One needs 1 shift of the full matrix B, K — 1 shifts by K of matrix A and again
K — 1 shifts by 1 of matrix C. Therefore, the total number of shifts required is
T=(K+K-1). (17)

The standard systolic computation requires p — 1 shifts of the matrix A. For the
K=K=p R~ p/2. O

5. Mapping on parallel systems

So far we discussed the generic situation of the matrix dimension p being equal to
the number of processors p. We now turn to the general case of n x m-matrices with
n,m > p.
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In order to map the systolic system onto the parallel implementation machine we
choose hierarchy mapping of the systolic array onto the processors with the option
for two different strategies, block and cyclic assignment.

5.1. Block mapping: Speeding up local computations

The block assignment is applied in all standard algorithms, as it allows to exploit
local BLAS-3 routines, like dgemm, by which a very high efficiency of local com-
putations can be achieved. While a small block of the matrix A is held in the cache or
in the registers (thus avoiding cache-to-memory data transfer), in turn, only the
columns of B and C must be exchanged, and all computations in which the given
part of A is involved can be carried out. In this way, the ratio between the number of
computations and the cache-to-memory traffic is minimized to nearly

28 /

(3nn + n?) ) (18)

floating point operations per word for real data, with / being the dimension of the
sub-block. Asymptotically, the full speed of the CPU should be exploitable.
A n x m-matrix M is divided into p x p blocks of size (ﬁ X %) or (% X ﬁ),

M_)Mi,ﬁ izla"'7p7 j:177p (19)

The multiplication of A and B proceeds via sub-matrix multiplication denoted as
(®):

P
Ci,./':ZAi4k®Bk,j7 izl,...7p7 j:17...,p,
k=1

C = AB. (20)

Altogether a system of p x p of such blocks is assigned to the p processor array. Now
we can use each sub-matrix in the same manner as the scalar matrix elements before.
Therefore, the p x p system of sub-matrices has to be row-skewed for A and column-
skewed for B.

5.2. Cyclic mapping: Reduction of memory overhead

Each block is distributed across the processors as described above for the generic
case. The blocking of the n x m-matrix M into (lﬂ) X %) blocks, leads to blocks of size

pPXp,

M—=M,, i=1,..., (21)

ijs
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The multiplication of A and B proceeds via block-multiplication, (®):

C"_E%:A'@B' i=1,...0 j=1,.."
ij £ ik ks 7"'7p7 7"'7p7
C = AB. (22)

A skew representation is required for all blocks M;; separately. Cyclic mapping leads
to a system of 2 x o systolic processes that run in parallel.

Cyclic assignment allows us to reduce the memory overhead of hyper-systolic
computations. In general, K full intermediate matrices C are necessary. Using cyclic
mapping, one can organize the computation in such a way that only one row of the
blocks of the intermediate matrix C must be stored in a given phase of the algorithm.
All the required shifts of the given part of A can be carried out while this part of A
will not be involved in a further computation. Eventually, the corresponding row of
C is shifted back and accumulated.

5.3. Block-cyclic mapping

One can combine block and cyclic mapping in a hybrid scheme that combines the
advantages of both approaches. A good strategy is to choose the block size of the
block mapping such that it is optimal for “local” BLAS-3. For the cyclic part one
ends up with blocks of size p x p, with the entries being the BLAS-3 blocks.

6. Benchmarks

Hyper-systolic matrix multiplication can be useful on any type of massively
parallel system, ranging from mesh-based SIMD systems to work-station clusters.

This fact is demonstrated in the following by implementing the method on both a
cluster computer consisting of 64 workstation nodes, and a 128 node SIMD parallel
system, equipped with custom designed floating point units.

6.1. Results from a cluster computer

We have implemented the hyper-systolic matrix multiplication on 64 nodes of the
128-node Alpha-Linux cluster computer ALiCE, installed at Wuppertal university in
Germany [30]. The machine is equipped with the Alpha 21264 processor.

ALICE is connected via a Myrinet multi-stage crossbar. The communication la-
tency and throughput are both constant between any two given processors. Thus, the
amount of systolic and hyper-systolic interprocessor communication is directly given
in terms of circular shifts, see Eq. (16) and does not depend on the specific stride of
the circular shift.

Our implementation uses BLAS-3 routines from the “Compaq Extended Math
Library” to achieve the largest possible local performance for given matrix block
size.
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Fig. 9. Relative performance of systolic and hyper-systolic implementations of matrix multiplication on a
workstation cluster versus the number of processors. The lines connect equal local block sizes. The results
are given for a complex matrix in single precision arithmetics.

Fig. 9 shows the performances achieved in terms of the theoretical peak perfor-
mance of the machine as function of the number of processors. The lines connect
equal block sizes, the block matrix dimension ranges from 8 to 128. This represen-
tation allows to distinguish the dependency of the local BLAS-3 efficiency on the
block size from the scaling of the parallel part of the algorithm. It is evident that
large blocks achieve a high BLAS-3 performance.

The solid lines stand for the hyper-systolic algorithm where the dotted ones give
the results for a systolic implementation. The latter shows a pronounced decrease at
64 processors while the hyper-systolic method scales well over the whole range. For
64 processors the hyper-systolic algorithm reduces the amount of interprocessor
communication by a factor of 4. Note that at p = 64 and a block size of 128 x 128
the communication time needs half of the compute time in case of the systolic im-
plementation.

6.2. Results from a SIMD computer

The second example demonstrates that the hyper-systolic matrix multiplication
also works on less general type of machines: we have implemented the method on
the APE100/Quadrics SIMD parallel computer. So far, on Quadrics, lack of indexed
addressing has hindered an effective scalable implementation of matrix mul-
tiplication [29]. 2

2 The implementation on the Quadrics might be a model for the future use of the hyper-systolic method
on ASIC chips.
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Fig. 10. Performance of systolic and hyper-systolic PBLAS-3 (block-cyclic mapping) on a 128-node
APE100, for real and complex data.

We make use of a combination of block and cyclic mapping. Thus, we are able to
employ local BLAS, exploiting the CPU with high efficiency, and at the same time,
we avoid a memory overhead.

On Quadrics, for real data, the optimal elementary blocks are of size 6 x 6. For
complex data, the size is 4 x 4. The full matrix is blocked to p x p matrices which are
distributed on the ring and the elements of which are the elementary blocks. Only the
p X p matrices are skew, the elementary matrices remain in normal order. The details
of our implementation, in particular the realization of the ring, are given in [31].

We had access to a 128-node APE/100Quadrics QH1 at ENEA/Casaccia in Italy.
Fig. 10 shows the performance results for real and complex matrices.

The theoretical peak performances (single node!) for Quadrics are 63% for real
data and 88% for complex data, as can be inferred from the maximal ratio of
computation versus memory-to-register data transfer times. Hyper-systolic matrix
multiplication leads to a peak performance of 65% of peak speed, which translates
into 75% of the theoretical performance.

7. Summary

The 1-D hyper-systolic matrix multiplication algorithm is a promising alternative
to 2-D matrix product algorithms. Exhibiting equal communication overhead as
standard methods like the 2-D Cannon algorithm, the hyper-systolic algorithm
avoids non-regular communication and indexed local addressing. Hence, the hyper-
systolic matrix product scheme is applicable on any type of parallel system, even on
machines that cannot compute indexed addressing. Moreover, the method preserves
the alignment of the matrices in the course of the computation. Additionally the
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alignment for the optimal hyper-systolic algorithm leads to efficient matrix-vector
computations as well.
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