

 University of Groningen

A Layered Component-Based Architecture of a Virtual Learning Environment
Avgeriou, Paris; Retalis, Simos; Skordalakis, Manolis; Psaromiligos, Yiannis

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2001

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Avgeriou, P., Retalis, S., Skordalakis, M., & Psaromiligos, Y. (2001). A Layered Component-Based
Architecture of a Virtual Learning Environment. In EPRINTS-BOOK-TITLE University of Groningen, Johann
Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 20-06-2022

https://research.rug.nl/en/publications/374e000d-3753-4abe-86c7-741b52a660cd

A Layered Component-Based Architecture of a Virtual
Learning Environment

Avgeriou Paris1 Retalis Simos2 Skordalakis Manolis1 Psaromiligos Yiannis3

1 National Technical University of Athens, Department of Electrical and Computer Engineering

Software Engineering Laboratory, Zografou, Athens, 15780, GREECE
E-mail: {pavger, skordala}@softlab.ntua.gr,

2 Department of Computer Science, University of Cyprus, 75 Kallipoleos St., P.O. Box 20537
CY-1678 Nicosia, CYPRUS, E-mail: retal@softlab.ntua.gr

3 Technological Education Institute of Piraeus, General Department of Mathematics
Computer Science Laboratory, P. Ralli 250, Athens, 12244, GREECE, E-mail: jpsa@teipir.gr

Abstract. There exists an urgent demand on defining architectures for Virtual Learning
Environments (VLEs), so that high-level frameworks for understanding these systems
can be discovered, portability, interoperability and reusability can be achieved and
adaptability over time can be accomplished. In this paper we propose a prototype
architecture for a VLE that professes state-of-the-art software engineering techniques
such as layered structure and component-based nature. We base our work upon the
LTSA working standard of IEEE LTSC, which serves as a business model, on the
empirical results of a web-based instructional system architecture and on the practices
of a well-established software engineering process.

1. Introduction
Governments, authorities and organizations comprehend the potential of the Internet to
transform the educational experience and envisage a knowledge-based future where
acquiring and acting on knowledge is the primary operation of all life-long learners. In order
to realize this vision, the use of Learning Technology Systems (LTS) is being exponentially
augmented and broadened to cover all fields of the new economy demands. Learning
Technology Systems (LTS) are learning, education and training systems that are supported by
the Information Technology [1]. Examples of such systems are computer-based training
systems, intelligent tutoring systems, Web-based Instructional Systems and so on.
Web-based Instructional Systems (WbISs) are LTSs that are based on the state-of-the-art
Internet and WWW technologies in order to provide education and training following the
open and distance learning paradigm. WbISs are comprised of three parts: human resources
(students, professors, tutors, administrators etc.), learning resources (e-book, course notes
etc.), and technological infrastructure (hardware, software, networks). A major part of the
technological infrastructure of WbISs is the Virtual Learning Environment (VLE). VLEs are
learning management software systems that synthesize the functionality of computer-
mediated communications software (e-mail, bulletin boards, newsgroups etc.) and on-line
methods of delivering courseware (e.g. the WWW) [2]. A VLE is a middleware that acts and
interfaces between the low-level infrastructure of the Internet and the WWW from the one
side and the customized domain-specific learning education and training systems on the
other side.
The VLE has been established as the basic infrastructure for supporting the technology-

based, open and distance-learning process in an easy-to-use, pedagogically correct and cost-
efficient manner. VLEs have been used for educational and training purposes, not only
because they have been advertised as the state of the art learning technology, but also
because they have substantial benefits to offer. In specific, they alleviate the constraints of
time and place of learning, they provide an excellent degree of flexibility concerning the way
of learning, they support advanced interactivity between tutors and learners and they grant
one-stop maintenance and reusability of resources [3, 4].
However, it is common knowledge among researchers that VLEs are facing numerous
shortcomings, mainly concerning the portability and reusability of learning resources as well
as the interoperability between VLEs themselves. Many technology experts are working
together to launch a set of methods and standards that will enable re-use, recombination and
transfer of content between individuals, institutions and countries [5]. Much of this effort is
focused on developing and standardizing system architectures for LTSs in general or LTS
components such as VLEs, in order to provide a more systematic development process for
these systems and achieve the aforementioned goals. This paper describes a similar effort of
defining a layered component-based architecture for VLEs and primarily aims at the
direction of discovering a high-level framework for understanding VLEs as systems, their
subsystems, and their interactions with related systems.
This paper presents an approach of a layered component-based architecture for a VLE in the
context of WbISs and LTSs. The VLE is seen as a software component of a WbIS, which is
in turn seen as a special kind of LTS. The reason for defining the context of the VLE is to
establish a business case for the construction of the VLE and thus found the architecting
process on a sound basis. The structure of the paper is as follows: In section 2 we provide the
theoretical background of the proposed architecture in terms of the context of VLEs, i.e.
Web-based Instructional Systems and Learning Technology Systems. Section 3 deals with
the description of the architecture per se. Section 4 contains conclusions about the added
value of our approach and future plans.

2. The Context of VLEs
As we illustrated in Section 1, we consider Virtual Learning Environments to be a part of one
of the three components of Web-based Instructional Systems, and in particular the
technological infrastructure. In order to comprehend the nature and characteristics of VLEs,
we need to put things into perspectives and take into account the context of VLEs, i.e. the
whole of the WbIS. Furthermore, since WbISs are a kind of Learning Technology Systems,
they inherit many of the LTS features and they can be ultimately treated as such. The reason
for studying the generic category of LTSs is that there is a lot of work being done on the
standardization of LTS architectures, and the development of VLEs can benefit from basing
its foundations on such a strong and commonly accepted background. We thus adopt a three-
fold approach: we see VLEs as part of WbISs and the latter as children of LTSs. In other
words VLEs are associated with WbISs with an aggregation relationship (part_of) and
WbISs in turn are associated with LTSs with a generalization relationship (inheritance). The
profit of this approach is that the LTS refined into a WbIS can provide the business case for
the VLE under development and can act as the business model in the architecture-centric
approach of a VLE engineering process.
The largest effort on developing an LTS architecture has been carried out in the IEEE
P1484.1 Learning Technology Systems Architecture (LTSA) working group, which has
developed a tentative and rather stable working standard. The LTSA describes a high-level

system architecture and layering for learning technology systems, and identifies the
objectives of human activities and computer processes and their involved categories of
knowledge. These are all encompassed into 5 layers, where each layer is a refinement of the
concepts in the above layer.
Out of the five refinement layers of architecture specified in the LTSA, only layer 3 (system
components) is normative in this Standard. Layer 1, “Learner and Environment
Interactions” addresses the learner's acquisition, transfer, exchange, formulation, discovery,
etc. of knowledge and/or information through interaction with the environment. Layer 2,
“Human-Centered and Pervasive Features” addresses the human aspects of learning
technology systems in terms of human-specific strengths and weaknesses. Layer 3, “System
Components” describes the component-based architecture, as identified in human-centered
and pervasive features. Layer 4, “Stakeholder Perspectives and Priorities” describes
learning technology systems from a variety of perspectives by reference to subsets of the
system components layer. Layer 5, “Operational Components and Interoperability —
codings, APIs, protocols” describes the generic "plug-n-play" (interoperable) components
and interfaces of an information technology-based learning technology architecture, as
identified in the stakeholder perspectives. The added value derived from the abstraction-
implementation layers, is that the five layers represent five independent areas of technical
analysis, which makes it easier to discuss each layer independently of the others.
LTSs are applied in a plethora of domains for learning education and training purposes. A
very popular domain of LTS application is web-based open and distance learning. There are
currently no standards for architecting and building systems in this particular domain, so we
will present a prototype architecture of Web-based Instructional Systems (WbISs) that has
derived from experience on instructional design and has been mostly influenced by the
LTSA. According to this architecture, WbISs are comprised of:
• The human subsystem, which describes the roles, in as much detail as possible, for each

kind of human agent involved in the instructional process [6]
• The learning resources subsystem, which is divided into web-based learning resources

and non web-based learning resources. The former is perceived as a mosaic of online
learning resources. Such learning resources can be course notes, slideware, study guides,
self-assessment questionnaires, communication archives, learning material used for
communication purposes, etc. The latter is comprised of digital or non-digital learning
resources that are not deployed on the WWW like textbooks, papers, audio/video
cassettes, CDs, DVDs, etc.

• The technological infrastructure subsystem, which is divided into common and special.
An instructional system basically makes use of services from common infrastructure,
which is a set of learning places, that support student learning in general (e.g.
laboratories, networking facilities, etc.). However, in order to best support the
instructional process, special infrastructure should be created (e.g. multimedia
conferencing systems, state of the art hardware and software components etc.), which
will provide services unique to a particular instructional problem. [7]. A most significant
part of the special infrastructure is the Virtual Learning Environment (VLE).

The decomposition of a WbIS using the UML notation is depicted in Figure 1.
Systems exist and have certain meaning and purpose within certain business contexts. Now
that we have identified LTSs and WbISs, we can define VLEs, so that the latter will make
sense in the bounds of the former. In consequence VLEs in the business context of WbISs
and LTSs, support a number of features, or tools or capabilities in order to carry out certain

LTS

Common
infrastructure

VLE

Special
infrastructure

Human subsystem

Technological infrastructure

Web-based Instructional System

Web-based learning resources

Learning
Resources

non web-based learning resources

Fig. 1. The decomposition of a WbIS into components

tasks. These features can be classified into certain groups, namely [8]:
• Course Management, which contains features for the creation, customization,

administration and monitoring of courses.
• Class Management, which contains features for user management, team building,

projects assignments etc.
• Communication Tools, which contains features for synchronous and asynchronous

communication such as e-mail, chat, discussion fora, audio/video-conferencing,
announcements and synchronous collaborative facilities (desktop, file and application
sharing, whiteboard).

• Student Tools, which provide features to support students into managing and studying the
learning resources, such as private & public annotations, highlights, bookmarks, off-line
studying, log of personal history, search engines etc.

• Content Management, which provide features for content authoring and delivery and file
management.

• Assessment Tools, which provides features for managing on-line quizzes and tests,
project deliverables, self-assessment exercises and so on.

• School-Management, which provide features for managing records, absences, grades,
student registrations, financial administration etc.

Now that all three kinds of systems and their relationships have been presented, i.e. VLEs,
WbISs and LTSs, we move on to describe the VLE layered component-based architecture.

3. The Architecture
The proposed architecture is a result of a prototype architecting process that is characterized
of four important key aspects: it is founded on the higher-level architecture of IEEE P1484.1
Learning Technology Systems Architecture [http://ltsc.ieee.org/]; it uses a prototype WbIS
architecture to refine and constrain the requirements for the VLE; it adopts and customizes a
big part of the well-established, widely-adopted, industry-leading software engineering

process, the Unified Software Development Process (USDP) [9]; and it is fundamentally and
inherently component-based. The latter is justified by the fact that great emphasis has been
put, not only in providing a pure component-based process, that generates solely components
and component frameworks, but also in identifying the appropriate binding technologies for
implementing and integrating the various components. Further analysis of the architecting
process can be found at [10]. The notation used to describe the architecture is the Unified
Modeling Language [11], a widely adopted modeling language in the software industry and
an Object Management Group standard [http://www.omg.org].
Our aim in generating the VLE architecture is to produce an inherently component-based
architecture with the help of the USDP. How can that be achieved? As stated in [12], a
software system architecture in the component-based paradigm consists of a set of
component frameworks, an interoperation design for the component frameworks, and a set of
platform decisions. This statement corresponds with the architecture description given in the
USDP, where the architectural views of the five models correspond with the component
frameworks and the interoperation design between them, from five different viewpoints,
while platform decisions are matched with the rest of the architecture description dictated by
the USDP. This correlation is depicted in Table 1. We shall follow this pattern in order to
describe the component-based nature in the proposed architecture. We shall first analyze the
system into component frameworks or as we simply call them subsystems, describe their
interaction and lastly make platform decisions.

USDP architecture Component based architecture
Use case model view
Analysis model view
Design model view
Deployment model view
Implementation model view

Set of component frameworks, and the
interoperation design for the component
frameworks

Requirements that are architecturally
significant but are not described by use cases.
A brief description of the platform, the
legacy systems, the commercial software.

Platform decisions

Table 1. Correspondence between a component-based architecture and the USDP architecture

The first-level decomposition of the Virtual Learning Environment is performed by
specifying the very coarse-grained discrete subsystems in the design model, as they have
derived from the use case and analysis model. This decomposition is combined with the
enforcement of the “Layered Systems” architecture pattern [13, 14], which helps organize
the subsystems hierarchically into layers, in the sense that subsystems in one layer can only
reference subsystems on the same level or below. The communication between subsystems
that reside in different layers is achieved through clearly defined interfaces and the set of
subsystems in each layer can be conceptualized as implementing a virtual machine [14]. The
most widely known examples of this kind of architectural style are layered communication
protocols such as the ISO/OSI, or operating systems such as some of the X Window System
protocols.
The Unified Software Development Process utilizes the aforementioned architectural pattern
by defining four layers in order to organize the subsystems in the design model. According to
the USDP, a layer is a set of subsystems that share the same degree of generality and

interface volatility and the four layers used to describe the architectural structure of a
software system are [9]:
• Application-specific: A layer enclosing the subsystems that are application-specific and

are not meant to be reused in different applications. This is the top layer, so its
subsystems are not shared by other subsystems.

• Application-general: A layer comprised of the subsystems that are not specific to a single
application but can be re-used for many different applications within the same domain or
business.

• Middleware: A layer offering reusable building blocks (packages or subsystems) for
utility frameworks and platform-independent services for things like distributed object
computing and interoperability in heterogeneous environments, e.g. Object Request
Brokers, platform-neutral frameworks for creating GUI.

• System software: A layer containing the software for the computing and networking
infrastructure, such as operating systems, DBMS, interface to specific hardware. E.g.
TCP/IP.

The proposed layered architecture for a VLE is depicted in Figure 2, which is a first-level
decomposition in the design model. This diagram, besides identifying all first-level
subsystems and organizing them into layers, it also defines dependencies between them,
which are realized through well-specified interfaces. The list of sub-systems contained in this
diagram, although not exhaustive, highlights the most important of these subsystems.
The application-specific sub-systems of the layered architecture, which are the top-level
components of the application, are:
1. User profile management (for teachers, tutors, administrators this mainly includes

personal data; for students it also includes grades, statistics of navigation, working groups
and projects they are assigned to etc.)

2. Hypermedia authoring (web page editing, design templates)
3. Hypermedia delivery (delivery of hypermedia pages concerning e-book, glossary, index,

calendar, course description etc., personalization per user)
4. Assessment (on-line quiz or exam, project deliverables, self-assessment exercises)
5. Searching which applies to all learning objects through metadata
6. Course management (creation, customization, administration and monitoring of courses)
7. User management (registration in courses, authentication, rights, views, student tracking)
8. Study toolkit (private & public annotations, highlights, bookmarks, print out, off-line

studying, notepad, log of personal history, adaptive navigation and presentation,
intelligent tutoring systems)

9. System Administration (new course, back up, security, systems operation check, resource
monitoring etc.)

10. School Administration (absences records, grades records, student registrations)
11. Help desk (on-line help, user support)
The application-general subsystems, which can be re-used in different applications, are:
1. Communication management (E-mail,

Chat, Discussion fora, Audio/video-
conferencing, Announcements,
Synchronous collaborative facilities such
as whiteboard, desktop, file and
application sharing)

3. Content management (content
packaging)

4. Business objects management
(connection with database, persistent
object factory)

5. Metadata management
2. File management

System Software layer

Middleware layer

Application-general layer

Application specific layer

TCP/IP

Searching

 Course
Management

Content
management

File management

Assessment

communication

Helpdesk

Courseware
delivery

Courseware
authoring

User profile
management School

administration

System
Administration

 Study Guide

Users
Management

Business Objects
Management

Metadata
management

RDBMS / DB
client

Java APIs

E-mail
client/server

Java Virtual
Machine

Web client/server Message Chatclient/serverMedia client/server

Fig. 2. The layered architecture of the component-based VLE

The middleware subsystems, which offer reusable building blocks for utility frameworks and
platform-independent services, are:
1. JVM 2. E-mail client/server
3. Java APIs (RMI, JFC/Swing, JDBC, JMF etc.) 4. Web server/browser
5. Media server/client 6. Message server/client
7. RDBMS/ DB client 8. Chat server/client
The system-software layer subsystem, which contains the software for the computing and
networking infrastructure, is:
1. TCP/IP
These subsystems, that are in essence component frameworks, are meant to be further
processed by identifying their contents, that is design classes, use-case realizations,
interfaces and other design subsystems (recursively). Furthermore, each subsystem must
provide an interface of its own, in order to represent its own functionality. All the above
constitute the interoperation design of the subsystems, i.e. is the rules of interoperation
among all the frameworks joined by the system architecture. We will not analyze these
interoperations further for reasons of lack of space and we will only suffice to show the
dependency relationships between the subsystems in Figure 2.
After the five models of the USDP have been completed, all the component frameworks and
interoperations between them have been identified. The last part of the component-based

architecture concerns platform and implementation decisions, so that the architecture is
completed, and the development team is assisted in implementing it into a physical system.
In the architecture described in this paper, we propose certain binding technologies and
platforms that we consider to be the most suitable for a component-based system. These
technologies implement the component-based paradigm using object-oriented techniques,
specifically the Unified Modeling Language, the Interface Definition Language, and the
Java, C++ and VBA programming languages. The application of these technologies results in
components implemented as JavaBeans and Microsoft Component Objects. The component
development process comprised of such technologies is depicted in Figure 3. The artifacts
from the design model, that is sub-systems with textually described interfaces are provided
as an input to this model. These interfaces are then designed with concrete UML notation
and then mapped into the Interface Definition Language (IDL), which is an ISO standard for
formally defining interfaces. Because the UML to IDL mapping is incomplete, the produced
IDL interfaces need to be enhanced, so that a contractual specification can be achieved. The
next step is to transform the IDL interfaces into the implementation platform, in our case
Java or Microsoft technologies, through the Java IDL API, or the Microsoft IDL APIs. The
components now are concretely defined in the programming language, and they can either be
constructed from scratch, or acquired from existing implementations and possibly modified
to exactly fit the interfaces. The result is the implementation of the sub-systems as JavaBeans
or Enterprise JavaBeans (EJB), which is the Java form of components, or, as Microsoft
component objects (COM/DCOM objects, ActiveX controls etc.). The possible re-use of
components is where the component-based approach thrives. The final step is to integrate the
components through an integration and testing process into the final outcome, i.e. the VLE.
In order to achieve interoperability and portability between different VLEs, the establishment
of a component-based architecture featuring the component development technologies
proposed above is necessary but not sufficient. An even more significant issue that needs to
be taken under account is the adoption of standards for the development of each component.
For example the metadata management component can be developed to conform to the IEEE
LTSC Learning Object Metadata working standard, or the assessment component may adopt
the IMS QTI standard [http://www.imsproject.org/]. Unfortunately most of these standards
have not finalized just yet.

4. Conclusions and Future Work
We have portrayed a layered component-based architecture for a VLE, which uses the IEEE
P1484.1 LTSA and a prototype WbIS architecture as a business model, adopts the
architecting practices of the Unified Software Development Process and grants special
emphasis on enforcing a component-based nature in it. Each one of these key concepts adds
special value to the proposed architecture.
It has been strongly supported that an architecture-centric development process professes
numerous advantages [9, 11, 15]. In general, the purpose of developing software architecture
is to discover high-level frameworks for understanding certain kinds of systems, their
subsystems, and their interactions with related systems. In other words, an architecture isn't a
blueprint for designing a single system, but a framework for designing a range of systems
over time, thus achieving adaptability, and for the analysis and comparison of these systems
[1]. Furthermore, an all-important necessity for a VLE is interoperability and portability,
which is a fundamental feature of component-based architectures and is achieved by

UML-specified
sub-system
interfaces

Sub-systems from
design model in

UML

IDL-specified
sub-system
interfacesJava-specified

sub-system
interfaces

Sub-systems as
JavaBeans and EJB

Creation or purchase of
JavaBeans and EJB

IDL to Java mapping

UML to IDL mapping

Enhance IDL-specified
 sub-system interfaces

COMPONENT-BASED
VLE

Integration

Design of sub-system
interfaces in UML

COM, DCOM,
ActiveX sub-system

interfaces

Sub-systems as
Microsoft component

objects

Integration

Creation or purchase of
Microsoft component objects

IDL to C++ , VBA etc. mapping

Fig. 3. Component development process

identifying critical component interfaces in the system ‘s architecture. Portability of
components also leads to reusability, a keyword in the development of affordable systems.
Component-based software architectures promote reuse not only at the implementation level,
but at the design level as well, thus saving time and effort of ‘re-inventing the wheel’.
Moreover, architecture-based development offers significant Software Engineering
advantages such as: risk mitigation, understanding of the system through a common
language, effective organization of the development effort, and making change-tolerant
systems. Finally the utilization of the ‘Layered Systems’ architectural pattern further
promotes modifiability, portability, reusability and good component-based design as it
allows the partition of a complex problem into a sequence of incremental steps [9, 13, 14].
Based on these points, it is concluded that an inherently layered component-based software
architecture is the right step towards bringing the economies of scale, needed to build
affordable, interoperable as well as effective Virtual Learning Environments.

We are currently investigating the implementation of the proposed architecture into a
prototype VLE by enforcing the whole of the USDP. This will raise several issues such as:
whether the LTSA and the prototype WbIS architecture are able to provide a full, well-
documented business model; how can a learning theory be combined with the business
model in order to provide a full set of system requirements; whether the USDP, which is a
generic software engineering process, works well in this type of applications; whether the
binding technologies and platforms proposed, will efficiently help in the software system
implementation. A final issue that is being currently examined is the development of an
Architecture Description Language (ADL) that will be customized to describe software
architectures especially for the domain of VLEs, and will be based on extensions of the UML
in combination with existing ADLs and development methods [16, 17].

References
1. IEEE Learning Technology Standards Committee: Draft Standard for Learning Technology

Systems Architecture (LTSA). Draft 8, April 2001.
2. Oleg, S., Liber, B.: A framework of pedagogical evaluation of Virtual Learning Environments.

Available online at [http://www.jtap.ac.uk/reports/htm/jtap-041.html], 1999.
3. McCormack, C., Jones, J.D.: Building a Web-based Education System. Wiley Computer

Publishing, 1997.
4. Lowe, D., Hall, W.: Hypermedia & the Web: An Engineering Approach. John Wiley Ltd., 1999.
5. Hodgins, W.: Into the future, A vision Paper. Commission on Technology & Adult Learning.

February 2000, available online at [http://www.learnativity.com/into_the_future2000.html].
6. Lindner, R.: Proposals for an Architecture WG and new NPs for this WG - Expertise and Role

Identification for Learning Environments (ERILE). available online at [http://jtc1sc36.org/],
2001.

7. Ford, P., Goodyear, P., Heseltine, R., Lewis, R., Darby, J., Graves, J., Sartorius, P., Harwood, D.,
King, T.: Managing Change in Higher Education: A Learning Environment Architecture.
London: Open University Press, 1996.

8. Avgeriou, P., Papasalouros, A., Retalis, S.: Web-based learning Environments: issues, trends,
challenges. Proceedings of the 1st IOSTE symposium in Southern Europe, Science and
Technology Education, Paralimni, Cyprus, May 2001.

9. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process. Addison-
Wesley, 1999.

10. Avgeriou, P., Retalis, S., Papasalouros, A., Skordalakis, M.: Developing an architecture for the
Software Subsystem of a Learning Technology System – an Engineering approach. Proceedings
of the International Conference of Advanced Learning Technologies, Madison, Wisconsin, USA,
6-8 August 2001.

11. Booch, G., Rumbaugh, J., Jacobson, I.: The UML User Guide. Addison-Wesley, 1999.
12. Szyperski, C.: Component Software – Beyond Object-Oriented Programming. ACM Press, 1999.
13. Shaw, M., Garlan, D.: SOFTWARE ARCHITECTURE – Perspectives on an emerging discipline.

Prentice Hall, 1996.
14. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley, 1998.
15. Bosch, J.: Design and Use of Software Architectures. Addison-Wesley, 2000.
16. Robbins, J.E., Medvidovic, N., Redmiles, D.F., Rosenblum, D.S.: Integrating architecture

description languages with a standard design method. Proceedings of the 1998 International
Conference on Software Engineering, 1998.

17. Medvidovic, N.; Taylor, R.N.: A classification and comparison framework for software
architecture description languages. IEEE Transactions on Software Engineering, vol.26, (no.1),
IEEE, Jan. 2000. p.70-93.

http://jtc1sc36.org/

	Introduction
	The Context of VLEs
	The Architecture
	Conclusions and Future Work
	References

