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Abstract. We study the reproducing kernel Hilbert spacesH(D2, S) with kernels of the form

I − S(z1, z2 >)S(w1, w2)
∗

(1− z1w∗1)(1− z2w∗2)
whereS(z1, z2) is a Schur function of two variablesz1, z2 ∈ D. They are analogs of the spaces
H(D, S)with reproducing kernel(1−S(z)S(w)∗)/(1−zw∗) introduced by de Branges and Rovnyak
in L. de Branges and J. Rovnyak,Square Summable Power SeriesHolt, Rinehart and Winston, New
York, 1966. We discuss the characterization ofH(D2, S) as a subspace of the Hardy space on the
bidisk. The spacesH(D2, S) form a proper subset of the class of the so–called sub–Hardy Hilbert
spaces of the bidisk.

1. Introduction

Let F and G be Hilbert spaces,L(F,G) (L(F) if G = F) the set of bounded
operators fromF toG and letD be the open unit disk in the set of complex numbers
C. The functionS : D→ L(F,G) is called a Schur function if it is holomorphic on
D and‖S(z)‖ 6 1 for all z ∈ D. The set of suchS will be denoted byS(D;F,G)
(S(D;F) if G = F). ForS ∈ S(D;F,G), theL(G)–valued kernel

KS(w, z) = IG − S(z)S(w)∗
1− zw∗ (1.1)

is nonnegative. The corresponding reproducing kernel Hilbert spaceH(D, S) plays
an important role in various questions of operator theory, system theory and inter-
polation; see [2], [5], [12], [15], [18].

Recall that anL(G)–valued kernelK(w, z) on a set� (such asKS(w, z) onD)
is a functionK(·, ·) : �×�→ L(G); it is called Hermitian ifK(w, z)∗ = K(z,w)
and it is called nonnegative on� if it is Hermitian and for every natural numberr,
all pointsw1, . . . , wr ∈ � and all vectorsu1, . . . , ur ∈ G, the block matrix with
ij -th entry 〈K(wj ,wi)ui, uj 〉G is nonnegative. A Hilbert spaceM of functions
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from� into G is called a reproducing kernel Hilbert space if there is a nonnegative
L(G)–valued kernelK(w, z) on� such that

(1) The functionz 7→ K(w, z)g belongs toM for every choice ofw ∈ � and
g ∈ G.

(2) For everyf ∈M, 〈f,K(w, ·)g〉M = 〈f (w), g〉G.

The kernel, on account of (2), is called the reproducing kernel ofM, it is uniquely
determined, and the functions in (1) are dense inM. The spaceM is denoted
by H(K). If � ⊂ C is open, the kernelK(w, z) is called holomorphic if it is
holomorphic inz andw∗, and then the elements inH(K) are holomorphicG–
valued functions on�. Thus the functions inH(D, S) := H(KS) are holomorphic
onD.

In the particular case thatS ≡ 0, the spaceH(D,0) coincides with the Hardy
spaceH2(D,G) of holomorpicG–valued functions onD:

H2(D,G) = {g(z) =
∞∑
0

gnz
n|z ∈ D, gn ∈ G,

∞∑
n=0

‖gn‖2G <∞}

with Hilbert inner product

〈h(z), g(z)〉H2(D,G) =
∞∑
n=0

〈hn, gn〉G.

Recall also that a Hilbert space is contractively (isometrically) included in a Hilbert
spaceH if it is a linear subset ofH and the inclusion map is a contraction (isometry).

THEOREM 1.1 (i)For S ∈ S(D;F,G), the spaceM = H(D, S) (a) is contract-
ively included inH2(D,G), (b) is invariant under the backward shift operator

R0f (z) = f (z)− f (0)
z

and(c) satisfies the inequality

‖R0f ‖2M 6 ‖f ‖2M − ‖f (0)‖2G, f ∈M. (1.2)

(ii) Conversely, ifM is a Hilbert space of holomorphicG-valued functions onD
for which (a)-(c) hold, thenM is a reproducing kernel Hilbert space with repro-
ducing kernel of the form(1.1) : There exist a Hilbert spaceF and a function
S ∈ L(D;F,G) such thatM = H(D, S). The spaceF and the functionS can be
chosen such that

x ∈ F, S(z)x ≡ 0H⇒ x = 0.

This condition determinesS uniquely up to multiplication from the right by a
unitary operator.
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This theorem is a special case of Theorems 3.1.2 and 3.1.3 of [5], which are
formulated in the setting of Pontryagin spaces. If in part (ii) the spaceM is finite-
dimensional, the functionS can be chosen rational. Note that the condition (a) is
already implied by (c). Indeed, the inequality (1.2) implies that for allk

‖Rk+1
0 f ‖2M 6 ‖Rk0f ‖2M − ‖

1

k!f
(k)(0)‖2G,

hence for alln
n∑
k=0

‖ 1

k!f
(k)(0)‖2G 6 ‖f ‖2M − ‖Rn+1

0 f ‖2M 6 ‖f ‖2M,

which implies‖f ‖H2(D,G) 6 ‖f ‖M, that is,M is contractively included inH2(D,G).
In particular,M is a reproducing kernel Hilbert space sinceH2(D,G) is itself a
reproducing kernel Hilbert space and the inclusion map is a contraction fromM

into H2(D,G). For the basic notions of the one variable case we refer to [9],[20].

In this paper we study the analog of Theorem 1.1 in the case of two variables,
when the diskD is replaced by the bidiskD2 = D×D, where the situation is quite
different. The Hardy space of the bidisk is defined as

H2(D2,G) =
g(z1, z2) =

∞∑
i,j=0

gij z
i
1z
j

2 | z1, z2 ∈ D, gij ∈ G,

∞∑
i,j=0

‖gij‖2G <∞
 ,

with Hilbert inner product

〈h(z1, z2), g(z1, z2)〉H2(D2,G) =
∞∑

i,j=0

〈hij , gij 〉G.

It is a reproducing kernel Hilbert space with reproducing kernel

K0(w1, w2; z1, z2) = 1

(1− z1w
∗
1)(1− z2w

∗
2)
.

This kernel was considered by Koranyi and Pukanszky [16] in connection with the
representation of Herglotz functions in more than one variable.

Note that ifg(z1, z2) ∈ H2(D2,G), theng(z1,0) andg(0, z2) belong toH2(D,G).
The backward shift operatorR0 and the inequality (1.2) have natural analogs:
namely, the backward shift operators

R
(1)
0 f (z1, z2) = f (z1, z2)− f (0, z2)

z1
(1.3)
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and

R
(2)
0 f (z1, z2) = f (z1, z2)− f (z1,0)

z2
(1.4)

and the inequalities

‖R(1)0 f ‖2M 6 ‖f ‖2M − ‖f (0, z2)‖2H2(D,G), f ∈M, (1.5)

and

‖R(2)0 f ‖2M 6 ‖f ‖2M − ‖f (z1,0)‖2H2(D,G), f ∈M. (1.6)

These formulas warrant the next definition (the terminology comes from the title of
D. Sarason’s book [20]): A Hilbert spaceM of G-valued functions will be called
a sub-Hardy Hilbert space of the bidiskif it is a subspace ofH2(D2,G), which
is invariant under both the backward shifts(1.3) and(1.4), and satisfies both the
inequalities(1.5) and(1.6). A natural candidate for a sub-Hardy Hilbert space of
the bidisk is the reproducing kernel Hilbert spaceH(D2, S)with reproducing kernel

KS(w1, w2; z1, z2) = IG − S(z1, z2)S(w1, w2)
∗

(1− z1w
∗
1)(1− z2w

∗
2)

, (1.7)

whereS is a Schur function of two variables: a holomorphic functionS : D2 →
L(F,G) with ‖S(z1, z2)‖ 6 1, z1, z2 ∈ D. We denote the set of such functions
by S(D2;F,G) (S(D2;F) if G = F). We prove in Section 2 that these spaces are
indeed invariant under the backward shifts (1.3), (1.4) and satisfy the inequalities
(1.5), (1.6). In Section 3 we show that these are not the only sub-Hardy Hilbert
spaces of the bidisk; there we also show that ifH(D2, S) 6= {0} then it is infinite
dimensional. In Section 5 we give a characterization of sub-Hardy Hilbert spaces
of the bidisk (see Theorem 5.1). The main idea is to reduce the two variable case to
the one variable case (compare with, for example, [17]) and to invoke the character-
ization of semi sub-Hardy Hilbert spaces of the bidisk which we derive in Section
4 (see Theorem 4.2): A Hilbert spaceM of G-valued functions will be called a
semi sub-Hardy Hilbert space of the bidisk with respect to the variablez1 (z2) if it
is a subspace of the Hardy spaceH2(D2,G), which is invariant under the backward
shift (1.3) ((1.4)), and satisfies the inequality(1.5) ((1.6), respectively). In Section
6 we show that every Schur functionS ∈ S(D2;F,G) is the characteristic function
of a coisometric colligation in whichH(D2, S) is the state space. Finally, in Section
7 we show that there exist sub-Hardy Hilbert spaces inH2(D2,Cp) whose ortho-
gonal complement is shift invariant and nevertheless not of the formSH2(D2,Cq)
for somep × q matrix valued Schur functionS on the bidisk.

Some of the results presented here were announced in [4]. Related with this
paper are those of Ball and Trent [11], Agler [1] and Cotlar and Sadosky [13, 14].
They contain generalizations of the one variable theory to the case ofn variables.
The kernels studied in [1] coincide for the casen = 2 with the kernel (1.7), but
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we characterize the more general class of sub-Hardy Hilbert spaces of the bidisk.
In [13, 14] subspaces of the Hardy spaceH2(D2,G) that are invariant under the
multiplication byz1 andz2 are studied.

2. SpacesH(D2, S)

For S ∈ S(D2;F,G), the kernelKS(w1, w2; z1, z2) defined by (1.7) is nonnegat-
ive onD2 and we denote the corresponding reproducing kernel Hilbert space by
H(D2, S). The nonnegativity of this kernel inD2 is equivalent to the fact that the
operatorMS of multiplication byS is a contraction from the Hardy spaceH2(D2,F)

into the Hardy spaceH2(D2,G). The spaceH(D2, S) is contractively included in
the Hardy spaceH2(D2,G). This is a consequence of the two characterizations
for it, obtained in a similar way to those for the one variable spaceH(D, S); see
[9, 20]. The first characterization is as an operator range. We recall that for an
operatorT ∈ L(F,G), the range normon M = ranT is the norm which makes
T a partial isometry fromH ontoM. Evidently, this norm comes from the Hilbert
space inner product

〈Tf, T h〉M = 〈(IF − P)f, h〉F,
whereP is the orthogonal projection ofF onto kerT .

THEOREM 2.1 The spaceH(D2, S) is equal to the range of(I −MSM
∗
S )

1/2 in
the range norm.

Another equivalent characterization, more convenient to our present purpose, is
given in the next theorem. We refer to [9] for the proof. Forf ∈ H2(D2,G), let

m(f ) := sup
u∈H2(D2,F)

{
‖f + Su‖2H2(D2,G)

− ‖u‖2H2(D2,F)

}
. (2.1)

THEOREM 2.2 We have

H(D2, S) = {f ∈ H2(D2,G) |m(f ) <∞} and‖f ‖H(D2,S) = m(f ).

These theorems imply that the spacesH(D2, S) are contractively included in the
Hardy spaceH2(D2,G). We give an example where the inclusion is isometric and
one where it is contractive but not isometric.

EXAMPLE 2.3 LetF = G = C and takeS(z1, z2) = z1z2. Then

KS(w1, w2; z1, z2) = 1

1− z2w
∗
2

+ z1w
∗
1

1− z1w
∗
1

,

H(D2, S) consists of all functions of the form

f (z1, z2) = g(z2)+ z1h(z1), g, h ∈ H2(D,C),
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and the norm is given by

‖f ‖2
H(D2,S)

= ‖g‖2H2(D,C) + ‖h‖2H2(D,C) = ‖f ‖2H2(D2,C).

Thus the inclusion ofH(D2, S) in H2(D2,C) is isometric. 2

EXAMPLE 2.4 LetF = C2, G = C, let α andβ be nonzero numbers such that
|α|2+ |β|2 = 1, and takeS(z1, z2) = (αz1, βz2). Then the kernel(1.7) is equal to

KS(w1, w2; z1, z2) = |α|2
1− z2w

∗
2

+ |β|2
1− z1w

∗
1

and the spaceH(D2, S) consists of all functions of the form

f (z1, z2) = g(z2)+ h(z1), g, h ∈ H2(D,C). (2.2)

It is easily seen that the norm ofH(D2, S) is not theH2(D2,C) norm. Indeed, take
for instancew1 6= 0,w2 = 0 andf (z1, z2) = K(w1,0; z1, z2). The square of its
H(D2, S) norm is the value of the reproducing kernel at(w1,0), that is,

‖f (z1, z2)‖2H(D2,S)
= |α|2+ |β|2

1− |w1|2 = 1+ |β|2 |w1|2
1− |w1|2 .

This number is not equal to

‖f (z1, z2)‖2H2(D2,C) = (|α|2+ |β|2)2+ |β|4
|w1|2

1− |w1|2 = 1+ |β|4 |w1|2
1− |w1|2 .

2

THEOREM 2.5 AssumeS ∈ S(D2;F,G). The spaceH(D2, S) is a sub-Hardy
Hilbert subspace. Moreover, forj = 1,2 andf ∈ F, R(j)0 Sf ∈ H(D2, S) and

‖R(1)0 Sf ‖2
H(D2,S)

6 ‖f ‖2F − ‖S(z1,0)f ‖2H2(D,G),

‖R(2)0 Sf ‖2
H(D2,S)

6 ‖f ‖2F − ‖S(0, z2)f ‖2H2(D,G).

Proof. We show first that the operatorR(1)0 defined by(1.3) is a contraction from
H(D2, S) into itself and satisfies the inequality(1.5). That alsoR(2)0 in (1.4) defines
a contraction onH(D2, S) and that(1.6) holds can be proved similarly and is
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omitted. We use Theorem 2.2: Foru ∈ H2(D2,F) we have

‖f (z1, z2)− f (0, z2)

z1
+ S(z1, z2)u(z1, z2)‖2H2(D2,G)

− ‖u‖2H2(D2,F)

= ‖f (z1, z2)+ z1S(z1, z2)u(z1, z2)− f (0, z2)‖2H2(D2,G)
− ‖u‖2H2(D2,F)

= ‖f (z1, z2)+ z1S(z1, z2)u(z1, z2)‖2H2(D2,G)

−2Re〈f (z1, z2)+ z1S(z1, z2)u(z1, z2), f (0, z2)〉H2(D2,G)

+‖f (0, z2)‖2H2(D2,G)
− ‖z1u‖2H2(D2,F)

= ‖f (z1, z2)+ z1S(z1, z2)u(z1, z2)‖2H2(D2,G)

−2Re〈f (z1, z2), f (0, z2)〉H2(D2,G) + ‖f (0, z2)‖2H2(D2,G)
− ‖z1u‖2H2(D2,F)

= ‖f (z1, z2)+ z1S(z1, z2)u(z1, z2)‖2H2(D2,G)

−2Re〈f (0, z2), f (0, z2)〉H2(D2,G) + ‖f (0, z2)‖2H2(D2,G)
− ‖z1u‖2H2(D2,F)

=
(
‖f (z1, z2)+ z1S(z1, z2)u(z1, z2)‖2H2(D2,G)

− ‖z1u‖2H2(D2,F)

)
−‖f (0, z2)‖2H2(D2,G)

6 m(f )− ‖f (0, z2)‖2H2(D2,G)
.

Sincem(f ) <∞, this implies (1.5).
We come the second part of the theorem and compute an upper bound form(R

(2)
0 Sf ).

Foru ∈ H2(D2,F) we have

∥∥∥∥S(z1, z2)− S(z1,0)

z2
f + S(z1, z2)u(z1, z2)

∥∥∥∥2

H2(D2,G)

− ‖u‖2H2(D2,F)

= ‖(S(z1, z2)− S(z1,0))f + z2S(z1, z2)u(z1, z2)‖2H2(D2,G)
− ‖u‖2H2(D2,F)

= ‖S(z1, z2)(f + z2u(z1, z2))− S(z1,0)f ‖2H2(D2,G)
− ‖u‖2H2(D2,F)

= ‖S(z1, z2)(f + z2u(z1, z2))‖2H2(D2,G)

−2Re〈S(z1, z2)(f + z2u(z1, z2)), S(z1,0)f 〉2H2(D2,G)

+‖S(z1,0)f ‖2H2(D2,G)
− ‖u‖2H2(D2,F)

= ‖S(z1, z2)(f + z2u(z1, z2))‖2H2(D2,G)
− 2Re〈S(z1,0)f, S(z1,0)f 〉2H2(D2,G)

+‖S(z1,0)f ‖2H2(D2,G)
− ‖u‖2H2(D2,F)

6 ‖f + z2u(z1, z2)‖2H2(D2,G)
− 2Re〈S(z1,0)f, S(z1,0)f 〉2H2(D2,G)

+‖S(z1,0)f ‖2H2(D2,G)
− ‖u‖2H2(D2,F)

6 ‖f ‖2F − ‖S(z1,0)f ‖2H2(D2,G)
.

Hence
m(R

(2)
0 Sf ) 6 ‖f ‖2F − ‖S(z1,0)f ‖2H2(D2,G)

.
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Theorem 2.2 implies thatR(2)0 Sf ∈ H(D2, S) and that the last inequality in the
theorem holds. The results forR(1)0 Sf can be proved similarly. 2

We note that (1.5) and (1.6) are satisfied with equality ifM coincides with the
Hardy space of the bidisk. As in the one variable case, it would be of interest to
characterize all sub-Hardy Hilbert spacesM for which the equalities hold. The
operatorsR(1)0 andR(2)0 are just special cases of the operators defined by

R(1)α f (z1, z2) = f (z1, z2)− f (α, z2)

z1− α , R(2)α f (z1, z2) = f (z1, z2)− f (z1, α)

z2− α ,

for α ∈ D. These operators commute. Indeed, forα, β ∈ D andf ∈ H(D2, S),

R(1)α R
(2)
β f (z1, z2) = f (z1, z2)− f (z1, β)− f (α, z2)+ f (α, β)

(z1− α)(z2− β)
= R(2)β R(1)α f (z1, z2).

They also satisfy the resolvent identity

R(j)α − R(j)β = (α − β)R(j)α R(j)β , j = 1,2,

which also holds for the one variable case; see for example [6, Formula (2.16)].

3. The Finite-Dimensional Case

In this section we first give an example of a sub-Hardy Hilbert space that is not an
H(D2, S)-space and then we show that nontrivialH(D2, S)-spaces are necessarily
infinite dimensional.

We note the following: a vector functionf is a common eigenfunction of the
operators(1.3) and(1.4)with (possibly different) eigenvaluesλ1 andλ2 if and only
if it is a multiple of the function

f (z1, z2) = 1

(1− z1λ1)(1− z2λ2)
.

The sufficiency part is clear. To verify the necessity part, let

f (z1, z2)− f (0, z2)

z1
= λ1f (z1, z2) and

f (z1, z2)− f (z1,0)

z2
= λ2f (z1, z2).

Then

f (z1, z2) = f (0, z2)

1− λ1z1
= f (z1,0)

1− λ2z2
.
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Settingz1 = 0 we get

f (0, z2) = f (0,0)

1− λ2z2

and therefore

f (z1, z2) = f (0,0)

(1− z1λ1)(1− z2λ2)
.

This type of function appears in the following example.

EXAMPLE 3.1 Leta1, a2 ∈ D. The one-dimensional subspaceM of H2(D2,C)
spanned by

f (z1, z2) = 1

(1− z1a
∗
1)(1− z2a

∗
2)

is a sub-Hardy Hilbert space of the bidisk and equality holds in(1.5) and(1.6).
But there exists no Schur functionS such that the reproducing kernel ofM is of
the form(1.7).

Discussion.For i = 1,2, let

fi(zi) = 1

1− zia∗i
, pi = 1

1− |ai |2 , bi(zi) = zi − ai
1− zia∗i

.

Then
fi(zi)fi(wi)

∗

pi
= 1− bi(zi)bi(wi)∗

1− ziw∗i
, i = 1,2,

and sincef (z1, z2) = f1(z1)f2(z2),

f (z1, z2)f (w1, w2)
∗

p1p2
= 1− b1(z1)b1(w1)

∗

1− z1w
∗
1

· 1− b2(z2)b2(w2)
∗

1− z2w
∗
2

. (3.1)

The square of theH2(D2,C) norm off is equal top1p2 and thus the left side of
(3.1) is the reproducing kernel ofM; see [15, formula (2.4)]. Assume there are a
Hilbert spaceF and anS ∈ S(D2,F,C) such that this kernel is of the form (1.7).
Then

1− b1(z1)b1(w1)
∗

1− z1w
∗
1

· 1− b2(z2)b2(w2)
∗

1− z2w
∗
2

= 1− S(z1, z2)S(w1, w2)
∗

(1− z1w
∗
1)(1− z2w

∗
2)

and hence

b1(z1)b1(w1)
∗ + b2(z2)b2(w2)

∗ − b1(z1)b1(w1)
∗b2(z2)b2(w2)

∗

= S(z1, z2)S(w1, w2)
∗.

The right side is a nonnegative function onD2 while the left side has one negative
square, and hence there is a contradiction. 2
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Example 3.1 shows that the tensor product ofH(D, b1) and H(D, b2) is not an
H(D2, S) space. More is true than is shown in this example: There is no norm on
M defined in the above example for which the reproducing kernel is of the form
(1.7). This follows from the main result of this section:

THEOREM 3.2 Every spaceH(D2, S), S ∈ S(D2;F,G), is either trivial or infin-
ite dimensional.

It is well known (see [10, 19]) that the product of two nonnegative scalar kernels
is still nonnegative. The following result complements this and will be used in the
proof of the theorem.

LEMMA 3.3 Let M(w, z) be a nonnegativeL(G)–valued kernel onD and let
s(z) be a nonconstant scalar Schur function onD. Then the kernelK(w, z) =
1/1− s(z)s(w)∗M(z,w) is nonnegative and ifH(M) 6= {0} then the reproducing
kernel Hilbert spaceH(K) is infinite dimensional.

Proof. SinceM(w, z) is nonnegative, the reproducing kernel spaceH(M) is well
defined and the kernelM(w, z) can be factorized asM(z,w) = F(z)F (w)∗,
whereF : D → L(H(M),G) is the evaluation mapping defined byF(w)f =
f (w), f ∈ H(M); see for example [5, Theorem 1.1.2]. It follows thatK(w, z) =∑∞

0 s(z)
ns(w)∗nF (z)F (ω)∗ is nonnegative, the spaceH(K) is well defined, and

for everyn ∈ N, s(z)nH(M) ⊂ H(K); see [5, Theorems 1.5.5 and 1.5.7] in the
definite setting. Thus iff is a nonzero element ofH(M), the linearly independent
functionsf (z), s(z)f (z), s(z)2f (z), . . . belong toH(K). 2

Proof of Theorem 3.2: AssumeH(D2, S) is finite dimensional. Letb(z) be a
nonconstant scalar Schur function and replacez2 in (1.7) byb(z1) andw2 byb(w1).
Then the kernel

K(w1, z1) := 1− S(z1, b(z1))S(w1, b(w1))
∗

(1− z1w
∗
1)(1− b(z1)b(w1)∗)

is nonnegative and sinceH(D2, S) is finite dimensional, the reproducing kernel
spaceH(K) is finite dimensional also. On the other handK(w1, z1) is the product
of the two nonnegative kernels

L(w1, z1) := 1

1− b(z1)b(w1)∗
, Mb(w1, z1) := 1− S(z1, b(z1))S(w1, b(w1))

∗

1− z1w
∗
1

By Lemma 3.3,H(Mb) = {0}. HenceMb(w1, z1) is identically zero for every
nonzero scalar Schur functionb(z), and so

S(z1, b(z1))S(w1, b(w1))
∗ ≡ 1. (3.2)
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Fix z1 andz2 in D, choosew1 = z1 and take forb the Blaschke factor

b(z) = z− α
1− zᾱ , where α = z1− z2

1− z1z̄2
.

Thenb(z1) = z2 and by (3.2),S(z1, z2)S(z1, z2)
∗ ≡ 1, z1, z2 ∈ D. The positivity of

the kernelKS(w1, w2; z1, z2) implies that more generallyS(z1, z2)S(w1, w2)
∗ ≡ 1,

z1, z2, w1, w2 ∈ D, and soH(D2, S) = {0}. 2

In going from one variable to two variables, we replaced the denominator 1−
zw∗ in (1.1) by(1− z1w

∗
1)(1− z2w

∗
2); see (1.7). This corresponds to case of the

bidiskD2 = {(z1, z2) ∈ C2| |z1| < 1, |z2| < 1}. But another possibility would be
to replace 1− zw∗ by 1− z1w

∗
1 − z2w

∗
2 and to consider the kernel

LS(w1, w2; z1, z2) := I − S(z1, z2)S(w1, w2)
∗

1− z1w
∗
1 − z2w

∗
2

.

This case corresponds to the unit ballB2 := {(z1, z2) ∈ C2| |z1|2 + |z2|2 < 1} and
differs from the bidisk case as can be seen from the following example.

EXAMPLE 3.4 There exist finite–dimensional reproducing kernel Hilbert spaces
of the formH(LS).

Discussion.Forn ∈ N,

(z1w
∗
1 + z2w

∗
2)
n =

n∑
k=0

C(n, k) (z1w
∗
1)
k(z2w

∗
2)
n−k, C(n, k) = n!

(n− k)! k! ,

hence ifS(z1, z2) is the 1× (n+ 1) matrix valued function

S(z1, z2) = (zn1
√
C(n,1)zn−1

1 z2

√
C(n,2)zn−2

1 z2
2 · · · zn2),

thenS(z1, z2)S(w1, w2)
∗ = (z1w

∗
1 + z2w

∗
2)
n and

LS(w1, w2; z1, z2) = 1+(z1w
∗
1+z2w

∗
2)+(z1w

∗
1+z2w

∗
2)

2+· · ·+(z1w
∗
1+z2w

∗
2)
n−1.

It follows that the kernelLS(w1, w2; z1, z2) is nonnegative and that the spaceH(LS)

is spanned by the linearly independent functions 1, z1, z2, z
2
1, z1z2, z

2
2, z

3
1, . . . ,

zn−1
2 . 2

In Section 5 we characterize the finite-dimensional sub-Hardy Hilbert spaces in the
bidisk; see Theorem 5.2.

4. Semi Sub-Hardy Hilbert Spaces of the Bidisk

The following simple lemma shows how analytic vector valued functions of two
variables can be reduced to analytic vector valued functions of one variable. The
idea is not new, see for example [17]. The lemma is the key to the paper [3] in
which interpolation problems are studied in the Hardy space of the bidisk.
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LEMMA 4.1 Let g(z1, z2) be a function fromH2(D2,G) and consider its power
series expansion

g(z1, z2) =
∞∑

i,j=0

gij z
i
1z
j

2, gij ∈ G. (4.1)

If

fj (z1) :=
∞∑
i=0

gij z
i
1 and hi(z2) :=

∞∑
j=0

gij z
j

2, i, j = 0,1, . . . ,

then the functions

f (z1) =
 f0(z1)

f1(z1)
...

 and h(z2) =
 h0(z2)

h1(z2)
...

 (4.2)

belong toH2(D, `2(G)) and satisfy

g(z1, z2) = EG(z2)f (z1) = EG(z1)h(z2), (4.3)

where

EG(z) =
(
IG zIG z

2IG, · · ·
)
. (4.4)

Moreover,

‖g‖H2(D2,G) = ‖f ‖H2(D,`2(G)) = ‖h‖H2(D,`2(G)). (4.5)

The proof of this lemma is straightforward and therefore omitted. We usually write
E for EG; it should be clear from the context to which space it is related.

We now come to the characterization of a semi sub-Hardy Hilbert space ofD2;
for the definition we refer to the Introduction.

THEOREM 4.2 Let G be a Hilbert space andM a Hilbert space ofG-valued
functions onD2.
(1)M is a semi sub-Hardy Hilbert space ofD2 with respect toz1 if and only if it is
a reproducing kernel Hilbert space with a reproducing kernel of the form

KM(w1, w2; z1, z2) = E(z2)
IG − S(z1)S(w1)

∗

1− z1w
∗
1

E(w2)
∗ (4.6)

for some Schur functionS(z) ∈ S(D;F, `2(G)) and some Hilbert spaceF. In this
case,g ∈M if and only if it can be written as

g(z1, z2) = E(z2)f (z1), f ∈ H(D, S), (4.7)
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and then‖g‖M = ‖f ‖H(D,S).
(2)M is a semi sub–Hardy Hilbert space ofD2 with respect toz2 if and only if

it is a reproducing kernel Hilbert space with a reproducing kernel of the form

KM(w1, w2; z1, z2) = E(z1)
IG − S(z2)S(w2)

∗

1− z2w
∗
2

E(w1)
∗ (4.8)

for some Schur functionS(z) ∈ S(D;F, `2(G)) and some Hilbert spaceF. In this
case,g ∈M if and only if it can be written as

g(z1, z2) = E(z1)f (z2), f ∈ H(D, S), (4.9)

and then‖g‖M = ‖f ‖H(D,S).

Proof. Let M be a semi sub-Hardy Hilbert space ofD2 with respect toz1 and
consider the subspace

M1 = {f ∈ H2(D, `2(G)) : E(z2)f (z1) ∈M}
with the induced norm

‖f ‖M1 = ‖g‖M, g(z1, z2) = E(z2)f (z1).

ThenM1 is contractively included inH2(D, `2(G)). Furthermore, since

R
(1)
0 g(z1, z2) = E(z2)f (z1)− E(z2)f (0)

z1

= E(z2)
f (z1)− f (0)

z1
= E(z2)R0f (z1), (4.10)

the spaceM1 is backward shift invariant, and by (1.5) applied to elements inM,

‖R0f ‖2M1
= ‖R(1)0 g‖2M 6 ‖g‖2M − ‖g(0, z2)‖2H2(D,G) = ‖f ‖2M1

− ‖f (0)‖2`2(G)
.

Thus Theorem 1.1 can be applied: The reproducing kernel of the spaceM1 is of the

form
I − S(z1)S(w1)

∗

1− z1w
∗
1

for someS(z) ∈ S(D;F, `2(G)) and some Hilbert spaceF.

Hence everyg ∈ M can be written as in (4.7) and‖g‖M = ‖f ‖H(D,S). To show
that (4.6) is the reproducing kernel ofM, let k ∈ G and(w1, w2) ∈ D2. Then the
vectorE(w2)

∗k ∈ `2(G) and so the function

KM(w1, w2; z1, z2)k = E(z2)
I − S(z1)S(w1)

∗

1− z1w
∗
1

E(w2)
∗k

belongs toM. Finally, for any functiong of the form (4.7) we have

〈g,KM(w1, w2; z1, z2)k〉M = 〈f, I`2(G) − S(z1)S(w1)
∗

1− z1w
∗
1

E(w2)
∗k〉H(D,S) =

= 〈f (w1), E(w2)
∗k〉`2(G) = 〈E(w2)f (w1), k〉G = 〈g(w1, w2), k〉G.
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Conversely, assumeM is the reproducing kernel Hilbert space with the reproducing
kernelKM of the form (4.6). Then every elementg ∈ M admits a representation
(4.7). SinceR0f ∈ H(D, S) and by (4.10),R(1)0 g ∈M. Furthermore,

‖R(1)0 g‖2M = ‖R0f ‖2H(D,S) 6 ‖f ‖2H(D,S) − ‖f (0)‖2`2(G)

= ‖g‖2M − ‖g(0, z2)‖2H2(D2,G)
,

which proves the inequality (1.5) and completes the proof of part (1) of the the-
orem. The assertions in part (2) can be proved in much the same way. 2
EXAMPLE 4.3 The kernel (4.8) is not necessarily of the form (1.7). For instance
the choiceS(z2) = diag (1, z2,1,1, · · · ) leads toKM(w1, w2; z1, z2) = z1w

∗
1,

and the corresponding spaceH(KM) coincides withz1C. This space is notR(1)0 -
invariant and thus the kernel (4.8) is not of the form (1.7). On the other hand, when
the functionS is scalar, one obtains a kernel of the form (1.7). 2

If F in Theorem 4.2 can be identified with an`2-space, then the semi sub-Hardy
Hilbert spaceM admits characterizations analogous to Theorems 2.1 and 2.2. To
show this we use the following simple observation.

LEMMA 4.4 Let S(z) ∈ S(D; `2(F), `2(G)). Then in the notation of Lemma4.1
the formulas

(S1g)(z1, z2) = E(z2)S(z1)f (z1), (S2g)(z1, z2) = E(z1)S(z2)h(z2),

(4.11)

whereg(z1, z2) = E(z2)f (z1) = E(z1)h(z2), define two contractionsS1 and S2

from H2(D2,F) to H2(D2,G), whose adjoints are given by

(S1
∗g)(z1, z2) = E(z2)(p

(
S∗f

)
)(z1), (S2

∗g)(z1, z2) = E(z1)(p
(
S∗h

)
)(z2),

(4.12)

where the symbolp denotes the orthogonal projection of the Lebesgue space
L2(∂D, `2(F)) onto H2(D, `2(F)). In particular, if h ∈ G and g(z1, z2)=

h
(1−z1w∗1)(1−z2w∗2) , then

(S1
∗g)(z1, z2) = E(z2)

S(w1)
∗E(w1)

∗h
1− z1w

∗
1

,

(S2
∗g)(z1, z2) = E(z1)

S(w2)
∗E(w2)

∗h
1− z2w

∗
2

. (4.13)

Proof.These results follow from the one variable case. SinceMS is a contraction,
for g(z1, z2) = E(z2)f (z1) ∈ H2(D2,F) we have

‖S1g‖H2(D2,G) = ‖MSf ‖H2(D,`2(G)) 6 ‖f ‖H2(D,`2(F)) = ‖g‖H2(D2,F),



HARDY SPACE OF THE BIDISK 39

which shows thatS1 is a contraction. For the computation of the adjoint ofS1, let
g(z1, z2) = E(z2)f (z1) ∈ H2(D2,F) andk(z1, z2) = E(z2)h(z1) ∈ H2(D2,G),
then

〈S1
∗k, g〉H2(D2,F) = 〈k,S1g〉H2(D2,G) = 〈h,MSf 〉H2(D,`2(G)) =
= 〈p (S∗h) , f 〉H2(D,`2(F)) = 〈E(z2)(p(S∗f ))(z1), k〉H2(D2,F),

which proves the first equality in (4.12). To obtain first equality in (4.13), use the
first equality in (4.12) forg(z1, z2) = E(z2)E(w2)

∗h/1− z1w
∗
1 and recall (see [15,

Lemma 2.1] for matrix valued Schur functions) that withh′ = E(w2)
∗h ∈ `2(G)

p
(
S(z1)

∗h′

1− z1w
∗
1

)
= S(w1)

∗h′

1− z1w
∗
1

.

The assertions concerning the operatorS2 are proved in much the same way.2

The lemma readily implies the following analogs of Theorems 2.1 and 2.2.

THEOREM 4.5 For S(z) ∈ S(D; `2(F), `2(G)), the spaceM with reproducing
kernel

KM(w1, w2; z1, z2) = E(z2)
IG − S(z1)S(w1)

∗

1− z1w
∗
1

E(w2)
∗

(
KM(w1, w2; z1, z2) = E(z1)

IG − S(z2)S(w2)
∗

1− z2w
∗
2

E(w1)
∗
)

coincides(a) with the operator rangeran (I − S1S1
∗) 1

2 (ran (I − S2S2
∗) 1

2 , resp.)
in the range norm, and(b) with the space

M′ =
{
k ∈ H2(D2,G) | supg∈H2(D2,F)

(
‖k + S1g‖2H2(D2,G)

− ‖g‖2H2(D2,F)

)
<∞

}
,(

M
′ =

{
k ∈ H2(D2,G) | supg∈H2(D2,F)

(
‖k + S2g‖2H2(D2,G)

− ‖g‖2H2(D2,F)

)
<∞

}
,

resp.
)

and the norm ofk ∈M is exactly the supremum in the formula forM′.

The sub-Hardy Hilbert spaceM in Example 3.1 is an operator range:

M = ran(I − VV ∗)
1
2 = ran(I − VV ∗),

whereV is an isometric operator fromH2(D2,C) into itself: We can takeV = S2

defined by the second equality in (4.11) withF = G = C and for an arbitraryµ on
the unit circle

S(z2) = I`2 + (z2− µ)E(a1)
∗

√
p1

1

1− z2a
∗
2

1

p2

1

µ− a2

E(a1)√
p1
.



40 D. ALPAY ET AL.

Indeed, this follows from the identity (see [3, Lemmas 3.1 and 3.4])

f (z1, z2)f (w1, w2)
∗

p1p2
= E(z1)

E(a1)
∗

√
p1

1− b2(z2)b2(w2)
∗

1− z2w
∗
2

E(a1)√
p1

E(w1)
∗

= E(z1)
I`2 − S(z2)S(w2)

∗

1− z2w
∗
2

E(w1)
∗.

Similarly we could have chosenV = S1. Now we turn to finite-dimensional
semi sub-Hardy Hilbert spaces ofD2. We first recall the following well known
result

LEMMA 4.6 LetG be a Hilbert space,� some set, and letM be a finite-dimension-
al Hilbert space ofG-valued functions on� with basis{g1, g2, . . . , gn}. Let P
be the strictly positiven × n matrix with j̀ -th entry p j̀ = 〈gj , g`〉M and let
G(z) be then × 1-vector functionG(z) = (g1(z) g2(z) · · · gn(z)). ThenM is
a reproducing kernel Hilbert space with reproducing kernel given by the formula
K(w, z) = G(z)P−1G(w)∗.

For a proof see for example [7, Theorem 4.1].

THEOREM 4.7 Let G be a Hilbert space andM an n-dimensional subspace of
H2(D2, G). ThenM is a semi sub-Hardy Hilbert space ofD2 with respect toz1

(z2) if and only if it is a reproducing kernel Hilbert space with reproducing kernel

K(w1, w2; z1, z2) = E(z2)C (In − z1A)
−1P−1 (In − w∗1A∗)−1

C∗E(w2)
∗

(4.14)(
K(w1, w2; z1, z2) = E(z1)C (In − z2A)

−1P−1 (In − w∗2A∗)−1
C∗E(w1)

∗,

respectively
)
,

whereC ∈ L(Cn, `2(G)), A ∈ Cn×n, andP ∈ Cn×n is a strictly positive matrix
such that

P− A∗PA > C∗C. (4.15)

Proof.By Lemma 4.6,M is the reproducing kernel Hilbert space with reproducing
kernelK(w, z) = G(z)P−1G(w)∗, where

G(z1, z2) = (g1(z1, z2) g2(z1, z2) . . . gn(z1, z2)) , (4.16)

the entriesgj (z1, z2) form a basis ofM, andP = (〈gj , g`〉M)nj,`=1 is strictly posit-
ive.
Necessity: SinceM isR(1)0 –invariant,

R
(1)
0 G(z1, z2) = G(z1, z2)−G(0, z2)

z1
= G(z1, z2)A (4.17)
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for some matrixA ∈ Cn×n and therefore

G(z1, z2) = G(0, z2) (In − z1A)
−1 . (4.18)

Since thegj ∈ H2(D2,G) admit an expansion of the form (4.1), there is an operator

C = ( G00 G01 . . .
)T ∈ L(Cn, `2(G))

such that

G(0, z2) = E(z2)C (4.19)

and therefore

G(z1, z2) = E(z2)C (In − z1A)
−1 . (4.20)

Now the formula (4.14) for the kernel follows. For every vectorx ∈ Cn,
‖Gx‖2M = x∗Px. (4.21)

Furthermore, on account of (4.17),

‖R(1)0 Gx‖2M = ‖GAx‖2M = x∗A∗PAx, (4.22)

whereas, by Lemma 4.1, the equality (4.19) implies

‖G(0, z2)x‖2H2(D,`2(G))
= ‖Cx‖2`2(G)

= x∗C∗Cx. (4.23)

Substituting the latter three equalities into (1.5) we get

x∗A∗PAx 6 x∗Px − x∗C∗Cx.
Sincex is arbitrary, the latter inequality is equivalent to (4.15).
Sufficiency: IfM is a reproducing kernel Hilbert space with reproducing kernelK

of the form (4.14), it is spanned by the columns of theL(Cn;G)-valued function
G(z1, z2) given by (4.20), that is,M consists of all the functionsg of the form

g(z1, z2) = G(z1, z2)x, x ∈ Cn, (4.24)

with the norm given by (4.21). TheR(1)0 -invariance ofM follows from (4.17)
whereas, on account of (4.15), the equalities (4.21)–(4.23) imply that the inequality
(1.5) holds for every functiong of the form (4.24). The statements in brackets in
the theorem can be proved quite similarly. 2

5. Sub-Hardy Hilbert Spaces of the Bidisk

In the preceding section we considered the invariance under the backward shifts
R
(1)
0 andR(1)0 separately. The spaces we are interested in are invariant under both

of them.
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THEOREM 5.1 Let G be a Hilbert space, letM be a Hilbert space ofG-valued
functions and letT be the shift of̀ 2(G) defined by the matrix

T =
 0 IG 0 0 · · ·

0 0 IG 0 · · ·
0 0

 . (5.1)

The following statements are equivalent:
(1) M is a sub–Hardy Hilbert space ofD2.
(2) M is a reproducing kernel Hilbert space with the reproducing kernel of the
form (4.6) with a Schur functionS such that the spaceH(D, S) is T -invariant.
(3) M is a reproducing kernel Hilbert space with the reproducing kernel of the
form (4.8) with a Schur functionS such that the spaceH(D, S) is T -invariant.

Proof: Assume thatM is a sub-Hardy Hilbert space ofD2. Then it is contractively
included inH2(D2,G) and invariant underR(1)0 . By Theorem 4.2, it is the reprodu-
cing kernel Hilbert space with the reproducing kernelKM of the form(4.6). This
means that everyg ∈M admits a representation (4.7). By (4.7) and (5.1),

R
(2)
0 g(z1, z2) = g(z1, z2)− g(z1,0)

z2
= E(z2)− E(0)

z2
f (z1) = E(z2)Tf (z1),

and, sinceM is alsoR(2)0 -invariant,E(z2)Tf (z1) ∈M, therefore

Tf (z1) ∈ H(D, S).

Sincef (z1) ∈ H(D, S) is arbitrary, the latter means thatH(D, S) is T -invariant.

Conversely, letM be the reproducing kernel Hilbert space with the reproducing
kernel of the form(4.6) and assume thatH(D, S) is T -invariant. Letf (z1) ∈
H(D, S); thenTf (z1) ∈ H(D, S) and by Theorem 4.2,

E(z2)Tf (z1) = R(2)0 (E(z2)f (z1)) ∈M.

Since the representation formula (4.7) holds for all functions inM, the latter means
that M is R(2)0 -invariant. According to Theorem 4.2, it is alsoR(1)0 -invariant and
contractively included inH2(D2,G). This proves the equivalence of the two first
statements. The equivalence between (1) and (3) can be proved in a similar way.2

In Example 4.3 withS(z2) = diag (1, z2,1,1, · · · ), the spaceH(D, S) consists
of vectors of the form( 0 c 0 0 . . . )T with c ∈ C and is therefore not invariant
under the shiftT .

THEOREM 5.2 LetG be a Hilbert space and letM be ann-dimensional subspace
of H2(D2,G). ThenM is a sub–Hardy Hilbert space ofD2 if and only if it is a
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reproducing kernel Hilbert space with reproducing kernel

K(w1, w2; z1, z2) =
= C (In − z1B1)

−1 (In − z2B2)
−1P−1

(
In − w∗2B∗2

)−1 (
In − w∗1B∗1

)−1
C∗,
(5.2)

whereC ∈ L(Cn,G), B1, B2 ∈ Cn×n, andP ∈ Cn×n is a strictly positive matrix
such that

CB`1B
j

2 = CBj2B`1, `, j = 0,1, . . . , (5.3)

P− B∗1PB1 >
∞∑
j=0

B
j∗
2 C

∗CBj2 , P− B∗2PB2 >
∞∑
j=0

B
j∗
1 C

∗CBj1 . (5.4)

Proof.As in the proof of Theorem 4.7, we apply Lemma 4.6:M is the reproducing
kernel Hilbert space with reproducing kernelK(w, z) = G(z)P−1G(w)∗, where

G(z1, z2) = (g1(z1, z2) g2(z1, z2) . . . gn(z1, z2)) ,

the entriesgj (z1, z2) form a basis ofM, andP = (〈gj , g`〉M)nj,`=1 is strictly pos-

itive. We derive a formula forG: SinceM is R(1)0 -invariant,G(z1, z2) admits a
representation (4.18); we writeA1 for A. SinceM isR(2)0 -invariant,

R
(2)
0 G(z1, z2) = G(0, z2)−G(0,0)

z2
(In − z1A1)

−1

= G(z1, z2)B2 = G(0, z2) (In − z1A1)
−1B2

for some matrixB2 ∈ Cn×n and therefore,

G(0, z2) = G(0,0) (In − z1A1)
−1 (In − z2B2)

−1 (In − z1A1) .

Substituting thisG(0, z2) in (4.18) and settingC = G(0,0), we get

G(z1, z2) = C (In − z1A1)
−1 (In − z2B2)

−1 . (5.5)

Similarly one can derive the representation

G(z1, z2) = C (In − z2A2)
−1 (In − z1B1)

−1 , (5.6)

for some matricesB1, A2 ∈ Cn×n. If we compare the last two equalities forz1 = 0
andz2 = 0 we obtain the equalities

C (In − z2A2)
−1 ≡ C (In − z2B2)

−1 and C (In − z1A1)
−1 ≡ C (In − z1B1)

−1 .

Hence (5.6) and (5.5) can be rewritten as

G(z1, z2) = C (In − z2B2)
−1 (In − z1B1)

−1 = C (In − z1B1)
−1 (In − z2B2)

−1 .

(5.7)
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This readily implies (5.3) as well as the formula 5.2 for the kernel ofM. The space
M consists of all functions of the formf (z1, z2) = G(z1, z2)x, x ∈ Cn, with the
norm

‖f ‖2M = x∗Px.
Furthermore, forf of this form we have, on account of (5.7),

R
(j)

0 f (z1, z2) = G(z1, z2)Bjx, j = 1,2,

f (z1,0) = C (In − z1B1)
−1 x, andf (0, z2) = C (In − z2B2)

−1 x.

Therefore
‖R(j)0 f ‖2M = x∗A∗jPAjx, j = 1,2,

and

‖f (z1,0)x‖2H2(D,G) =
∞∑
j=0

x∗Bj∗1 C
∗CBj1x,

‖f (0, z2)x‖2H2(D,G) =
∞∑
j=0

x∗Bj∗2 C
∗CBj2x,

where the two series converge in the matrix norm, sincef (z1,0) and f (0, z2)

belong toH2(D,G). Substituting the right sides of the last four norm equalities
into (1.5) and (1.6) and taking into account thatx is an arbitrary vector fromCn,
we get (5.4).
The converse can be proved in much the same way as in Theorem 4.7. 2
REMARKS 5.3 (1) Note that each one of inequalities in (5.4) implies

∞∑
`,j=0

B
j∗
2 B

`∗
1 C

∗CB`1B
j

2 6 P. (5.8)

This leads to the following so far unsolved problem: Characterize in terms of invari-
ance properties ann-dimensional subspaceM of H2(D2, G) with the inequality
(5.8) instead of the pair of inequalities in(5.4).
(2) Note also that the corresponding equalities are mutually equivalent.

6. Realizations

In this section we derive a special realization for Schur functions on the bidisk.

THEOREM 6.1 Let Ŝ(z1, z2) ∈ S(D2;F,G), F andG Hilbert spaces. Then there
is anS(z) ∈ S(D; `2(F), `2(G)) such thatH(D, S) is invariant under the backward
shiftT given by(5.1),

H(D2, Ŝ) = {g | g(z1, z2) = E(z2)f (z1), f ∈ H(D, S)}
and‖g‖H(D2,Ŝ) = ‖f ‖H(D,S) if g(z1, z2) = E(z2)f (z1), f ∈ H(D, S).
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Proof. By Theorem 2.5,H(D2, Ŝ) is a sub-Hardy space ofD2, and by Theor-
ems 5.1 and 4.2, there exist a Hilbert spaceF1 and a Schur functionS1(z) ∈
S(D;F1, `2(G)) such that

IG − Ŝ(z1, z2)Ŝ(w1, w2)
∗

(1− z1w
∗
1)(1− z2w

∗
2)
= E(z2)

I`2(G) − S1(z1)S1(w1)
∗

1− z1w
∗
1

E(w2)
∗. (6.1)

Now write Ŝ(z1, z2) = E(z2)R(z1); thenR(z) is a bounded operator fromF to
`2(G) and it is analytic inz ∈ D. Define

S(z) = (R(z) T ∗R(z) T ∗2R(z), · · · ) , (6.2)

T ∗ being the forward shift oǹ2(G). To prove the theorem, we only need to show
that

(i) S(z) ∈ S(D; `2(F), `2(G)), and
(ii) in the formula (6.1) we may replaceF1 by `2(F) andS1(z) by S(z).
The key to the proof of (i) is the simple observation that

zn2E(z2)R(z1) = E(z2)(T
∗nR(z1)).

Indeed, if forf = (f0 f1 . . . fn . . . )
T ∈ `2(F) and` > k we set

fk,` = (0 . . . 0, fk, . . . , f`,0 . . . )T ∈ `2(F),

then forz1, z2 ∈ D we have

E(z2)S(z1)fk,` = E(z2)

`∑
n=k

T ∗nR(z1)fn

= E(z2)R(z1)
∑̀
n=k

zn2fn = Ŝ(z1, z2)
∑̀
n=k

zn2fn.

Hence, sincêS(z1, z2) is a contraction inL(F,G),

∥∥E(z2)S(z1)fk,`
∥∥2

G
6
∥∥∥∥∥

`∑
n=k

zn2fn

∥∥∥∥∥
2

F

.

If we write z2 = reiϕ , integrate both sides of this inequality overϕ from 0 to 2π
and then take the limit forr ↑ 1, we obtain∥∥S(z1)fk,`

∥∥2
`2(G)

6
∥∥fk,`∥∥2

`2(F)
.

It follows that the series in the equality

S(z1)f =
∞∑
n=0

T ∗nR(z1)fn, f = (f0 f1 . . . fn . . . )
T ∈ `2(F),
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converges iǹ 2(G) and for allz ∈ D, ‖S(z)f ‖`2(G) 6 ‖f ‖`2(F). This proves (i).
To see (ii), we observe that

Ŝ(z1, z2)Ŝ(w1, w2)
∗

1− z2w
∗
2

= E(z2)
R(z1)R(w1)

∗

1− z2w
∗
2

E(w2)
∗

= E(z2)

( ∞∑
n=0

zn2R(z1)R(w1)
∗w∗n2

)
E(w2)

∗

= E(z2)

( ∞∑
n=0

(
T ∗nR(z1)

) (
T ∗nR(w1)

)∗)
E(w2)

∗

= E(z2)S(z1)S(w1)
∗E(w2)

∗.

On the other hand, on account of (6.1), we have

Ŝ(z1, z2)Ŝ(w1, w2)
∗

1− z2w
∗
2

= E(z2)S1(z1)S1(w1)
∗E(w2)

∗.

Thus
S(z1)S(w1)

∗ = S1(z1)S1(w1)
∗,

and this implies (ii). 2
As a Schur function of one variable, the functionS in Theorem 6.1 admits a
coisometric realization withH(D, S) in the role of the state space:

S(z) = D + zC (IH(D,S) − zA)−1
B, (6.3)

where the operators defined by the rules: forg ∈ H(D, S) andf ∈ `2(F),

(Ag)(z) = g(z)− g(0)
z

, Cg = g(0),

(Bf )(z) = S(z)− S(0)
z

f, Df = S(0)f, (6.4)

are bounded operators such that the operator matrix(
A B

C D

)
:
(

H(D, S)
`2(F)

)
→
(

H(D, S)
`2(G)

)
(6.5)

is coisometric and closely outer connected, which means that

H(D, S) = span{ran(1− zA∗)−1C∗|z ∈ D}.
THEOREM 6.2 Let Ŝ ∈ S(D2;F,G). Let S ∈ S(D, `2(F), `2(G)) be as in
Theorem6.1 and assume it has the closely outer connected coisometric realiza-
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tion (6.3). Define the operatorsA,B,C andD by the rules: forg ∈ H(D, S) and
f ∈ `2(F),

AE(z2)g(z1) = E(z2)(Ag)(z1), (6.6)

BE(z2)f = E(z2)(Bf )(z1), (6.7)

CE(z2)g(z1) = E(z2)(Cg), (6.8)

DE(z2)f = E(z2)Df. (6.9)

Then the operator(
A B
C D

)
:
(

H(D2, Ŝ)

H2(D,F)

)
→
(

H(D2, Ŝ)

H2(D,G)

)
is coisometric and represents the operatorS1 defined by(4.11) as

(S1E(z2)f ) (z1) =
(
D+ z1C(I − z1A)−1B

)
(E(z2)f ), f ∈ `2(F). (6.10)

In particular, for h ∈ F,

Ŝ(z1, z2)h =
(
D+ z1C(I − z1A)−1B

)
h.

Proof. The representation (6.10) and that it comes from a coisometric operator
matrix follow easily from the coisometric representation forS(z), and is omitted.
The last equality follows from (6.10) if we takef = (h 0 0. . . )T ∈ `2(F) and
observe thatS1(E(z2)f ) = E(z2)S(z1)f = E(z2)R(z1)h = Ŝ(z1, z2)h. 2
REMARKS 6.3 (1) In some sense, the constants in the above realization are the
elements ofH2(D). Similar realizations in spirit (but the parallel is deeper) appear
in the setting of upper triangular operators in[8].
(2) Theorem 6.2 in particular applies to functions such that the kernel(1.7) is
positive in the bidisk. It is of interest to connect the present colligation to the ones
associated by Agler in the setting of this class of functions.

7. Shift–Invariant Subspaces

In this section we prove the following corollary of Theorem 3.2 about shift invariant
subspaces in the Hardy space of the bidisk. We writeHp

2(D2) for H2(D2,Cp),
p ∈ N, andT for the unit circle∂D.

THEOREM 7.1 For n ∈ N, (a1, b1), (a2, b2), . . . , (an, bn) ∈ D2, and
x1, x2, . . . , xn ∈ Cp, set

M = {f ∈ Hp

2(D
2) | x∗i f (ai, bi) = 0, i = 1,2, . . . , n}.

Then there exists nop × q matrix valued Schur functionS(z1, z2) which takes
isometric values onT2 such that
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M = SHq

2(D
2). (7.1)

Proof.Evidently,M⊥ is spanned by the linearly independent functions

fj (z1, z2) = xj

(1− z1a
∗
j )(1− z2b

∗
j )
, j = 1,2, . . . n,

and hence dimM⊥ = n. Assume there exists ap×q matrix valued Schur function
S(z1, z2) which takes isometric values onT2 such that (7.1) holds, that is, such that

M
⊥ = Hp

2(D
2)	 SHq

2(D
2).

We claim that thenM⊥ = H(D2, S), and so dimH(D2, S) = n, which is impossible
since by Theorem 3.2, such spaces are either trivial or infinite dimensional. This
contradiction proves the theorem. It remains to show the claim, or equivalently, that
the spaceM⊥ has reproducing kernelKS defined by(1.7):

KS(w1, w2; z1, z2) = I − S(z1, z2)S(w1, w2)
∗

(1− z1w
∗
1)(1− z2w

∗
2)
.

The proof is similar to the one variable case, and is recalled for completeness. We
first show that the function(z1, z2) 7→ KS(w1, w2; z1, z2)x belongs toHp

2(D2) 	
SHq

2(D2) for everyx ∈ Cp and(w1, w2) ∈ D2. Forf = Su with u ∈ Hp

2(D2) we
have

〈Su, I − S(z1, z2)S(w1, w2)
∗

(1− z1w
∗
1)(1− z2w

∗
2)
x〉Hp

2 (D2)

= 〈Su, x

(1− z1w
∗
1)(1− z2w

∗
2)
〉Hp

2 (D2)

−〈Su, S(z1, z2)S(w1, w2)
∗

(1− z1w
∗
1)(1− z2w

∗
2)
x〉Hp

2 (D2)

= x∗S(w1, w2)u(w1, w2)− 〈u, S(w1, w2)
∗

(1− z1w
∗
1)(1− z2w

∗
2)
x〉Hp

2 (D2)

= 0.

The second equality is true becauseS is assumed to be isometric onT2. This proves
KS(w1, w2; ·, ·)x ∈M⊥. Next we show the reproducing kernel property: We have
for f ∈ Hp

2(D2)	 SHq

2(D2),

〈f,KS(w1, w2; z1, z2)x〉Hp
2 (D2) = 〈f,

x

(1− z1w
∗
1)(1− z2w

∗
2)
〉Hp

2 (D2)

= x∗f (w1, w2).

ThusM⊥ = H(D2, S), and the claim is proved. 2
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Observe thatM⊥ is an example of a sub-Hardy Hilbert space for which (1.5)
and (1.6) are satisfied as equalities.
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