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Abstract. We study the reproducing kernel Hilbert spagg®2, S) with kernels of the form

I —S(z1, 22 >)S(w1, wp)*
(1 - zzw) (1 — z2w3)

where S(z1, z2) is a Schur function of two variableg, zo € D. They are analogs of the spaces
$H(D, S) with reproducing kernell— S(z) S(w)*)/(1—zw™) introduced by de Branges and Rovnyak
in L. de Branges and J. Rovnya&gquare Summable Power Serkdéglt, Rinehart and Winston, New
York, 1966. We discuss the characterizationsxfd?, S) as a subspace of the Hardy space on the
bidisk. The space$ (D2, S) form a proper subset of the class of the so—called sub—Hardy Hilbert
spaces of the bidisk.

1. Introduction

Let § and & be Hilbert spaces£(¥, ®) (£(3) if & = J) the set of bounded
operators fron§ to & and letD be the open unit disk in the set of complex numbers
C. The functionS : D — £(F, &) is called a Schur function if it is holomorphic on
D and||S(z)|| < 1forall z € D. The set of sucls will be denoted byS(D; F, &)
(S(; ) if & =3F). ForS € S(D; F, &), the £(&)—valued kernel

Is — S()S(w)*
Ks(w,z) = = 1_(Zz)w*(w) (1.1)

is nonnegative. The corresponding reproducing kernel Hilbert spéeS) plays
an important role in various questions of operator theory, system theory and inter-
polation; see [2], [5], [12], [15], [18].
Recall that art2(&)—valued kerneK (w, z) on a sef2 (such asKs(w, z) onD)
isafunctionK (-, ) : QxQ — £(8);itis called Hermitian ifK (w, 2)* = K(z, w)
and it is called nonnegative dn if it is Hermitian and for every natural number
all pointsws, ..., w, € Q and all vectorsy, ... ,u, € &, the block matrix with
ij-th entry (K (w;, wi)u;, u;)e is nonnegative. A Hilbert spac®t of functions
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from 2 into & is called a reproducing kernel Hilbert space if there is a nonnegative
£(®)—valued kernek (w, z) on  such that

(1) The functionz — K(w, z)g belongs ta)t for every choice ofw € € and
g e’

(2) Foreveryf e M, (f, K(w,)g)m = (f(w), g)e.

The kernel, on account of (2), is called the reproducing kernglipoft is uniquely
determined, and the functions in (1) are denséJin The spacelt is denoted
by H(K). If @ c C is open, the kerneK (w, z) is called holomorphic if it is
holomorphic inz and w*, and then the elements ®(K) are holomorphic®—
valued functions omf2. Thus the functions iH (D, S) := H(Ks) are holomorphic
onD.

In the particular case that = 0, the space)(ID, 0) coincides with the Hardy
spaceH, (D, &) of holomorpic®—valued functions ofi:

Ho, 8) = {g@) = Y gut"lz €D, g, € 8, ) lgall5 < o0}
0 n=0
with Hilbert inner product

o0

(h(2), 8@y = Y _ (s ).

n=0

Recall also that a Hilbert space is contractively (isometrically) included in a Hilbert
space) if itis alinear subset of) and the inclusion map is a contraction (isometry).

THEOREM 1.1 (i)For S € S(D; §, ®), the spaceNt = H(D, S) (a) is contract-
ively included inH,(D, &), (b) is invariant under the backward shift operator

- f@©
Rof (o) — L@ : £

and(c) satisfies the inequality

IRof N5 < I fll5e — I f(Oll5, £ M. (1.2)

(i) Conversely, ift is a Hilbert space of holomorphi&-valued functions of
for which (a)-(c) hold, thent is a reproducing kernel Hilbert space with repro-
ducing kernel of the forngl.1) : There exist a Hilbert spacg and a function
S e £(D; §, &) such thatht = H(D, S). The spaces and the functionS can be
chosen such that

x€EF S@Dx=0=x=0.

This condition determines$ uniquely up to multiplication from the right by a
unitary operator.
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This theorem is a special case of Theorems 3.1.2 and 3.1.3 of [5], which are
formulated in the setting of Pontryagin spaces. If in part (ii) the spaads finite-
dimensional, the functio can be chosen rational. Note that the condition (a) is
already implied by (c). Indeed, the inequality (1.2) implies that fokall

1
IR5™f e < IRGS N — Il F POl

hence for all
n 1
D= OO <1 = IR F 15 < 1/ .
k=0

which implies|| f|l1,m.6) < Il fllon, thatis M is contractively included ik (D, &).
In particular,9t is a reproducing kernel Hilbert space sinde(D, ®) is itself a
reproducing kernel Hilbert space and the inclusion map is a contraction®fom
into H,(DD, &). For the basic notions of the one variable case we refer to [9],[20].

In this paper we study the analog of Theorem 1.1 in the case of two variables,
when the diskD is replaced by the bidisk? = D x D, where the situation is quite
different. The Hardy space of the bidisk is defined as

Ho(D?, &) = Ig(Zl, 72) = Z gijZilZ£| 21,22€D, gij € G,

i,j=0

o
> gl < oot
i,j=0

with Hilbert inner product

o]

(h(z1, 22), 821, 22wy 2.8y = ) (hijs &ijde-

i,j=0
It is a reproducing kernel Hilbert space with reproducing kernel
1
(1 —zaw) (A — zow})’
This kernel was considered by Koranyi and Pukanszky [16] in connection with the
representation of Herglotz functions in more than one variable.

Note that ifg(z1, z2) € Ho(D?, &), theng(z1, 0) andg (0, z») belong toH»(D, &).
The backward shift operataRy, and the inequality (1.2) have natural analogs:
namely, the backward shift operators
_ f,29) = 0, 22)

<1

Ko(w1, wo; 21, 22) =

(1.3)

Rél)f(m, 72)
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and
, — ,0
RP f oy, = 1222 TG D) (1)
22

and the inequalities

IR F13: < 113 = 1/ 0. 23,6y €M, (1.5)
and

RS f13 < 113 = 1/ 1. OllE, sy S €M (1.6)

These formulas warrant the next definition (the terminology comes from the title of
D. Sarason’s book [20]): A Hilbert spa®® of &-valued functions will be called
a sub-Hardy Hilbert space of the bidiskit is a subspace oH,(D?, &), which
is invariant under both the backward shifis3) and (1.4), and satisfies both the
inequalities(1.5) and (1.6). A natural candidate for a sub-Hardy Hilbert space of
the bidisk is the reproducing kernel Hilbert spap@?, S) with reproducing kernel

I — S(21, 22) S(w1, w2)*

Ks(wy, wo; 21, 22) = , 1.7
s(w1, wa; 21, 22) 1= zw) (- u) (1.7)

wheresS is a Schur function of two variables: a holomorphic functidn D? —

L£(F, &) with ||S(z1, 22)|| < 1, z1, 22 € D. We denote the set of such functions

by S(D?; F, ®) (S(D? F) if & = F). We prove in Section 2 that these spaces are
indeed invariant under the backward shifts (1.3), (1.4) and satisfy the inequalities
(1.5), (1.6). In Section 3 we show that these are not the only sub-Hardy Hilbert
spaces of the bidisk; there we also show thay@?, S) # {0} then it is infinite
dimensional. In Section 5 we give a characterization of sub-Hardy Hilbert spaces
of the bidisk (see Theorem 5.1). The main idea is to reduce the two variable case to
the one variable case (compare with, for example, [17]) and to invoke the character-
ization of semi sub-Hardy Hilbert spaces of the bidisk which we derive in Section
4 (see Theorem 4.2): A Hilbert spaf® of &-valued functions will be called a
semi sub-Hardy Hilbert space of the bidisk with respect to the variap(e,) if it

is a subspace of the Hardy spatg(D?, &), which is invariant under the backward
shift (1.3) ((1.4)), and satisfies the inequalitiL.5) ((1.6), respectively). In Section

6 we show that every Schur functishe S(D?; §, &) is the characteristic function

of a coisometric colligation in whick(ID?, ) is the state space. Finally, in Section

7 we show that there exist sub-Hardy Hilbert spaced ifD?, C?) whose ortho-
gonal complement is shift invariant and nevertheless not of the fa(D?, C7)

for somep x ¢ matrix valued Schur functiof on the bidisk.

Some of the results presented here were announced in [4]. Related with this
paper are those of Ball and Trent [11], Agler [1] and Cotlar and Sadosky [13, 14].
They contain generalizations of the one variable theory to the caseariables.

The kernels studied in [1] coincide for the case= 2 with the kernel (1.7), but
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we characterize the more general class of sub-Hardy Hilbert spaces of the bidisk.
In [13, 14] subspaces of the Hardy spatg(D?, &) that are invariant under the
multiplication byz; andz, are studied.

2. SpacesH(D?, S)

ForS e S(D?% 3, ®), the kernelK s (w1, wo; 21, z2) defined by (1.7) is nonnegat-
ive onD? and we denote the corresponding reproducing kernel Hilbert space by
$(D?, S). The nonnegativity of this kernel iB? is equivalent to the fact that the
operatorM s of multiplication bys is a contraction from the Hardy spadg(D?, §)
into the Hardy spackl»(D?, &). The spaceh(D?, S) is contractively included in
the Hardy spacéi,(D?, &). This is a consequence of the two characterizations
for it, obtained in a similar way to those for the one variable spade, S); see
[9, 20]. The first characterization is as an operator range. We recall that for an
operator?T € £(F, 8), therange normon 9t = ranT is the norm which makes
T a partial isometry fronty onto 9. Evidently, this norm comes from the Hilbert
space inner product

(Tf. Thym = (5 — P) f. h)z,

whereP is the orthogonal projection ¢ onto kerT'.

THEOREM 2.1 The space’(D?, S) is equal to the range ofl — MsM$)Y/? in

the range norm.

Another equivalent characterization, more convenient to our present purpose, is

given in the next theorem. We refer to [9] for the proof. Foe Hy(D?, &), let

m(f) = sup {1F + Sul, 52 ) = 10105 - (2.1)
u 2 s

THEOREM 2.2 We have
H(D? S) = | f € Ho(D? &) [m(f) < oo} and|| fllmz.s) = m(f).

These theorems imply that the spagg®?, S) are contractively included in the
Hardy spacéd,(D?, ). We give an example where the inclusion is isometric and
one where it is contractive but not isometric.

EXAMPLE 2.3 Let§ = & = C and takeS(z1, z2) = z1z2. Then

*

Ks(wy, wp; 21, 22) = ,
1-z2w; 1-—zyw]

$H(D?, S) consists of all functions of the form

f(z1,22) = 8(z2) + 21h(z1), g, h € Hy(D, C),
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and the norm is given by

2 2 2 2
IF12 02, = 181200 + 181200y = 112,020

Thus the inclusion of)(D?, S) in Ho(D?, C) is isometric. O

EXAMPLE 2.4 Lety = C? & = C, leta andB be nonzero numbers such that
la|?+ 1812 = 1, and takeS(z1, z2) = (az1, Bzz). Then the kernell.7) is equal to

|oe|? n B2

1-zw; 1—zywj

Kg(wy, wo; 21, 22) =

and the spac$(D?, S) consists of all functions of the form
f(z1,22) = g(z2) + h(z1), g, h e HyD, O). (2.2)

It is easily seen that the norm &f(ID?, S) is not theH,(ID?, C) norm. Indeed, take
for instancew; # 0, w, = 0 and f (z1, z2) = K (w1, 0; z1, z2). The square of its
$H(D?, S) norm is the value of the reproducing kernelat, 0), that is,

62

2 _ 2
I a3, 215 o gy = ol + = =

lwa|?
1 2=
+ 18I ENE

This number is not equal to

2 . 2 2.2 4 |wl|2 —1 4 |wl|2
Ilf (21, 22 lf,m2.c) = (al” + 819" + 18] m =1+ |8l m

THEOREM 2.5 AssumeS € S(D? §, ). The space)(D?, ) is a sub-Hardy
Hilbert subspace. Moreover, for=1,2and f € §, Ry’ Sf € H(D2, S) and

@ 2
IR SFI2 e s,

2 2
IRG”SFI1Z s,

1£15 = 11Sz1. 0) f I, m.6)-
1£15 = 150, 22) f1IE, .0)-

NN

Proof. We show first that the operatd?él) defined by(1.3) is a contraction from

H(D?, S) into itself and satisfies the inequalitg.5). That alsor}” in (1.4) defines
a contraction onf)(D?, S) and that(1.6) holds can be proved similarly and is
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omitted. We use Theorem 2.2: Fore H,(D?, §) we have
I f(z1,22) — f(O, 22)

<1
= £ (21, 22) + 218 (21, 22)u(z1, 22) — F O, 2217 o) — NulZ, 2.5

2 2
+ S(z1, z2)u(za, ZZ)”HZ(DZ,Qﬁ) - ”u”Hz(DZ,S)

= | f(z1, 22) + 218 (21, 2u(z1, 2215, 2.6

—2Re(f(z1, 22) + 215(z1, 22)u (21, 22), f(0, 22))n,m2.0)

150, 2217, e ) — lz2ulf, 2 5,
= | f(z1, 22) + 218 (21, 2u(z1, 2215, 2.6

—2Re(f (21 22), f(0, 22 m2.8) + 1 f (O 22 IFy, 2. ) — I222l1F, 2 5,
= || f (21, 22) + 218 (21, 22)u (21, 22 If, .

—2Re(f(0,22), f (0, z)myw2.) + £ (O, 22 I 2. — N22tlIFy 2 )

= (||f(zl, 22) + 218(z1, 2)u (21, 22) Iy 2.y — ||zlu||ﬁ2(Dz,g))
—1£ 0, 2213, 2.6y < M) = 11O, 2217, .65

Sincem(f) < oo, this implies (1.5).
We come the second part of the theorem and compute an upper bom(d?@)rSf).
Foru € Hy(D?, §) we have

2

2
- ”u”Hz(DZ,S)
H2(D?,8)

H S(z1, z2) — §(21,0) f+ S(z1, 22)u(z1, 22)

22

= (S(z1, z2) — S22, ) f + 228 (21, 220 (21, 22 [f 2. — 15, 2.5
= I1S(z1, 22)(f + 22u(21, 22) = S(z1, O F I o) — NulE, 0.5
= [1S(z1, 22)(f + z2u(z1, 22) 17, 2. )
—2Re(S(z1, 22)(f + z2u(z1, 22)), S(z1,0) /), m2.)
+HIS(z1, 0 f I, 2.0y — Ntlif, .5
= 118Gz, 22)(f + 22 (21, 22) I 2.y — 2RE(S(z1, 0) £, S(z1,0) )} p2.e)
+1Sz1, O 113, 2.6y — 14lE, 025,
ILf + z2u(z1, 2) 15, p2.6) — 2RE(S(z1, O) f, S(z1,0) f)F, 2.0
+1Sz1, O 115, 2.6y — 115,025,
115 = 115G1, 0) £ 11, 2.0

N

N

Hence
m(Re”Sf) <115 = 1SGz1, O F 7, 2.6
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Theorem 2.2 implies thak\?Sf € $H(D2 S) and that the last inequality in the
theorem holds. The results f@;" Sf can be proved similarly. O

We note that (1.5) and (1.6) are satisfied with equalitiitcoincides with the
Hardy space of the bidisk. As in the one variable case, it would be of interest to
characterize all sub-Hardy Hilbert spac8s for which the equalities hold. The
operatorsk{” andR{?’ are just special cases of the operators defined by

RO f(ay, 2 = LEED I g oy [0 2D 7 TG00
71— o —a

for o € D. These operators commute. Indeed,doB € D and f € $H(D?, S),

_ S 20 = fz B) = fla20) + fle, B)
(21— a)(z2— B)
= RRY f (21, 22).

RORY f(z1,22)

They also satisfy the resolvent identity
RY —R) =@—-pRVR), =12

which also holds for the one variable case; see for example [6, Formula (2.16)].

3. The Finite-Dimensional Case

In this section we first give an example of a sub-Hardy Hilbert space that is not an
H(D?, S)-space and then we show that nontriigD?, S)-spaces are necessarily
infinite dimensional.

We note the following: a vector functioyi is a common eigenfunction of the
operatorg1.3) and(1.4) with (possibly different) eigenvalues anda if and only
if it is a multiple of the function

1
(1—z1A) (1 — z2h2)

The sufficiency part is clear. To verify the necessity part, let

T ZZ)Z: 102 = A f(z1,22) and s ZZ)Z: Fe2 = A2f (21, 22).

f(z1,22) =

Then
f0.22)  f(z1,0)

71,22) = = :
f e, 22) 1—Xz1 1—2pz2
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Settingz; = 0 we get

_ f(0,0)

f(0,z2) = 1 7o

and therefore 0.0)
f(z1,22) = /O,

(1—z1A) (1 — z2h2)
This type of function appears in the following example.

EXAMPLE 3.1 Leta;, a, € D. The one-dimensional subspa®of H,(D?, C)
spanned by
1
(1 - z1a7)(1 — z2a3)
is a sub-Hardy Hilbert space of the bidisk and equality holdélib) and (1.6).
But there exists no Schur functighsuch that the reproducing kernel 9t is of
the form(1.7).

f(z1,22) =

DiscussionFori =1, 2, let

1 1 i — a;
bi(zi) = —

(z;) = R = ", .
fi@ 1—za} Pi=1_ |a;|? 1—zaf

Then
fi@) fi(w;)* _ 1—b;(zi)bi(w;)*

Di 1-ziwy
and sincef (z1, z2) = fi(z1) f2(z2),

f(z1, 22) f (w1, wo)* _ 1—b1(z)b1(w1)* 1 — ba(z2)ba(w2)”
pPip2 1-zyw] 1—zow; .

i=12,

(3.1)

The square of thél,(D?, C) norm of f is equal top; p, and thus the left side of
(3.1) is the reproducing kernel 811; see [15, formula (2.4)]. Assume there are a
Hilbert space§ and ans € S(D?, §, C) such that this kernel is of the form (1.7).
Then

1—b1(z)b1(w)* 1 — ba(z2)b2(w2)* _ 1— 8(z1, z2)S(wy, wp)*
1—zywi 1— zow} (1—zaw}) (1 — zow3)

and hence

b1(z1)b1(w1)* + ba(z2)b2(w2)* — b1(z1)b1(w1)*b2(z2)ba(wo)*
= S(z1, z22) S(w1, wp)*.

The right side is a nonnegative function BA while the left side has one negative
square, and hence there is a contradiction. a
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Example 3.1 shows that the tensor productygd, b,) and $H(D, b,) is not an
$H(D?, S) space. More is true than is shown in this example: There is no norm on
<M defined in the above example for which the reproducing kernel is of the form
(1.7). This follows from the main result of this section:

THEOREM 3.2 Every space)(D?, S), S € S(D?; §, &), is either trivial or infin-
ite dimensional.

Itis well known (see [10, 19]) that the product of two nonnegative scalar kernels
is still nonnegative. The following result complements this and will be used in the
proof of the theorem.

LEMMA 3.3 Let M(w, z) be a nonnegativel(®)—valued kernel oD and let
s(z) be a nonconstant scalar Schur function Bn Then the kerneK (w, z) =
1/1 — s(z)s(w)*M(z, w) is nonnegative and ify(M) # {0} then the reproducing
kernel Hilbert space)(K) is infinite dimensional.

Proof. Since M (w, z) is nonnegative, the reproducing kernel sp&ca/) is well
defined and the kernelf(w, z) can be factorized a3/ (z, w) = F(z)F(w)*,
whereF : D — £(H(M), ®) is the evaluation mapping defined B(w) f =
fw), f € H(M); see for example [5, Theorem 1.1.2]. It follows tHéatw, z) =
Yo s(2)"s(w)* F(z) F(w)* is nonnegative, the spacg(K) is well defined, and
for everyn € N, s(2)"$H(M) C H(K); see [5, Theorems 1.5.5 and 1.5.7] in the
definite setting. Thus if is a nonzero element d§(M), the linearly independent
functions £ (), s(z) f(z), s(z)2f(z), . .. belong toHH(K). O

Proof of Theorem 3:2Assume$)(D?, S) is finite dimensional. Leb(z) be a
nonconstant scalar Schur function and replgde (1.7) byb(z1) andw, by b(w1).
Then the kernel

1— S(z1, b(z1))S(w1, b(wy))”
(1 = zaw)) (A = b(z1)b(w1)*)
is nonnegative and sinc®(D?, S) is finite dimensional, the reproducing kernel

spacef)(K) is finite dimensional also. On the other hakidws, z;) is the product
of the two nonnegative kernels

! My(w1, z1) := 1— S(z1, b(z1))S(wy, b(w1))*
1-bGpbwy T 1—zwi

By Lemma 3.3,9(M;) = {0}. Hence M, (w1, z1) is identically zero for every
nonzero scalar Schur functiérnz), and so

S(z1, b(z1))S(w1, b(w1))* = 1. (3.2)

K (w1, z1) :=

L(w1, z1) ==
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Fix z1 andz, in D, choosew; = z1 and take fo the Blaschke factor

I—o where o — 1”22
1—za’ _1—212_2.

Thenb(z1) = zz and by (3.2) S(z1, 22) (21, 22)* = 1,21, z2 € D. The positivity of
the kernelK s (w1, wo; z1, z2) implies that more generally(z1, z2) S(w1, wo)* = 1,

71, 22, W1, w2 € D, and saH(D?, §) = {0}. O

b(z) =

In going from one variable to two variables, we replaced the denominator 1
zw* in (1.1) by (1 — zaw})(1 — zow3); see (1.7). This corresponds to case of the
bidisk D? = {(z1, z2) € C?||z1] < 1, |z2| < 1}. But another possibility would be
to replace - zw* by 1 — zyw} — zow} and to consider the kernel

I — S8(z1, 22) S (w1, wp)*
1—ziwi —zowh

Lg(wy, wy; 21, 22) =

This case corresponds to the unit Bl := {(z1, z2) € C?||z1|? + |z2/? < 1} and
differs from the bidisk case as can be seen from the following example.

EXAMPLE 3.4 There exist finite—dimensional reproducing kernel Hilbert spaces
of the form$(Ly).

DiscussionForn € N,
n!

ewwi +zawd)" = 30 Cou b @)™, Conk) = o,

k=0
hence ifS(z1, z2) is the 1x (n + 1) matrix valued function

S(z1,22) = (24 VC, V)i 22 C(n, 2237225 -+ 2,
thenS(z1, z2)S(w1, wo)* = (zawj + zow3)" and
Ls(wi, wg; 21, 22) = 14+ (1w +2ow}h) + (21w +20w3)° + - -+ (1w +z2w3)" L.

It follows that the kernel s(w1, wy; z1, z2) iS nonnegative and that the spag@_ s)
is spanned by the linearly independent functiong;lz,, zﬁ, 2122, z%, zi’

oL O

In Section 5 we characterize the finite-dimensional sub-Hardy Hilbert spaces in the
bidisk; see Theorem 5.2.

4. Semi Sub-Hardy Hilbert Spaces of the Bidisk

The following simple lemma shows how analytic vector valued functions of two
variables can be reduced to analytic vector valued functions of one variable. The
idea is not new, see for example [17]. The lemma is the key to the paper [3] in
which interpolation problems are studied in the Hardy space of the bidisk.
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LEMMA 4.1 Letg(z4, z0) be a function fronH,(D?, &) and consider its power

series expansion

oo
8(z1.22) = ) gzi75. i € ©. (4.1)
i,j=0

oo o0
fiz) =) gyzi and hi(z2):=) gyz3,  ,j=01...

i=0 j=0

then the functions

fo(z1) ho(z2)
fey=| ") | and h(z) = | M2 (4.2)

belong toH,(D, £,(®)) and satisfy

8(z1,22) = E¢(22) f(z1) = Es(z0)h(22), (4.3)
where

Es(2) = (lo 2o 21s, -+ ) . (4.4)
Moreover,

I8 lIH,m2,8) = I f IHam.ea@)) = I1AlIHm.e2(0))- (4.5)

The proof of this lemma is straightforward and therefore omitted. We usually write
E for Eg; it should be clear from the context to which space it is related.

We now come to the characterization of a semi sub-Hardy Hilbert spaé of
for the definition we refer to the Introduction.

THEOREM 4.2 Let & be a Hilbert space anéit a Hilbert space of®-valued
functions orD?.
(1) M is a semi sub-Hardy Hilbert space Bf with respect ta; if and only if it is
a reproducing kernel Hilbert space with a reproducing kernel of the form

le — S(z1)S(w1)*

Kon (w1, wo; 71, 22) = E(22) 1 " E(wp)* (4.6)
— 21wy

for some Schur functiof(z) € S(D; §, £2(®)) and some Hilbert spacg. In this
case,g € M if and only if it can be written as

8(z1,22) = E(22) f(z1), fenHd,s), (4.7)
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and thenllgllon = | flls@.5)-
(2) M is a semi sub—Hardy Hilbert space Bf with respect ta;, if and only if
it is a reproducing kernel Hilbert space with a reproducing kernel of the form
le — S(z2)S(w2)*

Kon(wi, wa; 21, 22) = E(21)— 1= o0t E(wy)* (4.8)
2

for some Schur functiof(z) € S(D; §, £2(®)) and some Hilbert spacg. In this
case,g € M if and only if it can be written as

8(z1,22) = E(z1) f (22), fend,s), (4.9)

and thenligllan = Il fll5@.s)-

Proof. Let 9t be a semi sub-Hardy Hilbert space bf with respect toz; and
consider the subspace

M1 ={f € Ho(D, £2(®)) : E(z2) f(z1) € M}

with the induced norm

I fllomy, = llgllom,  g(z1, 22) = E(z2) f(z2).
Then1, is contractively included i, (D, £,(®)). Furthermore, since
E(z2) f(z1) — E(z2) £ (0)

21
f(z) = f(O)
z

1

Rél)g(m, 72) =

= E(z2) = E(z2)Rof (z1), (4.10)

the spacéi; is backward shift invariant, and by (1.5) applied to elementsiin

IRof 130, = IRS 13 < llgll3n — 18(0, 22 1E, .0 = I F 0, = £ (O -
Thus Theorem 1.1 can be applied: The reproducing kernel of the §piatzeof the
I —S(z1)S *

(2)S(wy) for someS(z) € S(D; §, £2(®)) and some Hilbert spacg

— Z1wjy

Hence every € 9t can be written as in (4.7) ankllox = || fllg@®.s). To show
that (4.6) is the reproducing kernel ®t, letk € & and (w1, wy) € D?. Then the
vector E (w,)*k € £,(®) and so the function

I — S(z1)S(w1)*

Kon (w1, wp; 21, 22)k = E(z2) 1 ——E(w2)"k
— 1wy

form

belongs taJt. Finally, for any functiong of the form (4.7) we have

leyw) — Sy S(wy)*
05(8) (Zl)*(wl) E(w2)*k)so.s5) =
1-zw]

= (f(w1), E(w2)"k) @) = (E(w2) f(wa), k)e = (g(w1, wp), k)e.

(g, Kon (w1, wo; 21, 22)k)om = (f,
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Conversely, assuni®t is the reproducing kernel Hilbert space with the reproducing
kernel Kgyn of the form (4.6). Then every elemegite 2t admits a representation
(4.7). SinceRo f € H(D, S) and by (4.10)R" g € M. Furthermore,

1 2 2
IRl = IR f 1305 < I f 1305 — 1 F(OIZ, )
2 2
= lIgl5 — 180, 2217, p2.ss)-

which proves the inequality (1.5) and completes the proof of part (1) of the the-
orem. The assertions in part (2) can be proved in much the same way. O

EXAMPLE 4.3 The kernel (4.8) is not necessarily of the form (1.7). For instance
the choiceS(zz) = diag (1,22,1, 1, ---) leads toKo (w1, wy; 21, 22) = z1Wwj,

and the corresponding spaggKgy) coincides withz;C. This space is noRy"-
invariant and thus the kernel (4.8) is not of the form (1.7). On the other hand, when
the functionsS is scalar, one obtains a kernel of the form (1.7). O

If §in Theorem 4.2 can be identified with &gspace, then the semi sub-Hardy
Hilbert space®t admits characterizations analogous to Theorems 2.1 and 2.2. To
show this we use the following simple observation.

LEMMA 4.4 LetS(z) € S(D; £2(F), £2(®)). Then in the notation of Lemn7al
the formulas

(S18)(z1, 22) = E(22)S(21) f(z1),  (S28)(z1, 22) = E(21)S(z22)h(22),
(4.11)

whereg(z1, z2) = E(z2) f(z1) = E(z1)h(z2), define two contraction§; and S,
fromH,(D?, §) to Ho(D?, &), whose adjoints are given by

(S1°9)(z1.22) = E(2) (P (S* ) (z0),  (S"9)(z1, 22) = E(z0) (P (S*h))(z2),
(4.12)

where the symbop denotes the orthogonal projection of the Lebesgue space
Lo(0D, £5(F)) onto Hyo(D, £5(F)). In particular, if h € & and g(z1,22)=
h

T @y Nen

S *FE *h
(S1"g)(z1, 22) = E(z»(wll)—('“”j)
— 21Wq
S *FE *h
($*9)(z1,22) = E(zg('“”f)—(“f). (4.13)
— 22W»

Proof. These results follow from the one variable case. SiMgdas a contraction,
for g(z1, 22) = E(z2) f(z1) € Ha(D?, §) we have

||Slg||H2(1D>2,®) = ||MSf||H2(]D>,152(e§)) < ||f||H2(1D>,152(3)) = ||g||H2(]D>2,g),
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which shows tha§, is a contraction. For the computation of the adjoinSgf let
g(z1,22) = E(22) f(z1) € H2(D? ) andk(z1, 22) = E(z2)h(z1) € Ha(D? &),

then
(S17k, g)r,m2.5) = (ks S18)H,m2,8) = (B Ms fIH,m.ex6) =
= (P (S*h) . FHam.2@) = (E@2) (S )21, k)pym2.z)s
which proves the first equality in (4.12). To obtain first equality in (4.13), use the
first equality in (4.12) fog (z1, z2) = E(z2) E(w2)*h/1 — z1w] and recall (see [15,
Lemma 2.1] for matrix valued Schur functions) that with= E (w»)*h € £,(®)
0 ( S(zl)*h’) _ S(wy)*h

1—ziwy 1-ziw}’

The assertions concerning the operé&pare proved in much the same way. O

The lemma readily implies the following analogs of Theorems 2.1 and 2.2.

THEOREM 4.5 For S(z) € S(D; £2(F), £2(®)), the spacent with reproducing

kernel / S(z0)S(w1)*
s — S(z)S(w
Kon(wy, wi 21, 22) = E(29) = E(wp)"
— 1wy
Ig — S(z2)S(wo)*
(Ksm(wl, wy; 21, 22) = E(z1) 1 2 " 2 E(wl)*)
— 22W,

coincides(a) with the operator rangean (I — SlSl*)% (ran(I — SZSZ*)%, resp.)
in the range norm, an¢b) with the space

M = [k € HoD2 6) | suBe,mez) (I + 181,020, — 181205 < o) -

(o = [k € Ha0% &) Isupme) (1K + Sogliy e — 813,02 ) < 00

resp.)
and the norm ok € 9t is exactly the supremum in the formula fo¥'.

The sub-Hardy Hilbert spacit in Example 3.1 is an operator range:
M =ran(l — VV*)% =ran(I — VV%),

whereV is an isometric operator fromd»(D?, C) into itself: We can tak&/ = S,
defined by the second equality in (4.11) with= & = C and for an arbitrary. on
the unit circle

E@' 1 1 1 E@
VP1 l—zaspopw—az J/p1

S(z2) = I, + (22— 1
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Indeed, this follows from the identity (see [3, Lemmas 3.1 and 3.4])

f(z1,22) f (w1, wp)* E(a1)* 1 — ba(z2)ba(w2)* E(az) .
= E(z1) > E(wy)
PiD2 JP1 1 - zow; JP1
_ E() I, _IS(ZZ)Sin) E(wy)".
— 22W5

Similarly we could have chosevt = S;. Now we turn to finite-dimensional
semi sub-Hardy Hilbert spaces Bf. We first recall the following well known
result

LEMMA 4.6 Let® be a Hilbert spaces2 some set, and 181t be a finite-dimension-

al Hilbert space of$3-valued functions orf2 with basis{gi, g2, ..., g.}. LetP

be the strictly positive: x n matrix with £j-th entry p,;; = (g;, g¢/)m and let
G(z) be then x 1-vector functionG(z) = (g1(z) g2(z) -+ g.(z)). ThendM is

a reproducing kernel Hilbert space with reproducing kernel given by the formula
K(w,2) = G(2)P1G(w)*.

For a proof see for example [7, Theorem 4.1].

THEOREM 4.7 Let ® be a Hilbert space an@t an n-dimensional subspace of
H,(D?, &). ThendM is a semi sub-Hardy Hilbert space B with respect taz;
(zo) if and only if it is a reproducing kernel Hilbert space with reproducing kernel

K (w1, wg; 21, 22) = E(22)C (I, — 22A) " P (I, — wiA®) " C*E (wy)*
(4.14)

(K(wl, w2 21, 22) = E(20)C (I, — 22A) Y P71 (I, — w3A*) ™ C*E(wy)",

respectively) ,

whereC € £(C", £,(8)), A € C™", andP € C"*" is a strictly positive matrix
such that

P— A*PA > C*C. (4.15)
Proof.By Lemma 4.6901 is the reproducing kernel Hilbert space with reproducing
kernelK (w, z) = G(z)P~1G(w)*, where

G(z1, z2) = (81(21, 22) 82(21, 22) .- gn(21,22)) s (4.16)

the entriesg; (z1, z2) form a basis o, andP’ = ((g;, g¢)on)’j ,— Is strictly posit-
ive.
Necessity: Sincél is R§ —invariant,

G(z1,22) — G(0, z2)

R G(z1,22) = - = G(z1,22)A (4.17)
1




HARDY SPACE OF THE BIDISK 41

for some matrixA € C"*" and therefore

G(z1,22) = G0, 22) (I, — 1A) " (4.18)
Since theg; € Ho(D?, &) admit an expansion of the form (4.1), there is an operator

C=(Goo Gor ...)" € £(C", £2(8))

such that

G(0,z22) = E(z2)C (4.19)
and therefore

G(z1.22) = E(z)C (I, —214) " (4.20)
Now the formula (4.14) for the kernel follows. For every vectos C”,

|Gx||3; = x*Px. (4.21)
Furthermore, on account of (4.17),

IR Gx|13; = IGAx |3, = x*A*PAx, (4.22)
whereas, by Lemma 4.1, the equality (4.19) implies

1G (0, 22)x I, . e,y = I1CxF,6) = x*C*Cx. (4.23)
Substituting the latter three equalities into (1.5) we get

x*A*PAx < x*Px — x*C*Cx.

Sincex is arbitrary, the latter inequality is equivalent to (4.15).

Sufficiency: If9t is a reproducing kernel Hilbert space with reproducing kefel
of the form (4.14), it is spanned by the columns of th&"; &)-valued function
G (z1, z2) given by (4.20), that i€t consists of all the functiong of the form

g(z1,22) = G(z1,22)x, x e C", (4.24)

with the norm given by (4.21). Th@él)-invariance of M follows from (4.17)
whereas, on account of (4.15), the equalities (4.21)—(4.23) imply that the inequality
(1.5) holds for every functiog of the form (4.24). The statements in brackets in
the theorem can be proved quite similarly. O

5. Sub-Hardy Hilbert Spaces of the Bidisk

In the preceding section we considered the invariance under the backward shifts
R{" and R{" separately. The spaces we are interested in are invariant under both
of them.
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THEOREM 5.1 Let & be a Hilbert space, 1t be a Hilbert space o®-valued
functions and lef" be the shift o¥,(®) defined by the matrix

0Is O O---
T=(001s 0. |. (5.1)
00

The following statements are equivalent:

(1) M is a sub—Hardy Hilbert space @f?.

(2) M is a reproducing kernel Hilbert space with the reproducing kernel of the
form (4.6) with a Schur functiors such that the spacg (D, S) is T-invariant.

(3) Mt is a reproducing kernel Hilbert space with the reproducing kernel of the
form (4.8) with a Schur functiors such that the spacg (D, S) is T-invariant.

Proof: Assume thaf)t is a sub-Hardy Hilbert space &f. Then it is contractively
included inH»(D?, &) and invariant undeRél). By Theorem 4.2, it is the reprodu-
cing kernel Hilbert space with the reproducing kerig} of the form(4.6). This
means that every € 9t admits a representation (4.7). By (4.7) and (5.1),

8(z1,22) — g(z1,0)  E(z2) — E(0)
22 B <2

R$?g(z1.22) = f(z1) = EG)TF (20,

and, since is alsoR?-invariant, E (z) T f (z1) € M, therefore
Tf(z1) € H(D, S).

Sincef(z1) € H(D, S) is arbitrary, the latter means thgtD, S) is T-invariant.

Conversely, lefJt be the reproducing kernel Hilbert space with the reproducing
kernel of the form(4.6) and assume thay(D, S) is T-invariant. Let f(z1) €
H(D, S); thenTf(z1) € H(D, S) and by Theorem 4.2,

E(z2)Tf(z1) = RP(E(z2) f (z1)) € M.

Since the representation formula (4.7) holds for all functiori8tirthe latter means
that 9 is R{P-invariant. According to Theorem 4.2, it is algt}”-invariant and
contractively included irH,(D?, &). This proves the equivalence of the two first
statements. The equivalence between (1) and (3) can be proved in a similar way.

In Example 4.3 withS(z,) = diag (1, z2, 1, 1, - - - ), the space) (D, S) consists
of vectors of the form{0 ¢ 0 0 ...)T with ¢ € C and is therefore not invariant
under the shiffT.

THEOREM 5.2 Let® be a Hilbert space and 168t be ann-dimensional subspace
of Hy(D?, &). ThendM is a sub—Hardy Hilbert space d#? if and only if it is a
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reproducing kernel Hilbert space with reproducing kernel

K (w1, wo; 71, 22) =

= C (I, — 22B) " (I, — 22Bo) P~ (I, — w3B3) " (I, — wiBy) "

c*,
(5.2)

whereC € £(C", ®), By, B, € C™", andP € C"" is a strictly positive matrix
such that

CB!B,=CBjB!, ¢, j=0.1,..., (5.3)
P— BiPBy> Y By C*CBj., P—B3PB,>) B{'C*CBj. (5.4)
j=0 j=0

Proof. As in the proof of Theorem 4.7, we apply Lemma 418:is the reproducing
kernel Hilbert space with reproducing kermélw, z) = G(z)P~1G(w)*, where

G(z1, 72) = (81(21, 22) €2(21,22) ... &n(21,22)),

the entriesg; (z1, z2) form a basis oD, andP = ((g;, g¢)om)’} ,—; is strictly pos-
itive. We derive a formula foiG: Since1 is Rél)-invariant, G(z1, z2) admits a
representation (4.18); we write; for A. Sincedt is R -invariant,

G(0,z) — G(0,0 _
RBZ)G(Zl,Zz) = ( 2)22 ( )(In_ZlAl) !

= G(z1,22)B2 = G(0,22) (I, — 21A1) 1 B,

for some matrixB, € C"*" and therefore,

G(0,22) = G(0,0) (I, — z1A1) " (I, — 22B2) ™ (I, — z1A0).
Substituting thisG (0, z2) in (4.18) and setting” = G (0, 0), we get
G(z1,22) = C (I, — 214D (I, — 22B2) " (5.5)
Similarly one can derive the representation
G(z1,22) = C (I, — 22A2) " * (I, — u1B) 7, (5.6)

for some matrice8;, A, € C"*". If we compare the last two equalities far= 0
andz, = 0 we obtain the equalities

Cy—224) ' =C (U, —22B)™" and C (I, —z1A1) ' =C (U, —zuB) .
Hence (5.6) and (5.5) can be rewritten as

G(z1,22) = C (I, — 22B2) ™ (I, — 21B1) > = C (I, — zaB1) "t (I, — 22B2) .
(5.7)
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This readily implies (5.3) as well as the formula 5.2 for the kern@bfThe space
M consists of all functions of the fornfi(z1, z2) = G(z1, z2)x, x € C", with the
norm

1 fllge = x*Px.

Furthermore, forf of this form we have, on account of (5.7),
RY f(21.22) = G(z1.22) Bjx. j = 1,2,
f(z1,0) = C (I, — z1B1) " x, and f (0, z2) = C (I, — z2B2) "' x.
Therefore
IR flI3 = x*A*PA;x, j =12
and

oo
If @1 Ox |3, me) = D _X*B{"C*CBix,
j=0

oo
10, z2)xl|,p.6) = D_ X" By C*CBjx,
j=0
where the two series converge in the matrix norm, sifice;, 0) and (0, z»)
belong toH,(ID, ®). Substituting the right sides of the last four norm equalities
into (1.5) and (1.6) and taking into account thais an arbitrary vector front”,
we get (5.4).
The converse can be proved in much the same way as in Theorem 4.7. O

REMARKS 5.3 (1) Note that each one of inequalities in (5.4) implies

> BJ*B{*C*CB{B] <P. (5.8)

¢,j=0
This leads to the following so far unsolved problem: Characterize in terms of invari-
ance properties am-dimensional subspadBt of Ho(D?, &) with the inequality
(5.8) instead of the pair of inequalities 15.4).
(2) Note also that the corresponding equalities are mutually equivalent.

6. Realizations

In this section we derive a special realization for Schur functions on the bidisk.

THEOREM 6.1 Let§(zl, 72) € S(D?; §, ®), § and & Hilbert spaces. Then there
isanS(z) € SD; £2(F), £2(®)) such thatH (DD, S) is invariant under the backward
shift 7 given by(5.1),

H(D?% S) = {gg(z1. 22) = E(z2) f(z1), f € H(D, S)}
and|igllgm2s = I fllsm.s if g(z1,22) = E(z2) f(z1), f € H(D, S).
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Proof By Theorem 2.5 (D?, S) is a sub-Hardy space d@?, and by Theor-
ems 5.1 and 4.2, there exist a Hilbert spggeand a Schur functiorsi(z) €
S(D; F1, £2(B)) such that

I — S(z1, 22) S (w1, wp)* Liy@) — S1(z) S1(wy)*
& (21, 22)S(w1, wa) — E(z) 02(®) 1(z1)S1(w1) E

1 - z2w) (1 — zow3) 1-ziw]

(wo)*. (6.1

Now write §(zl, z2) = E(z2)R(z1); then R(z) is a bounded operator frogi to
£2(®) and it is analytic in; € D. Define

S) = (R() T*R(z) T*R(z), -+ ), (6.2)

T* being the forward shift 0,(®). To prove the theorem, we only need to show
that

() S(z) € SD; £2(F), £2(8)), and
(i) in the formula (6.1) we may replacg; by £2(F) andS1(z) by S(z).
The key to the proof of (i) is the simple observation that

725 E(22)R(z1) = E(22)(T™ R(z1)).
Indeed, ifforf = (fo f1... fu...)T € £2(F) ande > k we set
fie=1(0...0, fi,..., f0.0..)" € £2(3),

then forzy, z, € D we have

14
E(z2)S(z1) fre = E(z2) Y T™"R(z1) fi

n=k
14 14
= EG)RG1) ) i =S(1,22) ) B fa
n=k n=k

Hence, since(z1, z) is a contraction It (g, &),

14
> B
n=k
If we write z, = re&?, integrate both sides of this inequality owefrom 0 to 27

and then take the limit for 1 1, we obtain

2 2
||S(Zl)fk,£||g2(<5) < fk,f”zz(g)‘

It follows that the series in the equality

2
H E(z2)8(z1) fre Hé <
3

S f =) T"R@)fu, [=Uofi- fu-- ) €,

n=0
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converges if»(®) and for allz € D, [|S(2) f lleyw) < Il flley@)- This proves (i).
To see (i), we observe that

S(z1, 22) S (wy, wp)* Rz)R(wy)*
o 2)SWLw)t o REIRWY
1_Z2w2 1—12w2

E(z2) (Zz’;R(mR(wo*w;") E(wp)*

n=0

E(z) (Z (T" R(zy) (T*”R(wl))*> E(uwp)*

n=0
= E(z2)S(z1)S(w1)"E(w2)".

On the other hand, on account of (6.1), we have

S(z1, 22) S (w1, wo)*

1 - = E(22)51(z1) S1(w1) " E (w2)*.
- Zzu)z

Thus
S(z1)S(w1)* = S1(z1) S1(wr)™,

and this implies (ii). O

As a Schur function of one variable, the functionin Theorem 6.1 admits a
coisometric realization witlh (D, S) in the role of the state space:

S(z) =D +2C (Inp.s) — zA) "B, (6.3)
where the operators defined by the rules:gar $H(ID, S) and f € £2(F),

8(z) —5(0)

(Ag)(2) = Cg =g(0),

S — S0
(BF)@) = %ﬂ Df = SO, (6.4)

are bounded operators such that the operator matrix
A B\ [(95DS) H(D, S)
( c D ) ' ( () ) - ( £2(8) ) (6:5)
is coisometric and closely outer connected, which means that

H(D, S) =spanjran(l — zA*)~1C*|z € D}.

THEOREM®6.2 Let S ¢ S(D? F, &). Let S € S, £2(3), £2(®)) be as in
Theorem6.1 and assume it has the closely outer connected coisometric realiza-
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tion (6.3). Define the operatoré, B, C and D by the rules: forg € H(D, §) and
VESRZICHE

AE(z2)g(z1) = E(z2)(Ag)(z0), (6.6)
BE(z2) f = E(z2)(Bf)(z1), (6.7)
CE(z2)g(z1) = E(z2)(Cg), (6.8)
DE(z2)f = E(z2)Df. (6.9)

Then the operator

(A B) . (saalﬂﬁ) ) . <53(D2,§> )
CD) \HxD3% H2(D, &)
is coisometric and represents the opera&rdefined by4.11) as
(SLE(z2) f) (z1) = (D +21.CU — 22A) 'B) (E(z2) f).  f € £2(3). (6.10)
In particular, forz € §,
S(z1, 22)h = (D+z.CU — zlA)_lB) h.

Proof. The representation (6.10) and that it comes from a coisometric operator
matrix follow easily from the coisometric representation $&r), and is omitted.

The last equality follows from (6.10) if we takgé = (2 00. )T e £5(3) and
observe tha8,(E(z2) f) = E(z2)S(z1) f = E(z2)R(z1)h = S(z1, z2)h. O

REMARKS 6.3 (1) In some sense, the constants in the above realization are the
elements oH,(ID). Similar realizations in spirit (but the parallel is deeper) appear
in the setting of upper triangular operatorq &.

(2) Theorem & in particular applies to functions such that the ker¢ke?) is
positive in the bidisk. It is of interest to connect the present colligation to the ones
associated by Agler in the setting of this class of functions.

7. Shift-Invariant Subspaces

In this section we prove the following corollary of Theorem 3.2 about shift invariant
subspaces in the Hardy space of the bidisk. We whifgD?) for H,(D?, C?),
p € N, andT for the unit circledDD.

THEOREM 7.1 For n € N, (a1, b1), (a2 by),...,(a,, b,) € D? and
X1, X2, ..., x, € CP, set

M ={f e HD?) |x] flai,bi) =0,i =1,2,... ,n},

Then there exists np x g matrix valued Schur functios(z1, zo) which takes
isometric values off’2 such that
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M = SHE(D?). (7.1)

Proof. Evidently, i+ is spanned by the linearly independent functions
Xj

Jilen22) = 21a?) (1 — z2b%)’

j=12,...n,

and hence dirffi+ = n. Assume there existsax g matrix valued Schur function
S(z1, z2) which takes isometric values @it such that (7.1) holds, that is, such that

M+ = HY(D? © SH3(D?).

We claim that the@t+ = $(D?, ), and so dinfy(D?, S) = n, which is impossible
since by Theorem 3.2, such spaces are either trivial or infinite dimensional. This
contradiction proves the theorem. It remains to show the claim, or equivalently, that
the spacélt! has reproducing kerndl  defined by(1.7):

I — S(z1, 22) S(w1, wp)*
(1—zw)) (L — zowj)

Kg(wy, wo; 21, 22) =

The proof is similar to the one variable case, and is recalled for completeness. We
first show that the functionizy, z2) = Ks(wi, wa; 21, z2)x belongs toH5 (D?) ©
SH1(D?) for everyx € C? and(ws, wp) € D2 For f = Su with u € H5(D?) we
have

I — S(z1, 22) S(wy, wp)*

Su, X
( (1 - zawi) (1 — zow3) )

X

= S . p
Su (1—z1w) (1 — z2w3) )
S(z1, 22)S(wy, wo)*
(- zwH (A - zow

—(Su

)X)HQ(DZ)

S(wy, wp)*

= *S N ) - ) <
x*S (w1, wa)u(wy, wy) — (u (1—le’{)(1—z2w§)x>H5(D2)

=0.
The second equality is true becaussis assumed to be isometric @. This proves

Ks(w1, wy; -, )x € M. Next we show the reproducing kernel property: We have
for f € HY(D?) © SH1(D?),

X

(f, Ks(w, wa; 21, 22)X) 02y = (f: A= (A= Z2w§)>H§(D2)

= x" f (w1, wy).

Thus* = H(D?, S), and the claim is proved. O
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Observe thafi is an example of a sub-Hardy Hilbert space for which (1.5)
and (1.6) are satisfied as equalities.
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