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This paper surveys panel data models extended to spatial error autocorrelation or a spatially
lagged dependent variable. In particular, it focuses on the specification and estimation of four
panel data models commonly used in applied research: the fixed effects model, the random effects
model, the fixed coefficients model and the random coefficients model. This survey should prove
useful for researchers in this area.
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In spatial research, cross-sectional data often refer to observations made on a number of
spatial units at a given time, time-series data to observations made over time on a given
spatial unit, and panel data to observations made on a number of spatial units over
time.2 In recent years there has been a growing interest in the specification and
estimation of econometric relationships based upon panel data. This interest can be
explained by the fact that panel data offer researchers more possibilities than purely
cross-sectional data or time-series data. According to Hsiao (1986) and Baltagi (1995),
panel data give more informative data, more variability, less collinearity among the
variables, more degrees of freedom, and more efficiency. Panel data also allow the
specification of more complicated behaviorial hypotheses, including effects that cannot
be addressed using pure cross-sectional or time-series data.

Two problems may arise when panel data have a locational component. The first
problem is spatial heterogeneity, which can be defined as parameters that are not
homogeneous throughout the data set but vary with location.3 Parameter heterogeneity
across spatial units has become a topical issue in the literature. Pesaran and Smith
(1995) and Fotheringham et al. (1997)4, especially, advocate abandoning the
fundamental assumption of homogeneous parameters underlying pooled models and
relying upon average responses from individual regressions. As with cross-sectional
data regression, the main problem of traditional panel data techniques is that they will
only capture representative behavior; panel data regression with constant slopes takes
an average across the spatial units, even when allowing for a variable intercept, and not
the differing behavior of individual spatial units (Quah, 1996a, 1996b). A second
reason why a relationship might exhibit spatial variation is that the model from which
the relationship is being estimated is a gross misspecification of reality in that one or
more relevant variables have been either omitted from the model or represented by an
incorrect functional form and are making their presence felt through the parameter
estimates.

It should be stressed that the rise of heterogeneous panel data estimators has also
been resisted. First, because they seem to produce less plausible estimates than their
pooled homogeneous counterparts (Baltagi and Griffin, 1997). Second, because
estimating individual time series models   one for each spatial unit   leaves

                                                
2Other terms used to describe panel data are space-time data, longitudinal data, repeated-
measures data and growth data.
3Coefficients may also vary over time, but that is not discussed in this paper.
4Fotheringham, Charlton and Brunsdon are known as advocates of geographically weighted
regression.
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undetected the co-movements across spatial units (Quah, 1996b). A final problem of
heterogeneous panel data modeling is that it is only sensible to run separate regressions
for each spatial unit when the number of observations on each spatial unit is large
enough, while most panels do not meet this requirement.

The second problem that may arise when panel data have a locational component
is that spatial dependence may exist between the observations at each point in time. The
main reason that one observation associated with a location may depend on
observations at other locations is that distance affects economic behavior. Each agent
may change its economic decisions depending on the market conditions in the region of
location compared to other regions and on the distance to these regions. These notions
have been formulated in regional science theory, which relies on notions of spatial
interaction and diffusion effects, hierarchies of place and spatial spillovers. To model
spatial dependence between observations, the model may take the form of a spatial
autoregressive process in the error term or in the variable to explain. The first is known
as the ���������		
	 case and the second as the ����������� case.5

This paper surveys panel data models extended to either spatial error
autocorrelation or a spatially lagged dependent variable. The reason for this paper is
that these kinds of panel data models are not very well documented in the literature.
Only Anselin (1988), in his seminal textbook on spatial econometrics, discusses some
panel data models including spatial effects.6 Besides, there are also some empirical
studies allowing varying coefficients across spatial units together with spatial effects,
but these studies only give the most obvious or easily understood features of the method
of estimation, and not those that require more effort to apply these methods in practice
(e.g. Case, 1991; Kelejian and Robinson, 1997; Buettner, 1999; among others).

The spatial econometric literature has shown that OLS estimation in models with
spatial effects is inappropriate. In the case of spatial error autocorrelation, the OLS
estimator of the response parameters, while unbiased, loses its property of efficiency. In
the case of a spatially lagged dependent variable, the OLS estimator of the response
parameters not only loses its property of unbiasedness but also its consistency. The

                                                
5for the introduction of these terms, see Anselin and Hudak (1992).
6On pp.150-156 and pp.164-166 Anselin presents the random effects model including spatial
error autocorrelation, and on pp.137-150 and pp.157-163 the seemingly unrelated regressions
model including a spatial lagged dependent variable and spatial error autocorrelation. The
difference with the seemingly unrelated regressions model presented in this paper is that,
while Anselin allows the coefficients to vary across time, we allow them to vary across space.
Other models presented in this paper that are briefly mentioned in Anselin are the random
coefficients model including spatial error autocorrelation (pp.129-131), and the simultaneous
equations model with one separate equation for every spatial unit including spatial lagged
dependent variables (p.156).
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latter might be thought of as the minimum requirement for a useful estimator. The most
commonly suggested method to overcome these problems is to estimate the model by
maximum likelihood (see Anselin, 1988; Anselin and Hudak, 1992). For this reason, we
will deal with maximum likelihood estimation in principle, unless this approach is too
complicated or not applicable.

The plan of this paper is as follows: First, we introduce the four most commonly
used panel data models for estimating relationships that are linear in the parameters and
in which the regressand is a continuous variable. Then we extend these models to
spatial error autocorrelation or a spatially lagged dependent variable and explain how
these models can be estimated. Finally, we present our conclusions.

� �����
�
	��
�����
���������������	
����

The starting point of many econometric analyses in spatial research is a linear model
between a dependent variable Y and a set of K independent variables X

,itititKitKit22it11it X’X...XXY ε+β=ε+β++β+β= (1)

where i=1,...,N refers to a spatial unit, t=1,...,T refers to a given time period, β1,...,βK are
fixed but unknown parameters, εit are error terms independently and identically
distributed (i.i.d.) for all i and t with zero mean and variance σ2. Usually, one of the
independent variables is fixed at unity, say X1it for all i and t, and its parameter β1 is
called the intercept of the model.

The main objection to this model is that it does not control for spatial
heterogeneity. Spatial units might differ in their background variables, mostly space-
specific time-invariant variables that do affect the dependent variable of the analysis but
are difficult to measure or hard to obtain. To fail to account for these variables runs the
risk of obtaining biased results. One remedy is to introduce a variable intercept µi

representing the effect of the omitted variables that are peculiar to each spatial unit
under study

.X’Y itiitit ε+µ+β= (2)

Conditional upon the specification of this variable intercept, the regression equation can
be estimated as a fixed effects or random effects model. In the fixed effects model, a
dummy variable is introduced for each spatial unit as a measure of the variable
intercept. In the random effects model, the variable intercept is treated as a random
variable i.i.d. with zero mean and variance σµ

2. Furthermore, it is assumed that the µi
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and εit random variables are independent of each other. Another difference between
these two models is that for short panels, where T is fixed and N→∞, the fixed effects
model suffers from a loss of degrees of freedom in that only the slope parameters can
be estimated consistently; the coefficients of the dummy variables cannot be estimated
consistently since the number of these coefficients increases as N increases. In the
random effects model, this loss of degrees of freedom is avoided.

Although the variable intercept model accommodates for the effect of spatial
heterogeneity to a certain degree, the problem remains as to whether the data in such a
model are pooled correctly. When spatial heterogeneity cannot be captured completely
by the variable intercept, a natural generalization would be to let the slope parameters
of the regressors vary as well. Just like the variable intercept, the slope parameters may
be considered as fixed or as randomly distributed between spatial units. If the
parameters are fixed and different for different spatial units, each spatial unit is treated
separately. Let Yi=Xiβi+εi be the �th equation in the set of N equations, where the
observations are stacked as an equation for each spatial unit over time. The only way to
relate these N separate regressions is to assume correlation between the error terms in
different equations, known as contemporaneous error correlation. Such a specification
is reasonable in case the error terms for different spatial units, at a given point in time,
are likely to reflect some common unmeasurable or omitted factors. In full-sample
notation, the set of N equations may be written as
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(3)

This model is known as a seemingly unrelated regressions (SUR) model.
A disadvantage of a model with different parameters for different spatial units is

the large number of parameters to be estimated: N×K different β parameters and
½N(N+1) different σ parameters. This model is therefore only of value when T is large
and N is small. If T were fixed and N→∞, as is typical in short panels, this model
would not be of value in that the response parameters could not be estimated
consistently. This is because the number of these parameters increases as N increases.

If the parameters are treated as outcomes of random experiments between spatial
units, we can pool the data into one model to estimate the unknown parameters. This is
known as a Swamy type random coefficients model (Swamy, 1970)
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,N,...,1i   ),N,...,1s,t(   )(E   ,0)(E   ,XY 2
itsitititit

’
iit ==σ=εε=εε+β= (4a)

,N,...,1i   ,v ii =+β=β (4b)

where the βi applying to a particular spatial unit is the outcome of a random process
with common-mean-coefficient vector E(vi)=0, E(vivi’)=V, and V is a symmetric K×K
matrix. Furthermore, it is assumed that E(vivj’)=0 for i/,=j and that the εit and vi random
variables are independent of each other. By treating the differences in the response
coefficients across spatial units as outcomes of random experiments instead of fixed
coefficients, the number of response coefficients no longer grows with the number of
spatial units. This substantially reduces the number of parameters to be estimated and
improves the efficiency of the estimates due to the availability of many more degrees of
freedom.

� �����������	
���������������
�����
������
��
�����

It proves helpful to introduce the following notation: Let W denote a N×N spatial
weight matrix describing the spatial arrangement of the spatial units and wij the ��
��th
element of W (i,j=1,…,N). It is assumed that W is a matrix of known constants, that
all diagonal elements of W are zero (wii=0, i=1,...,N), and that the characteristic roots
of W (ω1,...,ωN) are known. The first assumption excludes the possibility that the
spatial weight matrix is parametric; the second implies that no spatial unit can be
viewed as its own neighbor; and the third presupposes that the characteristic roots of
W can be computed accurately based on computing technology typically available to
empirical researchers7 and is needed to ensure that the log-likelihood function of the
models below can be computed.

���������������
���
����������������
���	����
������
���������
���
	�������	
��������
�����
����
�����������,
the fixed effects model extended to spatial error autocorrelation can be specified as

,I)(E   ,0)(E   ,W   ,XY N
2’

ttttttttt σ=εε=εε+ϕδ=ϕϕ+µ+β= (5)

and to a spatially lagged dependent variable as

                                                
7Kelejian and Prucha (1999) have pointed out that this might be problematic even for
moderate sample sizes (N=400).
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,I)(E   ,0)(E   ,XWYY N
2’

ttttttt σ=εε=εε+µ+β+δ= (6)

where µ=(µ1,...,µN)’. Note that in the spatial error case the properties of the error
structure have been changed, and that in the spatial lag case the number of explanatory
variables has increased. In both cases δ is called the spatial autoregressive coefficient.

The standard method of estimating the fixed effects model is to eliminate the
intercept and µi from the regression equation by demeaning the Y and X variables8,
estimate the resulting demeaned equation by OLS, and then recover the intercept β1 and
µi (Baltagi, 1995, pp.10-13). It should be noted that only (β1+µi) are estimable, and not
β1 and µi separately, unless a restriction such as Σµi=0 is imposed.

Instead of estimating the demeaned equation by OLS, it can also be estimated by
ML. The only difference is that ML estimators do not make corrections for degrees of
freedom. The log-likelihood function corresponding to the demeaned equation extended
to spatial error autocorrelation is

and to a spatially lagged dependent variable is

These two log-likelihood functions can be maximized by standard techniques
developed by Anselin (1988, pp.181-182) and Anselin and Hudak (1995).

 ���
�����������
���
To describe the estimation procedure of the random effects model, it proves helpful to
separate the intercept β1 from the other right-hand side variables. This implies that Xt

and β in this particular case denote all the regressors and their response parameters
except the intercept. Just as in the fixed effects model, �������������
���	����
������
��
������
���
	�������	
��������
�����
����
�����������!

Starting with the log-likelihood function of the random effects model given in

                                                
8Each variable for every spatial unit is taken as the deviation of its average over time:
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Breusch (1987) and Baltagi (1995, pp.18-19), the log-likelihood function of the random
effects model extended to spatial error autocorrelation is

and to a spatially lagged dependent variable is

The parameter θ2 measures the weight that will be attached to the variation between the
spatial units.9 If this weight tends to zero, the random effects model reduces to the fixed
effects model, a model that only utilizes the variation within the spatial units over time
in forming the parameter estimates of β. If the weight tends to unity, the random effects
model reduces to the standard model in (1) estimated by OLS.

Both β1 and σ2 can be removed by concentrating the log-likelihood functions,
i.e., by substituting the unique maximizing values of β1 and σ2, given arbitrary values of
β, δ and θ2. Estimates of β1 and σ2 can be recoverd later by

The concentrated log-likelihood function for the spatial error case is then

                                                
9Instead of σµ

2 the parameter θ2 is estimated, which is possible as there is a one-to-one
correspondence between θ2 and σµ

2: θ2=σ2/(σ2+Tσµ
2). θ is defined as θ=√θ2.
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and for the spatial lag case is

In both cases one can iterate between β on the one hand and θ2 and δ on the other. The
estimator of β, given θ2 and δ, is a GLS estimator; this estimator can be obtained by
OLS regression of the transformed variable Y on the transformed variables X.
Conversely, the estimators of θ2 and δ, given β, must be solved by numerical methods
as they cannot be solved algebraically. As the basic regression model extended to
spatial error autocorrelation or to a spatially lagged dependent variable has one
maximum for δ 10, so does the random effects model. By contrast, Maddala (1971) has
pointed out that the log-likelihood function of the random effects model without spatial
effects may have two maxima for 0<θ2≤1. To guard against the possibility of a local
maximum, Breusch (1987) has pointed out that one should start iterating with the
"within estimator" (θ2=0) and the "between estimator" (θ2→∞). If these two sequences
converge to the same maximum, then this is the global maximum. Finally, it should be
noted that estimating the random effects model by ML is not standard in that this
application is not available in most commercial econometric software packages.

"���	
����
����
����������������
����������
#
��� ��� ���� �������� �		
	� ����� ���� ��� ���� �������� ���� ����� ��� ������� ����� ���

���	����
����	�������������
���������
���
	�������	
��������
�����
����
�����������!
$��������		
	. The SUR model in (3) with one equation for every spatial unit and with
contemporaneous error correlation does not have to be changed to cope with the spatial
error case since the set of σij (i,j=1,...,N) already reflects the interactions between the
spatial units. In the literature this is contemplated as an advantage as no prior
assumptions are required about the nature of interactions over space (White and
Hewings, 1982). The explanation is that the specification of a particular spatial weight
matrix does not alter the estimates of the response parameters β; the estimate of each σij

immediately adapts itself to the value of wij by which it would be multiplied. As the
SUR model is discussed in almost every econometric textbook and is available in
                                                
10Equations (5) and (6) but without the variable intercept µ (see Anselin and Hudak, 1992).
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almost every commercial econometric software package, it hardly requires any further
explanation.

The standard method of obtaining the maximum likelihood estimates of the
parameters in a SUR model is by iterating the feasible GLS procedure. In every
iteration the residuals of the separate regressions are used to update the elements of the
covariance matrix

,N,...,1j,i   ,T/ee j
’
iij ==σ (14)

until convergence. It is to be noted that the estimates of βi (i=1,...,N) and σij (i,j=1,...,N)
that are obtained by iterating the feasible GLS procedure are equivalent to those that
would be obtained by maximizing the log-likelihood function of the model, assuming
that there are no restrictions on the response parameters β across or within the
equations.

One alternative form of the SUR model, which re-establishes the spatial weight
matrix, is obtained by imposing the restrictions σij=δiwij for j/,=i. These restrictions are
reasonable if one has prior information about the nature of interactions over space.
Furthermore, they reduce the number of parameters to be estimated, which is of help
especially when N is large (e.g., N>20). On imposing the restrictions σij=δiwij for j/,=i,
the elements of the covariance matrix must be updated in each iteration by

These restrictions can easily be implemented.

$������� ���. The set of N equations in a heterogeneous model with fixed coefficients
and spatially lagged dependent variables can be expressed as

or
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Each equation can also be written as

Note (i) that the δs, just as the βs, are assumed to be different for different spatial units,
(ii) that no prior assumptions are required about the nature of interactions over space,
just as in the SUR model, and (iii) that this model is a simplified version of a linear
simultaneous equations model in that the assumption of contemporaneous error
correlation has been dropped. This assumption has been dropped to discriminate
between the spatial error case and the spatial lag case.

The log-likelihood function and the first-order maximizing conditions of a linear
simultaneous equations model are given in Hausman (1975, 1983). Dropping the
assumption of contemporaneous error correlation, the FIML estimator of each single ηi

is
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The matrix of estimated values of Zi consists of N-1+K columns: N-1 columns with
respect to those spatially lagged dependent variables that explain Yi 

11 and K columns
with respect to those independent variables that explain Yi. Note that the estimated
values of Zi can also be seen as instrumental variables (Hausman, 1975, 1983). As the
estimated values of Zi at the right-hand side of (19) depend on η, (19) defines no closed
form solution for η. One might attempt to solve η by the Jacobi iteration method 12,

                                                
11The matrix XBΓ-1 consists of N columns. In case Yj (j=1,...,N) is an explanatory variable of
Yi (i=1,...,N), the �th column of XBΓ-1 is part of the matrix of estimated values of Zi.
12We require a solution η=f(η). The Jacobi iteration method iterates according to ηh+1=f(ηh).
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though a problem is that this method cannot be expected to converge in general.
Furthermore, this procedure is available in only a limited number of commercial
econometric software packages.13

 One alternative form of this model, which re-establishes the spatial weight
matrix, is obtained by also imposing the restrictions δij=δiwij for j≠i. Just as in the
spatial error case, these restrictions are reasonable if one has prior information about
the nature of interactions over space. Furthermore, they reduce the number of
parameters to be estimated, which is of help especially when N is large (e.g., N>20).
Under these circumstances we get

where [XBΓ-1]j denotes the �th column of the matrix XBΓ-1. Although these restrictions
simplify the estimation procedure, it follows that the Jacobi iteration method is still
needed. Because a heterogenous model with fixed parameters has different spatial
autoregressive coefficients δ for different spatial units, it also follows that the Jacobian
term, in contrast to both the fixed effects and random effects models that have one
spatial autoregressive coefficient δ for all spatial units, cannot be expressed in function
of the characteristic roots of the spatial weight matrix. It is this difference that
complicates the numerical determination of the FIML estimator. As an alternative, one
might also use 2SLS since this estimator has the same asymptotic distribution as the
FIML estimator. The benefit of the 2SLS estimator is that it is far easier to compute.
The cost is a loss in asymptotic efficiency, as it does not take account of the restrictions
on the coefficients within the matrices B and Γ.

"���	
����
����
���������	���
���
����������
$������� �		
	. ������ ������ ����
���	����
������ ��� ������
�� �
	� ����� �������� ����� 
��	
����, the random coefficient model with spatial error can be specified as

,N,...,1i   ),N,...,1j(   I)(E   ,0)(E   ,XY Tijjiiiiii ==σ=εε=εε+β= (21a)

,N,...,1i   ,v ii =+β=β (21b)

where the βi applying to a particular spatial unit is the outcome of a random process
                                                
13Examples are TSP and PC-Give (see Greene, 1997).
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with common-mean-coefficient vector E(vi)=0, E(vivi’)=V, and V is a symmetric K×K
matrix. Furthermore, it is assumed that E(vivj’)=0 for i/,=j and that the εit and vi random
variables are independent of each other.

Just as in the heterogeneous model with fixed coefficients, no prior assumptions
are required about the nature of interactions over space. Note that compared to the
Swamy random coefficient model, we assume not only that E(εitεis)=σii 

14 (t,s=1,...,T)
for i=1,...,N, but also that E(εitεjs)=σij (t,s=1,...,T) for i,j=1,...,N. In this model, the
random vector Y≡(Y1’,...,YN’)’ can be seen to be distributed with mean Xβ, where
X≡(X1’,...,XN’)’, and covariance matrix

where D is a block-diagonal matrix of NT×NK, D=diag[X1,...,XN], and Σσ is a N×N
matrix, Σσ={σij} (i,j=1,...,N). The ML and the GLS estimator of β are known to be
equivalent (Lindstrom and Bates, 1988) and equal to

though the problem is that Σ contains unknown parameters Σ=Σ(Σσ,V) that must also be
estimated. There are two ways to proceed. A feasible GLS estimator of β may be
constructed based on a consistent estimate of Σσ and V. To obtain this estimator, the
following steps must be carried out: First, estimate the model assuming that all the
response parameters are fixed and different for different spatial units. We use the
abbreviation FC to refer to these estimates. The model in view is the SUR model
without restrictions on the covariance matrix (equations (3) and (14)), or the SUR
model with the restrictions σij=δiwij for j/,=i on the covariance matrix (equations (3) and
(15)). This results in estimates for βi

FC and σij
FC (i,j=1,...,N) or βi

FC, σii
FC and δi

FC

(i=1,...,N). Second, estimate V by (see Swamy, 1974)

                                                
14In this case we decided to use σii instead of σi

2 as in equation (4a).

),I(’D)VI(D

I’VXX.II

....

I.I’VXXI

I.II’VXX

TN
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TN1T12T1111

⊗Σ+⊗=
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





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
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

σ+σσ

σσ+σ
σσσ+

=Σ σ

(22)

,Y’X)X’X(ˆ 111 −−− ΣΣ=β (23)
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(24)

The estimator of V, though unbiased, may not be positive definite. To ensure the
positive definiteness of the estimated matrix, one might also use the consistent
estimator V=1/(N-1)×S (for details, see Swamy, 1970). Finally, estimate the common-
mean coefficient vector β by GLS according to equation (23). One problem of the final
step is that it requires a matrix inversion of order N×T. As an alternative, the inverse of
Σ can also be computed by the expression

which requires the inversion of three matrices, one of order K (V), one of order N (Σσ)
and one of order N×K (the matrix between square brackets). In the case that T is large
and/or K<<T, this alternative computation is to be preferred. Nevertheless, the
inversion of a matrix of order N×K in some commercial econometric software packages
still might pose computational difficulties.

Despite its mathematical equivalence, the feasible GLS estimator of β does not
coincide with the ML estimator of β. This is because the feasible GLS estimator of β is
based on a consistent but not on the ML estimate of Σσ and V. Following the statistical
literature, ML estimation of β, Σσ and V, though possible, seems laborious. There are
three reasons for this. First, Σσ and V cannot be solved algebraically from the first-order
maximizing conditions of the log-likelihood function. Consequently, Σσ and V must be
solved by numerical methods. Second, a common estimation problem is associated with
the restrictions on the parameters of the covariance matrix. A variance estimate should
be nonnegative, and a covariance matrix estimate should be nonnegative definite. Also,
it must be allowed that an estimate takes values on the boundary. Thus, a variance
estimate may be zero, and a covariance matrix estimate may be a nonnegative definite
matrix of any rank. In fact, such boundary cases provide useful exploratory information
during the model building. It is desirable that numerical algorithms for ML estimators
can successfully produce the defined estimates for all possible samples including those
where the maximum is attained on the boundary. However, this parameter space
problem often causes difficulties for the existing ML algorithms (Shin and Amemiya,
1997, p.190). Third, although some studies assert to have developed efficient and
effective algorithms for the likelihood-based estimation of the parameters, they
generally assume that E(εiεi’)=σ2IT and E(εiεj’)=0 for i,j=1,...,N and i/,=j instead of
E(εiεj’)=σij (Jenrich and Schluchter, 1986; Lindstrom and Bates, 1988, p.1014, left

),I(’D]VID)I(’D[D)I()I( T
111

NT
1

T
1

T
11 ⊗Σ⊗+⊗Σ⊗Σ−⊗Σ=Σ −

σ
−−−

σ
−
σ

−
σ

− (25)
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column; Longford, 1993; Goldstein, 1995; Shin and Amemiya, 1997, p.189). This
naturally simplifies the parameter space problem. It is therefore not certain whether
these algorithms work for this more general case.

$����������. A full random parameter model with spatially lagged dependent variables
does in fact not exist. The main reason for this is that the assumption of a random
element in the coefficients of lagged dependent variables raises intractable difficulties
at the level of identification and estimation (Kelejian, 1974; Balestra and Negassi,
1992; Hsaio, 1996). Instead a mixed model may be used, containing fixed coefficients
with respect to the spatial dependent variables and random coefficients with respect to
the exogenous variables. This model reads as

,XY...YY...YY itit
’
iNTNtt1i1iit1i1iit1i1it ε+β+δ++δ+δ++δ= ++−− (26a)

,vii +β=β (26b)

where E(εit)=0, E(εitεis)=σi
2 (t,s=1,...,T; i=1,...,N), and where the βi applying to a

particular spatial unit is the outcome of a random process with common-mean-
coefficient vector E(vi)=0, E(vivi’)=V, and V is a symmetric K×K matrix. Furthermore,
it is assumed that E(vivj’)=0 for i/,=j and that the εit and vi random variables are
independent of each other.

A problem making this model still quite unusual is the number of observations
needed for its estimation. The minimum number of observations on each spatial unit
amounts to N+K, as the number of regressors is N-1+K. Most panels do not meet this
requirement, even if N is small. Provided that information is available about the nature
of interactions over space, we therefore impose the restrictions δij=δiwij for j/,=i, to get

In this case the minimum number of observations needed on each spatial unit reduces to
K+1, which is independent of N.

$�������� ���� 
���	����
�� �%� ����� �
	� ����� �������� ����, the full model may be
expressed as
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.v]X,...,X[diagX)]w(Y),....,w(Y[diag          N1N1 ε+×+β+δ×≡ (27a)

The covariance matrix of the composite disturbance term diag[X1,...,XN]× v+ε is block-
diagonal with the ith diagonal block given by

Just as in the spatial error case, there are two ways to proceed. A feasible GLS
estimator of δ and β may be constructed, extended to instrumental variables and based
on a consistent estimate of σ1

2,...,σN
2 and V. Alternatively, δ, β, σ1

2,...,σN
2 and V may be

estimated by ML.15 We suggest the following feasible GLS analog instrumental
variables estimator taken from Bowden and Turkington (1984, Ch.3).16

Let Xi denote the T×K matrix of the exogenous variables in the �th equation, Zi

the T×(1+K) matrix of the spatially lagged dependent and exogenous variables in the
�th equation, and X denote the T×KALL matrix of all the exogenous variables in the full
model. If each spatial unit has K random regressors, among which the intercept, KALL is
equal to 1+N(K-1). Consequently, the inversion of the matrix X’X of order KALL×KALL

might be a problem when N and K are large.
First, estimate the model assuming that all coefficients are fixed. We use the

abbreviation FC to refer to these estimates. The model in view might be the SUR model
extended to spatially lagged dependent variables described above (equations (16)-(18)
combined with (20)), but in this case we stick to instrumental variables estimators. This
results in estimates for βi

FC and σi
2,FC (i,j=1,...,N)

,XY)X’X(X’Z]Z’X)X’X(X’Z[
ˆ
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ˆ i

1
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1
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


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δ=η (28a)

.
KT

)ˆZY()'ˆZY(
ˆ

FC
iii

FC
iiiFC,2

i −
η−η−

=σ (28b)

                                                
15We have found one application of this model in the literature (Sampson et al., 1999), but this
paper omits a description of the estimation procedure used.
16Bowden and Turkington start with the regression equation Y=Xβ+u, where E(uu’)=Ω. Part
of the X variables are endogenous. Let Z denote the instrumental variables. Then the GLS
analog instrumental variables estimator is

.XZ)Z’Z(ZX   with   Y’X)X’X(ˆ 111p1p1p1p −−−−−− ΩΩ=ΩΩ=β

.I’VXX T
2
ii1i σ+=Φ (27b)
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Second, estimate V by (see Balestra and Negassi, 1992; Hsiao and Tahmiscioglu, 1997)

Let Zi
p denote the predictive values from the multiequation regression of Zi=[Yi(w) Xi]

on X, the observations for each spatial unit weighted by Φi
-1,

The inverse of Φi, Φi
-1, can be computed by the expression

as a result of which the formula for Zi
p changes into

Finally, estimate δi (i=1,...,N) and β by
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where each element M1’Φi
-1M2 with M1=Y1

p(w),...,YN
p(w),X1,...,XN and

M2=Y1(w),...,YN(w), X1,...,XN can be computed by
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This paper has given a systematic overview of panel data models extended to spatial
error autocorrelation or a spatially lagged dependent variable. In the introduction it was
stated that these kinds of panel data models are not very well documented in the
literature. One reason is that each model has its own specific problems. We summarize
these problems for the four panel data models considered in this paper as follows:
(i) Estimation of the fixed effects model can be carried out with standard techniques

developed by Anselin (1988, pp.181-182) and Anselin and Hudak (1995), but the
regression equation must first be demeaned. This model is relatively simple.

(ii) Estimation of the random effects model can be carried out by ML, though two
problems must be taken into account. First, estimating the random effects model
by ML is not standard in that this application is not available in most commercial
econometric software packages. Second, it must be investigated whether the
maximum found is global and not local.

(iii) A heterogeneous model with different coefficients for different spatial units
extended to spatial error autocorrelation is equivalent to a seemingly unrelated
regressions model. The estimation of this model is standard. A heterogeneous
model with different coefficients for different spatial units extended to spatially
lagged dependent variables is almost equivalent to a simultaneous linear
equations model. Estimation of this model by ML is complicated by the fact that
it falls back on the Jacobi iteration method, one that cannot be expected to
converge in general. Furthermore, this method is available in only a limited
number of commercial econometric software packages. As an alternative, one
might use 2SLS, but this method does not take account of the restrictions on the
coefficients within the coefficient matrices. Another problem is that the response
coefficients in both models cannot be estimated consistently when T would be
fixed and N→∞, as is typical in short panels. This is because the number of these
coefficients increases as N increases.

(iv) Estimation of the random coefficient model extended to spatial error
autocorrelation or to spatially lagged dependent variables by ML is possible
though laborious. First, the covariance matrix contains unknown parameters that
cannot be solved algebraically from the first-order maximizing conditions of the
log-likelihood function. Second, restrictions on these unknown parameters often
cause difficulties for existing ML algorithms. Third, existing algorithms that
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have solved these problems are usually geared to simpler models without spatial
effects. For these reasons it is simpler to use feasible GLS to estimate the random
coefficients model extended to spatial error autocorrelation, and to use feasible
GLS combined with instrumental variables to estimate the random coefficients
model extended to spatially lagged dependent variables. These estimators might
still be difficult to compute as they require matrix inversions whose orders may
be quite large, dependent on the number of spatial units and the number of
explanatory variables. Finally, in the latter model a random element in the
coefficients of the spatially lagged dependent variables should be avoided, as this
raises intractable difficulties at the levels of both identification and estimation.
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