

 University of Groningen

An Open Toolkit for Reverse Engineering Data Visualisation and Exploration
Telea, A.; Maccari, A.; Riva, C.

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2002

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Telea, A., Maccari, A., & Riva, C. (2002). An Open Toolkit for Reverse Engineering Data Visualisation and
Exploration. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute for Mathematics
and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 06-06-2022

https://research.rug.nl/en/publications/c29e8387-3fe9-4e01-abe8-46ac74942bb1

An Open Toolkit for Reverse Engineering Data
Visualisation and Exploration

A. Telea �, A. Maccari �, C. Riva �

� Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands, alext@win.tue.nl

� Software Technology Laboratory,
Nokia Research Center, Helsinki, Finland

alessandro.maccari@nokia.com, claudio.riva@nokia.com

Abstract. Maintenance and evolution of complex software systems (such as mo-
bile telephones) involves activities such as reverse engineering (RE) and software
visualisation. The RE conceptual framework for describing software understand-
ing and concept abstraction is implemented up to different degrees by several RE
tools. We found the architecture of most such tools hard to adapt to the domain
specific requirements posed by our current practice in Nokia. We believe that the
architecture of a RE tool should reflect the conceptual framework’s logical steps.
We propose such an architecture and present a concrete RE toolkit that implements
it. The toolkit provides a flexible way to build RE scenarios by subclassing and
composition of a few basic components. We pay special attention to the visual and
interactive requirements of the RE process. We show our plans to use it for further
research on visualising the complex software structures that we extract from our
products.

1 Introduction

Program understanding [7, 1, 18] is an essential part of maintenance and evolution of
complex software systems. The term ”program understanding” means identifying the
software artifacts that compose a certain system and the structure and semantics of their
relationships. Reverse engineering (RE) is the part of program understanding that con-
cerns with the extraction of the low level system implementation data and their presen-
tation at the right abstraction level. Several tools support RE by providing automatic and
user-driven facilities for data extraction and visual data presentation [4, 5, 12]. In prac-
tice, however, attempts to reverse engineer large systems usually reach some functional
and/or structural limitations of these tools. Some tools focus on domain modelling and
program analysis but provide little for the examination and/or user editing of the ex-
tracted information. Other tools provide extensive data visualisation and editing [12, 5]
but no program analysis or are hard to integrate with tools that perform this task.

To address the above problems, we propose a new architecture for RE tools. First, we
identify the common features (or ’agents’) the various RE tasks require (Sec. 1.1). Our
architecture models these agents as loosely coupled object-oriented components that can
be subclassed and/or composed to customise the tool (Sec. 1.3). Sections 2 and 3 present
our architecture in detail. Section 5 shows and end-user view of our tool. Section 6 shows

the use of our RE tool for the analysis of concrete software data from the industry. Sec-
tion 7 concludes with directions for future work.

1.1 Reverse Engineering Tasks

A past investigation detected five major tasks that an RE tool should support [1]. These
tasks are, in increasing abstraction level order: program analysis, plan recognition, con-
cept assignment, redocumentation, and architecture recovery (see also Fig. 1)). Program
analysis is the basic task that any RE tool should support and consists of two services:
construction of a layered program model and presentation this model to the user, i.e.
via graphical navigable views at different detail levels [12, 14]. Plan recognition aims
at finding certain design patterns in the software [20]. These design patterns form the
so-called domain model (Fig. 1). A first attempt for plan recognition support would be
an editor for manual assignment of design patterns to elements obtained from program
analysis and the visualisation thereof e.g. as UML diagrams. Concept assignment [6] is
the task of discovering concepts and assigning them to their implementation counter-
parts. RE tools might support concept assignment by annotating the software artifacts
with concepts picked from a domain-specific concept database and visualising this an-
notation. Redocumentation [18] is the task of retroactively providing documentation for
existing software systems. Since redocumentation spans the three tasks discussed so far,
a RE tool could support it by the mechanisms outlined so far. Architecture recovery [10]
focuses on recovering the architectural aspects of large systems. Architecture recovery
support may demand yet another (graphical) system representation.

source
code

Program
analysis

Concept
assignment

Reverse Engineering Process

− low−level
− concrete
− unstructured

Plan
identification

Redocumentation
Architecture

recovery
hierarchical

representation

− low−level
− abstract
− unstructuredinformation enrichment

domain
model

Fig. 1. Reverse engineering tasks

1.2 Requirements for a RE Tool

The five mentioned RE tasks concur, and not compete, to the overall RE goal, i.e. extract-
ing low-level code information and enriching it with information from other sources. In
other words, one must provide different views of the same data on which various queries,
supported by a given domain model, can be made. Consequently, we identify three main
’agents’ that a generic RE tool should provide: views, queries, and domain models.

The views relate to the different focuses of the RE tasks [1]. Among these, we men-
tion structural views (syntax trees, file-directory containment hierarchies, design pat-
tern instances), functional views (concept and dataflow graphs), low-level views (source
code), and high-level views (architectural plans, user documentation). A generic RE tool
should provide several such views and allow defining domain-specific ones [11, 18].

The same flexibility should be provided for queries. A query is any algorithmic op-
eration that can be executed on a given software model, e.g. searching for occurrences of
a specific pattern, removing or replacing of an element with a given value, aggregating
elements, computing quality metrics, and so on. Since many queries are domain specific,
RE tools should provide a generic and simple manner to define them.

Finally, the RE tool should allow defining problem-specific domain models. A do-
main model is a set of meta-rules that describes certain aspects present in the analysed
software, such as a source-code grammar, a set of design patterns to be found, or a set of
client-supplier relationships to be analysed. RE tools can use domain models to perform
queries automatically at a higher level than purely structural.

1.3 Concrete RE Operations

To address the needs for extensibility, domain retargeting, genericity, and simplicity to
use, we propose a new toolkit architecture which closely models the steps of the con-
ceptual RE pipeline, as follows. We identify five generic operations that implement the
five RE tasks introduced in Sec. 1.1 (see also [20, 11, 18] and Fig. 2 b):

1. extract the low-level artifacts from the source code
2. aggregate the artifacts into a hierarchical representation
3. measure the representation’s quality by using various norms. If necessary, reexecute

the aggregation step differently.
4. select a specific part of the hierarchy to examine
5. visualise the selected data. Insight acquired here may determine to reexecute the pre-

vious phases differently.

Steps 2 to 5 can take place in any order. Although traditionally a program analysis
model only, the above pipeline can be used all five RE tasks (Sec. 1.1). All selection,
measuring, and visualisation operations apply thus to all tasks, every task needing po-
tentially different operation implementations. Consequently, we use the above pipeline
model as a basis for our generic RE tool architecture (Fig. 2).

The toolkit is implemented as a layered system. The toolkit core is implemented as
a C++ class library, for performance reasons. The user interface layer is implemented in
Tcl/Tk for flexibility. The next section discusses the core data structures of our architec-
ture. The RE operations are discussed next in Sec. 3.

2 Data Representation

We propose a data representation containing four elements: structure, attributes, selec-
tions, and domain models.

RevEng
data

Toolkit Core

User Interface

Viewing

Images

Graph
data

Selection

Layout

Mapping

Operations

- selection
- graph editing
- mapping

(k,2)-digraph

Selections

Core Data Model

Edit
operations

Select
operations

User
interface

Visualisation
operations

operations
datasets

read
data

construct
selection

modify
data

modify
selection

modify
view

parameters

display
data

a) b)

Fig. 2. a) Overview of the toolkit architecture b) Reverse engineering pipeline

2.1 Structure

The structure data consists of two main elements: a representationof the basic (low level)
artifacts, usually obtained by parsing the source code, and a hierarchical representation
of the information enrichment during the RE process.

There are many ways to describe this information, such as relational models [3], at-
tributed graphs [9], or data tables [13, 14]. However, all these models are ultimately hier-
archical attributed graphs, best described as (k,2)-partite graphs [2]. (k,2)-partite graphs
are well suited for our RE tool data model (see example in Fig. 3 a). They are generic,
i.e. can store both the basic artifacts (A..E) and the higher-level ones (F..H) produced by
the RE data abstraction process. The graph levels may represent the same type of infor-
mation, such as files in a file-directory hierarchy, or different types, such as variables,
grouped in procedures, grouped in modules, etc. All five RE tasks are covered: higher
levels may represent architectural elements associated to syntactic software artifacts on
lower levels. The model is also easily navigable and compact, making it efficient for
implementing the query, selection, filtering, and viewing operations. Graph nodes with
several parents can easily model alternative system structurings.

2.2 Attributes

Both graph nodes and edges may have attribute sets, i.e. collections of key-valueattribute
pairs with unique keys. We implement keys as string literals, values as primitive types
(integer, floating-point, pointer, or string), and the mapping as a hash table. Attributes
automatically change type if written to with a value of another type. Several attribute
planes can coexist in the graph. An attribute plane consists of all attributes of a given
set of nodes and/or edges for a given key. For example, one can set or query the ”price”
attribute-plane of a given node set.

The above model is quite different from the attribute model of other RE tools [12, 4,
5]. Most such tools choose a fixed set of attributes of fixed types per node and/or edge,
similarly to typed records. Our choice is more flexible, since a) certain attributes may
not be defined for all nodes, and b) attribute-planes are frequently added and removed
during a typical RE session.

Graph Selections Operation

r rw selection
rw r editing

r r mapping
A

C

B

E

D

H

F G

level 0

level 1

level 2
information
refinement

a) b)

Fig. 3. a) Example of (k,2)-partite graph b) Operations vs reading/writing data

2.3 Selections

Selections are the second main component of our RE data model. A selection is a set
of graph nodes and edges. Selections allow executing any toolkit operation on a specific
subset of the whole graph. To make the toolkit flexible, we decouple the operation def-
inition from the data on which it is executed. Selections allow their operation clients to
iterate over their nodes and edges. To optimise memory storage and iteration speed, we
implement several selection subclasses that store nodes and edges internally in different
ways. This is an important aspect, as an usual RE session creates tenths of selections
with hundreds or even thousands of elements. Selections are named, just as attributes.
All selections are kept in a selection-list, which is managed similarly to the attribute-set.
Asking for a selection whose name is not in the list returns a specialEmptySelection
object. In this way, operations do not have to test explicitly if their selection arguments
exist or not. This simplifies the implementation of a new operations.

2.4 Domain Models

Domain models are implemented in our toolkit as a set of meta-rules that prescribe the
structure and attributes of the nodes and edges. We implement a domain model as a col-
lection of node and edge types. A node or edge type is a collection of attribute types. An
attribute type consists of a name and a type. The above model is roughly similar to the
type system provided by several programming languages for e.g. records. The toolkit
supports a collection of domain models defined as above. Similarly to graph data, do-
main models can be loaded from several file formats, such as the RSF format [4]. Nodes
and edges may then be associated with a node, respectively edge type by setting a ”type”

attribute to name the desired attribute node, respectively. Operations such as metrics or
aggregations may then use the types of nodes and edges to infer about their domain-
specific properties.

Several RE tools such as [5] implement domain models differently, i.e. by modelling
every node and edge type as a class in the toolkit’s own programming language and im-
plementing nodes and edges as instances thereof. However, this has several drawbacks.
One can not add or delete attributes from existing nodes and edges, change attribute
types, change the type of a node or edge, or introduce new domain models without re-
compiling the system. The main advantage of using a compiled solution — strong type
checking — is not essential or may be even restrictive for the prototyping and investiga-
tive nature of the RE applications. We have chosen thus for a purely run-time, weakly-
typed implementation of domain models.

3 Operation Model

Operations read and write the graph via selections and may have three types of inputs
and outputs: selections specifying on which nodes and edges the operation works; at-
tribute keys that specify on which attribute planes the operation works; and operation
specific parameters, such as the threshold value for a filtering operation. Following the
RE task model (Sec. 1.3), we distinguish three major operation types, as follows (see also
Fig. 3 b). Selection operations build selections by using different algorithms. Selection
operations are the only ones that create selections (see Sec. 3.1). Graph editing oper-
ations modify the graph structure and/or attributes. These are the only operations that
modify the graph (see Sec. 3.2). Mapping operations map the graph to other representa-
tions. Data visualisation is e.g. a mapping operation. Mappings are the only operations
that only read both the graph and the selections (see Sec. 4).

The above read/write interface provides a clear specification of the operations’ re-
sponsibilities for developers. Secondly, this allows the system to infer which data are
modified after the execution of one or more operations and to automatically update all
components that depend on the modified data. For example, selection objects are au-
tomatically updated after a structure editing, since this might have inserted or deleted
selected nodes or edges. A second example are the data viewers (Sec. 4.3) that are auto-
matically updated upon change of their input selections.

In the following, we describe several concrete operation implementations.

3.1 Selection Operations

Selection operations produce specific selection instances (Sec. 2.3), as follows.
Level Selection
A level selection receives a level number as an input and selects all the nodes and hori-
zontal edges on that level. Level selections are used for visualising a specific aggregation
level in a (k,2)-digraph. Level selections implement what other RE tools call horizontal
slices in the data model [4, 5].
Tree Selection
A tree selection receives a selection s� as input and produces a selection s� that contains

all the nodes and downward edges that are reachable from the nodes in s�. Tree selec-
tions are used for visualising the so-called vertical slices in a (k,2)-digraph.
Conditional Selections
A conditional expression receives a selection s� as input and produces a selection s� that
contains all the nodes and edges of s� that obey a given condition, specified by the user
as an attribute function. Conditional selections implement what the RE tools usually call
filtering. They are used to e.g. visualise specific parts of a large graph in queries such as:
’show all nodes where the cost attribute is higher than a given threshold’.

3.2 Graph Editing Operations

Graph editing operations edit the graph structure or the node/edge attributes, as follows.

3.3 Structure Editing

Structure editing operations construct and modify the graph structure. The simplest op-
erations are addition/removal of nodes, edges, and levels, implemented as methods of
the corresponding classes Node, Edge, Level, and Graph.

Importing Graph Data These operations read a graph structure from a file by parsing
specific file formats such as RSF [4], GraphEd [17], and DOT [8]. These operations are
100 C++ code lines on average, so it is reasonably simple to implement a reader for a
new data format.

Aggregation Aggregation operations take several nodes via an input Selection and
producea parent node. Implementing such operations involves constructingvertical edges
to the new node. More complex aggregation methods can be implemented too, such as
topology-based automatic graph simplification.

3.4 Attribute Editing

These operations create, modify, and delete node and edge attributes (Sec. 2.2). Besides
the Selection input common to most operations, attribute operations have also one
or several attribute-plane names as inputs. These names refer to attribute-planes that the
operation reads and/or writes, as follows.

Metrics RE metrics are actually attribute editing operations. Examples of metrics in-
clude structural metrics, e.g. the number of provisions, requirements, and internalisa-
tions for a node [4, 1]. A metric can have two types of outputs: an attribute-plane for
metrics that compute a new attribute for every node or edge, or a unique value for the
input selection, e.g. the cyclomatic number. As compared to other RE tools, our frame-
work allows easy customisation of:

– the metric implementation. Usual metrics have around 10-50 C++ lines.

– the metric’s parameters. The nodes and edges to apply the metric on are selected
via any selection operation (Sec. 3.1). The attributes used to compute the metric on
and to store the metric into are given as attribute names. The implementations of the
metric, attributes, and selection are thus kept decoupled.

Graph Layout Most RE visualisations use graph layouts. Layouts compute 2D or 3D
coordinates for a selection of nodes and edges. After layout, nodes and edges can be vi-
sualised, as described separately in Sec. 4. We treat layouts as attribute editing operations
for several reasons. Computing a layout is, by definition, computing position attributes
for nodes and edges. Treating layouts as attribute editing operations allows us to:

– choose a desired layout type from a palette of available graph layouts.
– apply different layouts to different graph subsets (selections), e.g. use spring em-

bedders [15] for level selections and Sugiyama layouts [19, 8] for vertical slices.
– combine different layouts. There is clearly no best layout. Often it is better to con-

struct a layout incrementally, i.e. apply several layouts sequentially to refine the
same positions.

– modularise the toolkit implementation by decoupling layout computation from the
visualisation.

So far, we have implemented five layout operations, as follows (see also Fig. 4).

Fig. 4. Software visualisation. Top: spring-embedder and tree layouts. Bottom: vertical slice and
3D level layout

1. Tree-like layout: The input selection is treated as a directed graph. The nodes are
arranged on levels in 2D such that the number of edge crossings is minimised [19]. We
implement this layout based on the AT&T dot software [8]. Several tests have shown
that dot software runs faster and more robustly for large graphs, and produced visually
better layouts than similar software such as [4, 5].

2. Spring embedder layout: This layout uses a physical model that tries to minimise
the edges’ lengths with respect to the nodes’ positions [8, 15]. We implement this lay-
out based on the AT&T neato software [8], whose performances are similar to dot’s.
We provide a second spring embedder layout based on the GEM algorithm [15]. GEM im-
plements different heuristics and control parameters than neato, leading sometimes to
shorter running times and better visual results, especially for densely connected graphs.
However,GEM is more sensitive to the parameter choice than neato. It is thus the user’s
choice whether to apply the one or the other.

3. Grid layout: This operation lays out the selected graph on a 2D regular grid. No
attempt is done to minimise the edges’ lengths or number of crossings. This layout is
frequently run as preprocessing for more complex layouts.

4. Stacked layout: This operation lays out a selection spanning several levels of a (k,2)-
digraph by applying one of the previous layouts per level and then stacking the layed
out levels in 3D. Stacked layouts are used to visualise both the horizontal and vertical
relationships of a (k,2)-digraph.

Adding new layouts is reasonably simple. The above layouts have been coded or en-
capsulated in no more than 100 C++ lines each, whereas the implementation of some
layouts such as dot and neato exceeds 10000 C lines.

4 Mapping Operations

Mapping operations serve three purposes:

– visualisation: Mapping operations produce visual representations of the graph data.
– interaction: The visual representations can be interactively modified by the user.
– export: Mappings export the graph data to third parties e.g. by writing data files.

4.1 Data Visualisation

Visualisation operations have four components: mappers, viewers, glyph factories, and
glyphs (see the C++ classes with similar names in Fig. 5 a). Visualisation is based in our
toolkit on the Open Inventor [21] graphics C++ library. Open Inventor offers sophis-
ticated mechanisms for object direct manipulation and construction that considerably
simplify the programming of the visual interface of our toolkit. Figures 4 and 5 b show
several graph visualisations created with our toolkit.

input
selection

Selection

highlight
selection

Selection

1 1

MapperBase *

Viewer

1

 GlyphMapper

node
glyph

factory

1 1 edge
glyph
factory

GlyphFactory GlyphFactory

1

Inventor
scene
graph

position
attribute

plane
name

a) b)

Fig. 5. a) Mapping operation components b) Glyph visualisation. Three types of glyphs
(cones,cubes, and balls) are defined and associated with different node types. The glyph sizes re-
flect the nodes’ number of edges.

The Glyph Mapper The central visualisation component is the mapper, implemented
by the MapperBase C++ class. A mapper takes a selection as input and produces an
Inventor scene graph as output. The scene graph can be then interactively manipulated in
several Inventor viewers. Specific MapperBase subclasses construct the scene graph
in specific ways. For example, the GlyphMapper constructs the scene graph by creat-
ing one glyph for each node and edge in the input selection. The glyphs are positioned
using position attributes from the nodes and edges. The positions are constructed prior
to mapping by a layout operation (see Sec. 3.4 and Fig. 2).

The Glyphs A glyph is a 2D or 3D graphical object built by a GlyphFactory to
visualise a node or edge and their attributes, as follows. A GlyphFactory subclass
constructs a glyph given a concrete node or edge. For example, the DefaultGlyph-
Factory builds a cube glyph for a node, respectively a line glyph for an edge.Glyph-
Factory subclasses provides a number of named parameters. For example, a ConeG-
lyphFactory subclass declares two parameters ”angle” and ”radius” that control the
angle, respectively the radius of a 3D cone glyph. The user can associate these parame-
ters with attribute-names to express which graph attributes are mapped to which graph-
ical parameters. Figure 5 b visualises a software architecture in which the node type
(package,class,function)maps to the glyph type (cube,cone,ball) and the node’s number-
of-lines attribute maps to the glyph size. Choosing the association between the node
and edge attributes and their glyphs’ graphical properties is a powerful manner to visu-
alise the graph data [5]. Summarising, the GlyphMapper offers three ways to map the
graph data to visual objects: by specifying aMapperBase subclass that builds the scene

Fig. 6. Tcl/Tk interface of the integrated reverse engineering application

graph; by choosing specific GlyphFactories; and by mapping the textttGlyphFac-
tory graphical parameters to the node and edge attributes. Separating glyph placement
(in the layout phase) from glyph construction (the mapping phase) is a simple but pow-
erful way to customise the visualisation. New glyphs can be developed without any con-
cern for their layout, whereas new layouts can work on the existing glyphs.

4.2 The Highlight Selection

Viewers function both as output components, by displaying their input selection, but also
as input components, by editing a highlight selection (Fig. 5). The highlight selection is
a subset of the input selection that is displayed using a special colour and drawing style.
This is shown in the lower-right image in Fig. 4 where the middle layer has been selected.
The highlight selection can be edited interactively, as explained next.

4.3 The Viewer

A viewer is an Inventor component that allows users to navigate in a scene graph con-
structed by a MapperBase. Viewers have an input role too. Viewers respond to user
events, such as mouse clicks an drags, by editing the highlight selection of their Map-
perBases. Via the automatic update mechanism (Sec. 2.3, other parts of the applica-
tion can execute specific actions on the edited selection. For example, interactive node
aggregation is readily implemented by applying an aggregation operation (Sec. 3.3) on
the highlight selection. Similarly, one can examine, delete, hide, interactively lay out, or
apply metrics on the highlight selection.

5 User Interaction and Scripting

The core architecture described so far is implemented as a C++ class library. For cus-
tomisation purpose, we provide a Tcl interface to the core C++ API and add several
custom Tk-based graphical user interfaces (GUIs) to build a complete application. The
GUIs provide simple access to commonly used functionality, such as examining and

Fig. 7. Mobile telephone software visualisation. Entire system (left) and detail (right)

editing node attributes, selection objects, domain models, and viewers, loading and sav-
ing data, and so on (Fig. 6).

A Tcl/Tk GUI front-end atop of a C or C++ core is quite similar to RE tools such
as Rigi [4] or VANISH [5]. However, several differences are to be mentioned. First, our
core architecture is based on a few orthogonal components (graph, selections, opera-
tions, mappers, glyphs, and viewers) that have only simple interdependencies (Fig. 2).
Flexibility and customisation are provided by subclassing and composition of the basic
components. For example, the script shown in the background window in Fig. 6, used to
produce the visualisation shown in Fig. 5 b, has about 10 Tcl lines. In contrast, Rigi [4]
uses a monolithic core architecture. Although adaptable via Tcl scripts, this architecture
offers no subclassing or composition for the core itself. It is not possible, for example, to
change the graphic glyphs or the interactive selection policy without recoding the core.
Adding a new layout, domain model representation, or metric involves a low level API
to access nodes and edges, as Rigi has no notion of manipulating these as selections. In
contrast, VANISH [5] provides a way to build custom glyphs very similar to ourGlyph-
Factory (Sec. 4.1). However, VANISH uses domain models based on compiled C++
classes which prove inflexible for our targeted RE scenarios (Sec. 2.4).

6 Applications

We have used the integrated GUI application for the RE exploration of software systems
built at Nokia. First, an attributed graph is extracted from the Java program sources. This
graph contains low-level entities such as functions, classes, files, and packages, relation-
ships such as ’uses’, ’contains’, and ’calls’, and various attributes such as object names,
number of code lines, and version numbers. Next, this graph data is loaded in out RE
tool as an RSF file [4] and the operation pipeline discussed in Sec. 1.3 (selection, aggre-
gation, metric computation, layout, mapping, and viewing) is executed.

Figure 7 (left) shows a selection of 10% of the whole graph, visualised with a spring
layout. The about 900 software entities in this view are grouped in several indepen-
dent clusters corresponding to the different original subsystems. The largest subsystem,
shown in the lower left part of the figure, was selected interactively by the user and then

displayed separately in a second viewer (right image). In this image, we can easily see
the ’bridge’ software components as being those nodes that connect the strongly cou-
pled subgraphs. The whole scenario, starting from the RSF data delivered by the code
analyser, took about 5 minutes to build. This implied the execution, via both the tool’s
GUI and its Tcl command-line input, of less than 20 operations. To produce the zoomed-
in image shown on the right, a Tcl procedure of about 15 lines was written to take the
highlight selection output of the left viewer, apply a spring layout, map it, and view it
in a new viewer. To visualise node attribute names and values, we have written a second
12-line Tcl procedure that opens a GUI window (in Fig. 6 middle). This procedure is
activated by the changing of the highlight selection in the detail viewer, i.e. by clicking
on the desired node in this viewer. Overall, our RE tool proved to be more flexible than
Rigi for the same case data, both for the end user that issues GUI and Tcl commands and
for the developer that adds new functionality. The most time-consuming part of the ex-
ecuted scenarios was the layout computation. The layout implementations we use work
reasonably fast for a few hundreds of nodes. For larger graphs, one has to apply several
selection and/or aggregation operations to reduce the size of the data, prior to the layout
and visualisation stages.

7 Conclusion and Future Work

we have presented a new architecture for building visual RE tools. The presented ar-
chitecture makes it easy to construct RE scenarios by compositing and/or subclassing
a small set of software components. These components model the data and operations
present in the abstract RE framework. RE data is represented as a generic attributed
graph. Our architecture classifies the RE operations in graph editing, selections, layout,
glyph mapping, and viewing. Functionally, these operations model respectively struc-
tural aggregation and metrics computations, queries and filtering, and data visualisation.

The flexibility of the presented architecture reflects itself on two levels. First, end
users can easily define custom data investigation scenarios simply by applying the pro-
vided operations in different orders with different parameters. Our architecture supports
this scenario, as operations are only indirectly coupled by sharing the same graph data.
Secondly, developers can easily define custom operations by subclassing the existing
operations. The loose coupling between operations, promoted by the presented archi-
tecture, makes their code localised and limited in complexity - the about 40 operations
we have implemented have each on the average 20 to 40 lines of C++ or Tcl code. Usu-
ally written in C++ for performance, such core operations are then easily assembled into
more specific operations written in interpreted Tcl. Overall, the implementation of the
presented architecture has about 8000 C++ lines (around 50 classes) and took four man-
months to develop. The toolkit implements around 30 operations (5 data readers, 4 data
writers, 12 structure editing and metrics, 6 layouts, and about 10 mapping operations).
The GUI-based integrated application built atop of the toolkit adds around 500 Tcl lines
to the C++ core. As a last comment, we believe that the analysis of the architectural as-
pects involved in building RE tools performed in this paper is important for the devel-
opment of flexible, customisable RE applications.

We plan to provide new domain-specific operations, such as graph simplification,
layout, and glyph mapping, for the domain models used at Nokia to describe their current
software architectures. Our RE system will thus serve both as a tool for investigation of
the concrete mobile telephony software and as a testbed for prototyping new software
visualisation techniques.

References

1. S. TILLEY, A Reverse-Engineering Environment Framework, Tech. Report CMU/SEI-98-
TR-005, Carnegie-Mellon University, 1998.

2. H.A. MULLER, M.A. ORGUN, S. TILLEY, J. UHL A Reverse Engieering Approach to Sub-
system Structure Identification, Software - Research and Practice, 5(4), pp. 181-204, 1993.

3. H. KORTH AND A. SILBERSCHATZ, Database System Concepts, McGraw-Hill, 1986.
4. K. WONG, Rigi User’s Manual, Dept. of Computer Science, University of Victoria, Canada.
5. R. KAZMAN, J. CARRIERE,Rapid Prototyping of Information Visualizations using VANISH,

Proc. IEEE InfoVis ’95, IEEE CS Press, 1995.
6. T. BIGGERSTAFF, B. MITTBRANDER, D WEBSTER, The Concept Assignment Problem in

Program Understanding, Proc. WCRE ’93, IEEE CS Press, 1993.
7. P. YOUNG Program Comprehension, Visualisation Research Group, Centre for Software

Maintenance, University of Durham, May 1996.
8. S. C. NORTH, E. KOUTSOUFIOS, DOT and NEATO User Guide, AT&T Bell Labs Report

Series, http://www.research.att.com, 1996.
9. J. ROHRICH, Graph Attribution with Multiple Attribute Grammars, ACM SIGPLAN 22 (11),

pp.55-70, 1987.
10. K. WONG, S. TILLEY, H. MULLER, M. STOREY, Structural Redocumentation: A Case

Study, IEEE Software 12 (1), 1995, pp. 46-50.
11. K. WONG, On Inserting Program Understanding Technology into the Software Change Pro-

cess,internal report, Dept. of Computer Science, University of Victoria, Canada, 1997.
12. S. EICK AND G. WILLS, Navigating large Networks with Hierarchies, in Readings in Infor-

mation Visualization [13].
13. S. CARD, J. MACKINLAY, B. SHNEIDERMAN, Readings in Information Visualization - Us-

ing Vision to Think, Morgan Kaufmann Publishers Inc., 1999.
14. J. STASKO, J. DOMINGUE, M. H. BROWN, B. A. PRICE, Software Visualization - Program-

ming as a Multimedia Experience, MIT Press, 1998.
15. A. FRICK, A. LUDWIG AND H. MEHLDAU, A fast adaptive layout algorithm for undirected

graphs, Proc. GD’94, Springer-Verlag 1995.
16. E.R. GANSNER, S.C. NORTH, An open graph visualization system and its applications to

software engineering, Software-Practice and Experience, John Wiley & Sons, (S1) 1-5, 1999.
17. M. HIMSOLT, GraphEd user manual, Tech. Report, Dept. of Informatics, Passau Univ., 1992.
18. S.R. TILLEY, K. WONG, M.D. STOREY, H.A. MULLER, Programmable reverse engineer-

ing, Dept. of Computer Science, University of Victoria, Canada, 1998.
19. K. SUGIYAMA, S. TAGAWA, M. TODA, Methods for Visual Understanding of Hierarchical

Systems Structure, IEEE Trans. Systems, Man, and Cybernetics, 11(2), pp.109-125, 1989.
20. A. MENDELZON, J. SAMETINGER, Reverse Engineering by Visualizing and Querying, in-

ternal report, Computer Systems Research Institute, University of Toronto, Canada, 1997.
21. J. WERNECKE,The Inventor Mentor: Programming Object-Oriented 3D Graphics with Open

Inventor, Addison-Wesley, 1993.

