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Abstract

In this review, we give a comprehensive summary of time series techniques in

marketing, and discuss a variety of �ime �eries �nalysis (TSA) techniques and models.

We classify them in the sets (i) univariate ���, (ii) multivariate ���, and (iii) multiple

���. We provide relevant marketing applications of each set, and provide illustrative

examples.

�	�������  Time series analysis, ARMA models, VAR models, model calibration
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1. Introduction

Marketing data often include measures on, for example, sales or marketing mix variables at

equally spaced intervals over time. Time series models are uniquely suited to capture the time

dependence in these variables.

�ime �eries �nalysis (���) techniques have been used for (i) forecasting, (ii) the

determination of the temporal ordering among some variables through Granger causality tests,

and (iii) the determination of the over-time impact of marketing variables or specific discrete

events. Notwithstanding these applications, Dekimpe and Hanssens (2000) conclude that

marketing scholars have been reluctant to use ��� for marketing purposes in the past. The

authors identify key factors for this limited acceptance, viz. the scarcity of (i) adequate data

sources, (ii) user-friendly software, and (iii) doctoral level training. Other factors are (iv) the

reluctance of using data-driven approaches to model specification, and (v) the absence of a

substantive marketing area where ��� was adopted as primary research tool. In recent years,

however, (i) new data sources and longer time spans have become available, especially with

the use of scanner data, and (ii) several software packages have been developed for ���

applications. Examples are Eviews (2000), Jmulti (2001), RATS (2000), or Microfit (Pesaran

and Pesaran 1997). ‘General’ packages such as Gauss (2000), Matlab (1995), and Ox

(Doornik et al. 1998) have developed extensive ��� toolboxes. Moreover, more marketing

scholars are trained in ��� and apply these packages. The application of (iii) Structural �ector

�uto�egressive e�ogenous variables (�����) models and co-integration analysis offer more

of a confirmatory potential, which gives the data-driven character of TSA more credibility

(Dekimpe and Hanssens 2000). Finally, (v) the development of ��� techniques gives a natural

match between ��� and one of marketing’s long-lasting interest fields: quantifying the long-

run impact of marketing’s tactical and strategic decisions. Dekimpe and Hanssens (2000)

predict that the most productive use of ��� is still ahead. Arguments are (i) the recent growth

of marketing data bases, (ii) the fact that models of evolution become critical to shape our

understanding of market performance as business cycles shorten and marketing environments

change more rapidly, and (iii) the expectation that more ��� will be used at the micro-level.

In this review, we discuss a variety of (linear) time series models. We classify these

models in the sets (i) univariate ���, (ii) multivariate ���, and (iii) multiple ��� and provide

relevant marketing applications each of these sets. In the first section, we introduce the basic

concepts of ���, and discuss ��� models with only one series of observations, such as sales
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(we call it univariate ��� in this review). These models consider a variable, e.g. sales, as a

function of its own past, random shocks, seasonal dummies, and time. The �uto�egressive

�ntegrated �oving �verage (�����) model is the most general model in this set. We pay

special attention to the issue of stationarity, as it is a fundamental concept in distinguishing

long- and short- term effects of actions.

We then consider multivariate ���, i.e. models where the dependent variable is

explained by another variable, e.g. sales explained by advertising. Finally, we consider models

in which more endogenous variables are considered simultaneously (we refer to it as multiple1

���, in this review). Vector AutoRegressive models with eXogenous variables (����

models), �tructural ��� (����)models, and �ector 	rror 
orrection (�	
) models belong to

this section.

We illustrate the different models by applications of ��� on the Lydia Pinkham’s

vegetable compound data. The Lydia Pinkham vegetable compound was introduced in 1873 as

a remedy against menstrual pain and menopausal discomfort. A large court case made the

company database public (Palda 1964). The database consists of sales data and data on

advertising expenditures. The data set has been attractive to researchers for a long time

because (i) advertising was almost the exclusive marketing instrument, (ii) there was no strong

competition, and (iii) the data set covers a fairly long time span (see, for example, also

Hanssens 1980, or Zanias 1994). Figures 1A and 1B present the available annual (1907-1960)

and monthly (1954:01-1960:06) data of Lydia Pinkham’s vegetable compound.

                                                          
1 The usage of apellations multivariate time series analysis and multiple time series analysis

may be confusing to the reader. Still, we prefer to use these terms aiming at consistecy
with the labelling of time series literature.
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2.  Univariate time series analysis

In this section, we introduce the basic concepts of ��� and discuss some techniques that are

useful in identifying the dynamic structure of the series. We focus on discrete time series

models, and consider equidistant time points, as most marketing data is collected for discrete

time periods. In our discussion on univariate time series, we start with �uto�egressive (��)

processes (Section 2.1) in which, say, sales are affected by sales levels in previous periods. In

Section 2.2, we introduce �oving �verage (��) processes. We discuss the ���� processes

that are the combination of the first two processes in Section 2. 3. Section 2. 4 introduces the

concept of stationarity, which is a basic concept in distinguishing long- and short term effects

of marketing actions. Section 2.5 deals with the concepts of trend and difference stationarities.

In Section 2.6, we introduce the most general univariate �� model, the ����� model, that

captures the behavior of a non-stationary variable. Section 2. 7 describes tests for unit root.

Section 2.8. introduces univariate persistence developed by Dekimpe and Hanssens (1995a

and 1999), which provides a stong link between ��� and marketing applications. Seasonality



6

is discussed in Section 2.9. Table 1 provides a brief verview of the relevant univariate time

series applications in marketing.

����	�! &	�	$������
$��
��	��
�	��	�
	���''�
���
����
������	�
��

6WXG\ &RXQWU\ (QWLW\�DJJUHJDWLRQ )RFXV

8QLYDULDWH ( ))(
MWW

��� −=

Geurts and Ibrahim (1975) USA Industry sales Forecasting

Kapoor et al. (1981) USA Firm sales; Industry sales Forecasting

Moriarty (1990) USA Sales Forecasting

Moriarty and Adams (1979) USA Firm sales Forecasting

Moriarty and Adams (1984) USA Sales Forecasting

Univariate time series models seem to have been popular in the 70’s, 80’s and they were

mainly applied for forecasting.

()!)� ������	��	��
$	�'���	��	��

Let 
W
�  be the sales of a brand in period 
 . A common and fairly simple way to describe

fluctuations in sales over time is with a first-order autoregressive process. In this process, it is

assumed that sales at 1−
  affect sales at period 
 :

WWW
�� εϕµ ++= −1 , �
 ,...,1= (1)

where =µ a constant, =
W

ε the noise term, =ϕ a parameter, the starting condition is

00 =� , and �  is the sample length. Often, it is assumed that the noise term is ‘white noise’,

which means that it has a mean of zero, a constant variance, and is serially uncorrelated

(Enders 1995, p. 65). This model is indicated as ��(1), which means ‘autoregressive process

of order 1’. It can be identified from the data using the �uto
orrelation �unction (�
�) and

the �artial �uto
orrelation �unction (��
�) calculated from sample data (see Box and

Jenkins 1976 for details).

The �
� of a series 
W
�  is defined by:

                                                          
2 We partly based our review on Section 17.3 of Leeflang et al. (2000, p. 458 - 473).
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R

N

N γ
γρ = (2)

where 
N

γ  is the �th order autocovariance of 
W
� , that is:

( )( )[ ]����	
NWWN
−−= −γ , ,...2,1,0,1,2..., −−=� (3)

where ( )
W
�	� =  and (.)	  is the expected value. The partial autocorrelation at lag �  is the

regression coefficient on 
LW

� −  when 
W
�  is regressed on a constant and on 1−W� ,...,

LW
� − . This is

a partial correlation since it measures the correlation of �  values that are �  periods apart after

removing the correlation from the intervening lags3.

The �
� and ��
� are statistics that can be used to identify the type of time series for

a given data set (see also Hanssens et al. 2001). The �
� and ��
� of an ��(1) process are

shown in Figures 2A and 2B. Specifically, the �
� decays exponentially and the ��
� shows

a positive ‘spike’ at lag 1 and equals zero thereafter, if ϕ  is positive in equation (1). The �
�

shows a damped wavelike pattern and the ��
� a negative spike at lag 1, if ϕ  is negative.

It is possible that there is a correlation with higher order lags as well. For instance, in

monthly data we may not only observe a correlation between two successive months, but also

between the same months of different years. In that case, the �
� shows a damped pattern and

the ��
� indicates multiple spikes at lag 1 and lag 12. So, we cannot only identify

dependence on the immediate past (one lag ago), but also on lags several periods ago.

The order � of an ��(�) process is the highest lag of 
W
�  that appears in the model. The

general �-order �� process is written as:

WWS
�� εµϕ +=)( , �
 ,...,1= (4)

where )...1()( 2
21

S

SS
���� ϕϕϕϕ −−−−=  and =� the backshift operator defined

by 
NWW

N ��� −= . In this general case, the �
� damps down and the ��
� cuts off after �

lags.

                                                          
3 EViews estimates the partial autocorrelation at lag i recursively based on a consistent

approximation of the partial autocorrelation. The algorithm is described in Box and
Jenkins (1976, Part V, Description of computer programs).
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Figure A. ��(1), 8.0=ϕ
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Figure B. ��(1), 8.0−=ϕ
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Source: Pankratz (1991, p.40)

Besides the �
� and ��
� criteria, the order of a time series model, i.e. the number of

lagged variables in the model, is often selected on the basis of information criteria, such as the

forecasting performance of the model, or �kaike’s �nformation 
riterion (��
) and �chwarz’

�ayesian 
riterion (��
) (for non-nested models), or Likelihood Ratio tests (for nested

models).
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����$	���	�'���	��	�

A first-order moving average process assumes that a random shock at 1−
  affects sales levels

at time 
 :

1−−+=
WWW

� θεεµ , �
 ,...,1= (5)

This model is indicated as ��(1). Note that the past shock does not come from the past sales

(past values of 
W
� ) as in the ��(1) model, but it stems from the random component of 1−Wε .

The �
� and ��
� for the ��(1) model are depicted in Figures 3A and 3B. Here, the �
�

shows a spike at lag 1, which is positive if 0<θ and negative if 0>θ , while the ��
�

shows exponential decay in the former case, or a damped wavelike pattern in the latter.

�
���	�* ������������������
�����������	�����'���	��	�

Figure A����(1), 8.0−=θ
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Source: Pankratz (1991, p.40)

The order ��of an ��(�) process is the highest lag of 
W

ε  that appears in the model. The

general �-order �� process is written as:

WTW
�� εθµ )(+= , �
 ,...,1= (6)

where )...1()( 2
21

T

TT
���� θθθθ −−−−=  and �  is the backshift operator defined as

before. In this general case, the ��
� damps down and the �
� cuts off after � lags.

()*)� �&���'���	��	�

�� and �� processes can be combined into a single model to reflect the idea that both past

sales and past random shocks affect 
W
� . For example, the ����(1,1) process is:

11 −− +++=
WWWW

�� θεεϕµ , �
 ,...,1= (7)

The attractiveness of the ���� model is that it is a parsimonious representation of a

stationary stochastic process (Harvey 1990, p. 30). We will discuss the term ‘stationary’ in

Section 2.4.).

The �
� and ��
� for an ����(1,1) model with 7.0−=ϕ  and 7.0−=θ  are

depicted in Figure 4. Here, the �
� shows a damped wavelike pattern and the ��
� shows an

exponential decay4.

                                                          
4 The selection of the number of lags in ���� models from the �
� and ��
� functions is

not always straightforward. In these cases an Extended �
� (	�
�, details can be found
in Tsay and Tiao 1984) or information criteria as ��
�and ��
 are useful alternatives in
identifying the orders of ���� models.
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The orders (���) of an ����(���) process are the highest lags of 
W
�  and 

W
ε

respectively that appear in the model. For example, for an ����(1,1) process, �=1 and �=1.

The general ��������� process is formulated as follows:

WTWS
��� εθµϕ )()( += , �
 ,...,1= (8)

with )(�
S

ϕ  and )(�
T

θ as defined above.

()+)� 
���
�����������������
������'���	��	�

In order to use statistical tests for an ���� model selection, we need to estimate the

underlying stochastic process. We can do this by deriving the mean, variance, and co-variance

of the sample data. However, these quantities are only meaningful (for obtaining the

probability distribution and the statistical tests based on it) if they are independent of time5.

This is the case if the series is stationary. There are different forms of stationarity. The most

commonly considered is ������� �! stationarity. A series 
W
�  is said to be ������� �!

stationary if the following conditions hold:

                                                          
5 Besides, in the case of TS models the assumption that the expected value of the disturbances

given the observed information is equal to zero does not hold. This means that
unbiasedness of least squares estimator does not necessarily hold. In this case the Gauss-
Markov theorem does not apply and we are left only with asymtotic results. The
assumption of stationarity ensures consistency of least squares estimator. In sum, the



12

( ) ��	
W
= , for all �
 ,...,1= (9)

( )[ ] ∞<=− 0
2 γ��	

W
, for all �
 ,...,1= (10)

( )( )[ ]
LLWW

����	 γ=−− − , for all �
 ,...,1=  and for all ,...2,1,0,1,2..., −−=� (11)

where 0, γ� , and 
L
γ  are all finite-valued numbers (see also Lütkepohl 1993, p. 19). In

practice, we often use the requirement that the roots of what are called the characteristic

equations, 0(.) =
S

ϕ , “lie outside the unit circle” 6. For an ��(1) process of (1) this

requirement implies that the root is larger than one in absolute value. The characteristic

equation is 0)1( =− �ϕ . The root equals 
ϕ
1

, which is greater than one in absolute sense if

1<ϕ . The root 
ϕ
1

 is called a " �
����
 if 1=ϕ . Thus, the ��(1) process is #
�
�� ��� if

1<ϕ  and  � $#
�
�� ��� (not stationary) if it has a unit root7. Figures 2A and 2B present

stationary ��(1) processes8.

()/)� 0	�	��
�
��
��������������
����	���

The requirement that the mean level is independent of time implies that, for example, the

average sales level at the beginning of the sample period is equal to the average sales level at

the end of the sample. If this is the case, the process is called %evel �tationary (%�). Lal and

Padmanabhan (1995) investigate the relationships between market share and promotional

                                                                                                                                                       
assumption of stationarity is used preserve the property of consistency of least squares
estimator.

6 It can be shown that condition (10) no longer can be satisfied if the roots are on the unit
circle.

7 The case where 1>ϕ  is not considered in marketing studies, because it implies that past

values of the dependent variable become and more important, which is highly unrealistic
(Dekimpe and Hanssens, 1995).

8 Similar to the stationarity conditions for �� processes, �� processes need to satisfy

conditions for invertibility. An ��(1) process is invertible if 1<θ  in (2.5). The ����

processes need to satisfy both stationarity and invertibility conditions.
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expenditures in the long run. They find that market shares are stationary for a majority of

products. However, the %� condition is not always realistic in a marketing context. Often, we

observe some kind of trending behavior, e.g. the sales in the end of the sample are higher

(lower) than the initial sales. Lal and Padmanabhan (1995), for instance, find that a minority

of the market shares that they investigated, shows a trend. Moreover, based on data from 400

published models, Dekimpe and Hanssens (1995b) conclude that evolution is the dominant

characteristic in marketing series of market performance measures. Hence, we often have to

cope with trends when we apply ��� techniques on marketing data. Trends in time series can

be (i) deterministic or (ii) stochastic (Maddala and Kim 1998, p. 29). A &!
!��� �#
�� trend

imposes that the level is not constant, but can be perfectly predicted if the underlying

deterministic function is known. One can approximate the deterministic growth path by a

function of time. The linear time trend is the most commonly used function:

WW

� εβµ ++= , �
 ,...,1= (12)

In equation (12), the long-run behavior of 
W
�  is determined by the series’ individual (perfectly

determined) growth path ( �β ). Every deviation from this growth path is temporal; in the long

run the series always returns to its individual growth path ( �β ). Therefore, such a series is

often called �rend �tationary (��), because it is stationary around a trend.

If the data exhibit a �����	��
� trend, it implies that the variation is systematic but

hardly predictable, because every temporary deviation may change the long-run performance

of the series. This phenomenon is called shock ��
�
������ (see Section 2.8). A simple

example of such a series is the �andom �alk (��) process:

WWW
�� εβ ++= −1 , �� ,...,1= (13)

Repeated substitution reveals the nature of the stochastic trend and the corresponsence

with equation (12):

W

W

L

LWW
�� εεβµ +++= ∑

=
−

1

(14)

assuming that µ=0� . In equation (14) �βµ + is the deterministic trend, 
W

W

L

LW∑
=

−
1

ε  is the

stochastic trend, and 
W
ε  is the noise term.
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In the case of a stochastic trend, the inclusion of a time function into the model does

not remove the evolution, but the series can be formulated as a (stationary) ���� processes in

differences. The differencing operation removes the stochastic trend from the data. Therefore,

a time series with a stochastic trend, which becomes stationary after differencing, is called

�ifference �tationary (��). It may be necessary to take the differences of the series more than

once before it becomes stationary. Figures 5B and 5C show example of a trend stationary and

a difference stationary process respectively. Figure 5A shows a  level stationary series to

which we could arrive by removing the deterministic trend from the series shown on Figure

5B or taking first differences of the RW process of Figure 5C. The choice between

deterministic or stochastic trends depends on the researcher’s beliefs or on the outcome of

statistical tests (see Section 2.7).



15

�������� 	
��
�������������������
�����������������

Time Series Plot

Figure A

LS series

W
�

                                                                          Time

Figure B

TS series

W
�

                                                                            Time

Figure C

DS series
W

�

                                                                            Time



16

����� ������
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An ���� model for the differences of 
W

�  is called an ����� (�uto �egressive �ntegrated

�oving �verage) model. See Geurts and Ibrahim 1975 for some nice applications. The terms

‘order of integration’ and ‘order of differencing’ are equivalents. As an example, we consider

an �����(1,1,1) model:

11 −− −+∆+=∆
WWWW

�� θεεϕµ , �� ,...,1= (15)

In equation (15), the nonstationary series 
W

�  is differenced once to obtain the stationary series

)( 1−−=∆
WWW

��� . Sometimes, it is necessary to differentiate the data more than once to

obtain a stationary series. An �����(���) model that is differenced � times is denoted by

�����(�����), where � is the order of the differencing operator GG �)1( −=∆ . For

example, if 1=�  this amounts to taking 1
11 )1( −−=−=∆

WWWW
����� . The

������������ process can now be defined as:

WTW

G

S
��� εθµϕ )()( +=∆ , �� ,...,1= (16)

�����and������ models are primarily associated with the work of Box and Jenkins (1976).

Their methodology for the identification of ARIMA-processes consists of three steps. The first

step is the determination of the order of integration of the process. The second step is the

analysis of stationary series (such as inspection of ACF, PACF) and finally, is the

determination of the orders ( �  and � ) of the ARMA process. In their methodology, they

determine the order of integration by analyzing the ��� and ���� functions for various

orders of integration. If these damp down sufficiently rapidly, the integrated series is

consistent with the theoretical behavior of the ��� and ���� functions (Harvey 1990, p.119)

for stationary series. More recent studies prefer to determine the order of integration (and the

choice between �� and �� models) statistically on the basis of unit root tests. Section 2.7.

discusses such a statistical procedure.

����
�	�
��

Helmer and Johansson (1977) estimate an ����� model on the annual advertising

expenditures of the Lydia Pinkham vegetable compound for the years 1907-1946. The

resulting model is an �����(2,1,0) model:
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WWWW
   ε+∆−∆=∆ −− 21 407.0074.0 , �� ,...,1= (17)

or

WW
 ��� ε=−+− )1)(407.0074.01( 2 , �� ,...,1= (18)

where 
W

  denotes the annual advertising expenditures9. Helmer and Johansson use these

estimates as a step in their �
	��!�
�!"���
�� analysis (see Section 3.2. for a discussion of the

transfer function analysis). We deduce from equation (17) that 
W

  is evolving. Evolving

implies that a shock in a time series may have a long-run effect on its own future evolution.

The current changes in advertising expenditures are positively correlated with the changes in

expenditures of one year before and negatively correlated with the changes two years before,

indicating a fluctuating pattern.

����� �����������������������

In Section 2.2, we introduced the concept of a unit root ( 1=ϕ  in equation (1)) where 
W

�  is

the dependent variable. The most widely used test for non-stationarity is the Augmented

Dickey-Fuller (ADF) unit root test developed by Dickey and Fuller (1979 and 1981). They

consider three different regression equations that can be used to test for the presence of a unit

root in 
W

� :

W

-

M

MWMWW
��	�� εβµϕ +++∆+=∆ ∑

=
−−

1
1 , �� ,...,1= (19)

W

-

M

MWMWW
�	�� εµϕ ++∆+=∆ ∑

=
−−

1
1 , �� ,...,1= (220)

W

-

M

MWMWW
�	�� εϕ +∆+=∆ ∑

=
−−

1
1 , �� ,...,1= (21)

where 0�∆ is fixed. In equations (19)-(21), the dependent variable is 
W

�∆ . This implies that

W
�  has a unit root if 0=	 .
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Hence, the null hypothesis of the test equations (19)-(21) states non-stationarity of 
W

� :

0:0 =	#  (
W

�  has a unit root) (22)

The three equations differ in the deterministic regressors. The choice between the three

equations is an important issue in unit root testing. One problem is that the additional

estimated parameters reduce the degrees of freedom and the power of the test. Reduced power

means that the researcher may conclude that the process contains a unit root where it is not the

case. The second problem is that an appropriate statistic for testing 0=	  depends on which

regressors are included in the equation. For example, if the data-generating process includes a

deterministic trend, omitting the term �β  gives an upward bias in the estimated value of 	 .

Additional regressors, however, increase the absolute value of the critical values so that the

researcher may fail to reject the null of a unit root.

The test is implemented through the usual t- statistic of 	̂ . The t-statistics of the three

models are denoted τ� , µ� , and �  respectively. Alternatively, Dickey and Fuller (1981)

suggest �-statistics to test the joint hypotheses 0=== µβ	  ( 2Φ ) and 0== β	

( 3Φ ) in equation (19) and the joint hypothesis 0== µ	  in equation (20), denoted as 1Φ .

Under the null hypothesis of non-stationarity the t-statistics and τ�  and µ� and the �-statistic

2Φ  and 3Φ  do not have the standard t- and �-distributions, but are functions of Brownian

motions. Critical values of the asymptotic distributions of these t-statistics are provided by

Fuller (1976) and have recently been improved by MacKinnon (1991) through larger sets of

replications. Dickey and Fuller (1981) list critical values for the �-statistics of 1Φ , 
2

Φ , and

3Φ . Dolado et al. (1990) develop a systematic testing strategy between the alternative

equations as outlined in Figure 6 (see also Enders 1995, p. 257).

The unit-root testing procedure consists of the following steps:

                                                                                                                                                       
9 Helmer and Johansson (1977) do not report the standard errors of the parameter estimates.
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Step 1. In the most unrestricted equation (19) the null hypothesis of stationarity is

tested with τ� . If the null hypothesis is rejected, variable 
W

�  is trend stationary and there is no

need to proceed any further.

Step 2. If the null hypothesis is not rejected, we test for the significance of the

deterministic trend under the null hypothesis 0== β	  using the �-statistic 3Φ . If it is

significant, the presence of the unit root can be tested again, noting that the t-statistic follows

now a standard t-distribution.

Step 3. If 	 and β are jointly insignificant in equation (19), we estimate the equation

without the deterministic trend (equation (20)) and test for the unit root using µ�  and its

critical values. If the null hypothesis is rejected, we may stop again and conclude that variable

W
�  is stationary.

Step 4. If the null hypothesis is not rejected, we test for the significance of the constant

term under the null 0== µ	  using 1Φ . If the constant term is significant, we test for the

unit root using the standard normal distribution.

Step 5. If 	 and β are jointly insignificant in equation (20), we estimate equation (21)

and test for the presence of a unit root. The process ends either with the result that variable 
W

�

is stationary or that 
W

�  contains a unit root.
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�������� � �������������������������!��"

YES

YES

Estimate model with trend and
intercept
Is a=0?

Is µ = 0
given a = 0?

Is β = 0
given a = 0?

#$%#&'(	)
*�W+� ��� �� �����,
�����������
������

Is a=0 using
normal

distribution?

#$%#&'(	)
�*�W+�  ��� �� ����
����

Estimate model without trend with
intercept
Is  a = 0?

#$%#&'(	)
*�W+����������������

������

Is a=0 using
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distribution?

#$%#&'(	)
�*�W+�  ��� �� ����
����

Estimate model without trend and
intercept
Is  a = 0?

#$%#&'(	)
�*�W+�  ��� �� ����
����
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*�W+����������������

������
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NO

NO

NO

NO

NO
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Sources: Dolado et al. (1990) and Enders (1995) p. 254-258
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If we cannot reject the null hypothesis in any of the steps of the strategy, we conclude that 
W

�

is non-stationary and needs to be differenced at least once to become stationary. To detect the

order of integration, �, of the series 
W

�  we proceed by testing the differenced series until the

unit root hypothesis is rejected. So, if 
W

�  is found to be non-stationary and 
W

�∆  is found to be

stationary than 
W

�  is called ‘integrated of order 1’ (denoted as )1(~ ��
W

). If we can only

reject the null of a unit root after differencing � times, we conclude that the series is integrated

of order �. Stochastic trends in marketing are often linear and sometimes quadratic, so � rarely

exceeds than 2 (Leeflang et al. 2000, p. 465).

The true order of the autoregressive process is usually unknown to the researcher, so

that the problem is to select the appropriate lag length in equations (19)-(21)10. The number of

lags ( $ ) in equations (19)-(21) is often determined by the ���, ���, or by a selection

procedure advocated by Perron (1989).The latter implies that, working backward from a pre-

determined number of lags, we choose the first value of $ such that that the �-statistic on 
-

ϕ

is greater than 1.6 in absolute value and the �-statistic on 1+-ϕ  is less than 1.6. To compare

the �-statistic properly, the sample length is identical for each  $  and determined as

corresponding to the maximum lag length 6=$ , e.g. if 100=�  and the researcher sets the

maximum number of lags 	� �

�

 at 6=$ , than the number of observations for each

6<$ , will be (100-7=) 93. (Because the dependent variable in the tests is in first

differences, we loose an additional observation:6+1=7).

                                                          
10 Including too many lags to the unit root test reduces the power of the test to reject the null

hypothesis of a unit root since the increased number of lags necessitates the estimation of
additional paramaters and hence. This, together with the decreased number of observations
lead to a loss in the degrees of freedom. On the other hand, too few lags will not
appropriately capture the actual error process, so that 	 and its standard error will not be
well estimated. We note here that including too little lags is more serious than too many.
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��-�� .��������������� ��"�

In Section 2.4., we introduced the term persistence in relation to a stochastic trend. If a time

series exhibits a stochastic trend, shocks may have a long-run impact.11 Dekimpe and

Hanssens (1995a) introduced so-called ��
�
������� %����
�&� into a marketing context, in

which they estimate the long-run impacts of shocks. They distinguish (i) univariate persistence

that measures what proportion of any unspecified shock will affect sales permanently and (ii)

multivariate persistence that derives the long-run impact of an unexpected change in a control

variable. The multivariate persistence is usually considered in a multiple framework (see

Section 4). Campbell and Mankiw (1987) developed the ��'� measure for univariate

persistence which is the ratio of the sum of the moving average coefficients to the sum of the

autoregressive coefficients of an �����(�,1,�). Thus, the univariate persistence of a shock to

�  in

WTWS
��� εθϕ )()( =∆ , �� ,...,1= (23)

is

S

T

S

T�
ϕϕϕ
θθθ

ϕ
θ

−−−−
−−−−

==
...1

...1

)1(

)1(
)1(

21

21
 .

In stationary time series, the persistence is zero by definition: after a shock, the series returns

to its pre-determined level; the shock dies out. The statistical distinction between stationary

(stable) and non-stationary (evolving) sales or demand behavior has important implications for

marketers (Dekimpe et al. 1999). If the sales are stationary, marketing actions produce at most

temporary deviations from the brand’s average performance level or around its predetermined

deterministic trend, although their effect may die out over a reasonably long (dust-settling)

period. If sales are evolving, there is a potential for long-term marketing effectiveness. For

example, the advertising expenditures in equation (17) are evolving. The long-run

effectiveness of any (i.e. uspecified) shock in the advertising expenditures is given by

                                                          
11 Early marketing applications focused on the forecasting capabilities of ��� (Geurts and

Ibrahim 1975 and Kapoor et al. 1981 among others). In more recent studies, ��� is used to
separate short-term from long-term marketing effects (when marketing variables are
included) (Leeflang et al. 2000, p. 458).
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75.0
407.0074.01

1

)1(

)1(
)1( =

+−
==

S

T�
ϕ
θ

. So, a portion of 0.75 of each one unit shock

in advertising expenditures persists over time and a portion of (1-0.75=) 0.25 dies out.

��/�� 0��������
��������

As we can see in Figure 2.1B, both advertising expenditures and sales figures are much higher

in Spring than in Summer. Palda (1960, p.35) reports that the Lydia Pinkham management has

the policy of low advertising in late Spring and during two or three months around Christmas,

resulting in a highly fluctuating advertising pattern. Many series in marketing display such

seasonal patterns caused by managerial decisions, weather conditions, events, holidays, etc.

For example, sales of ice cream in Europe are higher in Spring and Summer and lower in

Winter . There are a variety of possible approaches to account for seasonal fluctuations in

data. Three classes of time series models are commonly used to model seasonality, viz. (i)

purely deterministic seasonal processes, (ii) stationary seasonal processes, and (iii) integrated

seasonal processes (Maddala and Kim 1998, p. 363). Purely deterministic seasonal processes

exhibit a fixed seasonal pattern resulting in systematic fluctuations around the mean level, i.e.

some observations are expected to have values above and other observations below the grand

mean. A straightforward way to deal with such processes is to include ‘seasonal’ dummies in

the model, such as:

W

6

V

VWVW
�(� εµ ++= ∑

−

=

1

1

, �� ,...,1= (24)

where � is the maximum number of seasons (12 for monthly data, 4 for quarterly data, etc.),

VW
�  is a dummy variable taking the value one in season �  and zero otherwise, and 

V
(  a

parameter.

The seasonal effects can also be of the (ii) ���� type if seasonal fluctuations in sales

levels or random shocks die out over time in a seasonal way, or (iii) integrated, when

nonstationary seasonal patterns exist. A seasonal model may apply, with orders ���� and )

respectively for the ��, �, and �� components, denoted by ����������)�
V
 , where � is the

seasonal lag. To illustrate, suppose there exists a seasonal pattern in monthly data, such that

any month’s value contains a component that resembles the previous year’s value in the same

month. Then a purely seasonal �����(1,0,1)12 model is written as:
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1212 −− −++=
WWWW

�� θεεϕµ , �� ,...,1= (25)

Seasonal processes can be identified from the ��� and ���� functions, similarly to

the nonseasonal ����� processes discussed above, except that the patterns occur at lags �, 2�,

3�, etc., instead of at lags 1,2,3, etc. Just as in the case of the determining the nonseasonal

order of integration, seasonal unit root tests have been developed to detect the order of

seasonal integration (see, for example, Franses 1998, Hylleberg 1992).

In practice, seasonal and nonseasonal processes usually occur together. The

examination of ��� and ���� may suggest patterns in these functions at different lags. This

general process is indicated as an �����(�����)(����))s process:

WT

V

4W

G'

S

V

3
����� εθθµϕϕ )()()()( +=∆∆ , �� ,...,1= (26)

In equation (26) the seasonal and nonseasonal ��, ��, and differencing operators are

multiplied. In practice, the orders �����, and ����), are small, ranging from 0 to 2 in most

cases (Leeflang et al. 2000, p. 466).

����
�	�
��

Hanssens (1980) finds an �����(0,0,3)(0,1,1)12 model for the monthly sales 
W

�  (see,

equation (27)) and an �����(0,0,0)(0,1,1)12 for the monthly advertising expenditures 
W

  (see,

(28)) of the Lydia Pinkhams vegetable compound for the period 1954:01-1960:06 (Figure 1B):

W\W
��� ,

1512
12 )621.0257.01(98.44 ε−−+−=∆ , 2199000=��� ,

10890)23(2 =χ , �� ,...,1= (27)

W[W
�� ,

12
12 )477.01( ε−=∆ , 1083800=��� , 407.9)21(2 =χ , �� ,...,1= (28)

where ���  is the residual sum of squares and )(2 �χ is the Box-Pierce Q-square statistic

for white noise, which follows a 2χ -distribution. We deduce from equations (27) and (28)

that both variables are evolving, because the dependent variable is in annual differences. It is

interesting to compare equation (28) with equation (17). Both models indicate a fluctuating

pattern, since there is a negative relationship between two successive years.
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3.  Multivariate ��	

So far, we have introduced the basic concepts of ��	
 and discussed some techniques that are

useful in identifying the dynamic structure of the series. Univariate time series models can be

very useful for out-of-sample forecasting and for descriptive analyses. However, it may be the

case that the empirical specification of such univariate models is hampered by fluctuations that

can be attributed to one or more variables other than 
W

� . In marketing, one of the main fields

of interest is the determination of the effect of marketing actions of a brand on its sales. In

multivariate ��	, the dependent variable is explained by past values, random shocks, and

explicitly formulated e�ogenous variables: the 	��	� models. 	��	� models are discussed

in Section 3.1. We introduce  �
�����
� ��������������� in Section 3.2. The identification of

transfer functions is discussed in Section 3.3. The concept of  Granger causality is introduced

in Section 3.4. with references to the different causality tests and their applications. Section

3.5. deals with intervention analysis. In this section  we discuss (i) pure- and partial change

models, (ii) different types of interventions, (iii) possible responses to interventions, (iv)

impulses of noises, (v) endogenous change dates, (vi) multiple break dates, and (vii) the effect

of interventions on unit root tests. In Section 3.6. we introduce the basic concept of co-

integration. In all sections, we provide applications. Table 2 gives a survey of relevant

multivariate ��	 in marketing.
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��1���� ����2���������2��������������������

����������������"�����

6WXG\ &RXQWU\ (QWLW\�DJJUHJDWLRQ )RFXV

0XOWLYDULDWH ( )),(
NWMWW ���� −−=

Aaker et al. (1982) USA Sales Advertising-sales

relationship

Ashley et al. (1980) USA Macro-variable Advertising and

macroeconomic

indicators

relationship

Baghestani (1991) USA Sales Advertising-sales

Bass and Pilon (1980) USA Market shares Market-shares and

marketing mix

relationship

Carpenter et al. (1988) Australia Market shares Market-shares and

marketing mix

relationship

Dekimpe et al. (1997) The Netherlands Sales Market shake-ups

Didow and Franke (1984) USA Macro-variable Advertising and

macroeconomic

indicators

relationship

Doyle and Saunders (1985) Europe Sales Sales and promotion

mix relationship

Doyle and Saunders (1990) Europe Industry sales Sales and marketing

mix relationship

Franses (1991) The Netherlands Industry sales Sales, price,

advertising,

temperature, and

consumer

expenditures

relationships

Hamada (1999) Japan Macro-variable Advertising and

macroeconomic

indicators

relationship

Hanssens (1980) USA Sales; Industry sales Identification of

competitive patterns

Hanssens (1998) USA Sales Forecasting
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��1��������������

6WXG\ &RXQWU\ (QWLW\�DJJUHJDWLRQ )RFXV

0XOWLYDULDWH ( )),( NWMWW ���� −−=
Helmer and Johansson (1977) USA Sales Advertising-sales

relationship

Jacobson and Nicosia (1981) USA Macro-variable Advertising and

macroeconomic

indicators

relationship

Johnson et al. (1992) Canada Industry sales Relation between

industry sales, price,

age, personal

disposable income,

and degree days

Krishnamurthi et al. (1986) USA Sales Advertising-sales

relationship

Leeflang and Wittink (1992) The Netherlands Sales Identification of

competitive patterns

Leone (1983) USA Sales Advertising-sales

relationship

Moriarty (1985b) USA Sales Advertising-sales

relationship

Pitelis (1987) UK Macro-variable Advertising and

macroeconomic

indicators

relationship

Pitelis (1991) UK Macro-variable Advertising and

macroeconomic

indicators

relationship

Roy et al. (1994) USA Sales Identification of

competitive patterns

Turner (2000) UK Macro-variable Advertising and

macroeconomic

indicators

relationship

Wichern and Jones (1977) USA Market shares Market shake-up

analysis
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3�4�� �����5�
��������

Up till now, we have restricted the discussion to models of one criterion variable such as sales,

as a function of past sales, random shocks and time. If we are interested in estimating the

effects of marketing variables such as price, advertising, and competitive behavior on sales

when the latter variable is also subject to other complex patterns, we can include these

variables in an 	��	 model, and obtain an 	��	 model with e�ogenous variables

(	��	�). Time series models with exogenous variables are also known as �
�����
���������

������ (Greene 1997, p. 539). For extensive discussion and numerous examples of transfer

functions and 	��	� models, see Harvey (1990). Aaker et al. (1982), and Helmer and

Johansson (1977) provide marketing applications of transfer function models. Assume that

sales (
W

� ) is explained by one explanatory variable, advertising (
W

� ). Often, the transfer

function takes the form of a linear �istributed �ag �unction (���). We discuss more general

transfer functions in Section 3.2. Thus, these models postulate that sales (
W

� ) may respond to

current (
W

� ) and previous values of advertising ( ,..., 1−WW
�� ):

WWWW
��� εννµ +++= −110 , �� ,...,1= (29)

The general dynamic model formulation for one endogenous variable is:

WWNW
��� ενµ ++= )( , �� ,...,1= (30)

where N

NN
���� ννννν ++++= ...)( 2

210  and �  is the backshift operator.

	����������

Franses (1991) used an 	��	� model to analyze the primary demand for beer in the

Netherlands. Based on an inspection of 42 bimonthly observations from 1978 to 1984, using

	��’s and model tests, Franses obtained the following model:

+++++−= − 543216 30.251.234.230.206.0ln17.0ln δδδδδ
WW

��

             )35.16()11.16()02.16()80.17()14.7()38.3( −

116 54.027.298.337.2 −+ −+∆+∆−+
WWWW

�� εεδ  (31)

)90.3()96.9()31.12()19.16( −−
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In this model, ln is the natural logarithm, 
W

�  is the sales variable, 1δ  to 6δ  are bimonthly

seasonal dummies, 
W

�  is the price, �−=∆ 1  is a first-order differencing operator, 1+W�  is a

price expectation variable that assumes perfect foresight, and �� ,...,1= . The t-values are

given in parentheses. The model contains a lagged endogenous variable, a moving average

component, seasonal effects ( captured through deterministic dummies rather than through

differencing), and accounts for current price and future price effects. Advertising expenditures

did not significantly influence the primary demand for beer, so this variable is not introduced

in the model. Subsequently, Franses concluded that there are strong price effects in the beer

market. Because of this, tax changes may be an effective instrument to change the primary

demand for beer. The positive effect of future prices suggests forward buying by consumers.

3���� ������������������������

The transfer function is also called the  mpulse �esponse �unction ( ��), and the ν -

coefficients are called the impulse response weights12. If sales do not react to advertising in

period � , but only to lagged advertising, 00 =ν . In that case, the model is said to have a

‘dead time’ of one. In general, the dead time is the number of ν ’s equal to zero, starting with

0ν . High order transfer functions can be approximated by a ratio of two polynomials of lower

order (Helmer and Johansson 1977). Besides, transfer function (and ARMAX) models can

also incorporate a noise model. Hence, the general form of the transfer function model can be

written as

W

S

T

W

O

G

N

W �

�
�

�
��

� ε
α

ωµ
)(

)(

)(

)(

Φ
Θ

++= , �� ,...,1= (32)

where N

NN
���� ωωωωω ++++= ...)( 2

210 , which contain the direct effects of

changes in �  on �  over time, O

OO
���� ααααα ++++= ...)( 2

210 , which shows the

                                                          
12 Note, that the definition of Impulse Responses adopted here, for multivariate TSA, may be

conflicting for a researcher who is well versed in VAR methodology. In VAR models (as
we will see later) Impulse Responses refer to the responses of endogenous variables to
impulses in equation residuals.
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gradual adjustment of �  to �  over time, =G� the dead time ,

T

TT
���� Θ++Θ+Θ+Θ=Θ ...)( 2

210 , and

S

SS
���� Φ++Φ+Φ+Φ=Φ ...)( 2

210 . A dead time of 0=�  corresponds to an

immediate effect The �
��
 of the transfer function is said to be !�
�
�" and the noise model is

of order !�#$". The transfer function model is straightforward extension of the ARMA model;

for 0)( =�
N

ω  it is equal to a univariate time series (ARMA) process. The impulse response

weights are equal to 
)(

)(
)(, �

��
�

O

G

N

ON α
ων = .

The simultaneous identification of the transfer function and the 	� �	 structure of the error

in equation like (31) is a very complicated process (we discuss this in Session 1.1.3). An

example that frequently occurs in marketing for accounting exogenous variables in the TS

model is where the original sales series shows a seasonal pattern, for which an

	� �	(1,0,1)(1,0,0)12 model is indicated (Leeflang et al. 2000, p. 468). However, if

temperature is included as an explanatory variable in the model, an 	� �	(1,1,0) may suffice

(Leeflang et al. 2000, p. 468). Thus, the identification of the 	� �	 error structure depends

on the exogenous variables included in the model.

	����������

As an example, we consider a well-known special case: the Koyck model (see, for instance,

Leeflang et al. 2000, Ch. 6, Moriarty 1985a, Winer 1979):

∑
∞

=
− +=

0M

WMW

M

W
��� αβ (33)

where 10 <≤ α . It can be easily seen that 1−=
LL

ανν , for ∞= ,...,1� . Thus, the response

is a constant fraction of the response in the previous time period, it decays exponentially.

Multiplying both sizes of equation (33) at 1−�  with α , stubstracting it from equation (33)

and rearranging gives:

11 −− −++=
WWWWW

����� αβα (34)
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So, the Koyck’s model is equivalent to a transfer model with βω =)(� , ��
O

αα −=1)( ,

��
T

α−=Θ 1)( , 1)( =Φ �
S

 and 0=� .

The formulation in equation (34) is called the (rational) polynomial form of the Koyck model

(Leeflang et al. 2000, p. 468). Palda (1964, p. 37) estimates a Koyck type model for the

monthly Lydia Pinkham dataset (Figure 1B):

WWWWWW
����� ε+++++= −−− 211 16.021.027.039.0396 , �� ,...,1= (35)

where 
W

�  (sales) and 
W

�  (advertising expenditures) are both seasonally adjusted. The transfer

function equals:

�
��

�

��

O

G

N

39.01

16.021.027.0

)(

)( 2

−
++=

α
ω

(36)

We conclude from equation (36) that advertising has a positive effect on sales. The numerator

represents the direct effect on sales. It is the largest within the same month and has a

decreasing effect on sales in the next two months. The denominator in equation (36) represents

the indirect effects on sales. It indicates that there is a positive repurchasing mechanism in the

Lydia Pinkham sales, so advertising not only directly stimulates sales, but also indirectly,

because customers tend to repurchase the product.

3�3�� ������������������������������������

The explanatory variable ( � ) can be seen as exogenous if it is independent of the noise in the

dependent variable ( � ) For that reason, the explanatory variable, e.g. advertising, is ‘filtered’

(through an 	� �	 model, for example) to remove all its systematic predictable components

before it enters the model. To insure that the advertising-sales relationship is not destroyed,

the same filter is also applied to the sales variable. The transformed sales variable is

considered as potentially predictable from the pre-filtered advertising series (Helmer and

Johansson 1977). Procedures that have been proposed for filtering are the �inear �ransfer

�unction (���) method and the �ouble %re&hitening (�%&) method. (We refer to Box et al.

1994, Hanssens et al. 2001, or Pankratz 1991, for a description of these methods. Marketing

applications can be found in Bass and Pilon 1980, Doyle and Saunders 1985, and Leone 1983,

among others). The core of these methods involves fitting univariate time series to the
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individual series, after which the estimated white noise residuals are used for multivariate

analysis. This is called the prewhitening of variables. An important tool in the identification of

transfer functions is the �ross-�orrelation �unction (���), which is the correlation between

�  and �  at lag � : ),(
N

�� −ρ . The ��� extends the 	�� for the situation of two series

(those of �  and of � ), with similar interpretation: spikes denote �	 parameters (in the

numerator in equation (32), and decaying patterns indicate 	�� parameters, ending in the

denominator in equation (32)).

	����������

Box and Jenkins (1976) developed a transfer model selection procedure, which Helmer and

Johansson (1977) used to estimate two alternative transfer functions for the advertising-sales

relationship of the Lydia Pinkham vegetable compound for the years 1907-1946 (Figure 1A).

One of their final models is:

WWWW �
��� ε

2755.01

1
1881.04827.0 1 −

+∆+∆=∆ − , �� ,...,1= (37)

)47.1()39.1()27.3(

where t-values are given in parentheses. We deduce from equation (37) that both variables are

evolving and that the change in advertising positively affects the change in sales.

3�6�� 7�������#��������

It is difficult to establish a feasible definition of causality in a non-experimental setting. Tests

based on the stochastic view of time series behavior are based on the assumption that temporal

ordering of events can be used to make an empirical distinction between leading and lagging

variables. This distinction is the basis of a well-known concept of causality that was

introduced by Granger (1969). A variable �  is said to ‘Granger cause’ another variable �

with respect to a given information set containing �  and � , if future values of �  can be

predicted better using past values of �  and �  than using the past of �  alone (Leeflang et

al. 2000, p. 495). In marketing, causality tests are usually applied (i) to distinguish between

causal and noncausal relationships or associations, (ii) to establish direction of causality when

variables are related, and (iii) to reduce the large set of potential predictor variables.
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Marketing literature uses several types of causality concepts. Most of these are based on the

idea of Granger causality13. Leeflang and Wittink (1992 and 1996) use the Haugh-Pierce test

to investigate competitive reactions between marketing instruments of competing brands.

Despite the existence of many alternative bivariate causality tests, this is the test that has been

used in marketing applications almost exclusively (Bult et al. 1997). Bult et al. (1997)

compare the performance of five different Granger causality tests, and find that the

conclusions about causality may depend strongly on the test used. They recommend the

Granger-Sargent test for marketing applications, because it is a simple test with substantial

amount of power and has a low probability of type-I error.

3���� �����2���������������

Apart from marketing variables such as price and advertising, we may want to accommodate

discrete events in models of sales. Examples include a new government regulation, the

introduction of a competitive brand, a one period price discount, and so on. Intervention

analysis extends the transfer function approach described above to the estimation of the impact

of such events.

%�
��������
������'��(��������

The effect of an intervention is represented by changes in the parameters of the model. A ��
�

change model is estimated on two (or more) subsamples: the first subsample contains the

observations unaffected by the intervention, the second subsample contains the data

potentially affected by the intervention. Chow (1960) provides a test for a pure change model:

��

��
XX

XXUU

2

)(

,,

,,,,

−
′

′−′
= εε

εεεε
, �� ,...,1= (38)

where 
WU ,ε  are residuals of the restricted model that does not allow for an intervention, 

WX ,ε

are the residuals of the unrestricted model that allows for an intervention, � is the number of

observations, �  is the number of variables, and the residuals are assumed to behave as in any

                                                          
13 We do not discuss these here, but rather refer the interested reader to Hanssens et al. (2001,

p. 311) and Leeflang et al. (2000, p. 495)
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other single equation model (uncorrelated with common variance) (Stewart 1991, p.102). See

Leeflang and Naert 1978, p. 300 for a marketing application of this test.

In practice, however, we are often interested in specific changes in the individual

parameters. If we want to know which incumbents’ sales levels are more influenced, for

example, by the introduction of a new brand, ������� change models, in which only the

parameters of interest are allowed to change. Equation (39) is an example of a partial change

model in which the level ( µ ) and the repurchasing parameter (ϕ ) are allowed to change

(with the parameters 1ξ  and 2ξ , respectively), while the advertising parameter (ν ) remains

unaffected.

WWWWWWW
	
		 εδξδξνϕµ +++++= −− 1211 , �� ,...,1= (39)

where 
W

δ  is a dummy variable that has the value 1 in the time periods of the intervention, and

has the value 0 elsewhere (see below for more details). Box and Tiao (1975) developed this

approach. Marketing applications can be found in Leone (1987) and Wichern and Jones

(1977) among others.

�	���
��
�������������

The intervention dummy variable may take an infinite variety of forms, but there are two main

types: (i) a ����� dummy variable, which represents a ��������	 event, such as a price

discount or a strike, and (ii) a ���� dummy variable that characterizes a ��������� change, e.g.

the introduction of a successful brand or a change in legislation (Pankratz 1991, p. 263).

We can represent a pulse intervention with a dummy variable for which 1, =
WS

δ  in

the time periods of the intervention (
E
�� = ), and 0, =

WS
δ  in all other periods (

E
�� ≠ ),

where 
E
�  denotes the timing of the intervention. A step intervention can be represented with a

dummy variable defined as 1, =
WV

δ  in the time periods in which the event occurs and all

subsequent time periods (
E
�� ≥ ), and 0, =

WV
δ  at all time periods before the event (

E
�� < ).

���������
��
��
������������

The transfer function models defined in equations (2.30) and (32) can be extended to

intervention analysis with the δ -variable as defined above. The response of the dependent

variable to such an intervention will depend on the dynamics in the model. To illustrate this,
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we consider three simple sales models in which the intervention (δ ) affects sales ( 	 )

through a change in the µ -parameter:

�evel
�tationary (��) sales: 
WWWW

		 εξδϕµ +++= −1 , 1<ϕ , �� ,...,1= (40)

�rend
�tationary (��) sales: 
WWWW

�		 εξδβϕµ ++++= −1 , 1<ϕ , �� ,...,1= (41)

�ifference
�tationary (��) sales: 
WWW

	 εξδµ ++=∆ , �� ,...,1= (42)

Figures 7A to 7C show the corresponding graphical examples of responses to �����

interventions in the three cases, assuming 
W

δ  is a positive ����� dummy variable and ϕ  has a

positive sign. In Figures 7A and 7B, the effect of the intervention lasts for some periods and

dies out in the end. Figure 7C, on the other hand, shows that the long-run behavior of 
W
	  is

affected by the temporary event. Hence, the impulse persists over time (see Section 2.8.).

Figures 7D to 7F give graphical examples of responses where 
W

δ is a positive ���� dummy

variable and ϕ  has a positive sign. In 7D and 7E, the sales ����� is permanently changed by

the intervention. In 7F, the ������
���� of 
W
	  is changed due to the intervention.

Figures 7C to 7F show a permanent (or: ����������) change in the variable. Therefore,

these interventions are often called ����������
������ in the time series literature (Perron 1989,

Zivot and Andrews 1992). Notice that, although both Figures 7C and 7D depict a permanent

change in the average sales level, the underlying data generating processes are different. In the

former, any impulse may have a long-run impact on 
W
	 , while in the latter, only the step

dummy variable has a persistent effect. In Section 2.8., we discussed how to measure the

persistence of any impulse in the system.

��������
��
���������

It is important to note that 
W

ε  has a pulse effect on 
W
	  as well. The difference between

a series of pulse dummies {
WS,δ } and the residuals {

W
ε } stems from the fact we can

distinguish {
WS,δ } from {

W
ε } by using a priori information about events in the market. In

other words, {
WS,δ } are known pulses at irregular points in time, while {

W
ε } are unknown
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pulses at regular points in time (see also the discussions in Balke and Fomby 1991, and Perron

1994).

�������� 	
��
����������
���������
������������
������2�������

.����������2������ 0��
������2������

�� model

7A

W
	

                                    Time

7D

W
	

                                   Time

�� model

7B

W
	

                                    Time

7E

W
	

                                    Time
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�� model

7C

W
	

                                     Time

7F

W
	

                                    Time
The dot indicates the change date location. Notice that the solid line reflect discrete observations and that the dot

indicates the first observation that is subject to a change.

�����������

Wichern and Jones (1977) performed an intervention analysis to examine the effects of an

advertising campaign for Crest toothpaste based on an endorsement on the market shares of

Crest and Colgate in the years 1958-1963. The endorsement of Crest toothpaste as an

“important aid in any program of dental hygiene” by the Council on Dental Therapeutics of

the American Dental Association led to a permanent change in Crest’s market share, and a

permanent decrease in Colgate’s market share, i.e. a shake up in market share. Wichern and

Jones (1977) used weekly data of dentifrice purchasing by members of the Market Research

Corporation of America consumer panel during the years 1958-1963. Their final intervention

models are:

)037.0()048.0()047.0(
809.0061.0052.0 ,,,,,1 1121 WPWPWSWSW

�� εεδδ −+−−=∆
, �� ,...,1= (43)

and

)039.0()045.0()045.0(
779.0112.0065.0 ,,,,,2 2221 WPWPWSWSW

�� εεδδ −++=∆
, �� ,...,1= (44)
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where 
W

�� ,1 = the market share of Colgate, 
W

�� ,2 = the market share of Crest, and 
WS ,1

δ and

WS ,2
δ  are pulse dummies associated with the advertising campaign of Crest14. The figures in

parentheses present the approximate standard errors. Because the models are in differences,

the permanent effects on the market shares are the sum of the pulses, (-0.052-0.061=) -0.11

and (0.112+0.065=) 0.18, respectively. Taking the pre-shock market levels into account, the

campaign induced a persistent damage for Colgate of 25%, while the shares of Crest roughly

doubled in size. This example illustrates the possibility for temporal marketing activities, e.g.

Crest’s advertising campaign, to have a long-run (or persistent) effect on a performance

measure, e.g. market share.

 ���������
������
����

The assumption that the structural break coincides exactly with the timing of, for example, the

entry of a new player, may be too restrictive. It may take some time before a new entrant

affects the behavior of customers/incumbents in the market due to e.g. contract periods.

Hence, there are lagged effects (Leeflang et al. 2000, Ch. 6). Consumers may also anticipate

on the introduction of a new product or an expected sales promotion, and change their

strategies in advance (Van Heerde et al. 2000). Doyle and Saunders (1985) discuss an example

of this phenomenon in an industrial market. Not only consumers may adjust their behavior,

also incumbents may anticipate the entry of a new player and change their behavior

accordingly (Shankar 1999). Hence, the entry timing of, for example, a new player does not

necessarily coincide with the date of the shake-up.

Besides conceptual considerations, an a priori determination of the change date has

been criticized from a statistical point of view as well (see Christiano 1992, Zivot and

Andrews 1992, among others). They suggest to treat the location of the change date as

unknown. Different models have been developed to deal with unknown change dates. Quandt

(1960) discusses a general likelihood ratio test for intervention models where the intervention

takes place at some unknown point in time and the error variance is also allowed to change.

Brown et al. (1975) suggest the CUSUM test for this purpose. Andrews (1993) derives

asymptotic critical values for the Quandt test as well as the analogous Wald and Langrange

Multiplier (LM) tests. He shows that his supF test has better properties than the CUSUM test

                                                          
14 Wichern and Jones (1977) decided to include two dummy variables, because their initial

examination of the differenced data indicated that the market share adjustment to the
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(see also Maddala and Kim 1998, p. 391). The unknown change date tests are usually based on

recursive estimation, where the model is estimated for different change date locations and the

final model is selected on the basis of a statistical criterion. In practice, it is not very appealing

to search for change dates in regions where we already know there are no interventions. It is

therefore recommendable to search for these change dates in the neighborhood of the known

major events (Maddala and Kim 1998, p. 398). A change date is called endogenous if it is not

known �
 ������. Marketing applications that make use of the endogenous change date

assumption include Nijs et al. (2001), and Pauwels et al. (2000).

!�������
������
�����

Longer time spans of marketing data enable more profound insights in the underlying data

generating processes, which helps to build better marketing models. However, the number of

interventions that change the market characteristics increases as the time span enlarges, which

makes model building more complicated. Dufour (1982), among others, considers tests for

multiple regimes in a time series. Kornelis et al. (2001b) consider the possibility of two

interventions in a marketing context.

�������������
���
���
����
����
����

Interventions may have an important effect on the outcomes of unit root tests (see Section 2.7.

for a discussion of a unit root test). Perron (1989) demonstrates that if there is a permanent

change in the deterministic trend function, then unit root tests will lead to the misleading

conclusion that there is a stochastic trend (a unit root), when in fact there is a deterministic

trend with a structural break. Perron provides extensions of the ��" test that allow for one

structural break at a known date in the trend function. His most general case is the extension

of equation (19) with intervention dummies:

∑
=

−− +++++∆++=∆
-

M

WWWWWMWMW ��#���$�		�	
1

3211 )()()( ελξλξλξϕβµ

, �� ,...,1= (45)

                                                                                                                                                       
intervention was accomplished over two consecutative weeks and that there was no
relationships between the two single week adjustments.
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where 
�

�
E=λ , =� the date of the structural break, =)(λ

W
�$ the structural change in

the intercept at date �λ , it has the value 1 if �� λ>  and 0 otherwise, =)(λ
W

�� the

structural change in the trend function at date �λ , it has the value �� λ−  if �� λ>  and 0

otherwise, and =)(λ
W

��# 1 if 1+=
E
��  and 0 otherwise. The focus of this test is on the

unit root hypothesis and not on the intervention itself. Zivot and Andrews (1992) among

others, generalize the models of Perron (1989) by endogenizing the change date location. The

unit root hypothesis under the allowance of interventions has received much attention in both

the economics and statistics literature. We refer to Maddala and Kim (1998) for a more

detailed discussion. See Bronnenberg et al. 2000 for a marketing application of a unit root test

under the allowance of a structural break.

3���� �!���2��2����2����1���)�� ������������,�����������

In Section 2.4, we discussed (i) the deterministic trend concept and (ii) the stochastic trend

concept. In a multivariate context, we also have (iii) co-integration as a possible long-run

relationship between variables with a stochastic trend. We introduce this concept in this

section.

If a variable, say sales, only has a deterministic trend, it is not possible to affect sales in

the long run through another variable, advertising for instance. Indeed, advertising can only

have a temporal effect, since in the end sales will return to their pre-determined growth path.

If sales has a stochastic trend, shocks in advertising may affect the future values of sales, but

these future values are hard to control. However, a very interesting situation occurs when the

two variables under consideration, say sales and advertising, ���� have a stochastic trend. In

that case, it is possible that the variables share this stochastic (common) trend so that the

growth path of one variable (say sales) can be explained by the growth path of the other

(advertising) variable. Such a relationship is called ��%�����������. Co-integration refers to the

existence of a stationary linear combination of two or more nonstationary series (Engle and

Granger 1987). An example is the linear combination of sales (
W
	 ) and advertising (

W

 ):

WWW\
�
	� −+= µ, , �� ,...,1= (46)
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where 
W\

� ,  are the residuals obtained from a regression of 
W
	  on 

W

 . The co-integrating

relationship (43) implies that if 
W\

� ,  is stationary, the difference between sales (
W
	 ) and a

portion of advertising (
W

 ) is stable over a long period of time. Hence 

W
	  and 

W

  move

together in the long run; there is a long-run equilibrium relationship between them (Maddala

and Kim 1998, p.26). Because one is unlikely to observe a perfect equilibrium, a more realistic

assumption is that the deviations of (46) are mean reverting around zero (Powers et al. 1991).

The co-integrating relationship may also follow a deterministic trend and contain seasonality.

To model this, we can include a deterministic trend ( � ) (Franses 1999), and seasonal dummies

(
WV

� , ) (For the treatment of the seasonal dummies, see Lee and Siklos 1997, p. 386, Table 2,

Note 2) in (46) and obtain:

W\W6

6

V

WVVW
�
��	 ,

1

1
, ++++= ∑

−

=

γγβµ , �� ,...,1= (47)

Engle and Granger (1987) developed a two step procedure ( & approach) to test for

co-integration (Baghestani 1991). In the first step, the co-integrating relation (47) is estimated.

In the second step, the ��" test is performed on the residuals, 
W\

� , , but, with other critical

values than in the ��" test. The  & critical values depend on the inclusion of trend and

intercept and on the number of regressors in (46). (These critical values can be found in Engle

and Yoo 1987, pp. 157-158, and in Philips and Ouliaris 1990, pp. 189-190).

If cointegration exists between two or more variables, these long-run connections

should be accounted for in the models that capture short-run relationships between them.

Engle and Granger (1987) showed that this can be achieved through an error-correction

mechanism. This is a model in differences, which is augmented by the lagged equilibrium

error:

WWWWW
�
		 ευναµ ++∆+∆+=∆ −− 11 , �� ,...,1= (48)

The lagged equilibrium error parameter (ν ) is a measure of the speed of adjustment

towards the long-run equilibrium.

If the model contains, say '  evolving variables, there may exist 1−'  co-

integrating relationship between those variables. We will return to this issue in Section 4.9.,

where we discuss the co-integration test developed by Johansen (1988).
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Baghestani (1991) applied the  & methodology to the Lydia Pinkham annual data set. He

found that the vegetable compound sales share a common trend with advertising expenditures,

indicating a long-run equilibrium for the advertising-sales relationship. The long-run sales are

related to the long-run advertising expenditures as follows:

)11()84.3(
43.183.488 ,W\WW

�
	 ++=
, �� ,...,1= (49)

where the t-ratios are in parentheses. We can consider the present sales as a deviation from the

long-run equilibrium of equation (49). To model the adjustment of present sales towards this

long-run equilibrium, we can incorporate the lagged (stationary) residuals of equation (49),

1, −W\
� , into a ���!�( model and obtain

WWT[W\WS\

#�	# ενρµϕ +∆++=∆ − )()( ,1,, , �� ,...,1= (50)

Because, we can consider a deviation as an ‘error’, equation (50) is called an  rror )orrection

( )) model and it links short run instability to long-run stability. The variables 
W
	  and 

W

  are

in differences (∆ ) as they both have a stochastic trend. Baghestani’s (1991) final EC model

for the Lydia Pinkham vegetable compound sales is

)49.1()46.4()41.1()58.1()05.2()30.0(
183.0832.0221.0228.0226.0298.8 5211,

−−
+∆−∆+∆+∆+−=∆ −−−− WWWWWW\W



		�	 ε

, �� ,...,1= (51)

where the t-ratios are in parentheses. We deduce from equation (51) that the current change in

sales are explained by the intercept, the adjustment towards the long-run relation with

advertising, the change in sales of two years ago, the change in advertising expenditures of the

same year, and the change in advertising expenditures of five years ago. To assure that the

variable returns to the long-run co-integrating relationship, the sign of the adjustment

parameter (-0.226) should be negative. long-run

Regressing sales on advertising refers to the same co-integrating relation as regressing

advertising on sales. Theoretically, the residuals of both operations are perfect linear

transformations of each other. In practice, however, these are approximations (Baghestani

1991). Therefore, if we consider the EC model of sales, we usually normalize on sales, e.g.

regress sales on advertising to obtain the co-integrating relationship. Baghestani (1991) gives
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the following co-integrating relation (46) and EC model (50) for the annual advertising

expenditures of Lydia Pinkhams vegetable compound:

)11()33.0(
49.093.27 ,W[WW

�� ++=
, �� ,...,1= (52)

and

)92.2()66.1()27.3()31.2()18.3()13.0(
295.0186.0356.0239.0382.0787.2 2141,

−−−
−∆+∆+∆+−−=∆ −−−− WWWWW[W

��� � 

, �� ,...,1= (53)

where 
W[

� ,  is the co-integrating relation normalized on advertising (
W

 ). In his study,

Baghestani (1991) finally concluded that less than two fifths of the adjustment towards the

long-run equilibrium condition occurred within a year through changes in the company’s

advertising expenditures. Other marketing applications that consider co-integrated

relationships include, among others, Dekimpe and Hanssens 1999, Franses et al. 2000,

Kornelis et al. 2001a.

4.  Multiple Time Series Analysis

In marketing practice, it is not always known 	� �

�

 whether the time path of the

“dependent” variable has affected the “independent” variable. An example is performance

feedback. Bass (1969) warned that advertising may be influenced by current and past sales,

and should not automatically be treated as exogenous. This means that not only marketing

activities may influence sales, but (changes in) sales may also induce marketing activities.

Marketing managers may track, for example, own-brand market share or sales, and if they

observe a drop in either performance measure, they may tend to compensate it with changes in

marketing activities. In its most basic form, multiple ��� treats all variables symmetrically

without making reference to the issue of dependence versus independence and permits

causality testing of all variables simultaneously. This is a major advantage of multiple� ���

models compared to the multivariate time series models ( Enders 1995, Franses 1998, and

Hanssens 1980).

Moriarty and Salamon (1980) concluded that their multiple� ��� model provides

substantial improvement in parameter estimation efficiency and forecasting performance in

comparison with multivariate models. Takada and Bass (1998) find that their multiple� ���
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models outperform multivariate �� models in goodness-of-fit measures as well as in

forecasting performance.

Another advantage of multiple���� models results from the fundamental philosophy of

��� in general, i.e. to let the data rather than the researcher specify the model. Multiple����

methodology applies iterative processes that identify basic models, the lag structure, and

relationships between variables, estimate the parameters, and check the estimated model.

Because of this, multiple���� modeling has been labeled a-theoretical (Jacobs 1998, p. 31). In

our view, this is an exaggeration. Economic/marketing theory is essential in the selection of

sets of variables, in the identification, in the interpretation of impulse responses and �orecast

*rror +ariance �ecomposition results (see Section 4.8.), as well as in co-integration analysis.

Dekimpe and Hanssens (2000) make a similar claim, especially with the CI analysis, MTSA

also has ���!

%	��
� rather than only � ��	�	��
� value. They also emphasize the importance

of Structural VAR models to supplement sample-based information with marketing theory.

All in all, multiple���� models have been shown (i) to be extremely flexible in capturing the

dynamic inter-relationships between a set of variables, (ii) to be able to treat several variables

endogenously, (iii) not to require firm prior knowledge on the nature of the different

relationships, (iv) to be able to capture both short- and long-run inter-relationships, and (v) to

outperform multivariate ��� models in parameter efficiency, goodness-of-fit measures as well

as in forecasting performance. We summarize the marketing applications of MTS models in

Table 4.

The remainder of this section is organized as follows. First, in Section 4.1 we introduce

+ector �uto�egressive �oving �verage (+����) models. Next, the estimation of such

models is discussed in Section 4.2. In Section 4.3, we shortly discuss the issue of exogeneity.

We consider the system with exogenous variables (+����, model) in Session 4.4 Section

4.5 introduces �mpulse �esponse (��) analysis, which involves some identification issues that

are discussed in Section 4.6. Section 4.7 discusses �tructural +�� (�+��) models. We discuss

multivariate persistence in Section 4.8. Dynamic multipliers are introduced in Section 4.9 that

measure marginal the impact of changes in the exogenous variables. �orecast *rror +ariance

�ecomposition (�*+�), a useful tool in detecting the interrelationships between the

endogenous variables of the model, is introduced in Section 4.10. Finally, we discuss co-

integration in Section 4.11.
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Bronnenberg et al. (2000) USA Market share Distribution and

market share relation

Bronnenberg et al. (2001) USA Sales Competition

Chowdhury (1994) UK Macro-variable Advertising and

macroeconomic

indicators relationship

Dekimpe and Hanssens (1995a) USA Industry sales; Sales Advertising sales

relationship

Dekimpe and Hanssens (1995b) - - Empirical

generalizations

Dekimpe and Hanssens (1999) USA Sales Sales and marketing

mix instruments

Dekimpe et al. (1999) USA Industry Sales; Sales Sales and price

promotions

Dekimpe et al. (2001) The Netherlands Sales Competition

Franses (1994) The Netherlands Industry sales Forecasting

Franses et al. (1999) - Market share Market share and

marketing mix

Franses et al. (2000) USA Market share Identification of

dynamic patterns

Hanssens and Ouyang (2000) USA Sales Modeling market

hysteresis

Horvath et al. (2001) USA Sales Competition

Grewal et al. (2001) USA Sales Analysing marketing

interactions in dynamic

environment
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Jung and Seldon (1995) USA Macro-variable Advertising and
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indicators relationship

Kornelis et al. (2001a) The Netherlands Industry sales Market shake-ups

Kornelis et al. (2001b) The Netherlands Macro-variable Advertising and

macroeconomic

indicators relationship

McCullough and Waldon (1998) USA Macro-variable Substitutability

Moriarty and Salamon (1980) USA Industry sales Forecasting

Nijs et al. (2000) The Netherlands Industry sales Sales and price

promotions

O’Donovan (2000) New Zealand Macro-variable Advertising and

macroeconomic

indicators relationship

Parsons et al. (1979) USA Macro-variable Advertising and

macroeconomic

indicators relationship

Pauwels et al. (2000) USA Sales; Industry sales Sales and Price

promotions

Seldon and Jung (1995) USA Macro-variable Advertising and

macroeconomic

indicators relationship

Srinivasan and Bass (2000) USA Market share; Sales;

Industry sales

Competition

Srinivasan et al. (2000) USA Market share Market share and price

Umashankar and Ledolter (1983) USA Sales Forecasting

Zanias (1994) USA Sales Advertising-sales

relationship

6�4�� 8�����
��������

Multiple time series models are a natural extension of the univariate ���� models in the

sense that a vector of dependent variables replaces the dependent variable 
W

� . Such models
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are called +ector �uto�egressive �oving �verage (+����) processes. Takada and Bass

(1998) build +���� models to analyze competitive marketing behavior and detect causality

of marketing mix variables and sales. In marketing, the most commonly applied multiple time

series model is the +ector �uto�egressive (+��) model15 (Dekimpe and Hanssens 1999,

Srinivasan et al. 2000, Nijs et al. 2001, Horváth et al. 2001, among others). +�� models have

mainly become popular in marketing in the analysis of competitive marketing systems, where

the identification of competitive structures combined with the need to capture various dynamic

relationships between marketing variables is a rather complex and difficult task (Hanssens

1980, Bass and Pilon 1980, Aaker et al. 1982, and Takada and Bass 1998). A +�� model has

the following structure:

WMW

-

M

MW
�� ε+Ρ=Ρ −

=
∑

1
0 , �� ,...,1= (54)

where 
MW

� −  are - -dimensional vectors of endogenous variables at time .� − , 0Ρ , 
M

Ρ  are

the -- ×  parameter matrices, 
W

ε  is a vector of disturbances with ),0(~ 2 �/ σε , and $

is the order of the model.

Because multiplication of (54) with any nonsingular -- ×  matrix results in an

equivalent representation of the process generating 
W

� , we can estimate the so-called 
��"���

form of the model (Lütkepohl 1993, p. 325). The reduced form of the system is obtained by

pre-multiplying (50) with 1
0
−Ρ , which gives:

WW
"�0 =Π )( , �� ,...,1= (55)

where )(0Π  is a matrix polynomial with lag operator 0 :

-

-
000�0 Π−−Π−Π−=Π ...)( 2

21 , �� ,...,1= (56)

and 
MM

ΡΡ=Π −1
0 , $. ,...,1= , " ε10

−Ρ= , and ),0(~ Ω/"
W

.

Since only lagged values of the endogenous variables appear on the right-hand side of

each equation, simultaneous effects are no longer directly visible. Their presence can be

obtained from Ω  through an identification procedure (we elaborate below on the directional

                                                          
15 Sims (1980) states that a general VARMA model can be approximated by low order VAR

models.
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issues involved). The optimal lag length ( $ ) selection is usually based on some kind of

information criteion, such as, the Akaice Information Criterion, the Schwartz’ criterion, the

Hannan-Quinn criterion, or the Final Prediction Error criterion. Alternative method is to use

the likelihood-ratio test. Lütkepohl (1993, p. 128-135) provides extensive description of the

lag selection procedure.

For a two-variable case, such as the relation between the evolving advertising (
W

 ) and

sales (
W

� ) variables, the reduced form +���$� model is:





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
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[
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,1

2221

1211

2

1

1 ππ

ππ

µ

µ
, �� ,...,1= (57)

This model includes brand- or firm- specific decision rules ( 11π ), performance feedback

effects ( 12π ), lagged effect of advertising activity (
M

21π ), and repurchase effect (
M

22π ),

$. ,...,1= .

6���� 	�������������8�����������

 Because the disturbances of the reduced +�� system are, in general, contemporaneously

correlated ( �2σ≠Ω  in equation 56), a system estimator is applicable. In this case, Zellner's

(1962) �eemingly 1nrelated �egressions (�1�) estimator is required to gain efficiency from

the cross-equation correlations of the disturbances. If the equations have identical right-hand-

side variables (unrestricted +�� model), and the order $  is known, each equation in the

system can be estimated by 2rdinary 0east �quares (20�). In that case, the 20� estimates are

consistent and asymptotically efficient even if the errors are correlated across equations (see

Srivastava and Giles 1987, Ch. 2).

                                                          
16 In this session we mainly devote our attention to VAR models. The issues we discuss can

easily be extended and implemented for VARX models, too. See Lütkepohl (1993), Ch.
10.
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6�3�� 	
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So far, we have assumed (in Session 4.1) that all variables of a system are determined within

the system. In other words, the VAR model describes a joint generation process of all the

observable variable of interest. In practice the generation process of a variable may be affected

by other observable variables which are determined outside the system of interest. Such

variables are called � �&���"�. In contrast, the variables determined within the system are

called ����&���"�. The distinction between “exogenous” and “endogenous” variables in a

model is subtle and it is a subject of a long literature17. As a result, several exogeneity

concepts, such as predeterminedness, strict, weak, strong, predictive, and super exogeneity,

have been distinguished, which extend the categorization of variables of Hanssens et al. (2001,

p. 184) and Leeflang et al. (2000, p. 60)18. The relevant concept of exogeneity in marketing is

so far strong exogeneity since the main interest of marketing applications is in conditional

forecasting involving no changes in the conditional distribution of the data. This concept

involves Granger causality that has been introduced in Session 3.4. The concept of Granger

causality bears similarities with the concept of (strong) exogeneity in the sense that it allows

us to draw inference on dynamic impact of one variable on another.

6�6�� 8����5�
��������

Ideally all considered variables are treated as and exogeneity should be tested during the

model-building process19. However, this requires to start from the most general VAR setting,

which is often not feasible. The common practice in marketing is to allow the most relevant

variables to be endogenous and to control for the effects of other variables by considering

them exogenously (Dekimpe and Hanssens 1999, Dekimpe et al. 1999 and 2001, Horváth et

al. 2001, Nijs et al. 2001, Srinivasan and Bass 2001, and Srinivasan et al. 2000). This, i.e. the

imposition of exogeneity, can imply a reduction of the number of parameters and also an

improved precision of forecasting. These models are called +ector �uto�egressive models

with e,ogenous variables (+��, models) and they can be expressed the following way:

                                                          
17 See, for example, Engle et al. (1983), Osiewalski and Steel (1996). Gourieroux and Monfort

(1997, Chapter 10) provides a clear distinction between the different exogeneity concepts.
18 We do not discuss the different exogeneity concepts in detail here since they have not yet

been applied in marketing, but refer the reader to the references listed in Footnote 16.
19 Gourieroux and Monfort (1997, p. 391) provide nested hypothesis tests involving the

different exogeneity concepts.
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WWW
" 0�0 +Γ=Π )()( , �� ,...,1= (57)

where 
W

  is an �-dimensional vector of exogenous variables and )(0Γ  is is a matrix

polynomial with lag operator 0 : 6

6
0000 Γ−−Γ−Γ−Γ=Γ ...)( 2

210  and 
L
Γ  are

-�× coefficient matrices, �
 ,..,0= .

The model is referred to as a VARX(J,S) process. If 
W

"  is an MA(Q) process the model

becomes a VARMAX(J,S,Q) process.

6���� ��
��������
�������������

Traditionally, +�� studies do not report estimated parameters or standard test statistics.

Coefficients of estimated +�� systems are considered of little use in themselves and also the

high (i.e. ( )--$ ××  autoregressive coefficients) number of them does not invite for

individual reporting. Instead, the approach of Sims (1980) is often used to summarize the

estimated +�� systems by �mpulse �esponse �unctions (���s). ���s trace out the effect over

time of an exogenous shock or an innovation in an endogenous variable on all the endogenous

variables in the system, to provide an answer to the following question: “What is the effect of

a shock of size δ  in the system at time �  on the state of the system at time τ+� , in the

absence of other shocks?” In marketing ���s are often used to estimate the effects of a

marketing action on brand performance over time when indirect effects (through for example

feedbacks, competitive reactions, and firm-specific decisions) are considered (Dekimpe and

Hanssens 1999, Dekimpe et al. 1999, Horváth et al. 2001, Srinivasan and Bass 2000, and

Takada and Bass 1998) Promotions, for instance, then are operationalized as one-time, hence

temporary, deviations from the expected price level.

Assuming stationarity, equation (55) can be transformed into a +ector �oving �verage

(+��) representation (Lütkepohl 1993, p. 13):

∑
∞

=
−==

0

)(
M

MWMWW
"�"0�� , �� ,...,1= (58)
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where 1)()( −Π= 00�  and �� =0 . For this transformation, the model needs to be stable20.

A sufficient condition is that the variables in the system are stationary (Lütkepohl 1993, p.

12). From this representation, the response of τ+WL
� ,  to a one-time impulse in 

WM
� ,  can easily

be obtained:

τ
τ

,
,

,
LM

WM

WL �
"

�
=

∂
∂ +

, �� ,...,1= (59)

where τ,LM
�  is the row 
 , column .  element of the -- ×  matrix of coefficients τ� , the

coefficient matrix of the τ -th lag of the +�� representation, ∞= ,...,0τ . A plot of these

values as a function of τ is called the graphical representation of the Impulse Response

Function (���).

6���� ����������������������

The innovations of the reduced +�� model (equation (55)) may be contemporaneously

correlated, i.e. ),0(~ Ω/"
W

where �≠Ω . As a result, shocks may affect multiple

variables in the current period, which makes it impossible to isolate the effect of a given

shock. The usual treatment of this identification problem is to impose some structure on the

system of equations, based on a priori information. The most widely used approach suggested

by Sims (1980) is assuming a causal ordering based on Cholesky decomposition of the

covariance matrix, which was adopted by Dekimpe and Hanssens (1995a). This approach

requires the ranking of variables from the most pervasive (a shock to this variable affects all

other variables in the current period) to the least pervasive (a shock to this variable does not

affect any other variable in the current period). We note that it is extremely rare for managers

to appropriately order variables in a competitive marketing environment. Especially in

instances in which leader-follower roles are not obvious (Dekimpe and Hanssens 1999) this

ranking is almost impossible. Furthermore, Cholesky decomposition a rather arbitrary method

of attributing common effects, because a change in the order of the equations can dramatically

change the impulse responses. 3eneralized �mpulse �esponse (3��) analysis proposed by

Pesaran and Shin 1998 and Pesaran and Smith 1998 overcomes the problem of ordering. This

                                                          
20 For explanation about stability of a VAR system we refer the reader to Lütkepohl (1993),

p. 9-13.
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approach, unlike the traditional ��� analysis, does not require a priori information or

orthogonalization of shocks, and is invariant to the ordering of variables in the model. It

measures the effect on the endogenous variables of a typical shock to the system, based on the

estimated covariances between the reduced form shocks in the estimation period. The

generalized impulse response function, denoted )(%
M

ψ , to one unit standard error chock to

the . th equation on expected values of   at time %� + is:

MM

MP

M

��
%

σ
ψ

Ω
=)( (60)

where 
M

�  is a - times 1vector with unity in its . th element and zeros elsewhere
MM

σ  the

variance of the disturbances in equation . , 
P

� is the -- ×  coefficient matrices of the VMA

representation in equation (2.54) and Ω is the variance-covariance matrix of the disturbances.

This method overcomes the problem of ordering, although it is not based on economic or

marketing theory. (Marketing applications in the spirit of the 3�� approach are in Dekimpe

and Hanssens 1999, and Nijs et al. 2001).

6���� 0����������8���
��������

Dekimpe and Hanssens (2000) recognize the importance of combining the data-driven +��

technique with marketing theory, and they suggest the application of �tructural +�� (�+��)

models. The �+�� approach, (proposed by Bernanke 1986, and Sims 1986), involves

employing additional information based on economic theory or “ conventional wisdom”.

The idea behind �+�� modeling is the following. The residuals, 
W

" , obtained from the

reduced form, are related to the structural disturbances, 
W

ε , according to 
WW

�" ε10
−= . The

identification of 1
0
−�  requires the imposition of restrictions on 1

0
−� . So, if -  equations are
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included in the model, full identification of this matrix requires 
2

2 -- −
 restrictions21

(Hamilton 1994, p. 332). As long as the parameters in 1
0
−�  are not identified, it is impossible

to identify structural shocks (
W

ε ) from reduced-form estimation. The effects of the .th

structural disturbance on subsequent values of the variables of the system are (Giannini 1992,

p. 44-51):

M

MW

W

W

W

MW

W ��
"

"

��
τ

ττ

εε
=

∂
∂

⋅
′∂

∂
=

∂
∂ ++ , �� ,...,1= (61)

where τ�  is the -- ×  matrix of coefficients for the τ -th lag of the +�� representation

(equation (58) and 
M

�  is the .th column of 1
0
−� .

Cholesky decomposition is a special case of �+�� modeling, as it sets the parameters

of 1
0
−�  above the diagonal equal to zero, which imposes a triangular pattern on 1

0
−� . It is

also possible that �+�� models contain e,ogenous variables. These models are referred to as

�+��, models and have been applied in a marketing context by, for instance, Horváth et al.

(2001).

6�-�� �����2�������
����������

Dekimpe and Hanssens (1995a) introduce %"��
4	

	��� ��
�
������ modeling in a marketing

context. Multivariate persistence derives the total long-run impact in a dependent variable

(say, sales) of an unexpected change in an control variable (say advertising). Their approach

strongly relies on the tools of +�� modeling, especially on ��� analysis. In multivariate

                                                          

21 The variance-covariance matrix of the reduced VAR model (Ω )contains 
2

2 -- +
 distinct

elements since )’()’’()’( 0000 ��*�""�*""*
WWWW

== . Given that the diagonal

elements of 0�  are all unity, it contains -- −2 unknown variables. Therefore, in order to

identify the structural VAR model it is necessary (but not sufficient) to impose (at least)

2

2 -- −
 restrictions on the model. We demonstrate this in the empirical part of this paper.
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persistence modeling, the (non)stationarity property of the performance 	��5�
 marketing

instruments variables has important implications for marketers. The combination of stationary

(nonstationary) sales responses to stationary (nonstationary) marketing efforts leads to four

possible situations. Dekimpe and Hanssens (1999) label and discuss these four situations that

may benefit strategic marketing decision making. Figure 8 displays the four strategic

scenarios. According to Figure 8, we classify the Crest advertising case as market hysteresis,

i.e., for Crest temporary advertising actions cause sustained sales change.

Dekimpe and Hanssens (1999) and Hanssens et al. (2001) discuss the four situations

extensively, provide illustrations from practice for each scenario, and describe its positive and

negative consequences for long-term profitability.
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�������- 0��������� ���������� ���������� ����� ���
������ 2������ 
��������� � ����9

���
����

# ��������2����1����

���
�������

2����1�����

���
���� 0��������

Temporal Business as usual

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Period

Im
pa

ct

Escalation

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Period

Im
pa

ct

Persistent Hysteresis

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Period

Im
pa

ct

Evolving business practice

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Period

Im
pa

ct

where:      = variable I, ---- = variable II

Source: Dekimpe and Hanssens (1999)
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6�/�� (������������
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In a VARMAX model the marginal impact of changes in the exogenous variables can be

investigated. For example, if the exogenous variables are marketing instruments, such as

prices the consequences (of changes) in these instruments can be investigated (if they are

endogenous we apply impulse response analysis). A brand manager may, for instance, desire

to know about the effects of a price change. In this case policy simulation is of interest. In

other cases the consequences of changes in exogenous variables that are not under control of

any decision maker may be of interest. It may be, for example, desirable to study the future

consequences of present weather conditions on the production (supply) of an agricultural

product. The dynamic effects of exogenous variables on the endogenous variables is captured

by the ���	%
��%"��
��
�
� (Lütkepohl 1993, p. 338):

∑
∞

=

− ΓΠ==
0

1 )()()(
L

L

L
000�0� , (62)

where )(0Π  and )(0Γ  are defined in equations (55) and (57). From this representation, the

response of τ+WL
� ,  to a unit change 

MW
  can easily be obtained:

τ
τ

,
,

,
LM

WM

WL �
 

�
=

∂
∂ +

, �� ,...,1= (63)

where τ,LM
�  is the row 
 , column .  element of the -�× matrix of coefficients τ� , the

coefficient matrix of the τ -th lag equation (62), ∞= ,...,0τ .

6�4:�� ���������	�����8��������(����
�������

Another way of characterizing the dynamic behavior of a system is through �orecast *rror

+ariance �ecomposition (�*+�) (see e.g. Hamilton 1994, Franses 1998, Chapter 9, and

Lütkepohl 1993). While ���s trace the effects of a shock in one variable on other variables in

the +��-system, the �*+� separates the variation in an endogenous variable into component

shocks to the system. If, for example, shocks to one variable fail to explain the forecast error

variances of another variable (at all horizons), the second variable is said to be exogenous with

respect to the first one. The other extreme case is if the shocks to one variable explain all
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forecast variances of the second variable at all horizons, so that the second variable is entirely

endogenous with respect to the first.

The �*+� can be derived from the +�� representation of the model described in

equation (58) (Lütkepohl 1993, p. 56). The τ -period forecast error is equal to:

WW

W

WWWW
��*�

&

&

& −+

−

=
++ ∑=− τ

τ

ττ ε
1

0

, �� ,...,1= (64)

where 
W

�
&

 are the -- ×  parameter matrices of the +�� representation in (58), and 
W

*

denotes expectations formulated at time � , based on the estimated +�� model. Focusing, for

example, on 
W

� ,1 , the first element of vector 
W

� , the forecast error can be written as:

∑∑
=

−

=
−+++ =−

N

U W

WWUWUWWW
��*�

1

1

0
,,1,1,1

τ

τττ ε
&

&&

, �� ,...,1= (65)

where 
WU

�
&,1  is the element of the 

W
�

&

 matrix in the 1st row and 
th column and 
WWU &−+τε ,  is the


th element of the 
WW &−+τε  vector. Since the variances of the disturbance terms are all equal to

one, the τ -step ahead forecast error variance of 
W

� ,1  can be derived from the following

expression:

∑∑
=

−

=

=
N

U W

WU\ �
1

1

0

2
,1

2 )(
1

τ

τσ
&

&

, �� ,...,1= (66)

where )(2

1
τσ

\
 denotes the forecast error variance of variable 1�  at step τ . We note that this

expression is a summation of nonnegative terms, so that the forecast error variance is

nondecreasing with the forecast horizon τ . The forecast error variance can be decomposed

into contributions of each of the variables in the system. The proportions of )(2

1
τσ

\
 that can

be attributed to shocks in each variable 
U
� , �� ,...,1= at step τ  are:

)(2

1

0

2
,1

1
τσ

τ

\

W

WU
�∑

−

=& , �� ,...,1= (67)

The variance decomposition is subject to the same identification problem inherent to

the impulse response analysis. To overcome the identification problem we can apply the same
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approaches, such as Cholesky decomposition, the method of ��	 analysis, and 
��


modeling.

6�44�� #�,������������1��!���������� ����!��2����1���

In Section 3.6., we introduced and discussed the concept of co-integration. The number of

possible co-integration relations increases with the number of time series considered in the

model, which implies an increasing ambiguity in determining the empirical validity of

equation (2.43). The Johansen (1988) 	��� estimator is often applied in marketing to test for

the presence of multiple co-integrating vectors (Dekimpe and Hanssens 1999, Nijs et al.

2001). Consider the ��
 model in levels equation (56) where 
W

�  is assumed to be a 1×�
vector of stochastic I(1) variables. This equation can be reformulated in a �ector �rror-

�orrection form (Engle and Granger 1987):

W-W-W-WW
�������� ++∆++∆=∆ −+−−− 1111 ... , �� ,...,1= (68)

with parameter matrices 11 ,..., −-��  and � , where

),...( 1 LNL
�� Π−−Π−−= 1,...,1 −= �� , , )...( 1N

�� Π−−Π−−= , and 0�∆  is

fixed. Matrix �  is the �rror �orrection term and contains information about long-run

relationships between the variables in the data vector. The Johansen procedure relies heavily

on the relationship between the rank of �  and its characteristic roots. The rank of � ,

denoted �, is called the co-integration rank. Johansen and Juselius (1990) distinguish three

cases:

Case 1. �� =)Rank( � i.e., the matrix �  has a full rank, indicating that the vector

process �  is stationary and that the ��
 can be estimated in levels;

Case 2. 0)(Rank =� , equation (68) reduces to a ��
 model in first differences;

Case 3. ��� <=< )(Rank0 , implying that there are �  cointegrating vectors. In

this case, � can be written as βα ′ with α  and β  �� ×  full rank matrices. The columns of

�β  give an estimate of the CI relations, while the α  parameters describe the speed of

adjustment towards the long-run equilibrium.

The third case is the most interesting one. Accordingly, the hypothesis of co-integration

can be formulated as βα ′=��� :)(  for a positive rank ( �� <<0 ). The term 
W
�β ′  is a
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vector of � cointegrating residuals, which can be given a long-run equilibrium interpretation.

The elements in α  called the factor loadings, are interpreted as the average speed of

adjustment of each variable in the direction of each of the long-run equilibrium relationships

(Johansen 1991). Estimates of equation (68) can be found by maximum likelihood. The

Johansen 	��� co-integration testing method aims to test the rank of matrix �  using

reduced rank regression technique based on canonical correlations22. The interpretation in

terms of long-run equilibribria is not straightforward as any linear combination of the co-

integration relationships will reserve the stationarity property23. Hence, the long-run

relationships must be identified. This can easily be seen, since if βα ′=� , then

βα ′= −1)( ��� also holds for any � . So, if there exists a cointegrating vector, β  needs

to be normalized. In order to ensure the uniqueness of α and β , conditions based on

marketing theory need to be imposed. Marketing researchers are just beginning to use

cointegration to study marketing interactions. Some, quite receint, applications of

cointegration in marketing are Bagestani (1991) Dekimpe and Hanssens (1999), Dekimpe et

al. (1999), Grewal et al. (2001), Kornelis et al. (2001b), Nijs (2001), and Zanias (1994)

5. A testing framework for �
�

In the previous sections, we have discussed the development in �
� from univariate to

multiple models. The question is which model to choose and which test to use. The ��
�or

��� models can capture all previous concepts and are general representations of dynamic

markets. So, ��
���� models constitute the central part in many recent studies (see for

instance, Dekimpe and Hanssens 1999, Horváth et al. 2001, Kornelis et al. 2001a, and Nijs et

al. 2001). To build the appropriate ��
�or���� models, univariate and multivariate pre-tests

are needed, e.g. the unit root test and co-integration tests. Figure 9 displays a testing scheme

that is commonly used in marketing (See, for example, Dekimpe and Hanssens 1999, Horváth

                                                          
22 For details about the determination of the co-integrating rank, �, we refer the interested

reader to Lütkepohl (1993), p. 384-387, Enders (1995) p. 385-386, Franses (1998), p. 218-
233, Dekimpe and Hanssens (1999), Bronnenberg et al. (2000), Srinivasan et al. (2000),
and Srinivasan and Bass (2001).

23 The software packages EViews and RATS (Holden and Juselius (1995)) have
implemented the Johansen-procedure for analysing multivariate cointegration models.
RATS offers a procedure of five basic steps: (i) model checking, (ii) determination of the
cointegration rank, (iii) estimation of the cointegration space, (iv) graphical analysis, and
(v) tests of structural hypotheses in the parameter space.
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et al. 2001, Kornelis et al. 2001a, and Nijs et al. 2001)24. We indicate the sessions in which the

different steps in the testing scheme are discussed.

The first step in the model building procedure is the investigation of stationarity issues. As

interventions may affect the outcomes of unit-root tests one should also apply tests that

incorporate structural breaks. If a series contains a unit root, we have to consider the

persistence for that series. If not, only temporary changes can be induced in that series by

shocks in the system. If all variables are (level or trend) stationary, a VAR model should be

built in levels. If we find more than one variable with a unit-root, we have to test for the

existence of long-run equilibrium relationship(s) among the non-stationary variables. In case

the series contain unit-root but are not cointegrated, a VAR model in differences needs to be

built. If we find cointegrating series, we build a VEC model. If stationary as well as non-

stationary variables are considered in the system, a mixed model need to be built. After

deciding about which type of model to consider we still need to decide about the lag structure

of the model, we have to consider identification of the model and finally, we have to apply

some diagnostic checking to test whether the assumptions of the model apply. As a last step,

which should be the first and most important thing to consider for the researcher, we point out

what kind of questions can be investigated using these models.

                                                          
24 We indicate the main steps in the model building process. One may need alter this process

subject to the aim of the study.
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�������/� ������1�������������!��"

VAR VAR model VECM model
in levels  in differences

(Sections 4.1, 4.3)   (Section 4.1)  (Sections 3.6 and 4.1)

Are the variables evolving?

Test: ADF (Section 2.7)

Are the variables still evolving when a structural
break is allowed?

Test: Perron and Zivot and Andrews  (Section 3.5)

Are the variables co-integrated?

Test: Jochansen’s test and Engle and Granger’s two step
approach (Sections 3.6 and 4.11)

Further steps in calibrating a VAR/
VECM model:

1. Optimal lag selection
e.g., LR test (Section 4.1)

2. Estimation of the model (Section
4.2)
3. Identification
e.g., Cholesky dec., SVAR
 (Section 4.6 and 4.7)
4. Diagnostic checking

VAR/VECM tools for dynamic analysis
based on the estimated model:

1. Impulse response analysis
(Sections 4.5, 4.6, and 4.7)
2. Measure persistence
(Sections 2.8 and  4.8)
2. Dynamic multipliers (Section 4.9)

3. Forecast error variance
decomposition (Section 4.10)

4. Causality, exogeneity testing
(Sections 4.3. 4.4)

NO

YES

YES

NO

YESNO
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6. Concluding remarks

In this article, we give a brief overview of the most important time series methods and provide

illustrations from marketing applications. Our aim is to introduce the basic concepts of TSA

and their interpretations to marketing researchers and to provide a reference from which they

can further develop their TSA skills. We point out references from marketing applications,

econometrics, and methodological sources, which may serve as a bibliography for the

interested reader. We believe that such an article can be very useful for marketing researchers

who plan to apply time series models.

As we have pointed out, time series modeling requires combining data-driven techniques and

marketing knowledge. With the growing availability of data that consints of repeated

observations over a(n) (increasing) time-span (e.g., scanner data), development of user-

friendly softwares, and with the increasing interest in dynamic mechanisms of markets, time

series modeling is becoming more important for scholars and practitioners. We hope that the

increasing tendency towards TSA will further develop the relationship between dynamic

marketing concepts and time series econometrics.


