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Summary

Since the beginning of the 1990s a growing number of computer networks from all
over the world has been linked together. Nowadays, they constitute the global
network called the Intemet. The Internet has hundreds of millions of users,
from private individuals a,nd corporations to government officials and scientists,
and offers a broad range of applications: e-mail, neusgroups, remote login, file
transfer, aud,io and uideo streams, chatrooms and the popular World Wide Web.
Although the Internet and computer networks in general have ma,ny benefits,
some technological difficulties have been encountered. As surely everyone has
experienced, the operation of transferring data between two computers in a
network can be quite troublesome. At busy hours, when there are a lot of
active users, the network can be congested, resulting in long transmission delays
or difficulties in establishing a connection between the source and destination
computer.

In order to get a better understa.nding of the dynamics of the data traffic
in computer networks, a number of empirical studies of network traffic mea-
surements has been conducted. As a benchmark for comparison voice traffic in
the traditional telephone system has been used. In the telephone system call
arrivals can be modeled by a Poisson process, i.e. with exponential inter-arrival
times. Moreover, the distribution of call lengths has an exponentially bounded
tail. F}om an engineering perspective these are very convenient properties, since
the long-term arrival rate of the Poisson process, together with the mean call
length, roughly determines the capacity of the network that guarantees reliable
telephone communication.

Measurements of computer network traffic

The situation in computer networks, however, has been found to be very differ-
ent. Computer network traffic has been studied at two levels: the application
leuelandthe packet leuel. At the application level file sizes, connection durations
and transmission times axe the main subjects of analysis. Instead of exponential
their distributions appear to be heauy-tailed, i.e. P(X > c) - ct-o, Í -| oo'
with c > 0 andCI € (1,2). Consequently, Var(X): * and extremelylargeval-
ues of X occur with non-negligible probability. At the packet level the socalled
workloail of the network is measured. When a file is sent from a source to a des-
tination computer, it is decomposed into smal,l pachets which are sent through
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the network cables. After arriving at the destination computer, the packets are
put together again and the original file is reconstructed. The workload on a
cable or link in the network is measured by counting the number of packets or
bltes passing the measurement point in a small time interval, e.B. 1 second. In
this way the workload per second is determined. Even for large time intervals,
the dependence in the series of workload measurements appea.rs to be rather
strong: at large lags the sample autocorrelations still seem significa.ntly differ-
ent from zero. This phenomenon is often referred to as long-range dependence.
This would indicate that random cycles of arbitrary length are present in the
workload data. Another striking feature is that when the time interval used
for measuring the workload is increased, the relative variability of the workload
remains roughly the same, or, in other words, the workload shows a simila.r
burstiness across a wide range of time scales. This property has been observed
for time intervals ranging from 0.01 up to 100 seconds a.nd resembles, in some
sense, the theoretical notion of distributionil self-similarity. Unlike voice traf-
fic, computer network traffic does not smooth out when viewed at increasingly
larger time scales.

Heavy tails, long-range dependence and self-similarity are believed to be
present in traffic measurements on networks of different scales providing dif-
ferent applications, from the late 1980s till the present day. Therefore, these
three features are regarded as trffic inuariants- On the whole, this implies that
computer network traffic behaves rather erratic compared to voice traffic in the
telephone system, and, hence, that computer networks axe a great challenge to
the engineer and the scientist.

Non-stationarity versus long-range dependence

By definition a stochastic process exhibiting long-range dependence is station-
ary, i.e. its underlying distribution does not change during the time the process
is observed. However, no general test for the stationarity of an observed time
series is available. Also, the graphical methods that a.re often used to detect
Iong-range dependence in a time series are not very reliable. It is well-known
that these graphical methods can interpret non-stationarities like shifts in the
mean or a slowly decaying trend as the presence of long-range dependence.
In Chapter 3 of this thesis we show that a realization from a non-stationary
ARJMA(p,1,q) process, with appropriate parameter values, can indeed exhibit
long-range dependence in this 'graphical'sense. In Chapter 4 we analyze series
of workload measurements in various computer networks and find that most of
them can be modeled by an ARIMA(p,1,q) process, with small p and g. This
shows that, when using graphical methods, it is virtually impossible to distin-
guish between non-stationarity and long-range dependence in an observed time
series. Here however, given the complicated nature of a computer network, with
applications and connections being activated and terminated during the mea-
surement period, the option of non-stationarity is probably the most reasonable
one.
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Modeling computer network traffic

An attempt to give a 'physical' explanation for the observed traffic character-
istics has been made by using a mathematical modeling approach. Two sim-
ple models have been proposed which both use the assumption of heavy-tailed
transmission times to explain the long-range dependence in the workload of the
network. Also, it is shown that the centered and properly normalized cumu-
lative workload can be approximated, in some senseT by a self-simila.r process.
One of these two models, the ON/OFF model introduced by Willinger et al.

[106], is the subject of Chapters 5 and 6 of this thesis. In this model, traffic
is generated by M independent and identically distributed ON/OFF sources.
If a source is ON it transmits data at unit rate, e.g. 1 byte per time unit.
If it is OFF it remains silent. In this way, every individual ON/OFF source
generates a binary ON/OFF process. The lengths of periods in which a source
is ON, the ON-period,s, are independently drawn from a heavy-tailed distribu-
tion. Analogously, the OFF-period,s are also heavy-tailed. The sequences of ON-
and OFF-periods are assumed independent. It has be shown by Heath et al.

[45] that the stationary version of the ON/OFF process of an individual source
exhibits long-range dependence. Using independence, the same is true for the
total workload, i.e. the superposition of the M ON/OFF processes.

In Willinger et al. [106] it is shown that the centered cumulative workload
up to time ?, when properly normalized, converges in finite dimensional dis-
tributions to fractional Brownian motion if first M -+ q and then ? -+ m.
In Taqqu et al. [101] the limits are reversed and a different normalization is
used to obtain stable Lévy motion as limit process. Both fractional Brownian
motion and stable Lévy motion are self-similar, but their dependence structures
are totally different. The increment sequence, at equidistant instants of time,
of fractional Brownian motion is stationary a^nd exhibits long-range dependence
(thus preserving the long-range dependence in the pre-limit workload), while
the increments of stable Lévy motion are independent. In Chapter 5 of this
thesis we consider simultaneous limit regimes in which M is a non-decreasing
function of ?, converging to infinity as 7 -+ oo. We show that when M grows
faster than some 'critical rate' fractional Brownian motion is obtained in the
limit. On the other hand, if M grows slower than this 'critical rate' stable Lévy
motion appeaxs as limit process.

In Chapter 6 we use the framework of the ON/OFF model to study the
number of ON-periods up to time 7 exceeding a high threshold. Again, we
consider simultaneous limits of M and ?. Moreover, also the threshold depends
on ?. We distinguish between the 'slow' and 'fast' growth conditions on M.
Although different approaches are needed, in both cases we are able to show
that the number of exceedances converges to a Poisson random va,riable if the
threshold satisfies a balancing condition guaranteeing a constant average number
of exceeda.nces in the limit. We also show that if the threshold grows slower
than this 'balancing rate', the number of exceedances satisfies the Central Limit
Theorem.


