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CAPACITY: THE SINGLE-STAGE, SINGLE-
PRODUCT CASE WITH LOST SALES  

J. Wijngaard 

SOM-THEME A: PRIMARY PROCESSES WITHIN 
FIRMS 

 
 



Abstract 

 
Foreknowledge of demand is useful in the control of a production-inventory system. Knowing 
the customer orders in advance makes it possible to anticipate properly. It is an important 
condition to produce and deliver the right quantity of the right product “just-in-time”. It 
reduces the need of safety stock and spare capacity. But the question of the effectiveness of 
foreknowledge is not an easy one. Having foreknowledge of the customer orders does not 
remove the demand uncertainty completely. The effect of foreknowledge has to be considered 
in a stochastic dynamic setting. The subject of this paper is the effect of foreknowledge in 
combination with a restricted production capacity. The lost-sales case is considered. The main 
result is that for high utilization rates and small forecast horizon, the inventory reduction due 
to foreknowledge is equal to (1-ρ).h, with h the forecast horizon 
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1 Introduction 

 

Foreknowledge of demand is useful in the control of a production-inventory 

system. Knowing the customer orders in advance makes it possible to anticipate 

properly. It is an important condition to produce and deliver the right quantity of the 

right product “just-in-time”. It reduces the need of safety stock and spare capacity. 

But the question of the effectiveness of foreknowledge is not an easy one. Having 

foreknowledge of the customer orders does not remove the demand uncertainty 

completely. The effect of foreknowledge has to be considered in a stochastic dynamic 

setting. The early papers of Baker [1],[2], Baker and Peterson[3] and Blackburn and 

Millen [4],[5] on rolling schedules have stressed this point. To estimate the 

performance of a system that is controlled by a rolling schedule is very complicated. 

If there is no foreknowledge of the customer orders, demand may be modeled in a 

pure stochastic way, inventory level and state of production give a sufficiently rich 

description of the state of the system. The transition mechanism is rather simple. If 

there is foreknowledge of the customer orders, the forecasts have to be included in the 

state description, making the transition mechanism much more complicated. This is 

probably the main reason why the performance of such rolling schedule controlled 

systems with partial foreknowledge have got so little attention in the operations 

management literature.  

This combination of foreknowledge and uncertainty in the use of rolling plans, 

without having tools available to analyze such systems has confused the early 

discussions on the performance of MRP-controlled systems. In the analysis of a 

reorder point controlled system, the models include the stochastic nature of the 

environment, in particular the demand. This is possible because the demand is 

assumed to be purely stochastic. In the description of the advantages of MRP and the 
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effect of its use on the performance of the system, uncertainty has been neglected 

generally. The analysis of the behavior of the system has been reduced to static 

calculations. Nervousness, the most visible result of uncertainty, has been 

acknowledged thereafter as a problem, and has been given attention (see 

Blackburn/Kropp/Millen[6]). It has also stimulated some research on the matter of 

safety time versus safety stock (see Whybark/Williams[16]). See 

Vollmann/Berry/Whybark[15] and Graves[10] for more references. See also 

Wijngaard/Wortmann[17]. Thorough analyses of the performance of MRP-controlled 

systems are still rare, however. Extensive simulation studies are necessary to learn 

about the performance of an MRP-controlled system. See, for instance, 

Striekwold[12]. But it is not easy to derive general insights from the simulation of 

complete, complex, realistic systems. 

To acquire insight into the effect of foreknowledge on performance, it is 

necessary to investigate characteristic, simple situations. The results of De Bodt/Van 

Wassenhove [9], for instance, on the effect of uncertainty on the performance of using 

the Wagner-Whitin algorithm or the Silver-Meal heuristic leads to insights that can 

also be used in more complex situations. Other interesting studies on elementary 

production-inventory systems, aiming at insight in the effect of uncertainty are 

Buzacott/Shantikumar[8], on safety time versus safety stock, and 

Hariharan/Zipkin[11](also referring to Van der Veen[13],[14]), on the equivalence of 

the reduction of demand uncertainty and leadtime reduction. The book of 

Buzacott/Shantikumar[7] gives also some results on the effect of foreknowledge. This 

paper is meant to contribute to production-inventory theory in the same spirit.  

The subject of this paper is the influence of a restricted capacity on the effect of 

foreknowledge. This effect is studied by considering a model with one standard 

product that is made to stock. The most common assumption in such a production 

inventory model is the backlogging assumption. This paper deals with the lost-sales 
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case however. That is because the approach followed here is slightly clearer for the 

lost-sales case. To keep the analysis feasible, it is assumed that production is 

immediate. In a subsequent paper the backlogging case is going to be considered, in 

combination with the multi-product case. The effect of a positive throughput time will 

also get attention then. Foreknowledge is modeled as a positive customer order 

leadtime. The customer orders are known h periods in advance. The effect of changes 

in h are investigated. Knowing the customer orders in advance makes it possible to 

anticipate on capacity problems. If future demand is higher than the immediately 

available capacity, foreknowledge can be used to build sufficient inventory just-in-

time. Without foreknowledge working with inventory means that there is always 

inventory. The inventory is only used incidentally. It is just-in-case inventory. 

Foreknowledge makes the inventory more effective. It makes it possible to accept 

more orders and deliver them in time with less inventory. The topic of this paper is 

the question of how much. The main messages are that the concept virtual inventory 

is useful to determine the effectiveness of foreknowledge and that for high utilization 

rates the rate at which the inventory (necessary for a certain utilization rate) decreases 

with increasing h, is equal to 1-ρ.  

The next section describes the model more precisely and introduces the concept 

virtual inventory. Section 3 proves that for small h and high utilization rates, optimal 

usage of foreknowledge leads to an inventory reduction of (1 – ρ).h. This theoretical 

result is illustrated with some simulation results. For larger h, the effect is smaller. 

Section 4 investigates this by analysis and simulation. Section 5 gives conclusions 

and suggestions for further research. 

The paper is a combination of analysis, illustration of analytical results by 

simulation and more systematic simulations to extend the analytical results. The 

simulation programs are available for public use on www.wyngaard.nl.  

 

http://www.wyngaard.nl/
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2 Controlling the virtual inventory 

 

There is one standard product. Customer orders for that product arrive according 

to a given stochastic process. The size of the orders follows some given distribution 

function. The orders are known h periods in advance (same for all orders). Upon 

arrival, it is checked whether it is possible to accept the order and deliver it in time. If 

not, the order is rejected. Orders are delivered from stock. That can be stock that is 

already available when the order arrives or stock that is produced between the 

moment of arrival and the moment of delivery. All accepted orders are delivered in 

time. The production speed is fixed. Production is in runs with a fixed length (Q). The 

production becomes immediately available, during the run. As soon as the run is over, 

it may be decided to start a new run. The system is controlled by these production 

decisions and by yes or no accepting customer orders. The aim is to realize a pre-

specified utilization rate with as few inventory as possible (minimal average 

inventory).  

Foreknowledge gives the possibility to produce in advance. So, foreknowledge 

can be used to decouple production from delivery. The result is reserved inventory. 

The foreknowledge horizon h forms a buffer between demand and capacity. Because 

there is only one product and all the customers demand the same product, it is also 

acceptable to produce free inventory. In case of no foreknowledge, orders have to be 

delivered immediately and are rejected therefore if no inventory is available. The 

maximum allowed (free) inventory forms a buffer between demand and capacity and 

can be determined such that the average idle time of the production facility is equal to 

some pre-specified value. Full utilization requires a high buffer. In case of 

foreknowledge, the customer order leadtime contributes also to this buffer. The 

important state variable is the free inventory: 
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 J(t) :=  I(t) – C(t), 

 

with I(t) the inventory at time t and C(t) the total customer order backlog. Upon 

arrival it has to be checked whether it is possible to deliver in time. Timely delivery is 

possible if: 

 

 J(t) >= -R.h + s, 

 

with R the production speed and s the size of the arriving order. So, J(t) + R.h 

functions as a kind of buffer content. It is called the virtual inventory: 

 

 V(t) := I(t) – C(t) + R.h. 

 

That is, V(t) is the inventory at time t + h if the production is on during the whole 

time interval [t,t+h]. The most straightforward control rule accepts as much as 

possible: 

 

 accept if V(t) >= s, 

 

and quits production if V(t) comes above some critical level B: 

 

 keep starting production runs as long as V(t) < B. 

 

Such control rules are called simple and are denoted by (0,B). The behavior of V(t) 

under control rule (0,B) is completely identical to the behavior of the inventory itself 

under the control rule (0,B) in case of no foreknowledge (and corresponding starting 
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state). If the arrival patterns are the same, the same orders will be accepted and the 

same production pattern will arise.  

This can be used to determine a lower bound for the effect of foreknowledge. 

The inventory at time t+h is equal to : 

 

 I(t+h) = V(t) – L(t,t+h).R, 

 

with L(t,t+h) the idle time during the interval [t,t+h]. Let ρ be the pre-specified 

utilization rate and suppose that B is such that ρ is realized in the long run. Then the 

long term average inventory is (1 - ρ).R.h smaller than the long term average virtual 

inventory. But the long-term average virtual inventory in case of foreknowledge h 

(customer order leadtime is h) is equal to the long-term average inventory in case of 

no foreknowledge. So, by restricting the attention to simple control rules, 

foreknowledge h leads to a reduction of (1 - ρ).R.h of the average inventory. It is 

possible that there are better rules of course. So, it is just a lower bound for the effect 

of foreknowledge. 

There are two important questions with respect to these simple control rules. In 

the first place the question whether a simple control rule does not lead to too late 

deliveries. In the second place the question whether the optimal control rule is also of 

this simple type. The next section considers these issues in a more formal way and 

shows that, under certain conditions, both questions can be answered confirmatory.  
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3 The optimality of simple control rules for small h. 

 

This section considers the behavior of the system under a simple control rule 

more extensively. First it is going to be proved that applying a simple control rule 

(0,B) in case of foreknowledge h does not lead to too late deliveries if  h < = B 

(lemma’s 1 and 2). Thereafter the optimality of simple control rules is considered  

(lemma’s 3 and 4). For sake of convenience, we assume R = 1. This does not lead to 

any loss of generality. It is just a matter of measuring the production speed in the right 

units.  

 

Lemma 1 

Compare the cases with foreknowledge h1 and foreknowledge h2. Both are 

controlled with a (0,B)-rule. Let I1 and I2 be the starting inventories, with I1 and I2, 

such that I1 + h1 = I2 + h2 and suppose there are no customer orders available at time 

0. Apply the same inter arrival pattern and order sizes to both systems. The resulting 

patterns of production and acceptance are completely identical (the same orders are 

accepted and rejected and the production is on during the same intervals).  

 

Proof 
The proof follows directly from the fact that a simple control rule works on the 

virtual inventory. If I1 + h1 = I2 + h2 and if there are no customer orders at time 0, the 

starting virtual inventories for the two cases are equal. Because the same (0,B) rule is 

applied in both cases, the virtual inventories remain equal and the same decisions are 

taken with respect to acceptance and production.  
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Lemma 1 implies that the case without foreknowledge (h = 0) and starting 

inventory I1 leads for each order pattern (inter arrival times and order sizes) to the 

same pattern of acceptance as the case with foreknowledge h ( > 0 ) and starting 

inventory I1 – h if in both cases control rule (0,B) is applied. The control rule (0,B) 

keeps the virtual inventory at the start of a production run between 0 and B. This is 

used to prove that applying (0,B) for a case with foreknowledge h <= B, does not lead 

to too late deliveries:  

 

Lemma 2 

Suppose control rule (0,B) is applied in case of foreknowledge h, with B > h. Let 

the starting inventory be equal to B – h and let there be no customer orders at time 0. 

Then the inventory itself remains nonnegative and all accepted orders can be 

delivered in time. 

 

Proof 
The inventory itself and the virtual inventory are coupled in the following way: 

 

 I(t+h) = V(t) – L(t,t+h), 

 

with L(t,t+h) the idle time during [t,t+h]. This expression follows from the 

assumption that all accepted orders are delivered in time. It is sufficient to prove that 

V(t) >= 0 implies I(t+h) >= 0. Suppose V(t) = x, 0 <= x <= B. It lasts at least (B-x) 

time units before the production stops. That means that the idle time during the 

interval [t,t+B] is at most equal to x and since h <= B, x is also an upper bound for the 

idle time during the interval [t,t+h]. That implies I(t+h) >= 0.  
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Lemma 2 shows that simple control rules with B > h are allowed indeed. The 

matter of optimality has yet to be considered. But first some simulation results are 

given to illustrate the foregoing results. The simulation results are for the case of 

Poisson arrival (arrival rate λ) and order size equal to 1. Results in terms of accepted 

and not accepted orders and average inventory are shown for different values of B, h, 

Q, various random number generators and various simulation run lengths. The 

starting inventory is in all cases equal to B – h. In case of a simulation run of T time 

units the system simulates T + h time units. Accepted and not accepted orders are 

counted over the first T time units. To let the starting inventory have not too much 

influence on the average inventory, the inventory and stock-out during the first h time 

units is not taken into account in determining the averages. Table 1 gives some results 

for the case without foreknowledge (h = 0). It illustrates the influence of B on the 

utilization rate.  

 

Table 1:  The case h = 0, Q = 1 and λ = 1 (simulation run length = 1,000 time 

units, three different random number generators) 
 

Q = 1 ,  

h = 0, λ = 1 

    

B #accepted #notaccept Inventory Util. rate 

5 835 76 3.450 0.835 

5 911 74 3.110 0.907 

5 909 89 3.377 0.907 

6 851 60 4.210 0.852 

6 933 52 3.862 0.928 

6 920 78 3.673 0.917 

 

 

For B = 6 the utilization rate is about equal to 0.9. The simulation results show that 

1,000 time units is far too less to get a proper estimate of the expected utilization rate. 
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This is not a problem since the results on the effect of foreknowledge are sample path 

independent. But to illustrate how the transient state goes to the stationary state, table 

2 gives the results for simulation runs of 10.000 time units (same pseudo random 

generators).  

 

Table 2:  The case h = 0, Q = 1 and λ = 1 (simulation run length = 10,000 time 

units, three random number generators) 
 

Q = 1 ,  

h = 0, λ = 1 

    

B #accepted #notaccept Inventory Util. rate 

6 9097 806 3.819 0.909 

6 9171 692 3.710 0.917 

6 9154 788 3.547 0.915 

 

The results show how slow the transient state approaches the stationary state. The 

influence of the sample path has to be taken into account in interpreting the results 

that are going to be derived here. The influence of Q is illustrated in the next table.  

 

Table 3: The influence of Q (simulation runs of 10.000 time units, one 

random number generator). 
 

Q = 10 ,  

h = 0, λ = 1 

    

B #accepted #notaccept Inventory Util. rate 

6 9174 729 4.302 0.917 

5 9103 800 3.989 0.910 

 

Because of the continuous character of the production, Q has not much influence and 

the case Q > 1 will not get any attention in the rest of the paper. The table shows how 

the critical level B has to be reduced somewhat to compensate for an increase in Q. 
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The influence of λ is essential, because it influences severely the inventory that 

is necessary to realize a certain pre-specified ρ. The next table illustrates this. To 

realize the same pre-specified ρ, the critical level B has to be increased significantly. 

 

Table 4:  The influence of λ (simulation runs of 10.000 time units, one 

 random number generator). 
 

Q = 1 , h = 0 

λ = 0.95 

    

B #accepted #notaccept Inventory Util. rate 

6  8806 602 4.021 0.880 

10 9095 313 6.597 0.909 

 

 

The next table shows the effect of foreknowledge for the case of Q = 1, λ = 1, B 

= 6. Applying (0,B)-rules in case of foreknowledge with B < h, leads to stock-outs. A 

column with the average stock-out is added therefore. Different random number 

generators are used to show the sample path influence. 
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Table 5:  The influence of foreknowledge (simulation runs of 1.000 

 time units, three random number generators for h = 0 and h 

 = 5, one random number generator for h = 10 and h = 15). 
 

Q = 1, B = 6 

λ = 1 

     

h #accepted #notaccept Inventory Util.rate  Estimate

0 851 60 4.210 0.852 0  

0 933 52 3.862 0.928 0  

0 920 78 3.673 0.917 0  

5 851 60 3.477 0.852 0 3.470 

5 933 52 3.512 0.928 0 3.502 

5 920 78 3.258 0.917 0 3.258 

10 851 60 2.777 0.852 0.039 2.730 

15 851 60 2.206 0.852 0.212 1.990 

 

 

The last column gives the estimate of the inventory based on the inventory for h = 0 

and the sample path utilization rate. The results confirm that the inventory reduction 

because of foreknowledge, using (0,B)-rules, is equal to (1 – ur).h, with ur the sample 

path utilization rate. That holds also if h > B, but then the (0,B)-rule leads to stock-

outs. The next section discusses a possibility to adapt this rule to prevent stock-outs.  

Now the point of optimality of (0,B)-rules is going to be discussed. First it is 

proved that in case of Poisson arrival and order size 1, the optimal control rule is of 

the (0,B)-type if there is no foreknowledge (h = 0). 

 

Lemma 3 

Let the arrival process be Poisson and the customer order size be equal to1. 

Suppose there is no foreknowledge (h = 0). Let ρ be the pre-specified utilization rate 
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that has to be realized. There is a simple control rule that realizes ρ with the lowest 

possible average inventory.  

 

Proof 
Replace the problem by a problem where each accepted order gives a reward r, 

instead of having a pre-specified utilization rate. This is a stationary Markov decision 

problem with the inventory as (only) state variable. The optimal policy is also 

stationary. That means that the optimal policy is of the form: 

- Start a new production run if I(t) ∈  P 

- Accept the order if I(t) ∈  A 

, with P and A subsets of (-∞,+∞). 

Standard reasoning for stationary Markov decision problems leads to the conclusion 

that A = [1,∞) and P is of the form (-∞,B]. So the optimal policy for this problem is of 

the (0,B)-type.  

Now, consider the original problem with a pre-specified ρ. There is an r such that 

applying the optimal policy for the just introduced Markov decision process leads to 

this pre-specified ρ. This policy is also optimal for the lost-sales problem with pre-

specified ρ. This completes the proof. 

 

Lemma 3 shows that the optimal policy for the case h = 0 is a simple control 

rule. Lemma 2 shows that this rule can also be applied for the case 0 < h <= B. The 

rule is also optimal for that case, because of the coupling of I(.) and V(.). This leads to 

lemma 4:  
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Lemma 4 

Suppose 0 < h <= B. The (0,B)-rule that is optimal (= minimal average 

inventory) for the case without foreknowledge, is also optimal for the case with 

foreknowledge h (customer order delivery time = h).   

 

Proof 
Lemma 2 proves that policy (0,B) is possible for the case with foreknowledge. 

Lemma 3 proves that the average virtual inventory is minimal for (0,B). The pre-

specification of the utilization rate implies that (0,B) minimizes also the average 

inventory.  

The four lemma’s lead straightforwardly to the result that the effect of 

foreknowledge is less than or equal to (1 - ρ).h. It is only equal to that if the simple 

control rule that is optimal for the case without foreknowledge can also be applied in 

the case with foreknowledge. If this rule leads to stock-outs, adjustments are required. 

Such adjustments lead to increases in the average virtual inventory and therefore also 

to increases in the average inventory itself (by the coupling I(t+h) = V(t) – L(t,t+h)). 

The proofs of the lemma’s show that the assumption of Poisson inter arrival 

times and the assumption of order sizes equal to 1 are not strictly necessary. The 

equivalence of the case without foreknowledge and the case with foreknowledge is 

more general. The optimal policy for the case without foreknowledge minimizes also 

the average inventory for the case with foreknowledge as long as this policy does not 

lead to stock-outs. In case of more general inter arrival times, the optimal policy may 

have to take into account the time since the last arrival. But also in such cases one 

may expect the existence of  some B > 0 such that the production has to be put on as 

long as the inventory is smaller than B, independent of the time since the last arrival. 

The optimal policy for such a case without foreknowledge is also optimal for the 
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corresponding case with foreknowledge h <=B. Relaxation of the assumption of order 

sizes equal to 1, may make it attractive to skip certain incoming customer orders 

because they do not fit nicely in the available inventory and capacity. But it may be 

conjectured that it is still optimal to control the production by the application of some 

critical level B (start a new run if and only if the inventory < B).  
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4 More foreknowledge (h > B) 

 

In case of more foreknowledge (h > B) application of the policy that is optimal 

for the case without foreknowledge, may lead to stock-outs. That is because the idle 

time during the interval [t,t+h] may exceed V(t) (see the proof of lemma 2). This can 

be circumvented straightforwardly by adding a condition for starting a new 

production run. This condition checks on the customer order backlog whether starting 

a new run may be postponed. Define: 

 

slack(t) = minj {I(t) – j + ddj}, 

 

with ddj the due date of order j. The start of a new production run may not be 

postponed beyond slack(t). Figure 1 illustrates the condition. 

time

cumulative order book

maximum availability

slack
 

Figure 1: Checking the available slack 
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It may not be expected that the policy resulting from adding this production condition 

is optimal. But it is a reasonable policy and it is worth to investigate its performance. 

First some simulation results are given.  

 

Table 6  The influence of checking the slack (simulation runs of 

 10,000 time units) 
    

Q = 1, λ = 1       

h B #accepted #notaccept Inventory Util.rate Stockout 

10 6 9097 806 2.931 0.909 0.016 

10 6 9104 799 2.949 0.910 0 

15 6 9097 806 2.571 0.909 0.108 

15 6 9128 775 2.783 0.913 0 

15 5.6 9097 806 2.566 0.909 0 

20 6 9097 806 2.282 0.909 0.270 

20 6 9170 733 2.636 0.917 0 

20 5 9124 779 2.366 0.912 0 

20 4.5 9109 794 2.326 0.911 0 

 

As mentioned already, the policy without the check on available slack leads to 

stock-outs. Adding the extra condition removes the stock-outs again with as 

consequence a higher ρ and a higher average inventory. To compensate for the 

increase of ρ, the critical level B has to be reduced a little.  

The policy resulting from checking the slack and adapting the production rule 

accordingly may not be expected to be optimal, although it is not easy to construct 

improvements. To acquire more insight in this problem it is useful to consider cases 

with more foreknowledge.  

If there is sufficient foreknowledge it is possible to produce completely on order. 

That means that the critical level B can be put equal to 0. Without foreknowledge it is 
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necessary to use B = 6 to realize a utilization rate of (about) 0.910. In case of 

complete make-to-order, foreknowledge of (about) 33 time units is necessary to 

realize the same utilization rate. Table 7 illustrates this. 

 

Table 7  The pure make-to-order case (simulation runs of 10,000 time 

 units) 
 

Q = 1, λ = 1 

B = 0 

    

h #accepted #notaccept Inventory Util.rate 

33 9100 803 2.055 0.910 

35 9128 775 2.122 0.913 

 

 

If there is more foreknowledge than necessary to produce completely on order, this 

extra foreknowledge can be used to smooth the arrival pattern to realize a further 

reduction of the inventory. For the case of complete foreknowledge, the system is 

equivalent to a queuing system with constant service rate. It is the reverse system. See 

figure 2.  
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time

inventory

 
 

Figure 2: Reverse queue 

 

In a queue with constant service rate the work in the system increases with jumps 

(due to arriving customers) and decreases gradually. Here the inventory increases 

gradually and decreases with jumps when the anticipated orders are delivered. The 

inventory pattern (as a function of (+ ∞, - ∞)) is identical to the work content pattern 

in a queue with constant service rate.  

Suppose the arrival pattern is Poisson with arrival rate 0.9. In case of complete 

foreknowledge it is possible to accept all orders. The resulting inventory is equal to  

 

 (1/2) λ/(1-λ). 

 

The analysis is well known in queueing theory, but for sake of completeness, the 

derivation is added in appendix 1. For λ = 0.9, the expression is equal to 4.5. For λ = 

1, a fraction of 0.1 of the demand may be skipped. To reduce the inventory as much 
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as possible, the pattern of accepted orders should be made as flat as possible. It is 

optimal to smooth the pattern of accepted orders by introducing some critical level C 

such that new orders are refused if acceptance leads to more inventory than C units. 

Lemma 5 gives the result we need here. 

 

Lemma 5 
Consider a queue with Poisson arrival pattern (λ < 1) and constant service rate 

(1). All order sizes are equal to 1 and customers are serviced fifo. Arriving customers 

may be accepted or not. The optimal acceptance policy is of the critical level type. 

This means that there is a critical level C such that customers are accepted as long as 

the workload is smaller than C. 

 

Proof 
See appendix 2.  

 

Table 8 gives some simulation results for h = 60, to show the effect of smoothing the 

arrival pattern. 

 

Table 8  The influence of smoothing the arrival pattern (simulation 

    runs of 10,000 time units) 
 

Q = 1, B = 0 

λ = 1, h = 60 

     

C #accepted #skipped #notaccpt Util.rate Inventory 

5 9021 792 90 0.903 1.901 

6 9122 551 230 0.913 2.155 

10 9302 106 495 0.930 2.836 

∞ 9329 0 574 0.933 2.967 
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To understand the effect of foreknowledge it is useful to make the following division:  

- h <= Bρ:  

Here the policy that is optimal for the case without foreknowledge can be 

applied. Acceptance and production may both be based on the (aggregate) 

variable V(t). The bound Bρ is defined so that applying the simple policy (0, 

Bρ) leads to utilization rate ρ. 

- Bρ< h <= hρ:  

Here it is not possible yet to produce completely on order. It is possible to use 

the simple aggregate policy as a starting point, but the production part of it 

has to be adapted to prevent stock-outs (slack checking). The forecast horizon 

hρ is defined so that pure make-to-order leads to utilization rate ρ. 

- h > hρ:  

Here it is possible to produce completely on order. Reduction of the average 

inventory can be realized by smoothing the arrival pattern. 

 

A theoretically interesting question is whether combinations of smoothing and slack 

checking may be useful. The results presented below suggest that such combinations 

may be useful indeed.  
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Table 9  Combining smoothing with free inventory (simulation runs of 10,000 

time units, three different random number generators) 
 

Q = 1,  

λ = 1, h = 33 

 Random 

nmbr gen. 

     

C B  #accepted #skipped #notaccpt Util.rate Inventory 

∞ 0 1 9100 0 803 0.910 2.055 

∞ 0 2 9193 0 670 0.920 2.150 

∞ 0 3 9189 0 753 0.919 2.114 

∞ 1 1 9114 0 789 0.912 2.089 

∞ 1 2 9212 0 651 0.922 2.200 

∞ 1 3 9193 0 749 0.920 2.123 

7 1 1 9085 129 689 0.909 2.015 

7 1 2 9190 107 566 0.919 2.140 

7 1 3 9168 83 691 0.917 2.065 

7.8 1 1 9106 55 742 0.911 2.054 

8.8 1 3 9189 22 731 0.919 2.111 

 

Adding smoothing to a policy means that certain orders are refused while there is 

sufficient capacity for acceptance. The results show that for the arrival pattern 

generated by generator 3, the combination of smoothing (C = 8.8) and free inventory 

(B = 1) leads to (a little) lower inventory than the pure make-to-order policy. That 

means that there is no easy sample path reasoning to show that pure make-to-order is 

better than the combination with free inventory. The conjecture is in fact that the 

optimal policy for h > hρ may prescribe such combinations. This point is not 

investigated here further. 
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5 Conclusions and remarks 

 

This paper investigates the effect of foreknowledge on the average inventory that 

is necessary to realize a certain pre-specified utilization rate in a capacity restricted 

production-inventory system where all accepted orders have to be delivered in time. 

Foreknowledge is modeled as a (constant) customer order leadtime.  

The results show that if the foreknowledge does not exceed the buffer size (Bρ) 

that is necessary to realize the utilization rate ρ, the foreknowledge affects the optimal 

policy in a trivial way. The optimal policy remains the same, but instead of the 

inventory itself, the virtual inventory has to be used. A customer order leadtime of h 

time units leads to a reduction of the inventory of (1-ρ).h.R (R the production speed). 

The proof is given for the case of order size 1 and Poisson arrival pattern, but the 

proof shows that for the more general case it is possible to derive similar results. The 

buffer size Bρ that is required increases with ρ. In reality it is generally attractive to 

have a high utilization rate. In such cases it is reasonable to estimate the effect of 

foreknowledge as (1-ρ).h.R. 

Further research is necessary for the case of partial foreknowledge (customer 

order leadtimes that differ from each other), and for the case with some capacity 

flexibility (the possibility of using overtime for instance). Backlogging is treated in a 

subsequent paper, in combination with positive throughput time and more products 

(see Wijngaard[18]). 

For cases with more foreknowledge the results confirm that no easy theoretical 

results may be expected. A further investigation of the possibility to combine a 

certain smoothing of the arrival pattern with using free inventory seems to be of 

interest and can help in providing general insight in the effect of foreknowledge.  
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APPENDIX 1 

 

Consider a queue with Poisson arrival pattern (λ < 1) and constant service rate 

(1). All order sizes are equal to 1. The average work in the system can be determined 

as the quotient of the average surface of a busy period and the average length of the 

interval between two subsequent transitions to an empty system (recurrence to state 

0).  

Define f(x) as the expected “cost” until the end of the busy period if the work 

load is now equal to x. Let c(x) be the cost rate. By choosing c(x) = 1, f(x) counts the 

length of the busy period. By choosing c(x) = x, f(x) counts the surface of the busy 

period. The following equality holds for f(x) and ε some small positive number: 

 

 f(x) = ε.c(x) + (1 - λ.ε).f(x - ε) + λ.ε.f(x - ε + 1), 

 

neglecting the possibility of more than one arrival on the interval (0, ε). 

For ε ! 0, this leads to the following differential equation: 

 

 f′(x) = c(x) + λ.(f(x+1) – f(x)).  (*) 

 

For c(x) = 1, the solution we need of this equation is of the following form: 

 

 f(x) = α.x. 

 

Substituting this in equation (*) leads to α = 1/(1-λ). 

For c(x) = x, the solution we need is of the form: 
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 f(x) = β.x + γ.x². 

 

Substituting this in equation (*) leads to β = (1/2).λ/(1-λ²) and γ = (1/2)/(1-λ).  

The expected surface of a busy period is equal to: 

 

 β.1 + γ.1 = (1/2)/(1 - λ)². 

 

The expected length of the interval between two subsequent transitions to an empty 

system (recurrences to state 0) is equal to: 

 

 α.1 + 1/λ = 1/(λ.(1-λ)). 

 

This implies that the average workload is equal to: 

 

 (1/2).λ/(1-λ).  
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APPENDIX 2 

 

This appendix considers the same system as appendix 1. But here the order 

acceptance decision is investigated. The cost rate of having workload x is assumed to 

be equal to c(x), with c(x) increasing in x. The reward for each accepted order is 

equal to r. It is proved that the optimal acceptance policy is of the type: accept if the 

workload is smaller than some critical level C. This implies also that a pre-specified ρ 

can be realized with minimal average workload by such a critical level policy. That is 

because for each pre-specified ρ the value of r can be chosen such that the optimal 

policy leads to a utilization rate ρ (compare lemma 3).  

To prove that the optimal policy for the reward problem is of the critical level 

type, policy iteration is used. Let g be the minimal average cost. Define the value 

function v(.) as the minimal expected value of the “cost” until the first recurrence to 

0, with the “cost” consisting of two elements:  

- the cost rate (workload x gives cost rate x - g)  

- the negative cost for accepting orders (each acceptance gives a negative cost 

r) 

The term - g is added to realize that the expected cost until recurrence is equal to 0. 

Using the same approach as in appendix 1 leads to the following expression for v(.): 

 

 v′(x) = x – g + λ.min{v(x+1) – r, v(x)} - λ.v(x). 

 

Since v(x+1) – v(x) is equal to the expected cost until the first visit to x, starting in x 

+ 1, and because of the fact that the cost is increasing in x, it follows that v(x+1) – 

v(x) is increasing in x. That means that v(x+1) – r < v(x) implies v(y+1) – r < v(y) for 

all y < x. This proves that the optimal policy is of the critical level type.  
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