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Appendix

A.1 Classification of term orders

A term order < for Gröbner bases is required to have the following properties:

1. m ≥ 1, (Noetherian)
2. If m′ ≤ m′′ then mm′ ≤ mm′′, (Multiplicative)
3. The order < is a total order.

(For the definition of total order, see Sect. 6.3.2.) Such orders are called admis-
sible orders. For term orders in formal power series rings, property 1, Noetheri-
anness, is not required. Here we shall use the term admissible order to refer to
term orders satisfying property 2 and 3. It turns out to be possible to classify
all admissible term orders, and to describe them in a uniform way.

In order to formulate the result, we need the following ordering of univariate
polynomials. For polynomials f, g ∈ R[Z], define f ≥ g if and only if LC(f−g) ≥
0, where the ordinary term ordering for univariate polynomials (1 < Z < Z2 <
· · · ) is supposed. This is equivalent to the perhaps more intuitive definition

f ≥ g ⇔ f = g or f(x) − g(x) → ∞ (x→ ∞).

Let ηi ∈ R[Z] for i = 1, . . . , n be n rationally independent polynomials, then a
term order on the variables x1, . . . , xn, or equivalently on vectors in Nn, can be
defined as follows:

Definition A.1. (Term order <η) For α, β ∈ Nn, let α <η β if and only if∑
i αiηi <

∑
i βiηi.

The result of this section is that this is in fact the most general way of defining
term orders:

Proposition A.2. For every admissible term order < on x1, . . . , xn there exists
a vector of univariate polynomials η such that < coincides with <η. Moreover,
the polynomials have degree at most n− 1.

This result is proved in [Rob85] and [Wei87]. Here we give a different proof using
nonstandard analysis (see [Rob88] for a nice introduction), which is both shorter
and, in our opinion, more intuitive. The idea is as follows. It is easy to show that
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154 A.1. Classification of term orders

a linear form on vectors in Nn satisfying some nondegeneracy conditions defines
a term order. Conversely, every term order is ‘close’ to such a order defined by a
linear form, in the sense that given any term order and a finite set of monomials,
there exists a linear form such that the corresponding term order coincides with
the given order on the finite set. The actual term order is therefore a ‘limit’ of
such linear form orders, in the appropriate sense. Taking the limit is technically
unpleasant, but this part becomes straightforward using nonstandard analysis.

The first part of the proof is based on the proof of [Stu96, Proposition 1.11],
for which we need the following familiar lemma:

Lemma A.3 (Farkas). [Sch86, Ch. 7.3] Let A be a matrix and b a row vector.
Then there exists a row vector y ≥ 0 with yA = b if and only if bx ≥ 0 for every
column vector x with Ax ≥ 0.

Here x ≥ 0 for a vector x means that every component of x is nonnegative.

Proof of proposition A.2: LetM ∈ N be unbounded, and let αi for i = 1, . . . ,Mn

be the elements of [0,M−1]n ⊂ Nn ordered in such a way that i < j ⇔ αi < αj .
Define αij := αj − αi, and

Cij := {x ∈ Rn|αij · x ≥ 0},
C :=

⋂
1≤i<j≤Mn

Cij .

(The set Cij contains all vectors x such that αi ≤x αj , where x is interpreted
as a vector of polynomials of degree 0.) We claim that C �= {0}. Suppose on
the contrary that C only contains the zero vector. This means that there is no
nonzero vector x such that αij ·x ≥ 0 for all i < j. If A is the matrix consisting of
the row vectors αij with i < j, this implies that the condition of Farkas’ lemma
is trivially satisfied, so there exist nonnegative real numbers yij such that

(A.1)
∑

1≤i<j≤Mn

yijαij = (−1,−1, . . . ,−1).

Since the αij are rational, we may suppose that the yij are too. Then, by clearing
denominators, (A.1) can be written as

(A.2)
∑

1≤i<j≤Mn

y′
ijαij = −b,

where the y′
ij are nonnegative integers, and b is some nonnegative integer vector.

Note that the multiplicative property and total orderedness together imply
the more general

m1 < m2 and m3 ≤ m4 ⇒ m1m3 < m2m4.

For all i < j we have αi < αj , and using the general multiplicative property this
implies in particular that

∑
y′
ijαi <

∑
y′
ijαj . On the other hand, αij = αj − αi
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so (A.2) can be written as
∑
y′
ijαj + b =

∑
y′
ijαi, that is,

∑
y′
ijαj <

∑
y′
ijαi.

This contradiction shows that C �= {0}.
Now choose a nonzero vector ω ∈ C, and recursively define the following

sequence of vectors:

ω0 := ω,

ω̃i :=
ωi

maxj=1,...,n |ωij |
,

ω̂i := st(ω̃i),
ωi+1 := ω̃i − ω̂i.

Here st(x) denotes the standard part of x. Every ω̃i has at least one coefficient
equal to ±1, and the corresponding coefficient of ω̂i is also ±1, so ωi+1 becomes
zero there, and stays zero for increasing i. Hence, the number of zero entries in
ωi is at least i. Now assume that for some smallest k < n we have that ωk+1

is the zero vector. We claim that η :=
∑k
i=0 Z

k−iω̂i is the required vector of
polynomials. Observe that the components of η are polynomials with standard
coefficients, of degree at most n− 1.

We can write ω =
∑k
i=0 ζiω̂

i, where the ζi are positive constants. Note that
ζi+1/ζi is infinitesimal, since ωi+1 is a vector with infinitesimal coefficients for
i = 0, . . . , k−1. Now let α and β be distinct standard integer vectors with α < β.
Because M is unbounded we have that α, β ∈ [0,M − 1]n, and this implies that
α <ω β, or

k∑
i=0

ζiω̂
i · (α− β) < 0.

Now let 0 ≤ t ≤ k be the smallest integer such that
∑t
i=0 ζjω̂

j ·(α−β) �= 0. This
means that ω̂i · (α − β) = 0 for i = 0, . . . , t − 1, and ω̂t · (α − β) �= 0. Dividing
by ζt, we can write

ω̂t · (α− β) < −
k∑

i=t+1

ζi
ζt
ω̂i · (α− β).

The left hand side is standard and nonzero, the right hand side is infinitesimal,
so we find ω̂t · (α − β) < 0. Together with ω̂i · (α − β) = 0 for i = 0, . . . , t − 1
this implies that α <η β. This proves that <η coincides with < for any pair of
standard integer vectors. Since both term orders are standard, by the Transfer
axiom of nonstandard analysis they are identical.

A.2 Proof of Proposition 5.8

We need the following version of Nakayama’s lemma. For the proof see e.g.
[Mar82, Ch. 1], or [Was74, p. 8].
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Lemma A.4 (Nakayama). Let K and L be EΓ -modules, then

K + mL ⊃ L ⇒ K ⊃ L.

Here m is the unique maximal ideal in EΓ of germs of functions vanishing at
the origin. We also need the following lemma. It is a symmetric version of the
fundamental geometric lemma. See [Mar82] for a proof.

Lemma A.5. (Symmetric geometric lemma) Let F (t, x) : R × Rn → R be
a t-dependent family of Γ -invariant functions, defined on a neighborhood of
(t, x) ∈ [0, 1] × {0}, and suppose there exists a vector field X ∈ VΓ

n of the form

X =
∂

∂t
+

n∑
i=1

Xi(t, x)vi

(where Xi are Γ -invariant families of functions and vi are generators of VΓ
n

as a module over EΓn ), defined on a neighborhood (t, x) ∈ [0, 1] × {0}, such
that XF = 0. Then there exists a Γ -equivariant germ of a diffeomorphism
φ : Rn → Rn such that F (0, φ(x)) = F (1, x) and φ(0) = 0.

Proof (of Proposition 5.8. Parts (a) and (b) are based on [Mar82, IV.4.2]): We
first introduce some notation. Let l be the integer such that M = Mk⊕· · ·⊕Ml.
Let π denote the projection π : mk → M . Let αim ∈ m be homogeneous germs
such that αim is of degree m, and such that the set {παim}im forms a basis of
M . The generators of VΓ

n are vi, in particular Tf = 〈vi(f)〉EΓ
n
.

We write g = f + h, where g is the germ that is supposedly isomorphic to f .
We have h ∈ mk by hypothesis.

(a, first part) The first part consists of proving that Tf+th ⊃ mk for t ∈ [0, 1].
By hypothesis, Tf ⊃ mk, so we can find λijm such that

αim =
∑
j

λijmvi(f).

Next, define the linear operator H on M by

Hαim := π
∑
j

λijmvi(h).

Using this we find

(A.3) πTf+th ⊃ spanR{
∑
j

λijmvi(f + th)}im =

spanR{(I + tH)αim}im = spanR{αim}im = M.

The penultimate equality holds, for t ∈ [0, 1], if I + tH is invertible for these
values of t, which is true if πh = π(g − f) ∈M is small enough. Equation (A.3)
can also be written as
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Tf+th + m ·mk ⊃ mk,

and, by Nakayama, this implies Tf+th ⊃ mk, proving the first part.
(a, second part) As h ∈ mk, the statement Tf+th ⊃ mk implies that, for any

τ ∈ [0, 1], we can find germs Xi(t, x) ∈ EΓ1+n defined on some neighborhood of
(t, x) = (τ, 0), so that ∑

i

Xivi(f + th) = −h.

Now write F (t, x) = f(x) + th(x), and define the vector field X := ∂
∂t +∑

iXi(t, x)vi, then XF = 0. By compactness of [0, 1] we can find a finite number
of such vector fields that can be combined to one defined on the entire interval.
Lemma A.5 now provides the required isomorphism between F (0, ·) = f and
F (1, ·) = f + h = g.

(b) The hypothesis m · Tf ⊃ mk implies that there exist λijm ∈ m such that

αim =
∑
j

λijmvi(f).

As h ∈ mk we also have vi(h) ∈ mk, so λijkvi(h) ∈ mΓmΓ
k . But Tf+th =

〈αim + t
∑
j λijmvi(h)〉EΓ

n
, that is, Tf+th + m ·mk ⊃ mk, and by Nakayama this

implies Tf+th ⊃ mk. The rest of the proof is the same as the second part of (a).
(c) We assume that the vi are homogeneous. (If not, note that VΓ /(m ·VΓ )

is finite dimensional, and write vi =
∑
j vij +vi,rest where v0

ij are finitely many
homogeneous terms, and vi,rest is an element of mVΓ , so that 〈vij〉EΓ

n
+m·VΓ =

VΓ . Now use Nakayama to conclude that the vij generate VΓ over EΓn , then use
these vij instead of the vi.)

Write fk for the homogeneous kth degree part of f . We will prove the equiva-
lence fk ∼Γ g. The same argument with g = f then proves fk ∼Γ f , completing
the proof.

First we prove that Tfk
⊃ mk. By hypothesis h := f − fk ∈ m · mk, so we

can write h = h1hk with hi ∈ mi. vi maps mj into itself, so vi(h) = h1vi(hk) +
vi(h1)hk ∈ m ·mk, or vi(f) ∈ Tfk

+ m ·mk. So we have

mk ⊂ Tf = 〈vi(f)〉EΓ
n
⊂ Tfk

+ m ·mk.

Applying Nakayama we find Tfk
⊃ mk. This inclusion implies the existence of

λijm such that
αim =

∑
j

λijmvj(fk),

and, as gim, vj and fk are homogeneous, we may assume that the λijm are too.
Now write g = fk+hk+h>k, where hk is homogeneous of degree k, and h>k

only contains terms of degree k+ 1 and higher. We define the operators Hk and
H>k on M by

H(>)kαim := π
∑
j

λijmvjh(>)k.
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We prove that H>k is nilpotent. Let deg(f) denote the total degree of a ho-
mogeneous germ f , sdeg(f) the smallest total degree of terms of f , and set
deg(0) = sdeg(0) = ∞. Then

sdeg(H>kαim) ≥ min
j

(deg(λijm) + sdeg(vj(h>k))) >

> min
j

(deg(λijm) + deg(v0
j (fk))) = deg(αim) = m,

so H>k maps Mm into Mm+1⊕Mm+2⊕· · ·⊕Ml, so it is nilpotent, say Hj0
>k = 0.

The operator I + t(Hk +H>k) is invertible, for t ∈ [0, 1], if Hk is small enough,
i.e., if π(fk − g) = π(f − g) is small enough. Indeed, the inverse is given by the
sum

(A.4) (I + t(Hk +H>k))−1 =
∞∑
j=0

(−t(Hk +H>k))j ,

and nilpotency of H>k allows us to derive the inequality ‖(Hk + H>k)j‖ ≤
C‖Hj−j0

k ‖, where C is some constant, so that for small Hk, (A.4) converges. We
have now:

πTf+t(hk+h>k) ⊃ spanR{
∑
j

λijmvi(f + t(hk + h>k))} =

spanR{(I + t(Hk +H>k)gim}im = spanR{gim} = M, (t ∈ [0, 1])

where we used that I + t(Hk + H>k) is invertible. Now apply Nakayama to
conclude that Tf+th ⊃ mk, where h = hk + h>k. The rest of the proof is the
same as the second part of (a).
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