
 

 

 University of Groningen

A UML/OCL framework for design of mediated data federations
Balsters, H.

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2003

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Balsters, H. (2003). A UML/OCL framework for design of mediated data federations. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 06-06-2022

https://research.rug.nl/en/publications/e42101b0-43bc-4d53-b695-de24ae0cc001


 1

A  UML/OCL Framework for Design of Mediated Data 

Federations 

 

H. Balsters 

University of Groningen 

Faculty of Management and Organization 

P.O. Box 800 

9700 AV Groningen, The Netherlands 

h.balsters@bdk.rug.nl 

 
 

SOM theme A     Primary processes within firms 

 

 

 

Abstract 

This paper describes a general semantic framework for precise specification of so-called 
mediating systems; such systems provide for tight coupling on a global level of a collection of 
heterogeneous component databases to a federated database. A mediating system maps in a 
uniform and systematic manner the underlying database schemas of the component systems to 
a separate, newly defined integrated database schema. This integrated database is completely 
virtual, and will constitute the actual federated database. That is, queries posed against the 
federated system will be posed against this virtual integrated database; these global queries 
will then be mapped by the mediator to actual local queries against the existing (legacy) 
component databases. Our approach is based upon the UML/OCL data model. UML is the de 
facto standard language for analysis and design in object-oriented frameworks, and is being 
employed more and more for analysis and design of information systems, in particular 
information systems based on databases and their applications. Database specifications often 
involve specifications of constraints, and the Object Constraint Language (OCL) - as part of 
UML - can aid in the unambiguous modelling of database constraints. One of the central 
notions in database modelling and in constraint specifications is the notion of a database view; 
a database view closely corresponds to the notion of derived class in UML. We will employ 
OCL and the notion of derived class as a means to treat database constraints and database 
views in a federated context. The paper will demonstrate that our particular mediating system 
integrates component schemas without loss of  constraint information. Furthermore, we will 
discuss a UML/OCL representation of relational databases. 
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1. Introduction 

Modern information systems are often distributed in nature. Data and services are 

often spread over different component systems wishing to cooperate in an integrated 

setting. Cooperation of component systems in one integrated information system is 

becoming more and more important since information is often spread over different 

databases in one organization (or even spread over different organizations). Such 

information systems involving integration of cooperating component systems are 

called federated information systems; if the component systems are all databases then 

we speak of a federated database system (FDB). In current applications, there is more 

and more a tendency not to develop stand-alone, monolithic database systems; rather, 

the tendency is to employ existing (legacy) components by letting them work together 

in a single integrated environment. This tendency to build integrated, cooperating 

systems is often encountered in applications found in EAI (Enterprise Application 

Integration), which typically involve several, usually autonomous, component (data 

and service repositories) systems, with the desire to query and update information on 

a global, integrated level. In this paper we will address the situation where the 

component systems are so-called legacy systems; i.e. systems that are given 

beforehand and which are to interoperate in a integrated  single framework in which 

the legacy systems are to maintain as much as possible their respective autonomy. 

A major obstacle in designing interoperability of legacy systems is the heterogeneous 

nature of the legacy components involved.  This heterogeneity is caused by the design 

autonomy of their owners in developing such systems. Legacy systems were typically 

designed to support local requirements, under constraints imposed by local rules, and 

often without taking into account any future cooperation with other systems. To 

address the problem of interoperability the term mediation has been defined [Wie95]. 

A database federation can be seen as a special kind of mediation, where all of the data 
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sources are (legacy) databases, and the mediator offers a mapping to a (virtual) 

DBMS-like interface. This interface offers the application the possibility to approach 

the federation via this integrated virtual database, which offers the user the illusion 

that he is interacting with an actual homogeneous, monolithic database. The mediator 

then maps queries against this virtual integrated database on to actual component 

databases. In our paper we will consider a tightly-coupled approach to database 

mediation, in which a global integrated schema of the federation is maintained, which 

can be accessed by a global query language. We base our notion of querying on the 

“Closed World Assumption” (CWA, [Rei84]), where the integrated database is to 

hold  -in some manner-  the “union” of the data in the underlying component 

databases. Central theme in our approach is that the integrated database on the 

federated level is completely virtual. The user of the federated system is offered the 

illusion that he is working with a monolithic homogeneous database system, while in 

fact this system basically resembles an interface, mapping interactions on the 

federated level to actions on the existing local database components. More precisely, 

the federated database will consist of an integrated database view on top of the 

existing legacy database components. For an overview of work on the virtual 

approach to database federation, we refer to [Hull97]. 

We concentrate on  problems concerning integration of component legacy schemas on 

the level of the mediator. Schema integration requires the definition of relationships 

between schema elements of component systems. Detection and definition of such 

relationships can be heavily complicated by so-called semantic heterogeneity 

[DKM93,GSC96]. Semantic heterogeneity refers to disagreement about the meaning, 

interpretation, or intended use of related data. It has been widely agreed upon that 

schema integration cannot be fully automated [ShL90], as this would require full 

knowledge of the semantics of the component schema elements. In order to tackle the 

problem of integrating semantic heterogeneity, we employ the UML/OCL data 

model. UML is the de facto standard language for analysis and design in object-

oriented frameworks, and is being employed more and more for analysis and design 

of Information systems, in particular information systems based on databases and 

their applications. Database specifications often involve specifications of constraints, 

and the Object Constraint Language (OCL) - as part of UML - can aid in the 
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unambiguous modelling of database constraints. One of the central notions in 

database modelling and in constraint specifications is the notion of a database view, 

where a database view closely corresponds to the notion of derived class in UML. In 

this paper we will employ OCL and the notion of derived class as a means to treat 

database constraints and database views in a federated context. In [Bal02] it is 

demonstrated that the notion of derived class can be given a formal basis in OCL, and 

that derived classes in OCL have the expressive power of the relational algebra. 

Hence, OCL has the explicit power to emulate basic features of the relational query 

language SQL. The paper will demonstrate that our particular mediating system 

integrates component schemas without loss of constraint information; i.e., no loss of 

constraint information available at the component level may take place as result of 

integrating on the level of the virtual federated database.  

This paper heavily exploits the concept of the so-called homogenizing function (first 

introduced in [BB01]). This function provides the necessary mapping from the 

(legacy) components to the virtual integrated database on the federated level, while 

adhering to the principle that no integration loss may take place. Furthermore, 

following the approach given in [Bal02], we have in principle a mapping of queries 

posed against a federated database (specified in terms of derived classes in 

UML/OCL) to SQL-code, thus providing the link to actual database implementations. 

 

2. UML/OCL as a specification language for databases 

Information systems, and in particular information systems based on databases and 

their applications, rely heavily on sound principles of analysis and design. This paper 

focuses on particular principles of analysis and design related to database 

applications. Following [BP98], we can state that object-oriented (OO) modelling can 

prove to be very beneficiary in (relational) database applications.  A database is a 

permanent, self-descriptive repository of data stored in files. A database is self-

descriptive in the sense that it not only contains the data, but also a description of the 

data structure, or schema. In databases, the data usually change rapidly, while the 

schema stays relatively static. A database management system (DBMS) consists of 

software managing access to the data. DBMSs provide generic functionality for a 

broad range of applications; one of the foremost features of a DBMS is the 
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availability of a query language offering an interactive means for reading and writing 

data from the database. A relational database has data represented as tables, and a 

relational DBMS manages access to tables of data and associated structures in a 

highly effective and efficient manner. (Relational databases use SQL as a data 

manipulation language, and tables are called relations in SQL.) Relational database 

applications can benefit substantially from OO modelling. The OO paradigm provides 

a uniform framework for both the design of database code and programming code. 

Database and their applications can thus be developed in one and the same conceptual 

framework. In fact, one can say that integrating relational databases into object-

oriented applications is state of the art in software development practice. OO data 

models offer high-level modelling primitives leading to clear and concise 

specifications of database schemas. A high-level description of a database schema in 

terms of an OO data model can easily be mapped to a relational database schema 

employed by a conventional relational DBMS [BP98]. Hence, the analysis and design 

stage of a (relational) database can be separated in a clear and meaningful fashion. 

The most important OO modeling language is UML, being the de facto standard for 

OO analysis and design of information systems [OMG99]. Recently, researchers have 

investigated possibilities of UML as a modeling language for (relational) databases. 

[BP98] describes in length how this process can take place, concentrating on schema 

specification techniques. [DH99, DHL01]  investigate further possibilities by 

employing OCL (the Object Constraint Language [WK99]) for specifying constraints 

and business rules within the context of relational databases. The idea is that OCL 

provides expressiveness in terms of relatively abstract set definitions that should 

prove to be sufficient to capture the general notion of (relational) database view. This 

idea of employing abstract object-oriented set definitions to captures views and 

constraints has also been pursued on the full level of object-oriented databases, be it 

not in the context of UML/OCL language, but rather in the context of an experimental 

OODB user language in combination with an underlying theoretical semantics 

[BBZ93, BV92]. In the more specific context of relational databases and OCL, 

[DH99] offer a framework for representing constraints within the relational data 

model. Some researchers take a very general approach investigating possibilities of 

UML/OCL; e.g., [AB01] treat OCL as a general query language for UML data 
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models, and [EP00] use OCL as a general language for business modeling. Current 

research, however, has not yet shown an effective way to deal with an important 

aspect of (relational) database modeling, namely modeling of so-called database 

views. A (database) view is a derived table (or derived relation, in SQL), meaning 

that a view does not exist as a physical relation; rather a view is defined by an 

expression much like a query [GUW02]. Views, in turn, can be queried as if they 

existed physically, and in some cases, we can even modify view content. That is, a 

user is offered the impression that a view is some base relation inside the database, 

but in fact it is a derived (or virtual) relation defined in terms of the actual base 

relations constituting the database. View definitions are an important asset in database 

applications, because users are usually only interested in a part of the database, and 

not in the complete underlying corporate database. Hence, it is important that users 

have access to that part of the database considered relevant for their category of 

database applications. Our application area for views is focused on Federated 

Databases, where legacy databases are to interoperate by employing a so-called 

mediating system. This mediating system can be considered as an integration of a set 

of certain database views defined on the component legacy database systems.  

Database views and query languages are strongly related, since views basically are no 

more than named queries. [GR97] is one of the first papers to investigate the 

possibilities of a general query language for UML; further investigations can be found 

in [AB01] and [MC99]. [AB01] have attempted to demonstrate that OCL can offer 

the basis for a general query language for UML data models by showing how to 

represent Cartesian products and projections in OCL, thus paving the way to the 

claim that OCL has the same expressive power as the so-called relational algebra 

[D00, GUW02]. By demonstrating such a result, one could also claim to have a basis 

for representing views within OCL. In [Bal02] it is demonstrated  that the 

expressiveness of OCL actually  includes that of the relational algebra. This is done 

by showing how to offer the notion of derived class a formal basis within the 

framework of UML/OCL, and subsequently using this notion of derived class to 

represent the notions of Cartesian product and (relational) join. This result establishes 

that OCL includes the expressiveness of the relational algebra, without resorting to 

language extensions of OCL. Once it is established that OCL includes the 
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expressiveness of the relational algebra, then we also have provided a basis for 

representing the general notion of (relational) database view. 

A derived class is a device for denoting a virtual class, defined in terms of already 

existing (base) classes (and possibly other derived classes). Views can be queried 

independently, with a semantics explained entirely in terms of queries on base classes.  

[Bal02] also offers a mapping to SQL-code [D00, GUW02], providing 

implementation support for our approach.  

The paper ends with a short summary of our results. 

 

3. Basic principles: Databases  and views in UML/OCL 

Databases are basically a set of related tables. Tables in UML are represented by 

classes. Classes have attributes and corresponding domain values, while we can also 

have complex-valued attributes ( i.e. non-first normal form) in UML by allowing for 

enumerated sets as domains for attributes, and to employ UML-style relations to 

represent directly references to other objects in tables without residing to foreign-key 

constructs (to indirectly enforce this kind of modelling facility). Views, as derived 

tables, can also be represented in UML, which we will describe below. 

Let’s consider the case that we have a class called Emp1 with attributes  nm1  and  

sal1, indicating the name and salary of an employee object belonging to class  Emp1 

 

 

 

 

 

 

Now consider the case where we want to add a class, say  Emp2, which is defined as a 

class whose objects are completely derivable from objects coming from class  Emp1. 

The calculation is performed in the following manner. Assume that the attributes of  

Emp2  are nm2  and  sal2  respectively (indicating name and salary attributes for 

Emp2 objects), and assume that for each object  e1:Emp1  we can obtain an object  

e2:Emp2  by stipulating that e2.nm2=e1.nm1  and  e2.sal2=(2 * e1.sal1). By 

definition the total set of instances of  Emp2  is the set obtained from the total set of 

          Emp1 
 
nm1: String 
sal1:  Integer 
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instances from Emp1 by applying the calculation rules as described above. Hence, 

class  Emp2  is a view of class  Emp1, in accordance with the concept of a view as 

known from the relational database literature. In UML terminology [BP98], we can 

say that Emp2  is a derived class, since it is completely derivable from other already 

existing class elements in the model description containing model type Emp1.  

We will now show how to faithfully describe Emp2 as a derived class in UML/OCL 

in such a way that it satisfies the requirements of a (relational) view. First of all, we 

must satisfy the requirement that the set of instance of class Emp2 is the result of a 

calculation applied to the set of instances of class Emp1. The basic idea is that we 

introduce a class called  Database that has associations to classes  Emp1  and  Emp2. 

A database object will reflect the actual state of the database, and the system class  

Database will only consist out of one object in any of its states. Hence the variable  

self  in the context of the class  Database  will always denote the actual state of the 

database that we are considering. In the context of this database class we can then 

define the calculation obtaining the set of instances of  Emp2  by taking the set of 

instances of  Emp1  as input. 

 

                                                           

 

 

                               *                                                                                    * 

                                                                                                                                                                             

 

                                                                                                                                              

                                                     

  

 

 

Note that we have used a prefix-qualification by adding a slash to  Emp2  indicating 

that Emp2  is a derived class definition [BP98].  Moreover, we have added an 

operation, called   convertToEmp2, meant to coerce an arbitrary  Emp1-object to an  

Emp2-object. This operation can be defined by the following OCL-specification 

      Database 

                 Emp1 
 
nm1:String 
sal1: Integer 
 
convertToEmp2( ): Emp2 

           /Emp2 
 
nm2:String 
sal2: Integer 
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context   Emp1::convertToEmp2( ): Emp2 

post:     self.convertToEmp2.nm2 = self.nm1  and 

          self.convertToEmp2.sal2 = (2*self.sal1) 

 

We now have all the ingredients necessary to specify the relation coupling the derived 

class Emp2 to the original class  Emp1. This is done by including an invariant 

specification in the class  Database  telling us how to calculate the set of instances of  

Emp2  from the set of instances of Emp1 

 
context  Database  inv: 

self.Emp2 = self.Emp1→ collect(e:Emp1 | e.convertToEmp2) and 

Emp1.allInstances = self.Emp1  and 

Emp2.allInstances = self.Emp2 

 

In this way we explicitly specify Emp2 as the result of a calculation performed on 

Emp1, and we also stipulate that the only Emp1- and Emp2-objects in the database 

are those obtained from the links starting from the database-object  self.  

 

4. Component frames 

We can also consider a complete collection of databases by looking at so-called 

component  frames, where each (labelled) component is an autonomous database 

system (typically encountered in legacy environments) 

 

 

 

                                                            

 

 

 

                                   L1                                                                        Ln 

 

 
   CF 

 
 DBn 

 
DB1 
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As an example consider a component frame consisting of  two separate component 

database systems: the CRM-database (DB1) and the Sales-database (DB2): 

 

 

 

 

 

 

 

                 *                                                                                         * 

 

 

                                                 �����-manager              * 

 

 

 

 

 

 

 

Constraints 
context P1 inv: 

P1.allInstances --> isUnique (p: P1 | p.prsno) 

sal <= 1500 

telint >= 1000  and  telint <= 9999 

 

context C1 inv: 

C1.allInstances --> isUnique (c: C1 | c.clno) 

cntrcd.size <= 5 

                  P1 
 
prsno: Integer 
name: String 
sal: Integer  -- in $ 
part:enum{1,2,3,4,5} 
street: String 
hnr: String 
zip: Zip 
city: String 
telint: Integer 
 

 
  DB1 

          C1 
 
clno: Integer 
clname: String 
addr: String 
zipcity: String 
cntrcd: String 

        Zip 
 
num: Integer 
letcom: String 



 11

 

context Zip inv: 

num >= 1000  and  num <= 9999 

letcom.size = 2 

 

The Sales-database: DB2 

 

 

 

 

 

 

                          *                        

                                                                                                       *               

                       * 

                                                                                                   * 

                                                 ������-manager         *                                               

 

                                                   

                                                   

 

 

 

Constraints 
context P2 inv: 

P2.allInstances --> isUnique (p: P2 | p.eno) 

sal >= 1000 

bonus >= 0 

tel.size <= 16 

 

context C2 inv: 

C2.allInstances --> isUnique (c: C2 | c.ordno) 

 
    DB2 

              P2 
 
eno: Integer 
name: String 
sal: Integer  --  in � 
bonus: Integer -- in � 
func: String 
addr: String 
zip: String 
city: String 
cntrcd: String 
tel: String 

          C2 
 
ordno: Integer 
clno: Integer 
clnm: String 
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C2.allInstances --> forall(c: C2 | c.ord-manager.func = 

“Sales”)  

cntrcd.size <= 5 

 

The example component frame EX-CF now combines the two database DB1 and 

DB2 into one component frame 

 

 

 

 

                                 CRM                                                           Sales                                              

 

 

 

 

                    *                                         *                   *                                     * 

 

                                acc-manager                                         ord-manager                   

                    

 

The two databases DB1 and DB2 are –in the case of this example-  related, in the 

sense that an order-object residing in class C2 is associated to a certain client-object 

in the class C1. On the component frame level, we can define an auxiliary function 

mapping a client-order object in class  C2  to a client object in class  C1. We do this 

by assuming an operation in the class  C2, called  linkToC1 

 

 

 

 

 

 

 

 
 EX-CF 

DB1 DB2 

  P1   C1  P2   C2 

            C2 
 
         ( … ) 
 
 
linkToC1:C1 
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with the following post conditions 

 
context   C1::linkToC1( ): C1 

post      self.linkTo.clno = self.clno 

 

Since the attribute clno has unique values, the link from C2 to C1 is properly defined 

(assuming that there always exists a corresponding clno-value in the class C1 for each 

clno-value in the class C2). 

 

 

5. Semantic heterogeneity; the integrated database DBINT 

The problems we are facing when trying to integrate the data found in legacy 

component frames are well-known and are extensively documented (cf. [ShL90]). We 

will focus on one of the large categories of integration problems coined as semantic 

heterogeneity (cf. [Ver97]). Semantic heterogeneity deals with differences in intended 

meaning of the various database components. Integration of the source database 

schemas into one encompassing schema can be a tricky business due to  

 

 

1. renaming (homonyms and synonyms) 

2. data conversion (different data types for related attributes) 

3. default values (adding default values for new attributes) 

4. missing attributes (adding new attributes in order to discrimate between 

certain classes) 

 

We will illustrate each of these cases in the context of our example databases. 

Important thing to know at this moment is that with homonyms we mean that certain 

names may at first sight-  look the same (same syntax), but actually have a different 

meaning (different  semantics). Synonyms, on the contrary, refer to certain names 

that are different in the sense that they have a different syntax, but that the actually 

mean the same (same semantics). Homonyms and synonyms occur extremely often in 
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integration processes. In general, we will adopt the following solution to resolve these 

naming conflicts: different semantics call for different names, and equal semantics 

(intended meaning) call for equal names. 

First consider our construction of a virtual database, represented in terms of a derived 

class in UML/OCL. (For an at length treatment of derived classes in UML/OCL we 

refer to [Bal02]. 

The database we describe below, intends to capture the integrated meaning of the 

features found in the component frame described earlier. 

 

 

 

 

                             *                                                                                                         *   

                                                                                        * 

                                                                                                                   

                                                                                                       * 

                                                                                                       

                                                                                    * 

                                                                                         

                                                                                                                                      * 

                                                                                                                                 

                                                                                                                                 

 

 

 

                                                                                        ord-manager 

                                                                                        

 

 

 

                                                                                        ������-manager 

 

/EX-DBINT 

                /Pers 
 
pno: Integer 
pname: String 
sal: Integer   - -  in � 
part: enum{1,2,3,4,5} 
addr: String 
zip: String 
city: String 
cntrcd: String 
tel: String 
dep:{“CRM”, “Sales”} 
 

             /Clnt 
 
clno: Integer 
clname: String 
addr: String 
zipcity: String 
cntrcd: String 

             /SLS 
 
bonus: Integer  - - in � 
func: String 

  /CRM 

    /Order 
 
ordno: Integer 
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Constraints 
context Pers inv: 

Pers.allInstances -->  

forall(p1, p2: Pers | (p1.dep=p2.dep and p1.pno=p2.pno)  

implies  p1=p2) 

Pers.allInstances --> 

forall(p:Pers | p.sal > 1500  implies  p.oclIsTypeOf(SLS)) 

sal >= 1000 

tel.size <= 16 

cntrcd.size <= 5 

 

context SLS inv: 

bonus >= 0 

 

context Clnt inv: 

Clnt.allInstances --> forall(c1, c2: Clnt | (c1.clno=c2.clno   

                      implies  c1=c2) 

cntrcd.size <= 5 

 

context Order inv: 

Order.allInstances --> isUnique (o: Order | o.ordno) 

 

We are now faced with the problem to explicitly link the component frame to this 

integrated (and virtual) database described above 

 

 

6. Getting the mediator to do its work 

 

Consider the following UML model containing a class, called the mediator, explicitly  

relating the component frame EX-CF and the virtual  integrated database EX-DBINT 
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                                                                                                                   DBINT 

                                     CF                                                                       

 

 

 

                                                                                                                                                

                                                                                                                            * 

                                                                                                                           ord-                         

                                                                                                                          manager                              

 *                              *                                              *                                             

       acc-manager                          ord-manager                                       

                         *                                             *                                     

                                                                                                             �����-manager                                      

                                                                                                                              

                                                                                                                                                                             

The mediator now has to correctly link the component frame EX-CF  to the (virtual) 

database  EX-DBINT. This is not a trivial task and involves a precise mapping of 

component elements to the virtual database. The mapping also has to take into 

account various constraint conditions which rule inside  EX-CF. We do this by 

introducing suitable conversion operations inside the classes. 

 

Our guiding principle for a successful conversion from the component frame CF  to 

the integrated database  DBINT  is:CWA-INT: 

 

the integrated database DBINT is intended to hold exactly the “union” of the 

data in the source databases in  CF 

 

 

   Mediator 

EX-CF 

DB1 DB2 

P1 C1 P2 

/EX-DBINT 

 /Pers 

  /CRM 

 /SLS 

/Order 
/Clnt 

C2 

* 



 17

Typically, requirement  CWA-INT  displays our conformance to the traditional 

Closed World Assumption (CWA) found in the database literature ([Rei84]). This 

requirement has to be further investigated for consequences when applied to querying 

and to updating. In more mathematical terms, we will demand that 

 

UoD(Mediator.CF)  �  UoD(Mediator.DBINT) 

 

In words, the universe of discourse of component frame  CF  and the universe of 

discourse of the  integrated database  DBINT  are, in a mathematical sense, 

isomorphic. (Actually, an endomorphic embedding from the universe of discourse of 

component frame  CF  and the universe of discourse of the  integrated database  

DBINT  will do.) 

Another matter that needs some attention, is the way that modifications on the source 

databases are taken care of, once they have become members of the federation. We 

will stipulate that all modifications on the source databases will now run through the 

virtual integrated database DBINT. By this we mean that an insert on a database 

inside the component frame CF can from now on only take place as the effect of an 

initial insert inside the integrated database DB-INT. Users will only view the (virtual) 

integrated database DBINT, and an insert on DBINT will be translated to a (collection 

of) insert(s) inside database components of the component frame CF. The same holds 

for a delete (and –hence- an update). 

 

In order to support this stipulation, we will have to prove that any allowed insert 

(delete) on DBINT will result in a allowed insert (delete) within CF. 

 

As mentioned earlier, integration of the source database schemas into one 

encompassing schema can be a tricky business due to  

 

1. renaming 

2. data conversion 

3. default values  
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4. missing attributes 

 

We will illustrate each of these cases in the context of our example databases. Key to 

the solution that we offer, is the introduction of a so-called homogenizing function 

which will actually provide for the linking of all relevant features in the component 

frame to features in the integrated database. 

 

 

7. Introducing the homogenizing function: mapping the component frame 

to the virtual integrated database 

 

What we do is that we add a method, called Hom, to the top-level EX-CF class 

resulting in an element (database state) of the integrated database EX-DBINT 

 

 

 

 

 

 

 

 

 
context   EX-CF::Hom( ):EX-DBINT 

post      self.Hom.Clnt.allInstances =  

          self.CRM.C1.allInstances --> collect(c: C1 |  

                                       c.convertToClnt) 

 

Here we have assumed the existence of a conversion function  convertToClnt  within 

the class  C1 

 

 

 

           EX-CF 
 
              
            ( …) 
 
 
Hom( ): EX-DBINT 

            C1 
 
         ( … ) 
 
 
convertToClnt:Clnt 
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with the following post conditions 

 
context   C1::convertToClnt( ): Clnt 

post      Cl.attributes -->  

          forall (d: String | self.convertToClnt.d = self.d)  

          and 

          (self. ConvertToClnt.acc-manager =  

          self.acc-manager.convertToCRM) 

 

we have now furthermore assumed the existence of a conversion function  

convertToCRM  residing within the P1-class resulting in an object from the class  

CRM  in the DBINT-database 

 

 

 

 

 

 

 

This conversion function has the following post conditions 

 
context   P1::convertToCRM( ): CRM 

post      self.convertToCRM.pno   = self.prsno 

          and 

          self.convertToCRM.pname = self.name 

          and 

          self.convertToCRM.sal   = self.sal.convert$To� 

          and 

          self.convertToCRM.part  = self.part 

          and  

          self.convertToCRM.addr = (self.street)^(“ ”)^ 

                                    (self.hnr) 

                       P1 
 
                    ( … ) 
 
 
convertToCRM-P:CRM 
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          and 

          self.convertToCRM.zip   = (self.zip.num)^(“ ”)^  

                                    (self.zip.let) 

          and 

          self.convertToCRM.city  =  self.city 

          and 

          self.convertToCRM.tel   = (“31-50-363-”)^(“ ”)^  

                                    (self.telint) 

          and 

          self.convertToCRM.cntrc = “NL” 

          and 

          self.convertToCRM.dep   = “CRM” 

 

 

Notice that the function  convertToCRM is  injective! 

 

Analogously, we can define a function converting the objects in the P2-class to 

corresponding objects in the SLS-class of DBINT, by assuming the existence of a 

conversion function  convertToSLS  within the class  P2: 

 

 

 

 

 

 

 

 

with the following (rather trivial) post conditions 

 
context   P2::convertToSLS( ): SLS 

post      self.convertToSLS.pno   = self.eno 

          and 

          self.convertToSLS.pname = self.name 

            P2 
 
         ( … ) 
 
 
convertToSLS:SLS 
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          and 

          self.convertToSLS.sal   = self.sal. 

          and 

          self.convertToSLS.part  = self.part 

          and 

          self.convertToSLS.addr  = self.addr 

          and 

          self.convertToSLS.zip   = self.zip 

          and 

          self.convertToSLS.city  = self.city 

          and 

          self.convertToSLS.tel   = self.tel 

          and 

          self.convertToSLS.cntrc = self.cntrc 

          and 

          self.convertToSLS.dep   = “SLS”  

          and 

          self.convertToSLS.bonus = self.bonus 

          and 

          self.convertToSLS.func   = self.func 

 

 A bit more difficult is the definition of a function converting the objects in the C2-

class to corresponding objects in the Order-class of DBINT. We do this by assuming 

the existence of a conversion function  convertToOrder  within the class  C2: 

 

 

 

 

 

 

 

 

with the following post conditions 

 

                C2 
 
             ( … ) 
 
 
convertToOrder:Order 
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context   C2::convertToOrder( ): Order 

post      self.ConvertToOrder.ordno =  self.ordno 

          and 

          self.convertToOrder.ord-manager =  

         (self.ord-manager).convertToSLS 

          and 

          self.convertToOrder.Clnt =  

         (self.linkToC1).convertToClnt 

 

where the previously defined operation linkToC1 provides the link to the unique C1-

object associated to a given C2-object.  

We now have a complete set of conversion functions  mapping objects in the 

component frame CF to objects in DBINT. The homogenizing function  Hom  

defined in the class  EX-CF  can now be given its full definition as offered below: 

 

 

 

 

 

 

 

 

 
context    EX-CF::Hom( ):EX-DBINT 

post      (self.Hom).Clnt.allInstances  =  

           self.CRM.C1.allInstances   --> collect(c: C1 |  

                                          c.convertToClnt) 

           and 

          (self.Hom).SLS.allInstances   =  

           self.Sales.P2.allInstances --> collect(p: P2 |  

                                          p.convertToSLS) 

           and 

          (self.Hom).CRM.allInstances   =  

           EX-CF 
 
( …) 
 
 
Hom( ): EX-DBINT 
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           self.CRM.P1.allInstances   --> collect(p: P1 |  

                                          p.convertToCRM) 

           and 

          (self.Hom).Order.allInstances =  

           self.Sales.C2.allInstances --> collect(o: C2 |  

                                          o.convertToOrder) 

 

With this set of mappings we can define the missing link providing the mapping of 

objects inside the component frame  CF  to objects inside the virtual database  

DBINT. We do this by adding appropriate constraints to the mediator class.  

 
context Mediator inv: 

 

self.DBINT.CRM.allInstances   = (self.CF.Hom).CRM.allInstances  

and 

self.DBINT.SLS.allInstances   = (self.CF.Hom).SLS.allInstances  

and 

self.DBINT.Clnt.allInstances  = (self.CF.Hom).Clnt.allInstances  

and 

self.DBINT.Order.allInstances =  

(self.CF.Hom).Order.allInstances  

 

 

8. Querying the virtual integrated database through the mediator 

 

Consider the following example query posed against the integrated database  EX-

DBINT 

 

“Give the combined list of all clients and CRM-employees” 

 

Following [Bal02], a query in UML is specified in terms of a view definition, where a 

view is conceived as a derived class. We define the following derived class, called  

/Query-1: 
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context    Clnt::convertC-To-Q1( ): Query-1 

post       self.convertC-To-Q1.type    = `CL’  and 

           self.convertC-To-Q1.name    = self.clname  and 

           self.convertC-To-Q1.addr    = self.addr  and                 

           self.convertC-To-Q1.zipcity = self.zipcity  and  

           self.convertC-To-Q1.cntrcd  = self.cntrcd 

 

 

 

 

 

 

 

 

 
 

           /Query-1 
 
type :     String 
name:     String 
addr :     String 
zipcity:  String 
cntrcd:   String 

                    Clnt 
 
                    ( …) 
 
 
convertC-To-Q1: Query-1 

                    CRM 
 
                    ( …) 
 
 
convertCRM-To-Q1: Query-1 
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context    CRM::convertCRM-To-Q1( ): Query-1 

post       self.convertCRM-To-Q1.type = `CRM’  and 

           self.convertCRM-To-Q1.name    = self.pname  and 

           self.convertCRM-To-Q1.addr    = self.addr   and                 

           self.convertCRM-To-Q1.zipcity =(self.zip) ^(“ ”)^   

                                          (self.city)  and  

           self.convertCRM-To-Q1.cntrcd  = self.cntrcd 

 

 

We then add appropriate constraints to  EX-DBINT 

 
context  EX-DBINT inv: 

Query-1.allInstances =  

(Clnt.allInstances --> collect(c : Clnt | c.convertC-To-Q1)) 

.Union(CRM.allInstances -->  

collect(p : CRM | p.convertCRM-To-Q1)) 

 

By now expanding the definition of  Clnt  and  CRM, we obtain the definition of this 

query in terms of the original database components found in the component frame  

EX-CF, but then in terms of the homogenizing function  Hom  within the context of 

the  mediator (hence , the  self  referred to in the OCL specification below, is the  

self  in the context of the Mediator) 

 
self.DBINT.Query-1.allInstances =  

((self.CF.Hom).Clnt.allInstances  -->  

  collect(c : self.DBINT.Clnt | c.convertC-To-Q1)) 

.Union((self.CF.Hom).CRM.allInstances  -->  

  collect(p : self.DBINT.CRM | p.convertCRM-To-Q1)) 

 

 

By expanding the definitions of  (self.CF.Hom).Clnt.allInstances  and  

(self.CF.Hom).CRM.allInstances one level deeper, we obtain the definition of this 

query in terms of the original components 
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(self.CF.Hom).Clnt.allInstances  = 

 self.CF.CRM.C1.allInstances   --> collect(c: self.CF.C1 |  

                                           c.convertToClnt) 

 

and 

 

 
(self.CF.Hom).CRM.allInstances = 

 self.CRM.P1.allInstances   --> collect(p: self.CF.P1 |  

                                        p.convertToCRM) 

 

 

Hence, the query is now expressed completely in terms of the original database 

components found in the component frame  EX-CF! 

 

 

Summary  
We describe a general semantic framework for precise specification of so-called mediating 

systems; such a  system provides for tight coupling on a global level of a collection of 

heterogeneous component databases to a federated database. This mediating system integrates, 

by means of a so-called homogenizing function, in a uniform and systematic manner the 

underlying data models of the component systems to a global data model, including constraint 

specifications. Our focus has been on solving the problems caused by semantic heterogeneity 

of component systems. The integration process is based on the notion of database views. The 

mediating system allows for global queries that can be decomposed in a uniform and 

systematic manner into local queries on component databases. Our approach is based upon the 

UML/OCL data model. UML is the de facto standard language for analysis and design in 

object-oriented frameworks, and is being employed more and more for analysis and design of 

Information Systems based on databases and their applications. The Object Constraint 

Language (OCL) - as part of UML - can aid in the unambiguous modelling of database 

constraints. One of the central notions in database modelling and in constraint specifications is 

the notion of a database view; a database view closely corresponds to the notion of derived 

class in UML. We employ OCL and the notion of derived class as a means to treat database 

constraints and database views in a federated context. The paper demonstrates that our 
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particular mediating system integrates component schemas without loss of constraint 

information. Furthermore, we offer a setting in which to describe a UML/OCL-representation 

of relational databases. 
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