

 University of Groningen

A UML/OCL framework for design of mediated data federations
Balsters, H.

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2003

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Balsters, H. (2003). A UML/OCL framework for design of mediated data federations. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 06-06-2022

https://research.rug.nl/en/publications/e42101b0-43bc-4d53-b695-de24ae0cc001

 1

A UML/OCL Framework for Design of Mediated Data

Federations

H. Balsters

University of Groningen

Faculty of Management and Organization

P.O. Box 800

9700 AV Groningen, The Netherlands

h.balsters@bdk.rug.nl

SOM theme A Primary processes within firms

Abstract

This paper describes a general semantic framework for precise specification of so-called
mediating systems; such systems provide for tight coupling on a global level of a collection of
heterogeneous component databases to a federated database. A mediating system maps in a
uniform and systematic manner the underlying database schemas of the component systems to
a separate, newly defined integrated database schema. This integrated database is completely
virtual, and will constitute the actual federated database. That is, queries posed against the
federated system will be posed against this virtual integrated database; these global queries
will then be mapped by the mediator to actual local queries against the existing (legacy)
component databases. Our approach is based upon the UML/OCL data model. UML is the de
facto standard language for analysis and design in object-oriented frameworks, and is being
employed more and more for analysis and design of information systems, in particular
information systems based on databases and their applications. Database specifications often
involve specifications of constraints, and the Object Constraint Language (OCL) - as part of
UML - can aid in the unambiguous modelling of database constraints. One of the central
notions in database modelling and in constraint specifications is the notion of a database view;
a database view closely corresponds to the notion of derived class in UML. We will employ
OCL and the notion of derived class as a means to treat database constraints and database
views in a federated context. The paper will demonstrate that our particular mediating system
integrates component schemas without loss of constraint information. Furthermore, we will
discuss a UML/OCL representation of relational databases.

 2

Keywords Data modeling, database design, federated databases, mediators, interoperable
databases, database views, query languages, constraint integration, UML, derived classes,
OCL, UML/OCL representation of relational databases

(also downloadable) in electronic version: http://som.rug.nl/

1. Introduction

Modern information systems are often distributed in nature. Data and services are

often spread over different component systems wishing to cooperate in an integrated

setting. Cooperation of component systems in one integrated information system is

becoming more and more important since information is often spread over different

databases in one organization (or even spread over different organizations). Such

information systems involving integration of cooperating component systems are

called federated information systems; if the component systems are all databases then

we speak of a federated database system (FDB). In current applications, there is more

and more a tendency not to develop stand-alone, monolithic database systems; rather,

the tendency is to employ existing (legacy) components by letting them work together

in a single integrated environment. This tendency to build integrated, cooperating

systems is often encountered in applications found in EAI (Enterprise Application

Integration), which typically involve several, usually autonomous, component (data

and service repositories) systems, with the desire to query and update information on

a global, integrated level. In this paper we will address the situation where the

component systems are so-called legacy systems; i.e. systems that are given

beforehand and which are to interoperate in a integrated single framework in which

the legacy systems are to maintain as much as possible their respective autonomy.

A major obstacle in designing interoperability of legacy systems is the heterogeneous

nature of the legacy components involved. This heterogeneity is caused by the design

autonomy of their owners in developing such systems. Legacy systems were typically

designed to support local requirements, under constraints imposed by local rules, and

often without taking into account any future cooperation with other systems. To

address the problem of interoperability the term mediation has been defined [Wie95].

A database federation can be seen as a special kind of mediation, where all of the data

 3

sources are (legacy) databases, and the mediator offers a mapping to a (virtual)

DBMS-like interface. This interface offers the application the possibility to approach

the federation via this integrated virtual database, which offers the user the illusion

that he is interacting with an actual homogeneous, monolithic database. The mediator

then maps queries against this virtual integrated database on to actual component

databases. In our paper we will consider a tightly-coupled approach to database

mediation, in which a global integrated schema of the federation is maintained, which

can be accessed by a global query language. We base our notion of querying on the

“Closed World Assumption” (CWA, [Rei84]), where the integrated database is to

hold -in some manner- the “union” of the data in the underlying component

databases. Central theme in our approach is that the integrated database on the

federated level is completely virtual. The user of the federated system is offered the

illusion that he is working with a monolithic homogeneous database system, while in

fact this system basically resembles an interface, mapping interactions on the

federated level to actions on the existing local database components. More precisely,

the federated database will consist of an integrated database view on top of the

existing legacy database components. For an overview of work on the virtual

approach to database federation, we refer to [Hull97].

We concentrate on problems concerning integration of component legacy schemas on

the level of the mediator. Schema integration requires the definition of relationships

between schema elements of component systems. Detection and definition of such

relationships can be heavily complicated by so-called semantic heterogeneity

[DKM93,GSC96]. Semantic heterogeneity refers to disagreement about the meaning,

interpretation, or intended use of related data. It has been widely agreed upon that

schema integration cannot be fully automated [ShL90], as this would require full

knowledge of the semantics of the component schema elements. In order to tackle the

problem of integrating semantic heterogeneity, we employ the UML/OCL data

model. UML is the de facto standard language for analysis and design in object-

oriented frameworks, and is being employed more and more for analysis and design

of Information systems, in particular information systems based on databases and

their applications. Database specifications often involve specifications of constraints,

and the Object Constraint Language (OCL) - as part of UML - can aid in the

 4

unambiguous modelling of database constraints. One of the central notions in

database modelling and in constraint specifications is the notion of a database view,

where a database view closely corresponds to the notion of derived class in UML. In

this paper we will employ OCL and the notion of derived class as a means to treat

database constraints and database views in a federated context. In [Bal02] it is

demonstrated that the notion of derived class can be given a formal basis in OCL, and

that derived classes in OCL have the expressive power of the relational algebra.

Hence, OCL has the explicit power to emulate basic features of the relational query

language SQL. The paper will demonstrate that our particular mediating system

integrates component schemas without loss of constraint information; i.e., no loss of

constraint information available at the component level may take place as result of

integrating on the level of the virtual federated database.

This paper heavily exploits the concept of the so-called homogenizing function (first

introduced in [BB01]). This function provides the necessary mapping from the

(legacy) components to the virtual integrated database on the federated level, while

adhering to the principle that no integration loss may take place. Furthermore,

following the approach given in [Bal02], we have in principle a mapping of queries

posed against a federated database (specified in terms of derived classes in

UML/OCL) to SQL-code, thus providing the link to actual database implementations.

2. UML/OCL as a specification language for databases

Information systems, and in particular information systems based on databases and

their applications, rely heavily on sound principles of analysis and design. This paper

focuses on particular principles of analysis and design related to database

applications. Following [BP98], we can state that object-oriented (OO) modelling can

prove to be very beneficiary in (relational) database applications. A database is a

permanent, self-descriptive repository of data stored in files. A database is self-

descriptive in the sense that it not only contains the data, but also a description of the

data structure, or schema. In databases, the data usually change rapidly, while the

schema stays relatively static. A database management system (DBMS) consists of

software managing access to the data. DBMSs provide generic functionality for a

broad range of applications; one of the foremost features of a DBMS is the

 5

availability of a query language offering an interactive means for reading and writing

data from the database. A relational database has data represented as tables, and a

relational DBMS manages access to tables of data and associated structures in a

highly effective and efficient manner. (Relational databases use SQL as a data

manipulation language, and tables are called relations in SQL.) Relational database

applications can benefit substantially from OO modelling. The OO paradigm provides

a uniform framework for both the design of database code and programming code.

Database and their applications can thus be developed in one and the same conceptual

framework. In fact, one can say that integrating relational databases into object-

oriented applications is state of the art in software development practice. OO data

models offer high-level modelling primitives leading to clear and concise

specifications of database schemas. A high-level description of a database schema in

terms of an OO data model can easily be mapped to a relational database schema

employed by a conventional relational DBMS [BP98]. Hence, the analysis and design

stage of a (relational) database can be separated in a clear and meaningful fashion.

The most important OO modeling language is UML, being the de facto standard for

OO analysis and design of information systems [OMG99]. Recently, researchers have

investigated possibilities of UML as a modeling language for (relational) databases.

[BP98] describes in length how this process can take place, concentrating on schema

specification techniques. [DH99, DHL01] investigate further possibilities by

employing OCL (the Object Constraint Language [WK99]) for specifying constraints

and business rules within the context of relational databases. The idea is that OCL

provides expressiveness in terms of relatively abstract set definitions that should

prove to be sufficient to capture the general notion of (relational) database view. This

idea of employing abstract object-oriented set definitions to captures views and

constraints has also been pursued on the full level of object-oriented databases, be it

not in the context of UML/OCL language, but rather in the context of an experimental

OODB user language in combination with an underlying theoretical semantics

[BBZ93, BV92]. In the more specific context of relational databases and OCL,

[DH99] offer a framework for representing constraints within the relational data

model. Some researchers take a very general approach investigating possibilities of

UML/OCL; e.g., [AB01] treat OCL as a general query language for UML data

 6

models, and [EP00] use OCL as a general language for business modeling. Current

research, however, has not yet shown an effective way to deal with an important

aspect of (relational) database modeling, namely modeling of so-called database

views. A (database) view is a derived table (or derived relation, in SQL), meaning

that a view does not exist as a physical relation; rather a view is defined by an

expression much like a query [GUW02]. Views, in turn, can be queried as if they

existed physically, and in some cases, we can even modify view content. That is, a

user is offered the impression that a view is some base relation inside the database,

but in fact it is a derived (or virtual) relation defined in terms of the actual base

relations constituting the database. View definitions are an important asset in database

applications, because users are usually only interested in a part of the database, and

not in the complete underlying corporate database. Hence, it is important that users

have access to that part of the database considered relevant for their category of

database applications. Our application area for views is focused on Federated

Databases, where legacy databases are to interoperate by employing a so-called

mediating system. This mediating system can be considered as an integration of a set

of certain database views defined on the component legacy database systems.

Database views and query languages are strongly related, since views basically are no

more than named queries. [GR97] is one of the first papers to investigate the

possibilities of a general query language for UML; further investigations can be found

in [AB01] and [MC99]. [AB01] have attempted to demonstrate that OCL can offer

the basis for a general query language for UML data models by showing how to

represent Cartesian products and projections in OCL, thus paving the way to the

claim that OCL has the same expressive power as the so-called relational algebra

[D00, GUW02]. By demonstrating such a result, one could also claim to have a basis

for representing views within OCL. In [Bal02] it is demonstrated that the

expressiveness of OCL actually includes that of the relational algebra. This is done

by showing how to offer the notion of derived class a formal basis within the

framework of UML/OCL, and subsequently using this notion of derived class to

represent the notions of Cartesian product and (relational) join. This result establishes

that OCL includes the expressiveness of the relational algebra, without resorting to

language extensions of OCL. Once it is established that OCL includes the

 7

expressiveness of the relational algebra, then we also have provided a basis for

representing the general notion of (relational) database view.

A derived class is a device for denoting a virtual class, defined in terms of already

existing (base) classes (and possibly other derived classes). Views can be queried

independently, with a semantics explained entirely in terms of queries on base classes.

[Bal02] also offers a mapping to SQL-code [D00, GUW02], providing

implementation support for our approach.

The paper ends with a short summary of our results.

3. Basic principles: Databases and views in UML/OCL

Databases are basically a set of related tables. Tables in UML are represented by

classes. Classes have attributes and corresponding domain values, while we can also

have complex-valued attributes (i.e. non-first normal form) in UML by allowing for

enumerated sets as domains for attributes, and to employ UML-style relations to

represent directly references to other objects in tables without residing to foreign-key

constructs (to indirectly enforce this kind of modelling facility). Views, as derived

tables, can also be represented in UML, which we will describe below.

Let’s consider the case that we have a class called Emp1 with attributes nm1 and

sal1, indicating the name and salary of an employee object belonging to class Emp1

Now consider the case where we want to add a class, say Emp2, which is defined as a

class whose objects are completely derivable from objects coming from class Emp1.

The calculation is performed in the following manner. Assume that the attributes of

Emp2 are nm2 and sal2 respectively (indicating name and salary attributes for

Emp2 objects), and assume that for each object e1:Emp1 we can obtain an object

e2:Emp2 by stipulating that e2.nm2=e1.nm1 and e2.sal2=(2 * e1.sal1). By

definition the total set of instances of Emp2 is the set obtained from the total set of

 Emp1

nm1: String
sal1: Integer

 8

instances from Emp1 by applying the calculation rules as described above. Hence,

class Emp2 is a view of class Emp1, in accordance with the concept of a view as

known from the relational database literature. In UML terminology [BP98], we can

say that Emp2 is a derived class, since it is completely derivable from other already

existing class elements in the model description containing model type Emp1.

We will now show how to faithfully describe Emp2 as a derived class in UML/OCL

in such a way that it satisfies the requirements of a (relational) view. First of all, we

must satisfy the requirement that the set of instance of class Emp2 is the result of a

calculation applied to the set of instances of class Emp1. The basic idea is that we

introduce a class called Database that has associations to classes Emp1 and Emp2.

A database object will reflect the actual state of the database, and the system class

Database will only consist out of one object in any of its states. Hence the variable

self in the context of the class Database will always denote the actual state of the

database that we are considering. In the context of this database class we can then

define the calculation obtaining the set of instances of Emp2 by taking the set of

instances of Emp1 as input.

 * *

Note that we have used a prefix-qualification by adding a slash to Emp2 indicating

that Emp2 is a derived class definition [BP98]. Moreover, we have added an

operation, called convertToEmp2, meant to coerce an arbitrary Emp1-object to an

Emp2-object. This operation can be defined by the following OCL-specification

 Database

 Emp1

nm1:String
sal1: Integer

convertToEmp2(): Emp2

 /Emp2

nm2:String
sal2: Integer

 9

context Emp1::convertToEmp2(): Emp2

post: self.convertToEmp2.nm2 = self.nm1 and

 self.convertToEmp2.sal2 = (2*self.sal1)

We now have all the ingredients necessary to specify the relation coupling the derived

class Emp2 to the original class Emp1. This is done by including an invariant

specification in the class Database telling us how to calculate the set of instances of

Emp2 from the set of instances of Emp1

context Database inv:

self.Emp2 = self.Emp1→ collect(e:Emp1 | e.convertToEmp2) and

Emp1.allInstances = self.Emp1 and

Emp2.allInstances = self.Emp2

In this way we explicitly specify Emp2 as the result of a calculation performed on

Emp1, and we also stipulate that the only Emp1- and Emp2-objects in the database

are those obtained from the links starting from the database-object self.

4. Component frames

We can also consider a complete collection of databases by looking at so-called

component frames, where each (labelled) component is an autonomous database

system (typically encountered in legacy environments)

 L1 Ln

 CF

 DBn

DB1

 10

As an example consider a component frame consisting of two separate component

database systems: the CRM-database (DB1) and the Sales-database (DB2):

 * *

 �����-manager *

Constraints
context P1 inv:

P1.allInstances --> isUnique (p: P1 | p.prsno)

sal <= 1500

telint >= 1000 and telint <= 9999

context C1 inv:

C1.allInstances --> isUnique (c: C1 | c.clno)

cntrcd.size <= 5

 P1

prsno: Integer
name: String
sal: Integer -- in $
part:enum{1,2,3,4,5}
street: String
hnr: String
zip: Zip
city: String
telint: Integer

 DB1

 C1

clno: Integer
clname: String
addr: String
zipcity: String
cntrcd: String

 Zip

num: Integer
letcom: String

 11

context Zip inv:

num >= 1000 and num <= 9999

letcom.size = 2

The Sales-database: DB2

 *

 *

 *

 *

 ������-manager *

Constraints
context P2 inv:

P2.allInstances --> isUnique (p: P2 | p.eno)

sal >= 1000

bonus >= 0

tel.size <= 16

context C2 inv:

C2.allInstances --> isUnique (c: C2 | c.ordno)

 DB2

 P2

eno: Integer
name: String
sal: Integer -- in �
bonus: Integer -- in �
func: String
addr: String
zip: String
city: String
cntrcd: String
tel: String

 C2

ordno: Integer
clno: Integer
clnm: String

 12

C2.allInstances --> forall(c: C2 | c.ord-manager.func =

“Sales”)

cntrcd.size <= 5

The example component frame EX-CF now combines the two database DB1 and

DB2 into one component frame

 CRM Sales

 * * * *

 acc-manager ord-manager

The two databases DB1 and DB2 are –in the case of this example- related, in the

sense that an order-object residing in class C2 is associated to a certain client-object

in the class C1. On the component frame level, we can define an auxiliary function

mapping a client-order object in class C2 to a client object in class C1. We do this

by assuming an operation in the class C2, called linkToC1

 EX-CF

DB1 DB2

 P1 C1 P2 C2

 C2

 (…)

linkToC1:C1

 13

with the following post conditions

context C1::linkToC1(): C1

post self.linkTo.clno = self.clno

Since the attribute clno has unique values, the link from C2 to C1 is properly defined

(assuming that there always exists a corresponding clno-value in the class C1 for each

clno-value in the class C2).

5. Semantic heterogeneity; the integrated database DBINT

The problems we are facing when trying to integrate the data found in legacy

component frames are well-known and are extensively documented (cf. [ShL90]). We

will focus on one of the large categories of integration problems coined as semantic

heterogeneity (cf. [Ver97]). Semantic heterogeneity deals with differences in intended

meaning of the various database components. Integration of the source database

schemas into one encompassing schema can be a tricky business due to

1. renaming (homonyms and synonyms)

2. data conversion (different data types for related attributes)

3. default values (adding default values for new attributes)

4. missing attributes (adding new attributes in order to discrimate between

certain classes)

We will illustrate each of these cases in the context of our example databases.

Important thing to know at this moment is that with homonyms we mean that certain

names may at first sight- look the same (same syntax), but actually have a different

meaning (different semantics). Synonyms, on the contrary, refer to certain names

that are different in the sense that they have a different syntax, but that the actually

mean the same (same semantics). Homonyms and synonyms occur extremely often in

 14

integration processes. In general, we will adopt the following solution to resolve these

naming conflicts: different semantics call for different names, and equal semantics

(intended meaning) call for equal names.

First consider our construction of a virtual database, represented in terms of a derived

class in UML/OCL. (For an at length treatment of derived classes in UML/OCL we

refer to [Bal02].

The database we describe below, intends to capture the integrated meaning of the

features found in the component frame described earlier.

 * *

 *

 *

 *

 *

 ord-manager

 ������-manager

/EX-DBINT

 /Pers

pno: Integer
pname: String
sal: Integer - - in �
part: enum{1,2,3,4,5}
addr: String
zip: String
city: String
cntrcd: String
tel: String
dep:{“CRM”, “Sales”}

 /Clnt

clno: Integer
clname: String
addr: String
zipcity: String
cntrcd: String

 /SLS

bonus: Integer - - in �
func: String

 /CRM

 /Order

ordno: Integer

 15

Constraints
context Pers inv:

Pers.allInstances -->

forall(p1, p2: Pers | (p1.dep=p2.dep and p1.pno=p2.pno)

implies p1=p2)

Pers.allInstances -->

forall(p:Pers | p.sal > 1500 implies p.oclIsTypeOf(SLS))

sal >= 1000

tel.size <= 16

cntrcd.size <= 5

context SLS inv:

bonus >= 0

context Clnt inv:

Clnt.allInstances --> forall(c1, c2: Clnt | (c1.clno=c2.clno

 implies c1=c2)

cntrcd.size <= 5

context Order inv:

Order.allInstances --> isUnique (o: Order | o.ordno)

We are now faced with the problem to explicitly link the component frame to this

integrated (and virtual) database described above

6. Getting the mediator to do its work

Consider the following UML model containing a class, called the mediator, explicitly

relating the component frame EX-CF and the virtual integrated database EX-DBINT

 16

 DBINT

 CF

 *

 ord-

 manager

 * * *

 acc-manager ord-manager

 * *

 �����-manager

The mediator now has to correctly link the component frame EX-CF to the (virtual)

database EX-DBINT. This is not a trivial task and involves a precise mapping of

component elements to the virtual database. The mapping also has to take into

account various constraint conditions which rule inside EX-CF. We do this by

introducing suitable conversion operations inside the classes.

Our guiding principle for a successful conversion from the component frame CF to

the integrated database DBINT is:CWA-INT:

the integrated database DBINT is intended to hold exactly the “union” of the

data in the source databases in CF

 Mediator

EX-CF

DB1 DB2

P1 C1 P2

/EX-DBINT

 /Pers

 /CRM

 /SLS

/Order
/Clnt

C2

*

 17

Typically, requirement CWA-INT displays our conformance to the traditional

Closed World Assumption (CWA) found in the database literature ([Rei84]). This

requirement has to be further investigated for consequences when applied to querying

and to updating. In more mathematical terms, we will demand that

UoD(Mediator.CF) � UoD(Mediator.DBINT)

In words, the universe of discourse of component frame CF and the universe of

discourse of the integrated database DBINT are, in a mathematical sense,

isomorphic. (Actually, an endomorphic embedding from the universe of discourse of

component frame CF and the universe of discourse of the integrated database

DBINT will do.)

Another matter that needs some attention, is the way that modifications on the source

databases are taken care of, once they have become members of the federation. We

will stipulate that all modifications on the source databases will now run through the

virtual integrated database DBINT. By this we mean that an insert on a database

inside the component frame CF can from now on only take place as the effect of an

initial insert inside the integrated database DB-INT. Users will only view the (virtual)

integrated database DBINT, and an insert on DBINT will be translated to a (collection

of) insert(s) inside database components of the component frame CF. The same holds

for a delete (and –hence- an update).

In order to support this stipulation, we will have to prove that any allowed insert

(delete) on DBINT will result in a allowed insert (delete) within CF.

As mentioned earlier, integration of the source database schemas into one

encompassing schema can be a tricky business due to

1. renaming

2. data conversion

3. default values

 18

4. missing attributes

We will illustrate each of these cases in the context of our example databases. Key to

the solution that we offer, is the introduction of a so-called homogenizing function

which will actually provide for the linking of all relevant features in the component

frame to features in the integrated database.

7. Introducing the homogenizing function: mapping the component frame

to the virtual integrated database

What we do is that we add a method, called Hom, to the top-level EX-CF class

resulting in an element (database state) of the integrated database EX-DBINT

context EX-CF::Hom():EX-DBINT

post self.Hom.Clnt.allInstances =

 self.CRM.C1.allInstances --> collect(c: C1 |

 c.convertToClnt)

Here we have assumed the existence of a conversion function convertToClnt within

the class C1

 EX-CF

 (…)

Hom(): EX-DBINT

 C1

 (…)

convertToClnt:Clnt

 19

with the following post conditions

context C1::convertToClnt(): Clnt

post Cl.attributes -->

 forall (d: String | self.convertToClnt.d = self.d)

 and

 (self. ConvertToClnt.acc-manager =

 self.acc-manager.convertToCRM)

we have now furthermore assumed the existence of a conversion function

convertToCRM residing within the P1-class resulting in an object from the class

CRM in the DBINT-database

This conversion function has the following post conditions

context P1::convertToCRM(): CRM

post self.convertToCRM.pno = self.prsno

 and

 self.convertToCRM.pname = self.name

 and

 self.convertToCRM.sal = self.sal.convert$To�

 and

 self.convertToCRM.part = self.part

 and

 self.convertToCRM.addr = (self.street)^(“ ”)^

 (self.hnr)

 P1

 (…)

convertToCRM-P:CRM

 20

 and

 self.convertToCRM.zip = (self.zip.num)^(“ ”)^

 (self.zip.let)

 and

 self.convertToCRM.city = self.city

 and

 self.convertToCRM.tel = (“31-50-363-”)^(“ ”)^

 (self.telint)

 and

 self.convertToCRM.cntrc = “NL”

 and

 self.convertToCRM.dep = “CRM”

Notice that the function convertToCRM is injective!

Analogously, we can define a function converting the objects in the P2-class to

corresponding objects in the SLS-class of DBINT, by assuming the existence of a

conversion function convertToSLS within the class P2:

with the following (rather trivial) post conditions

context P2::convertToSLS(): SLS

post self.convertToSLS.pno = self.eno

 and

 self.convertToSLS.pname = self.name

 P2

 (…)

convertToSLS:SLS

 21

 and

 self.convertToSLS.sal = self.sal.

 and

 self.convertToSLS.part = self.part

 and

 self.convertToSLS.addr = self.addr

 and

 self.convertToSLS.zip = self.zip

 and

 self.convertToSLS.city = self.city

 and

 self.convertToSLS.tel = self.tel

 and

 self.convertToSLS.cntrc = self.cntrc

 and

 self.convertToSLS.dep = “SLS”

 and

 self.convertToSLS.bonus = self.bonus

 and

 self.convertToSLS.func = self.func

 A bit more difficult is the definition of a function converting the objects in the C2-

class to corresponding objects in the Order-class of DBINT. We do this by assuming

the existence of a conversion function convertToOrder within the class C2:

with the following post conditions

 C2

 (…)

convertToOrder:Order

 22

context C2::convertToOrder(): Order

post self.ConvertToOrder.ordno = self.ordno

 and

 self.convertToOrder.ord-manager =

 (self.ord-manager).convertToSLS

 and

 self.convertToOrder.Clnt =

 (self.linkToC1).convertToClnt

where the previously defined operation linkToC1 provides the link to the unique C1-

object associated to a given C2-object.

We now have a complete set of conversion functions mapping objects in the

component frame CF to objects in DBINT. The homogenizing function Hom

defined in the class EX-CF can now be given its full definition as offered below:

context EX-CF::Hom():EX-DBINT

post (self.Hom).Clnt.allInstances =

 self.CRM.C1.allInstances --> collect(c: C1 |

 c.convertToClnt)

 and

 (self.Hom).SLS.allInstances =

 self.Sales.P2.allInstances --> collect(p: P2 |

 p.convertToSLS)

 and

 (self.Hom).CRM.allInstances =

 EX-CF

(…)

Hom(): EX-DBINT

 23

 self.CRM.P1.allInstances --> collect(p: P1 |

 p.convertToCRM)

 and

 (self.Hom).Order.allInstances =

 self.Sales.C2.allInstances --> collect(o: C2 |

 o.convertToOrder)

With this set of mappings we can define the missing link providing the mapping of

objects inside the component frame CF to objects inside the virtual database

DBINT. We do this by adding appropriate constraints to the mediator class.

context Mediator inv:

self.DBINT.CRM.allInstances = (self.CF.Hom).CRM.allInstances

and

self.DBINT.SLS.allInstances = (self.CF.Hom).SLS.allInstances

and

self.DBINT.Clnt.allInstances = (self.CF.Hom).Clnt.allInstances

and

self.DBINT.Order.allInstances =

(self.CF.Hom).Order.allInstances

8. Querying the virtual integrated database through the mediator

Consider the following example query posed against the integrated database EX-

DBINT

“Give the combined list of all clients and CRM-employees”

Following [Bal02], a query in UML is specified in terms of a view definition, where a

view is conceived as a derived class. We define the following derived class, called

/Query-1:

 24

context Clnt::convertC-To-Q1(): Query-1

post self.convertC-To-Q1.type = `CL’ and

 self.convertC-To-Q1.name = self.clname and

 self.convertC-To-Q1.addr = self.addr and

 self.convertC-To-Q1.zipcity = self.zipcity and

 self.convertC-To-Q1.cntrcd = self.cntrcd

 /Query-1

type : String
name: String
addr : String
zipcity: String
cntrcd: String

 Clnt

 (…)

convertC-To-Q1: Query-1

 CRM

 (…)

convertCRM-To-Q1: Query-1

 25

context CRM::convertCRM-To-Q1(): Query-1

post self.convertCRM-To-Q1.type = `CRM’ and

 self.convertCRM-To-Q1.name = self.pname and

 self.convertCRM-To-Q1.addr = self.addr and

 self.convertCRM-To-Q1.zipcity =(self.zip) ^(“ ”)^

 (self.city) and

 self.convertCRM-To-Q1.cntrcd = self.cntrcd

We then add appropriate constraints to EX-DBINT

context EX-DBINT inv:

Query-1.allInstances =

(Clnt.allInstances --> collect(c : Clnt | c.convertC-To-Q1))

.Union(CRM.allInstances -->

collect(p : CRM | p.convertCRM-To-Q1))

By now expanding the definition of Clnt and CRM, we obtain the definition of this

query in terms of the original database components found in the component frame

EX-CF, but then in terms of the homogenizing function Hom within the context of

the mediator (hence , the self referred to in the OCL specification below, is the

self in the context of the Mediator)

self.DBINT.Query-1.allInstances =

((self.CF.Hom).Clnt.allInstances -->

 collect(c : self.DBINT.Clnt | c.convertC-To-Q1))

.Union((self.CF.Hom).CRM.allInstances -->

 collect(p : self.DBINT.CRM | p.convertCRM-To-Q1))

By expanding the definitions of (self.CF.Hom).Clnt.allInstances and

(self.CF.Hom).CRM.allInstances one level deeper, we obtain the definition of this

query in terms of the original components

 26

(self.CF.Hom).Clnt.allInstances =

 self.CF.CRM.C1.allInstances --> collect(c: self.CF.C1 |

 c.convertToClnt)

and

(self.CF.Hom).CRM.allInstances =

 self.CRM.P1.allInstances --> collect(p: self.CF.P1 |

 p.convertToCRM)

Hence, the query is now expressed completely in terms of the original database

components found in the component frame EX-CF!

Summary
We describe a general semantic framework for precise specification of so-called mediating

systems; such a system provides for tight coupling on a global level of a collection of

heterogeneous component databases to a federated database. This mediating system integrates,

by means of a so-called homogenizing function, in a uniform and systematic manner the

underlying data models of the component systems to a global data model, including constraint

specifications. Our focus has been on solving the problems caused by semantic heterogeneity

of component systems. The integration process is based on the notion of database views. The

mediating system allows for global queries that can be decomposed in a uniform and

systematic manner into local queries on component databases. Our approach is based upon the

UML/OCL data model. UML is the de facto standard language for analysis and design in

object-oriented frameworks, and is being employed more and more for analysis and design of

Information Systems based on databases and their applications. The Object Constraint

Language (OCL) - as part of UML - can aid in the unambiguous modelling of database

constraints. One of the central notions in database modelling and in constraint specifications is

the notion of a database view; a database view closely corresponds to the notion of derived

class in UML. We employ OCL and the notion of derived class as a means to treat database

constraints and database views in a federated context. The paper demonstrates that our

 27

particular mediating system integrates component schemas without loss of constraint

information. Furthermore, we offer a setting in which to describe a UML/OCL-representation

of relational databases.

Acknowledgements:

I wish to thank Bert de Brock of the Faculty of Management and Organization, for

numerous discussions, corrections and valuable insights.

References

[AB01] Akehurst, D.H., Bordbar, B.; On Querying UML data models with

 OCL; «UML» 2001 - The Unified Modeling Language, Modeling

 Languages, Concepts, and Tools, 4th International Conference, Toronto,

 Canada, 2001, Proceedings. Lecture Notes in Computer Science 2185,

 Springer, 2001

[Bal02] Balsters, H. ; Derived classes as a basis for views in UML/OCL

 data models; SOM Research Series 02A47, University of Groningen,

 2002

[BB01] Balsters, H., de Brock, E.O.; Towards a general semantic framework

 for design of federated database systems ; SOM Research Series 01A26,

 University of Groningen, 2002

[BBZ93] Balsters, H., de By, R.A., Zicari, R.; Sets and constraints in an object-

 oriented data model; Proceedings Seventh European Conference on

 Object-Oriented Programming (ECOOP), Kaiserslautern, Germany,

 July, 1993.

[BP98] Blaha, M., Premerlani, W.; Object-oriented modeling and design for

 database applications; Prentice Hall, 1998

[BV92] Balsters, H., de Vreeze, C.C.; A semantics of object-oriented sets;

 Third International Workshop on Database Programming Languages

 (DBPL;eds. Abiteboul, Kannelakis), Morgan Kaufmann Publishers,

 California USA, 1992.

[CGW96] S.S. Chawathe, H. Garcia-Molina, J. Widom; A toolkit for constraint

 28

 maintenance in heterogeneous information systems. 12th International

 Conference on Data Engineering (ICDE96); IEEE Press, 1996

[Co70] E.F. Codd; A relational model of data for large shared data bank;

 Communications of the ACM, vol. 13(6), 1970

 [DaH84] U. Dayal, H.Y. Hwang; View definition and generalization for database

 integration in a multidatabase system; IEEE Transactions on Software

 Engineering 10, 1984

[D00] Date, C.J.; An introduction to database systems; Addison Wesley, 2000

[DH99] Demuth, B., Hussmann, H.; Using UML/OCL constraints for relational

 database design; «UML»'99: The Unified Modeling Language - Beyond

 the Standard, Second International Conference, Fort Collins, CO, USA,

 1999, Proceedings. Lecture Notes in Computer Science 1723, Springer,

 1999

[DHL01] Demuth, B., Hussmann, H., Loecher, S.; OCL as a spevcification

 Unified Modeling Language, Modeling Languages, Concepts, and Tools,

 4th International Conference, Toronto, Canada, 2001, Proceedings.

 Lecture Notes in Computer Science 2185, Springer, 2001

[DKM93] P. Drew, R. King, D. McLeod, M. Rusinkievicz, A. Silberschatz; Report

 of the workshop on semantic heterogeneity and interoperation in

 multidatabase systems; SIGMOD RECORD 22, 1993

[EN94] R. Elmasri and S.B. Navathe; Fundamentals of database systems;

 Benjamin/Cummings, Redwood City (CA), 1994

[EP00] Eriksson, H., Penker, M.; Business modeling with UML; OMG 2000

[GR97] Gogolla, M., Richters, M.; On constraints and queries in UML;

 Proceedings UML’97 Workshop “The Unified Modeling Language –

 Techniques and Applications”, 1997

[GSC96] M. Garcia-Solica, F. Saltor, M.Castellanos; Semantic heterogeneity in

 multidatabase systems; Object-oriented multidatabase systems; Bukhres,

 Elmagarid (eds.), Prentice Hall, 1996

[GUW02] Garcia-Molina, H., Ullman, J.D., Widom, J.; Database systems; Prentice

 Hall, 2002

[Hull97] Hull, R.; Managing Semantic Heterogeneity in Databases; ACM

 PODS’97, ACM Press 1997.

[Ken91] W. Kent; Solving domain mismatch and schema mismatch problems with

 an object-oriented database programming language; 7tth International

 29

 Conference on Very Large Databases (VLDB97), 1997

[KoC95] J.L. Ko, A.L.P. Chen; A mapping strategy for querying multiple object

 databases with a global object schema; IEEE RIDE -DOM,1995

[MC99] Mandel, L., Cengarle, M.V.; On the expressive power of OCL; FM’99

 Formal Methods, World Congress on Formal Methods in the Development of

 Computing Science; Lecture Notes in Computer Science 1708, Springer, 1999

[MeY95] W. Meng, C. Yu; Query processing in multidatabase systems; Modern

 database systems; Kim (ed.), ACM Press, 1995

[OMG99] Object Management Group; Unified Modelling Language

 Specification, version 1.3; June 1999; http://omg.org

[Rei 84] Reiter, R.; Towards a logical reconstruction of relational database

 theory. In: Brodie, M.L., Mylopoulos, J., Schmidt, J.W.; On conceptual

 modeling; Springer Verlag, 1984

[ShL90] A.P. Sheth, J.A. Larson; Federated database systems for managing

 distributed, heterogeneous and autonomous databases; ACM Computing

 surveys 22, 1990

[SSR94] E. Sciori, M. Siegel, A. Rosenthal; Using semantic values to facilitate

 interoperability among heterogeneous information systems; ACM

 Transactions on database systems 19, 1994

[SQL 92] ISO 9075-1992(E); Database language SQL; ISO/IEC JTC1/SC21, 1992

[Ver97] M. Vermeer; Semantic interoperability for legacy databases. Ph.D.-thesis,

 University of Twente, 1997.

[Wie95] G. Wiederhold; Value-added mediation in large-scale information

 ystems; IFIP Data Semantics (DS-6), 1995

[WK99] Warmer, J.B., Kleppe, A.G.; The object constraint language; Addison

 Wesley, 1999

