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LIST OF VARIABLES AND NOTATION 
 
 
Notation 
 
This dissertation contains many mathematical expressions and equations. 
Parameters and variables are mostly denoted by a lower case character in italics, 
such as d. Exceptions are matrices, profits, consumer surplus, welfare, reaction 
functions and utility functions, which are denoted by upper case characters. Changes 
or differences are denoted by ∆ . In general, subscripts are used to distinguish time 
periods or the firm to which a parameter or variable refers. However, superscripts are 
used i) to distinguish the firm in case of profits, and also ii) to denote equilibrium 
outputs (by the use of * ). 
 
List of variables 
 
a weight of market share in the objective function in Chapters 4, 5 

and 6 
A matrix corresponding to a linearized system of difference or 

differential equations 
b slope of the inverse demand function 
c coefficient of the linear part of the production cost function 
CS, CScl consumer surplus; consumer surplus of the classical Cournot 

textbook benchmark case 
d coefficient of the quadratic part of the production cost function 

(Chapters 4, 5 and 6) 
f function 
F relative total welfare over a whole business cycle in Chapter 4 
Fd relative total welfare over a period with decreased economic 

activity in Chapter 4 
Fe relative total welfare over a period with increased economic 

activity in Chapter 4 
G expression for the reaction function if Cardan’s method is 

involved 
h habit formation 
i, j index indicating a firm (such as in “... firm i ...”) 

also often used as a subscript index to indicate the firm to which 
a specific parameter or variable corresponds 

l adjustment costs per unit production, corresponding to a 
decrease of production (see also u) 

L Lyapunov exponent 
m market size (in the normalized model) 
n number of firms in oligopoly 
p, p* market price; equilibrium market price 
q, q* total market supply; equilibrium market supply 
R reaction function (used with superscripts 1, 2, i or  j) 
Rc compound reaction function 
R relative total profit (used without superscripts) over a whole 

business cycle in Chapter 4 
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Chapter 4 

Re relative profit over a period with increased economic activity in 
Chapter 4 
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t index to indicate a time period (such as in “... time t ...”) 

also often used as a subscript index 
u adjustment costs per unit production, corresponding to an 

increase of production (see also l) 
U utility function (pay-off function) 
W, Wcl welfare; welfare corresponding to the classical Cournot case 
x, x* output of a firm; equilibrium output of a firm (often with a 

subscript index) 
α  parameter of the reaction function in Chapter 2 

weight of (production) size in the objective function 
γ  depreciation factor corresponding to habit formation 
δ  disturbance term 

m∆  the change of the market size 
µ  adjustment coefficient 

CS∆∆  ,Π  difference in profit; difference in consumer surplus 
W∆  difference in welfare 

clΠΠ  ,  profit (often with superscript index); profit corresponding to the 
classical Cournot profit in equilibrium 
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Chapter 1 Introduction 1 

CHAPTER 1 
 
INTRODUCTION 
 
Cournot’s assumptions concerning behaviour. 

The title of this Ph.D thesis - Behavioral Cournot Competition - indicates that this 
study is closely related to human behaviour. If Augustin Cournot were to look from a 
heavenly point of view to the extensions and modifications of his original model, he 
would probably be highly astonished or paradisiacally self-satisfied by what he has 
stirred up. It is fitting to pay him the honour he deserves, by reflecting on Cournot 
models, because he was in fact an early game theorist who attempted to model firms’ 
behaviour. In his “Récherches sur les principes mathématiques de la théorie de la 
richesse”  (1838) Cournot treated the case of oligopolic competition and assumes 
myopic behaviour, i.e. each incumbent firm reacts on the total market supply of all 
rivals in the previous period. Since each rival tries to maximize his own profit, such a 
competitor is able to calculate its actual production level, referred to as the “Best 
Reply” or mathematically stated as the reaction function. The basic game theoretical 
model of Cournot already contains two assumptions regarding human behaviour, 
namely naïve or myopic expectations, concerning rivals’ production levels and the 
assumption of managers’ profit-maximizing behaviour as well. Clearly both 
assumptions may be subject to discussion as we will reflect on in this introduction. 
Furthermore Cournot assumed that consecutive reactions of two competitors, the 
“tatônnement proces”, would lead to a steady state, nowadays called Cournot-Nash 
equilibrium, though the equilibrium’s stability is by no means certain (a Nash 
equilibrium is a profile of strategies such that each player’s strategy is an optimal 
response to the other players’ strategies, Fudenberg and Tirole (1991)) .  

 
What about stability? 

Under the assumption of naïve expectations, the resulting linear downward 
sloping reaction function does not imply (local) stability automatically if more than two 
competitors are involved. Theocharis (1960) examined the (Cournot) solution of the 
oligopoly problem and states that: “If there are two sellers the Cournot solution is 
always dynamically stable; if their number is three, we shall get finite oscillations 
about the equilibrium position and if their number is greater than three there will 
always be instability”. If we realize that Theocharis used constant marginal production 
costs,  a decreasing linear (inverse) demand function, and myopic expectations, we 
may understand that stability issues still receive significant attention in recent 
research. Modifications of the basic assumptions, such as other (than naïve) 
expectations, more general demand functions and production cost functions, 
multimarket and multi-product competition and learning behaviour of players lead to a 
wide variety of outcomes. Fisher (1961) examined the implications on stability of 
speeds of adjustment and increasing marginal costs, whereas Okugushi (1976) 
investigated equilibrium’s existence, stability and uniqueness under a more general 
formation of expectations. Other contributions are Furth (1986), Okugushi and 
Szidarovsky (1990) (multi-product firms), Szidarovsky and Yen (1995) (quadratical 
adjustment costs around the Cournot-Nash equilibrium) and Zhang and Zhang (1996) 
(multi-product and multi-market case). Kohlstad and Mathiesen (1987) and Gaudet 
and Salant (1991) provide conditions for uniqueness (and use two different methods 
of proof) and, in their paper, Long and Soubeyran (2000) provide a proof of 
equilibrium’s existence and uniqueness, using yet another technique (the contraction 
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mapping approach).  Dastidar (2000) proves that under broad conditions uniqueness 
implies local stability. One cannot say that the stability (and existence) issue receives 
less attention today.  

 
Reaction curves and chaos. 

Another branch of research sprouts from the Cournot tree, because the classical 
and familiar downward slope of the reaction curve may not always be taken for 
granted. This may have significant implications for the stability of the Cournot-Nash 
equilibrium, even in duopoly models; if the adjustment process fails to converge to a 
Cournot-Nash equilibrium, firms’ supply paths may also exhibit cyclical and chaotic 
patterns. Rand (1978) proved, in a rather technical and beautiful paper, that a 
duopoly game characterized by unimodal reaction functions - monotone increasing 
for rival’s outputs to the left of the maximum and (familiar) monotone decreasing for 
competitor’s supplies to the right - may imply the inherent chaotic nature of the 
dynamical system. The famous paper of Li and Yorke (1975) made researchers 
aware of the fact that simple non-linear equations in a dynamical model may lead to 
chaotic time paths of variables under study and gave a significant impetus to the 
further development of chaos theory. Although applications of the mathematical 
findings concerning chaos theory became quite fashionable, naturally researchers 
tried to provide microeconomic foundations for the occurrence of non-monotonic 
reaction curves concerning Cournot competition. 

Van Witteloostuijn and van Lier (1990, see also Chapter 2) improve upon Rand 
(1978) and Dana and Montrucchio (1986) by providing a nonlinear model of Cournot 
duopoly competition with (realistic) positive monopoly output. They prove the 
occurrence of chaotic regimes and use simulation experiments to illustrate the 
properties of chaos. They also use the term “dualist” concerning a firm with an 
asymmetric reaction pattern: if the rival’s supply is below a certain level a firm’s “Best 
Reply” to an increase of the rival’s supply is also an increase of production level (so-
called aggressive behaviour). However, if the competitor’s output exceeds a certain 
level, a firm’s response to more aggressive play by its competitor is less aggressive 
play. Although van Witteloostuijn and van Lier’s reaction curves may describe firms’ 
behaviour adequately, the functional form is based on empirical reflections (such as 
entry deterrence), and a possible microeconomic foundation for the occurrence of 
hill-shaped reaction curves is still missing. By considering a general expression for 
the slope of a reaction curve, concerning arbitrary demand and cost functions, one 
gets indications for choices of these functions which may lead to a positive slope or a 
switch in slope’s sign. Since then two contributions (which indeed use other 
specifications for the demand and cost functions) to the microeconomic foundation 
for the existence of non-monotonic reaction curves are worth mentioning. First Puu 
(1991,1998) shows that the assumptions of constant unit production costs and an 
iso-elastic demand function result in unimodal reaction curves (and periodic or 
chaotic supply patterns concerning cases with two or three competitors). So in Puu’s 
models firms (or managers) still show pure profit-maximizing behaviour, whereas the 
essence of their models is determined by the choice of economists’ second-favourite 
demand curve (constant elasticity demand).  

Second Kopel (1996) proves that introducing cost functions with an interfirm 
externality - marginal production costs not only depend on firm’s own quantities, but 
also on the supply offered by the rival - leads to unimodal (quadratic) reaction 
functions and very complicated dynamics. However the well thought-out models of 
both Puu and Kopel show one salient shortcoming: firms’ monopoly output equals 
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zero. Realizing that a positive monopoly output (and the use of an aggressive 
strategy against an entrant) may be used as an instrument to deter entry, a zero 
monopoly supply, as an implication of a microeconomic assumption, seems not very 
realistic.    
If we reflect on the models of Puu and Kopel, we observe that the models’ 
modifications - in comparison to Cournot’s original model - take into account 
“environmental” factors such as the form of the demand curve and the influence of 
the rival’s supply level on their own production costs. The essence of their 
modifications is determined by extra exogenous factors (besides the self-evident  
assumption of direct competition), whereas the classical profit-maximizing behaviour 
of the firm (represented by its managers or run by its owner) remains unchanged. Of 
course this “endogenous”, profit-maximizing, behaviour of the firm is completely 
determined by human beings, i.e. the (top) management team and the firm’s culture. 
Assuming that every human being possesses some degree of selfish behaviour, 
management targets do not have to coincide with the firm’s interests and profitability. 
Almost every human being is motivated by love, sex, status and money, not 
necessarily ranked in this specific order. Therefore, if, for instance, salaries and 
bonuses of top managers are not only determined by a firm’s profits, but may be 
influenced by a concern’s market share or size (sales volumes) as well, it is 
questionable whether the target of managers is really pure profit maximization. In 
their pathbreaking paper “Equilibrium Incentives in Oligopoly” Fershtman and Judd 
(1987) consider the separation of ownership and management of firms. They 
demonstrate that competing firms’ owners will often distort their managers’ objectives 
away from strict profit maximization for strategic reasons. 
 
Do firms really maximize profits? 

Concerning principal-agent models, such as the models of Fershtman and Judd 
(1987), Sklivias (1987) and Vickers (1985), managers’ behaviour is influenced by 
incentive contracts written by the firms’ owners. Owners may commit their (top) 
managers to nonprofit maximizing behaviour. But apart from the fact that managers’ 
objectives can be directed by owners - by using salaries not only based on firms’ 
profits but also based on sales volumes or revenues as well - firms’ cultures and 
ingrained habits of top managers must not be underestimated. First we consider 
empirical findings concerning managers’ nonprofit maximizing objectives. Then we 
also briefly reflect on the principal-agent models, which provide a possible 
explanation for managers’ behaviour as well.   

Each textbook on organizational behaviour (Robbins (2001)) treats the well-
established phenomenon of the resistance to change on a firm’s work floor; 
managers dislike retrenchment whereas they prefer expansion of their departments. 
The psychological fact that managers prefer to be the head of large departments 
provides an example of human behaviour, apart from the explanation of managerial 
behaviour by incentive contracts written by owners. 
We have to realize that a firm’s behaviour as a whole is fully determined by the 
behaviour and habits of its (top) management team. A firm’s culture and behaviour 
may be looked upon as a weighted sum of the behaviour and habits of its chief 
executives. If research points at nonprofit maximizing motives of managers, this 
justifies the introduction of firms’ nonprofit maximizing objectives in competition 
models as well. From an empirical perspective cumulative evidence supports that 
firms are not pure profit-maximizers, but that sales or market share also form some of 
their objectives. A study of Niskanen (1971) indicates that bureaucrats maximize 
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budgets. Note that this finding may imply that the size of departments is part of the 
goal of managers (naturally firm’s size depends on the size of its departments). 
Deneffe and Masson (2002) test the hypothesis of profit maximization of hospitals 
and come to the conclusion (resulting from regression analysis) that hospitals 
maximize a combination of profits and size (number of patients). Van Witteloostuijn 
(1998) notes that: “The key assumption in managerial economics is that managers 
may fail to maximize profits, since they may be driven by other motives … the 
common denominator of such nonprofit motives is that managers are assumed to 
favour size: managers prefer to be the head of large rather than small organizations.” 

Van Witteloostuijn (1998) uses a data set concerning the sales adjustment 
behaviour of 10 global chemical companies in years of profitability growth versus 
decline in the period 1967-1992 and shows that “an increase in profitability goes 
hand in hand with an upward adjustment of sales, whereas a decline of profitability is 
not associated with a downward adjustment of sales volume.” This tentative evidence 
supports managerial “love for size”. It may not come as a surprise that a firm’s market 
share may also be a crucial part of its objective in strategic competition. Because a 
firm’s behaviour is determined by the behaviour and preferences of its management, 
empirical research concerning their preferences is crucial. Peck (1988) reports the 
results of a survey into corporate objectives among 1,000 American and 1,031 
Japanese top managers. Increasing market share ranks third in the American and 
second in the Japanese subsample, whereas return on investment is first among 
American and third among Japanese top managers.  

Besides psychological reasons concerning the “love for size or market share”, 
clearly managers’ behaviour will be influenced by managerial compensation and top-
management incentives (as the recent case of the Ahold-concern shows, managers 
may even use fraudulent accounting to ensure their bonuses). Empirical studies in 
managerial compensation reveal that executive bonuses and salaries are associated 
with both firm size and profit level, with the size correlations being the stronger of the 
two (Jensen and Murphy (1990) and Lambert, Larcker and Weigelt (1991)). If the 
salaries of executives are more closely correlated with the scale of operation (size) 
than with a firm’s profitability, this association may be disadvantageous for the firm. 
Influenced by bonuses, a manager may select projects that increase his firm’s size 
(or market share) and his level of compensation, but may have a negative impact on 
his firm’s market performance and social welfare. Realizing that the previous 
examples of empirical research on managerial objectives and compensation 
schemes are far from complete, they do justify extensions of the (classical) Cournot 
competition model. 

As already noted principal-agent models may provide an explanation for 
managers’ nonprofit maximizing behaviour. In the models of Fershtman and Judd 
(1987), Sklivias (1987) and Vickers (1985), a two-stage sequential game is 
considered, because owners (principals) and managers (agents) are separated. In 
the first stage the owners write the incentive contract for their managers. In the 
second stage this incentive contract forces the managers to maximize the objective 
function “ S)1( αΠα −+ ”, where Π and S  respectively equal profits and revenues (we 
note that the objective can be rewritten as “ xc ⋅⋅−+ )1( αΠ ”, where c  equals marginal 
production costs and x equals production level; Vickers considers an objective 
function with a combination of profits and production levels). In stage two the 
managers’ function is to observe the (till now uncertain) demand and cost functions 
and to maximize their objective function by manipulating quantities (Cournot) or 
prices (Bertrand). Knowing the Nash equilibrium in this second stage, (by backward 
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induction) owners can choose the weights α  in the incentive contract in the first 
stage in such a way that profits are maximized, given the rival’s weight (so-called 
subgame perfect equilibrium). Note that the owner’s target is to maximize profits; if an 
owner doesn’t hire a manager the objective function is Π and the weight α  equals 1 
in these models. These two-stage sequential games lead to incentive contracts with 
weights 1<α  corresponding to quantity competition and 1>α concerning price 
competition. In both cases managers behave as nonprofit maximizers. Fershtman 
and Judd (1987) refer to the resulting equilibrium as the “incentive equilibrium” and 
prove that “… incentive equilibria in the quantity game generates greater output, 
lower rents, lower prices, and a more efficient allocation of production than the usual 
Cournot equilibria.” In case of Bertrand competition incentive equilibria imply smaller 
output (and higher market prices) than the usual Bertrand equilibria. These principal-
agent models explain why managers’ objective function may be a (linear) 
combination of profits and revenues (or equivalently profits and production levels)(1).  

However, we note that these principal-agent models assume highly rational 
behaviour of firms’ owners and managers and also assume that the incentive 
contract of the competitor is known without delay. In this thesis we will refer to this 
rational behaviour as “strategic consciousness”. In this introduction we will also pay 
detailed attention to the viewpoint of Organizational Ecology and we will discuss the 
“inertia hypothesis” of Hannan and Freeman (1984). From this standpoint the weights 
α , attributed to sales volumes or revenues, are part of the “blueprint” of a firm (a 
firm’s culture) and therefore these weights are rather fixed relative to environmental 
changes and disturbances or in other words: they represent a form of a firm’s inertia. 
The considerations in this thesis emphasize the rather fixed character of managerial 
behaviour and focus on the consequences concerning firms’ profits, survival chances 
and social welfare for several weight combinations of rivals in a duopoly setting. 

 We consider the introduction of the models of this thesis justified, because, 
whatever the explanation of managers’ behaviour will be (owner-manager relation, 
psychological or blueprint of the firm), empirical research points at managers’ 
nonprofit maximizing objectives. 
 
The Behavioral Cournot model. 

The behavioral model also takes into account firms’ productions adjustment costs 
around a fixed level of supply. Both this latter extension and the introduction of the 
concept of inertia need further clarification. In the framed part on the next page, in the 
outline of the general model, we recognize the “classical” Cournot model in which 
firms (or managers) maximize their actual profits (revenues - production costs), using 
the rivals’ supplies in the previous period as a forecast for their actual production 
levels (myopic expectations). 

Concerning adjustment costs, production expansion and shrinking obviously lead 
to additional expenses of the firm, on top of the standard unit production costs. Van 
Witteloostuijn, Boone and van Lier (2003) note that: “A prominent long-run cost of 
production flexibility follows from the investment or devestment of capital. This is 
straightforward investment economics. Additionally, a major short-run cost of 
production flexibility originates in human resources”. Because adjustment costs are 
                                                 
(1) Yet another explanation is provided by a dynamic optimization model of Glaeser and Schleifer (2001). They 
demonstrate that, if consumers are prepared to pay a higher price for quality, the not-for-profit status may be 
more advantageous for firms (operating in sectors such as child care, long term care for the aged, hospitals and 
schools). “When consumers care deeply about non-verifiable quality, entrepeneurs prefer non-profit status, 
because it softens incentives [concerning pure profit] and brings higher prices ex-ante.” 
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strongly related to human resource management practices, studies concerning these 
practices are of importance and illustrative. Huselid (1995) reveals, in his single-
country (US) study, that firms differ in their choice for high- or low-commitment 
human resource management practices. Naturally high commitment human resource 
practices are relatively expensive, because of high salaries and long-term contracts 
and therefore possibly lead to higher adjustment costs. Furthermore Gooderham, 
Nordhaug and Ringdale (1999) report significant and systematic cross-country 
heterogeneity concerning human resource management practices. One may expect 
that firms are more or less slow in changing their production level over a downward 
or upward phase of a business cycle or stated differently: firms show inertia 
concerning environmental turbulence. 
 
 

The general model 
 

 
Maximize, with respect to the actual supply 

 
          Actual profit: classical model     
 
      

Revenues – production costs – Adjustment costs 
 

       +     Weighted preference 
 
 
                                                  Organizational inertia 
 
            Managerial inertia      
 
 
 
Preference for size 
 
                        Preference for market share 
 

In the (extended) Behavioral Cournot model apparently two forms of firm’s inertia can 
be distinguished, organizational and managerial inertia. We now discuss this 
important concept (from Organizational Ecology (OE)). 
 
Inertia. 

Hannan and Freeman (1984) reflect on the question how quickly an organization 
can be reorganized in relation to environmental opportunities and threats. They argue 
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that the concept of structural inertia must be defined in relative and dynamic terms: 
“In particular, structures of organizations have high inertia when the speed of 
reorganization is much lower than the rate at which environmental conditions change. 
Thus the concept of inertia, like fitness, refers to a correspondence between the 
behavioral capabilities of a class of organizations and their environments”. We can 
look upon inertia as an organizational “blueprint” built up in the history of a firm. For 
instance, if a firm invests in extra capacity, possibly to deter entry (Bulow, 
Geanakoplos and Klemperer (1985) , Dixit (1980)), this capacity can be considered 
as a form of (relative) inertia, because it takes effort, costs and time to reduce 
capacity. Also a firm’s advertising policy, formed in a concern’s past, may be seen as 
an example of an organizational “blueprint”, subject to resistance if the environment 
changes. 

Van Witteloostuijn, Boone and van Lier (2003) distinguish three forms of inertia, 
namely population (system), organizational and managerial inertia. Population inertia 
deals with a whole population of organizations (and is therefore related to a higher 
level of analysis) and may be the result of the existence of path dependencies in the 
competitive process. They state that: “…switching costs at the demand side, which 
result from network economies, may impede firms from introducing superior 
technologies that impose a high cost on those who deviate from the market 
standard”. This phenomenon may result in the overall use of more inferior 
technologies despite of the availability of better technologies. Other examples of 
population inertia are industry-level exit and entry barriers. Our “Behavioral Cournot” 
model does not take into account system inertia, but focuses on a market with two 
incumbent firms which possess organizational or managerial inertia.   
 
Organizational inertia. 

Adjustment costs around a certain production level are clearly an example of 
inertia at the organizational level. As already mentioned earlier, firm’s adjustment 
costs are strongly related to human resource management practices and there exist 
inter-firm differences and cross-country heterogeneities between these practices as 
well. On the one hand these human resource practices are related to countries’ laws 
and may be the result of trade union negotiation processes. On the other hand, in a 
society with a high speed of technological development, firms naturally attach 
importance to the maintenance or improvement of their level of knowledge, thus 
implying favourable labour contracts (permanent appointments, advantageous 
dismissal procedures and golden handshakes) concerning high-educated personnel. 
Concerning the form of firms’ production adjustment cost function, Hamermesh and 
Pfann (1996) discuss a large number of empirical studies that have revealed 
evidence for different shapes of these functions. Production adjustment cost 
functions may be symmetric or asymmetric, linear or non-linear, depending upon the 
country, industry and period under study. In Chapter 4 the consequences of a linear, 
asymmetric adjustment cost function will be examined on competitors’ profits, market 
supply and social welfare. One of the model’s outcomes is that firms do not 
instantaneously react on environmental turbulence, such as a business cycle, but 
stay inert concerning their production levels if the market size starts to change. The 
issue of inter-firm heterogeneity, concerning adjustment costs, turns out to be an 
interesting subject of research.  
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Managerial inertia. 
As may be clear from previous considerations, empirical evidence supports the 

presence of nonprofit maximizing behaviour, in OE terminology: managerial inertia, 
on an organization’s work floor. In the “Behavioral Cournot” competition models two 
forms of managerial inertia are included, namely preference for size (or sales 
volume) and preference for market share. We note that in the principal-agent models 
of Fershtman and Judd (1987), Sklivias (1987), Vickers (1985) and Basu (1995) - 
Basu considers a three-stage sequential game, where in the first stage owners 
decide to hire a manager or not - in essence always preference for size is 
considered. Concerning the model’s schematic presentation (p.6), the term “weighted 
preference” is used. In this thesis a model parameter (α or a) is introduced to tune 
the managerial level (weight) of preference for size or market share (in the models α 
or a equal to 1 indicates equal weights for profit and size or market share in firm’s 
objective function).Therefore the implications of firms’ heterogeneity, with respect to 
their levels of preference, can be studied by allowing different values of these model 
parameters between rivals. And if we choose this specific parameter equal to zero, 
we deal with managers’ (classical) profit-maximizing behaviour (concerning the 
principal-agent models profit-maximizing behaviour corresponds with an owner who 
hires no managers). This profit-maximizing case provides a natural point of 
reference.  Clearly a difference between managers’ preference for size or market 
share strikes the eye: whereas the first form of managerial inertia deals with the 
absolute supply level of the firm, the second form takes into account a firm’s 
production levels in relation to market supply. In this thesis also the implications of 
larger levels of preference are examined (for instance the level of managerial inertia 
may increase in a declining market). Chapter 3 deals with preference for size, 
whereas Chapters 5 and 6 deal with managerial preference for market share. We 
note that the analysis of the consequences of managers’ preference for market share 
is mathematically much more complicated than cases which consider preference for 
size.  
 
Research topics in this thesis. 

Before we present a schematic summary of the Chapters and their topics of 
research we briefly mention and motivate these research issues. 
 

• Demand turbulence. In empirical studies in the field of Organizational 
Ecology (OE), the market size is referred to as the carrying capacity of a 
population of organizations. Obviously carrying capacity highly influences the 
survival chances of firms in a population; a declining market size intensifies 
competition, because all incumbent rivals depend on market demand. In our 
models (in Chapters 3 and 4) demand turbulence is introduced by modeling 
declining, increasing and cyclical demand (using the “market size” parameter 
m).  

 
• Strategic competition. Because in the “Behavioral Cournot” models the 

output levels of each firm crucially depend on the rival’s supply level, 
competition is per definition strategic (we use naïve expectations, i.e. a 
competitor uses rival’s previous output in its decision making). A crucial 
question in this thesis is whether firms may use their (level of) structural 
inertia, such as adjustment costs and managerial preferences, as a strategic 
instrument. If firms are able to adapt their levels of inertia rationally (as in the 
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principal-agent two-stage sequential games), they (for instance the owners) 
may choose an optimal level of inertia. If firms cannot change their managerial 
levels of preference or adjustment costs quickly enough, from the standpoint 
of Organizational Ecology, selection will favour those firms with the most 
advantageous levels of inertia (concerning profitability) in a Darwinian 
selection process. Research focusses on this intriguing issue in Chapters 3, 4, 
5 and 6. 

 
• Structural inertia. We already motivated in detail the modeling of forms of 

structural inertia, supported by results from empirical research. 
 
• Cost- and product heterogeneity. Differences between competitors may 

include a heterogeneity in the efficiency of their production technologies. In 
Chapter 3 this difference is reflected by different unit production costs, 
whereas in the other Chapters only equally efficient rivals are studied. We also 
focus on homogeneous products, although future research will include product 
heterogeneity (and Bertrand competition) as well. In Chapter 3 an interesting 
issue is whether a (relative) inefficiency in the production process may be 
compensated by managerial preference for size in a competitive setting (now 
we hope your level of curiosity has increased further). 

 
• Social welfare. The examination of the influence of structural inertia on social 

welfare - defined as the sum of both rivals’ profits (producer surplus) and 
consumer surplus -  receives significant attention in Chapters 4 and 5. If 
managers’ bonuses are strongly correlated with (growth of) size or market 
share, executives might be willing to sacrifice profitability, to enhance sales 
and hence their own compensation. To anticipate one of the outcomes (of 
Chapter 5): as an implication of preference for market share, indeed firms’ 
equilibrium profits are sacrificed. The question is which level of managerial 
inertia is still “healthy”, concerning social welfare. 

 
• Complicated dynamics. Baumol and Benhabib (1989) discuss the 

implications of chaos for economic modeling and state that: “Yet all that may 
be involved, as we will see, is the phenomenon referred to as chaos, a case 
that is emphatically not pathological, but in which a dynamic mechanism that is 
very simple and deterministic yields a time path so complicated that it will pass 
most standard tests of randomness.” In Chapter 2 hill-shaped reaction curves 
(without a microeconomic foundation) result in chaotic supply paths. In 
Chapter 5 it will be proved that managerial preference for market share may 
result in non-monotonic reaction curves, thus implying the possibility of chaos. 
In our model firms’ naïve expectations may lead to an error between the 
predicted and actual output. If firms were to detect some patterns in their 
forecasting errors, they would possibly revise their expectation formation. 
Hommes (1998) examines elaborately the autocorrelation between these 
forecasting errors concerning a price adjustment (Cobweb) model, using 
various expectation schemes of the agents. His concepts and use of 
techniques may be interesting for future research, concerning competing firms. 

 
The following matrix summarizes the topics which receive attention in this thesis. 

This schematic overview reveals that heterogeneity between firms, reflected in their 
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production technologies is only considered in Chapter 3, mainly due to the fact that 
reaction functions corresponding with managerial preference for market share 
possess a rather complicated mathematical form. If different levels of preference for 
market share and different production costs are involved in the model, Cournot-Nash 
equilibria resulting from the duopoly case can only be obtained by using numerical 
methods. 
 
Research framework summarized (+ means this topic receives attention, 
whereas --  indicates no current attention) 
 
 Ch. 2 Ch. 3 Ch. 4 Ch. 5 Ch. 6 
 
Demand 
turbulence 
 

 
-- 

 
+ 
 

 
+ 

 
-- 

 
-- 

 
Strategic 
competition 
 

 
+ 

 
+ 

 
+ 
 
 

 
+ 

 
+ 

 
Structural 
inertia 
 

 
-- 

 
+ 

 
+ 

 
+ 

 
+ 

 
Cost/Product 
Heterogeneity 
 

 
-- 

 
+ 

 
-- 

 
-- 

 
-- 

 
Welfare 
 
 

 
-- 

 
-- 

 
+ 

 
+ 

 
-- 

 
Complicated 
dynamics 
 

 
+ 

 
-- 

 
-- 

 
-- 

 
+ 

 
 
The models’ outcomes from two different perspectives. 

We may reflect on the analytic results of this thesis’ game theoretic modeling  
from two perspectives, namely from an Organizational Ecology (OE) and an Industrial 
Organization (IO) point of view. Because both economic disciplines use competition 
as a central concept, game theoretic models may contribute to the insights of both 
disciplines. OE primarily involves empirical work (which does not mean that no 
mathematical modelling is used in this field) and has mainly focused on diffuse or 
indirect competition, i.e. rivals influence each other because they compete for the 
same limited resources (such as the market demand for their products). IO, however, 
describes and models many different types of competition, varying from perfect 
(diffuse) competition to oligopolistic (direct) competition; firms may use strategic 
actions to deter entry or to outcompete rivals. The two-stage sequential games of 
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Fershtman and Judd (1987), Sklivias (1987) and Vickers (1985) also assume 
strategic use of nonprofit maximizing objectives (determined by firms’ owners).  
Because structural inertia plays a crucial role in this thesis, we first consider the 
inertia hypothesis of OE and then we will reflect on the IO standpoint, i.e. firms’ use 
of strategic moves. 
  
 
The inertia hypothesis. 

Hannan and Freeman (1984) argue that (assumption 1): “Selection in populations 
of organizations in modern societies favors forms with high reliability of performance 
and high levels of accountability”. Briefly speaking, a firm’s reliability and 
accountability requires that structures of roles, authority and communication must be 
reproducible from day to day. So firms create and maintain standardized routines 
(“blueprints”) and this naturally implies (relative) inertia; the speed at which a firm 
may reorganize its procedures and “blueprints” is subject to resistance and therefore 
may be lower than the rate at which the environment changes. These arguments lead 
to Hannan and Freeman’s (1984) famous inertia hypothesis: 

 
  “Selection within populations of organizations in modern societies favors  
organizations whose structures have high inertia” 

 
However, others argue that firms should be highly flexible concerning their 
bureaucratic blueprint (Volberda (1998)) and another study on organizational decline 
suggests that “strategic paralysis” - a firm’s inert strategic behaviour - foreshadows a 
firm’s bankruptcy (D’Aveni (1989)). The analytic outcomes of our game theoretical 
models contribute to the inertia debate. For instance one of the results is that (van 
Witteloostuijn, Boone and van Lier (2003): 
 

“An organizationally flexible (i.e., without production adjustment costs) firm will be  
outcompeted by an organizationally inert (i.e., with production adjustment costs)  
rival in a declining market. The opposite holds true in a booming market.” 

 
This result (of Chapter 4) supports Hannan and Freeman’s inertia hypothesis in a 
declining market. The results of the analysis of Chapters 3, 4, 5 and 6 may be looked 
upon from the OE standpoint. This means that the weights attributed to size (α  in the 
models of Chapter 3) or market share (a in the models of Chapters 5 and 6) in the 
objective function, or the adjustment cost parameters (l and u in Chapter 4) are fixed 
(inert). So all sorts of heterogeneities concerning these levels of inertia between two 
rivals can be considered. 
 
“Strategic consciousness”. 

As already mentioned earlier, firms may hold idle capacity to deter a possible 
entrant (Bulow, Geanakoplos and Klemperer (1985)) and owners may use their 
managers’ incentive contracts as a strategic weapon in direct competition (Fershtman 
and Judd (1987) and others). This strategic action rests on three assumptions. First a 
firm (owner) has to be aware of the strategic consequences of its action - we use the 
term “strategic consciousness” - and second a firm must have the possibility to 
change the relevant characteristic, thereby using it as a strategic instrument. Third 
the firm must have adequate information concerning its rival’s relevant parameters 
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(full information about rival’s incentive contracts). For instance, what will be the 
consequence of delayed information, concerning rival’s “incentive parameters”?   

One of the outcomes of Chapter 4’s analysis is that production adjustment costs 
are advantageous in a declining market. However in the light of a firm’s structural 
inertia, firms may not be able to heighten these costs - for instance by changing 
human resource management practices - in the short run. And firms may not be 
aware of the implications of production adjustment costs. On the other hand, if 
competitors are able to adapt their production adjustment costs, because enough 
time is available and they behave rationally, this may result in a two-stage sequential 
game; firms first “choose” their level of organizational inertia and then both firms 
manipulate their output levels. The same reflections, concerning rational and 
strategic behaviour, hold for managerial inertia. 

One of the interesting analytic results is that there exists an optimal level of 
structural inertia. Concerning managerial inertia we mention a result of Chapter 5. 

 
“If a firm attributes weight to its market share, whereas its competitor is a  
(classical) profit-maximizer (for instance an owner who hires no managers), there  
exists a level of preference for market share, which maximizes the “market share  
loving” firm’s profit.” 

 
From an OE standpoint selection favors firms with a certain level of managerial 

inertia in a Darwinian selection process. However, from a IO point of view a firm may 
change its level of managerial inertia to enhance its profitability and strengthen its 
strategic position in the market. We conclude this introduction with advices for the 
reader and some minor notes. 
 
To the reader. 
 

• You may wish to read and study the chapters of this thesis separately. 
Chapters 2, 3, 4 and 5 can be studied as independent units. The study of 
Chapter 6, however, requires some previous analytic results of Chapter 5. 
Beside these prerequisites, first reading Chapter 2 is recommended, because 
both Chapters 2 and 6 deal with complicated dynamics, including chaos. 

 
• The production cost function considered in the analysis of Chapters 4, 5 and 

partly Chapter 6 is quadratic. This allows us to study also the implications of 
production technologies with increasing and decreasing returns to scale. You 
may wish to reflect on the implications of constant marginal production costs: 
just choose the parameter d in the expressions equal to zero. 

 
• Chapter 6 concludes with a reflection on Stackelberg leadership. This 

deviation from the “Behavioral Cournot” model, is motivated by the fact that, as 
an implication of preference for market share, the size of the “market share 
loving” firm may amply exceed the competitor’s supply volume. 

 
I hope that in reading this thesis, you may experience the same level of satisfaction 
as I did in delivering a report of my research. 
 



Chapter 2 Chaotic Patterns in Cournot Competition 13 

CHAPTER 2 
 
CHAOTIC PATTERNS IN COURNOT COMPETITION 
 
Apart from a few adjustments, this Chapter is based on a publication in 1990: Van Witteloostuijn A. 
and Van Lier A.: “Chaotic patterns in Cournot competition”, Metroeconomica, 41, 161-185, 1990.  
 
 
 
1. Chaotic patterns in economics 
 

Chaos theory offers a new mode of analyzing the complexity of nonlinear 
(economic) dynamics. A growing list of applications is mainly focused on modeling 
macroeconomic (growth and business) cycles and dynamic (consumer's and firms') 
choice. This Chapter provides a nonlinear dynamic model of Cournot competition. 
The model improves upon Rand (1978) and Dana and Montrucchio (1986) by 
permitting monopoly output to be positive. The existence of chaotic regimes is 
proven and simulation experiments illustrate the implications. 

In the 1970s and 1980s chaos theory broke and still “breaks across the lines that 
separate scientific disciplines. Because it is a science of the global nature of systems 
it has brought together thinkers from fields that had been widely separated” (Gleick 
(1987, p. 5)). Gleick (1987, Chapter 2) does not hesitate to characterize the rise of 
chaos theory as a revolution, since it “has become not just a canon of belief but also 
a way of doing science. ... Some carry out their work explicitly denying that it is a 
revolution; others deliberately use Kuhn’s language of paradigm shifts to describe 
the changes they witness” (pp. 38-39). 

The essential notion of chaos theory is that (even simple) dynamic systems may 
generate seemingly random and chaotic patterns. Irregular and unpredictable time 
paths result from deterministic sources. Baumol and Quandt (1985) offer the 
illustrative, if imprecise, description that “chaos is defined as a fully deterministic 
behaviour pattern which is, in at least some respects, undistinguishable from a 
random process or, rather, a process perturbed by substantial random elements. It 
displays extreme sensitivity to changes in parameter values, and is characterized by 
an infinite number of equilibria each approached by (superimposed) cycles of 
different periodicities, and whose simultaneous presence is what gives the 
appearance of randomness to a time series generated by a deteministic process” (p. 
3). Chaos theory reaches an analytical apparatus which has found application in 
many scientific disciplines. 

This Chapter loosely defines chaos as to three features of dynamic trajectories: 
(i) sensitive dependence on initial conditions; (ii) existence of periodic orbits of all 
periods; and (iii) existence of an uncountable set of initial conditions that each give 
rise to (asymptotically) aperiodic time paths (Kelsey (1988, p. 9)). The point of 
departure is a first-order difference equation (with a continuous function f ) , 
 

)(1 tt xfx =+ , (2.1) 
 
which can be associated with chaotic trajectories if nonlinearity gives a hill-shaped 
function. The key point is that “it cannot be too strongly emphasised that the process 
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is generic to most functions with a hump of tunable steepness” (May (1976, p. 461, 
italics added)). Particular specifications of equation (2.1) can give a sequence of 
bifurcations such that “the pattern never repeats” (May (1976, p. 461)). For the 
moment, this intuition suffices. An excellent, general review of the merits of nonlinear 
dynamics is May (1976), whereas Kelsey (1988) and Baumol and Benhabib (1989) 
offer nice introductions of chaos theory in economics. A mathematical introduction to 
chaotic one- and higher- dynamical systems is provided by Devaney (1989). For 
more detailed mathematical information of maps on the interval (after all the function 
f of equation (2.1) is such a map) we refer to De Melo and Van Strien (1993).  

In the late 1970s and early 1980s the methodology of nonlinear dynamics also 
entered the economic scenery. The most widespread use of chaos theory lies in the 
field of macroeconomic (business and growth) cycles (Stutzer (1980), Benhabib and 
Day (1980,1982), Day (1982,1983), Dana and Malgrange (1984), Day and Shafer     
(1985,1987), Grandmont (1985,1986), Boldrin and Montrucchio (1986), Deneckere 
and Pelikan (1986) and Julien (1988)). These models induce “the profession’s 
growing awareness of the fact that, even in the absence of extraneous shocks, the 
internal (nonlinear) dynamics of an economy may generate quite complex periodic 
orbits or even nonexplosive ‘chaotic’ deterministic trajectories, that may be hard to 
distinguish from ‘truly random’ time series ... . Indeed, the recent approach to 
endogenous business cycles relies often on advances made lately in the 
mathematical theory of nonlinear dynamical systems, in particular the analysis of 
sudden qualitative changes displayed by their trajectories (‘bifurcations’)” 
(Grandmont and Malgrange (1986)) (1). 

The second class of applications of chaos theory to economic frameworks are 
nonlinear models of (consumers’ and firms’) dynamic choice (Rand (1978), Benhabib 
and Day (1981), Baumol and Quandt (1985), Dana and Montrucchio (1986), 
Granovetter and Soong (1986), Rasmussen and Mosekilde (1988), and Iannaccone 
(1989)). These contributions “show that rational choice in a stationary environment 
can lead to erratic behaviour ... . We mean by erratic behaviour choice sequences 
that do not converge to a long-run stationary value or to any periodic pattern” 
(Benhabib and Day (1981, p. 459)). A particular type of nonlinear models of dynamic 
choice focuses on Cournot competition (Rand (1979), and Dana and Montrucchio 
(1986)). This Chapter offers a constructive critique of the two existing nonlinear 
models of Cournot (duopoly) competition. 

The Chapter is organized as follows. Section 2.2 describes the essential features 
of the two existing nonlinear models of Cournot (duopoly) competition. A basic flaw 
of these models is the (implicit) assumption that monopoly output is zero. Section 2.3 
presents a model of Cournot duopoly competition which permits monopoly output to 
be positive. Section 2.4 illustrates the model’s features with the help of the results of 
simulation experiments. Section 2.5 briefly indicates the applicability of the analytical 
apparatus of nonlinear dynamics to topics of theory of competition in industrial 
organization. 
 
 
 

                                                 
(1) Of course, business and growth cycles with chaotic patterns may follow endogenously from agents’ 
behavior, where the agents’ decision making induces a chaotic sequence of choices (for instance, via agents’ 
hill-shape offer curves in Grandmont (1985)) 
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2. Nonlinear models of Cournot competition 
 

Examples of the introduction of chaos theory in industrial organization are 
scarce. Dana and Montrucchio (1986) argue that “the only exception is the seminal 
paper of Rand ..., which shows, in a very abstract manner, that the Cournot 
tâtonnement in a duopoly model may display a complicated dynamical structure” (p. 
41). The current state of the art is not much different. Only Dana and Montucchio’s 
(1986) treatment of Cournot duopoly models provides a further contribution to the 
application of nonlinear dynamics to topics in industrial organization (2). The 
nonlinear models of Cournot competition indicate that rivalry in a market can be 
associated with turbulent movements of the firms’ quantities if the competitors’ 
reaction functions are hill-shaped. 

Recall that the Cournot (1838) duopoly model implies that a firm i chooses a 
supply quantity ( ix ) so as to maximize a profit ( iΠ ) function, conditional upon the 
quantity offered by the rival )( jxj  to equal , 
 

)()( iiiji
i

x
xcxxxp

i

−⋅+=ΠMax  (2.2) 

 
where p  denotes the inverse demand function and so price and c  the cost of 
production. Solving the maximand (2.2) gives the first-order condition 
 

0d/d)d/d1()(d/d)( =−+⋅+⋅++ iiijjiiji xcxxxxpxxxp  (2.3) 
 
From condition (2.3) the firm’s reaction function follows: 
 

)( j
i

i xRx = , (2.4) 
 
where jiji ≠=  and  , 2,1  with the Nash assumption that a firm expects a passive 
reaction of the rival upon its quantity strategy 0/ =ij xx dd . In the standard Cournot 
duopoly models (Tirole (1988)) chaotic patterns cannot emerge, since the rivals’ 
reaction functions (2.4) are assumed to be linear or insufficiently nonlinear (i.e., 
without a hill-shape). 

The introduction of nonlinear dynamics in a Cournot duopoly model requires that 
at least one of the rivals’ reaction functions is hill-shaped. The reason is 
straightforward. Suppose that neither of the reacton functions takes a hill-shaped 
form; that is jijixxR jj

i ≠=≥≥≤  and   where, for  ) (or 2,1,00d/d .Assume that rival 1 
and 2 react according to the time sequence ..., t - 1, t, t + 1, ... . For example, if rival 1 
offers a quantity 1,1 −tx  at time t - 1, then rival 2 reacts by supplying tx ,2  at t which 
provokes rival 1’s reaction 1,1 +tx  at t+1, etcetera. Then, )( ,1, tj

i
ti xRx =+  so that 

)())(( 1,1,1, −−+ == ti
i

ti
ji

ti xkxRRx . Now, 0d/dd/dd/d 1,,1,  ) (or ≥≤⋅= −− ti
j

tj
i

ti
i xRxRxk . Hence, 

the absence of hill-shaped reaction functions implies that the second-order 

                                                 
(2) A further exception is perhaps Baumol and Quandt’s (1985) nonlinear model of advertizing. 
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difference equation of a rival’s quantities shows not even a single hump because the 
sign of the derivative of the (composed) function ik is unchanging. 

Rand’s (1978) approach to the Cournot duopoly model is very abstract indeed by 
directly postulating unspecified reaction functions with sufficient nonlinearity. Rand 
treats an example of an analytical hill-shaped function and a nonanalytical tent map. 
Analytical hill-shaped first-order difference equations can have chaotic regimes 
(Section 2.1). Besides, nonanalytical first-order difference equations can also give 
chaotic patterns for particular ranges of parameter values (May (1976, p. 465) and 
Devaney (1989, p. 52)). Dana and Montrucchio (1986) supplement Rand’s treatment 
of chaotic behaviour in Cournot duopoly models by, among other things, providing 
five specified examples. Given the desired hill-shaped specification of the reaction 
function(s), they derive (an) associated specification of profit function(s). 

Both Rand’s and Dana and Montrucchio’s reaction curves have the shape which 
is depicted in Figure 2.1 (for the analytical case). We will comment on the concepts 
“strategic complements and substitutes” in Section 2.3.  

 

       
Fig. 2.1  Hill-shaped Cournot reaction curve with zero monopoly output. 
 

The ad hoc assumption of hill-shaped reaction functions in Rand’s and Dana and 
Montrucchio’s analyses leaves an essential question unanswered: Can an economic 
rationale be provided for the (very complicated) nonlinear shape of the profit 
functions? Kelsey (1988) points out that the “shapes of the reaction functions [Rand] 
assumes are very extreme indeed. It does not look like they could be generated by 
plausible demand and cost functions” (p. 19). However we mention three 
microeconomic foundations for the occurrence of hill-shaped reaction curves. Puu 
(1991) proves that under the assumption that the quantity demanded is reciprocal to 
price (and with constant unit production costs), reaction curves are unimodal.  And 
Kopel (1996, pp.2036-2038) demonstrates that cost functions incorporating an 
interfirm externality lead to quadratic and hill-shaped reaction curves as well. That 
these nonlinear shapes of the reaction curves can also be generated under the 
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assumption of a non-profit maximizing objective function is the main subject of 
Chapter 5.  If equation (2.2) is modified by adding a non-profit part, unimodal 
reaction curves are quite possible. General conditions and a specification will be 
provided in Chapter 5 whereas the interesting and complicated dynamics will be 
examined in Chapter 6. 

But another crucial observation immediately strikes the eye. The usual 
illustration of a hill-shaped curve implies that 0)0( == i

i xR . The reaction curves in 
Rand (1978), Dana and Montrucchio (1986), Puu (1991) and Kopel (1996) all show 
this feature. This means that the (implicit) assumption is imposed that firm i offers a 
zero output in response to firm j’s zero production: that is, monopoly output is taken 
to be zero! However, this assumption is not very realistic. This extreme case can be 
bypassed by introducing a 0)0( >= iM

i Rx , where M
ix  represents firm i’s monopoly 

output (which, for example, can follow from the standard maximization procedure of 
a monopolist). Figure 2.2 illustrates the shape of this reaction function. 

 

         
Fig. 2.2  Hill-shaped Cournot reaction curve with positive monopoly output. 
 

The hill-shaped Cournot reaction curve with positive monopoly output induces a 
further question: Can a proof of the existence of chaotic regimes still be provided? 
Section 2.3 goes on to examine both questions of economic interpretation and proof 
of existence. 
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3. Cournot reaction curves with positive monopoly output  
 

Concerning the economic interpretation we discuss three concepts namely the 
asymmetric reaction pattern, strategic substitutes and complements and idle 
capacity. Then a general formulation of Li and Yorke’s Theorem will be given and 
this condition will be applied to three different duopoly scenarios: a “dualist” against 
an “imitator”, a “dualist” against an “accommodator” and finally a “dualist” against a 
“dualist”.  The specification of a reaction function with positive monopoly output, 
which contains a parameter α , enables us to derive a condition for these parameter 
values corresponding with chaotic regimes. 
 
Asymmetric reaction pattern. 

The critical implication of the hill-shape of a reaction function is that a firm shows 
an asymmetric reaction pattern. For T

jj xx <  (Fig. 2.2) firm i and j’s supplies are 
positively correlated, whereas T

jj xx >  is associated with a negative relationship 
between ji xx  and . Hence, for T

jj xx <≤0  firm i acts as a follower or imitator. If firm j 
expands output, so does firm i. Whenever firm j contracts supply, firm i too 
introduces a decrease of the quantity offered. However, if firm j expands its output 
beyond T

jx , then firm i starts to act as a fringe competitor of accommodator. On the 
one hand, whenever firm j expands output, firm i simply adapts to reduced residual 
demand. On the other hand, if firm j contracts output, then firm i adopts an 
aggressive strategy by expanding its supply. 
The asymmetric reaction pattern follows from the switch in sign of the first-order 
derivative of the reaction curve. A firm with an asymmetric reaction pattern can be 
called a dualist: that is, the firm’s reply can be to imitate as well as to accommodate, 
depending on the scale of the rival’s output.The reaction curve of a dualist is hill-
shaped. 
 
Strategic substitutes and complements. 

Types of reaction patterns can be distinguished as to the features of the cross-
partial derivatives of the firm’s profit with respect to its opponents’ action (Bulow et 
al. (1986, pp. 491-497), and Tirole (1988, p. 208)). Here it suffices to note that “with 
strategic substitutes B’s optimal response to more aggressive play by A is to be less 
aggressive ... . With strategic complements B responds to more aggressive play with 
more aggressive play” (Bulow et al. (1986, pp. 494)). In terms of Cournot competition 
this means that strategic substitutes predict 0d/d <j

i xR , whereas strategic 
complements indicate 0d/d >j

i xR . Hence, the substitute or complement nature of 
the firm’s reaction pattern is reflected in the sign of the reaction curve’s slope. Both 
cases are depicted in Figures 2.3a and b (Tirole (1988, p. 208)). The reaction 
function which follows from strategic complements (curves I), describes the reaction 
pattern of an imitator, whereas an accommodator’s responses are reflected in the 
reaction curve with strategic substitutes (curves II). 
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Fig. 2.3a  Strategic complements.             Fig. 2.3b Strategic substitutes. 
 
Idle capacity 

Bulow et al. (1985, p. 180, see also Fig. 2.2) provide an answer to the first 
question by offering an economic interpretation of hill-shaped reaction curves with 
positive monopoly output in terms of strategic substitutes and complements. Here 
the following brief intuition suffices. Starting from monopoly output a firm is willing to 
increase supply in reaction upon entry, which contradicts the downward slope of 
standard Cournot reaction curves: that is, starting from monopoly output the firm 
regards outputs as strategic complements. This assumption follows from the 
literature on entry deterrence. Two arguments offer a case in point. First, the 
aggressive strategy after entry is described in the literature on idle capacity as an 
entry-deterring instrument (Spence (1977, 1979), and Ware (1985)). Second, the 
post-entry expansion policy can be grounded in long-run reputation arguments, even 
if this strategy is not profit-maximizing from a short-run perspective (Milgrom and 
Roberts (1982, 1987), and Arvan (1986)). 

However, the expansion policy does not pay if the rival’s scale moves beyond a 
particular point. After a certain scale of expansion ( Tx ) the benefit of accommodation 
starts  to dominate over the advantage of the aggressive strategy, which implies that 
the standard downward slope of the Cournot reaction curve sets in: that is, the firms 
consider outputs to be strategic substitutes. The hill-shape of Cournot reaction 
curves can follow from demand specifics. The key point is that the “assumption that 
each firm’s marginal revenue is always decreasing in the other’s output ... is quite a 
restrictive assumption. For example it is never satisfied in the relevant range for 
economists’second-favourite demand curve - constant elasticity demand” (Bulow et 
al. (1985, p. 178)). 
 
Proof of existence by application of Li and Yorke’s Theorem. 

Granovetter and Soong (1985, pp. 92-93) provide a graphical intuition which 
suggests that chaotic regimes can occur in hill-shaped functions with a positive 
intercept (in a model of nonlinear consumers’ choice) without, however, offering a 
proof. Li and Yorke (1975) provide however a theorem which can be used to prove 
the existence of chaotic regimes in general. This chapter employs an abbreviated 
version of this theorem. 
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Theorem of Li and Yorke  
The first-order difference equation (2.1), where f  is a continuous map of an interval 
J into itself, gives chaotic regimes if there exists a value of Jxt ∈ such that 
 

213 +++ <<≤ tttt xxxx  (3). (2.5) 
 
Following Day (1982, 1983) Li and Yorke’s Theorem can be re-expressed as 
 

mcm xxxxf <<≤ ∗)( , (2.6) 
 
where 
 

)()(
0

xfxfx
xm  max

>

∗ ==  and *)( xxf c = . (2.7) 

If the function f(x) is hill-shaped, the inequality x* < xm is equivalent to xc < x* and the 
inequality cm xxf ≤)(  can be formulated as ∗≤ xxf m )(2 , where ))(()(2 xffxf = , the 
second iteration of f .  Then, the theorem of Li and Yorke can be re-expressed as 
 

mm xxxf <≤ ∗)(2 . (2.8) 
 
Form (2.8) will be used to prove that there exists an uncountable set ℵof initial 
conditions that give rise to chaotic time paths for a significant class of hill-shaped 
reaction functions with positive monopoly output. The remainder of this Section 
contains the analysis of the three cases mentioned in the introduction: (1) one firm 
(re)acts as a dualist, whereas the rival is an imitator; (2) one firm is a dualist, while 
the rival responds as an accommodator; and (3) both rivals behave as dualists. It 
appears that all three cases can be associated with chaotic reaction patterns. 
 
Case 1: Dualist against imitator. 

The reaction function of firm i, )( j
i xR , is assumed to be hill-shaped (with positive 

monopoly output), whereas the reaction function of firm j is supposed to resemble 
ii

j xxR =)( . This scenario describes competition between a dualist and a perfect 
imitator. Rival i and j react according to the time sequence ..., t, t+1, t+2, ... . this 
means  
 

)()]([)( ,,1,2, ti
i

ti
ji

tj
i

ti xRxRRxRx === ++ . (2.9) 
 
With doubled lengths of the time intervals equation (2.9) has the same form as the 
first-order nonlinear difference equation (2.1). Figure 2.4 illustrates the applicability 
of Li and  Yorke’s Theorem to a first-order difference equation which resembles 
Figure 2.2’s hill-shaped Cournot reaction curve with positive monopoly output (the 
dualist, curve I) and 45°-line (the perfect imitator, curve II). 

                                                 
(3) Hence, if there exists a cycle with period 3, then there are chaotic regimes as well. This result is related to 
Sarkovskii’s (1964) theorem (Kelsey (1988, p. 5)). 
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Fig. 2.4  Case 1: Dualist against imitator. 
 
This Chapter uses the specification 
 

1,)/11(1)( 2 >+−⋅−== ααα   jj
i

i xxRx  (2.10) 
 
for the dualist’s hill-shaped reaction curve. Note that this function possesses a 
maximum for α/11−=jx  with a value of 1=ix , whereas the monopoly output 

equals 02)0( >−== ααiM
i Rx  for 4<α . 

For a significant class of second-degree reaction functions iR  with positive 
monopoly output and assuming that firm j acts as a perfect imitator, the existence of 
chaotic regimes can be proven algebraically with the use of condition (2.8). Following 
Rand (1978) and Dana and Montrucchio (1986) output is scaled to ]1,0[, ∈ji xx  . If 

0)1( =iR  and the maximum of iR  is 1, then condition (2.8) indicates that a necessary 
condition for proving Li and Yorke’s chaos is ∗≤ xRi )0( . That is, the monopoly output 

M
ix  is restricted by the upperbound ∗x  (i.e., the location of the maximum). 

 
Proposition 2.1 (chaotic regimes concerning a dualist and an imitator). 
 
If 2)/11(1)( αα +−⋅−== jj

i
i xxRx  and ii

j
j xxRx == )( , and for the parameter α  it 

holds that 4...0795.3 <≤ α , there exists an uncountable set  ℵ  of initial conditions 
with chaotic (asymptotically aperiodic) time paths and for every natural number k 
there exists a time path with period k. 
 

The proof of Proposition 2.1 is offered in Appendix 2.1. Proposition 2.1 indicates 
that Cournot duopoly competition can be associated with chaotic trajectories if a 

ix  

jx  0)( =mxf  *x  mx  
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dualist (that is, a firm with a hill-shaped reaction function) competes against a perfect 
imitator, even when monopoly output is assumed to be positive. 
Proposition 2.1 is robust as regards to modifications of the assumption that rival j 
(re)acts as a perfect imitator. First, take the case where competitor j only imitates 
imperfectly. 
 
Proposition 2.2 (concerning a dualist and an imperfect imitator).  
 
If the reaction function of firm i has the parabolic form as indicated in Proposition 2.1 
but with 4...0795.3 <≤ α , then the case where the reaction function of rival j reflects 
imperfect imitation also gives rise to chaotic time paths. 
 

The proof of Proposition 2.2 is given in Appendix 2.2. The key point is that the 
reaction function of firm j is turned into )()( iii

j xxxR δ+= , where )( ixδ  indicates a 
small disturbance. The composed reaction function )( ji RR  then possesses the 
same shape as the one in the proof of Proposition 2.1, except for a small 
disturbance term, so that Li and Yorke’s condition can still be satisfied if the 
disturbance is small enough. 
 
Case 2: Dualist Against Accommodator. 

The assumption that rival j (re)acts as an imitator, can be dropped in favor of the 
well-established case which assumes a downward sloping Cournot reaction curve. 
That is, the dualist i (reaction curve I) faces an accommodator j (reaction function II). 
This scenario is illustrated in Figure 2.5a for perfect accommodation. This means 
that the accommodator j (re)acts according to ii

j
j xxRx −== 1)( . 

         
Fig. 2.5a  Case 2: Dualist against accommodator. 
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Figure 2.5b shows graphically that Li and Yorke’s theorem can be applied. The 
composed reaction function cR  (Fig. 2.5b) - with )1()( ,,2, ti

i
ti

c
ti xRxRx −==+   - can be 

used to illustrate that condition (2.6) does hold. By again making use of the re-
expressed Theorem of Li and Yorke (2.8) this result can be proven algebraically. 

          
Fig. 2.5b  Composed reaction function of a dualist against an accommodator. 
 
Proposition 2.3 (chaotic regimes concerning a dualist and an accommodator).  
 
If the reaction function of firm i has the parabolic form as indicated in Proposition 2.1 
and for the parameter α  it holds that 4...6708.3 <≤ α , then the case where the 
reaction function of rival j reflects perfect accommodation is also associated with 
chaotic time paths. 
 

Proposition 2.3’s proof is presented in Appendix 2.3. Proposition 2.3 indicates 
that Cournot accommodation can also give chaotic time patterns if one of the two 
firms decides on the basis of a hill-shaped reaction function with a positive intercept 
(i.e., if one of the rivals is a dualist with positive monopoly output). 
 
Case 3: Dualist Against Dualist. 

The third case describes the scenario where both firms have the same hill-
shaped reaction function with positive monopoly output. That is, the two rivals 
behave as dualists. This case is depicted in Figure 2.6a.  

 

cm xxf   )(   *x  1=mx  

cRf =  
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Fig. 2.6a   Case 3: Dualist against dualist. 
 
The analytical proof follows from Proposition 2.1 and because it is not very technical 
we give it here. 
 
Proposition 2.4 (chaotic regimes concerning two dualists). 
 
If the reaction functions of firm i and j have identical hill-shaped forms, chaotic 
regimes can be derived. 
 
Proof 

With reference to Appendix 2.1 this proof can be brief. Appendix 2.1 proves that 
the function )(xfα  in the difference equation gives rise to a chaotic set ℵ , which 
generates the chaotic time paths. Two dualists firm i and j react according to the 
same reaction function with doubled length of the time intervals. So, now the 
difference equation equals 
 

))(( ,1, titi xffx αα=+  
 
and with ix  replaced by x   
 

)())(( 2
1 ttt xfxffx ααα ==+  

The function 2
αf  - the second iteration of αf  - gives rise to (asymptotically aperiodic) 

time paths too, because a time path of 2
αf  can be derived by skipping the “odd 

terms” in a time path of αf (in other words the chaotic sets of 2
αf  and αf  are equal). 

jx 1 

ix  

1
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Because αf  generates time paths with period k (Proposition 2.1), where k can be 
every natural number, the function 2

αf  gives the same result. 
 [End of proof] 

 
Proposition 2.4 predicts that Cournot competition between two rivals which are 

making use of equivalent hill-shaped reaction functions with positive monopoly 
output, can be associated with chaotic trajectories of output. 
Figure 2.6b shows the compound reaction curve ( )(2 xfα= ) of two dualists and can 
be used for a graphical proof of the existence of Li and Yorke’s chaos. 
 

      
Fig. 2.6b  Composed reaction function of a dualist against a dualist. 
 

*x  1=mx  

1

cx  )( mxf  

2
αfRc =  



Chapter 2 Chaotic Patterns in Cournot Competition 26 

4. Simulation examples 
 
Functional specifications. 

The implications of hill-shaped Cournot reaction curves can be illustrated 
through simulation of competition for a series of (counter-)moves (4). The simulation 
experiments cover 120 moves (or periods 1190  ..., ,=t ): that is, both rivals act and 
react 60 times. Rival i sets supply in even-numbered periods ( 118420  ..., , , ,=t ), 
whereas rival j’s replies are effectuated at odd-numbered dates ( 119531  ..., , , ,=t ). 
Two initializations dictate the simulation results. First, by varying the value of the 
parameter (α ) the steepness of the hill-shaped reaction function (2.10) can be 
tuned. Second, variation of the first move ( 0,ix ) manipulates the initial competitive 
condition. 

The experiments simulate the dualist against imitator rivalry (Section 2.3, case 
1). Firm i is the dualist ( 2)/11(1)( αα +−⋅−== jj

i
i xxRx ) and firm j acts as a perfect 

imitator ( ii
j

j xxRx == )( ). Since the results are similar for both rivals, this section 
presents only firm i’s outputs (at even-numbered periods). Table 2.1 indicates the 
initial values of the simulation experiments. 
 
Table 2.1  The initial values of the simulation experiments 
 

Simulation 
experiment 

Initial monopoly 
 Output 

Steepness 
parameter α 

Figure 

I 0.310 3.35 2.7 
II 0.300 3.35 2.8 
III 0.310 3.34 2.9 and 2.11 
IV 0.998 3.35 2.10 

 
The simulation experiments reveal three properties of complex dynamics: (i) 

chaotic regimes for particular parameter values; (ii) sensitive dependence on initial 
conditions; and (iii) sudden breaks in qualitative patterns. These features can pose 
serious problems to econometric estimation. 
 
Property (i): Chaotic trajectories. 

The first consequence of nonlinear dynamics can of course be the occurrence of 
chaotic trajectories. If rival firms are engaged in Cournot competition while at least 
one competitor is making supply decisions on the basis of a sufficiently steep, hill-
shaped reaction function, the time pattern of both rivals’ quantities mimics a random 
walk. The first simulation experment (I) illustrates this point. Figure 2.7 depicts the 
series of supplies of firm i (the Lyapunov exponent L defined by )()'( xfL n

n
ln  lim n

1 ⋅=
∞→

) 

is 0.48) (5). 

                                                 
(4) For example, Baumol and Quandt (1985) and Baumol (1986) also offer interesting simulation examples, 
whereas Sterman (1989) presents the results of an experimental study. 
(5) The Lyapunov exponent indicates chaos for L > 0 (Lorenz (1989, pp. 186-191)). 
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In period 0=t  firm i starts to supply close to monopoly output ( 310.00, =ix ). The 
subsequent reactions of firm i reveal a chaotic trajectory. The series of firm i’s 
supplies fails to show a systematic (periodic) pattern: history does not repeat.  

For example, the pattern of quantities from period 104=t (indicated by an arrow) 
to 108=t  differs qualitatively from the trajectories in both history and future. The time 
pattern of firm i’s outputs mimics a random walk. 
 

 
 
Fig. 2.7  A chaotic trajectory corresponding with α = 3.35 and xi,0 = 0.310. 
 
Property (ii): Sensitive dependencies. 

The second property of complex dynamics can be illustrated by assuming a 
small change in the initial conditions. The second simulation (II) assumes monopoly 
output to be slightly below the first simulation’s level. Figure 2.8 shows that the 
trajectory of rival i’s quantities changes dramatically (L = 0.49). This means that 
history matters. 

Period 0=t ’s monopoly output is slightly below the first simulation’s level ( 0,ix  is 
decreased from 0.310 to 0.300). The trajectory of firm i’s outputs in simulation 
experiment II is completely different from experiment I’s pattern. For example, any 
resemblance between simulation I and II’s output trajectory in period 56=t (arrow) to 

66=t  and 78=t (arrow) to 82=t  is absent. This illustrates the observation that the 
pattern of quantities is extremely sensitive to minor changes (here a 0.01 reduction) 
in the level of initial monopoly output. Figure 2.9 shows that the same is true for 
small variations in the value of parameter )49.0( =L α . 
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Fig. 2.8  Sensitive dependence on xi,0 with α = 3.35 and xi,0 = 0.300. 
 

 
 
Fig. 2.9  Sensitive dependence on α with α = 3.34 and xi,0 = 0.310. 
 

The third simulation (III) retains monopoly output at experiment I’s level, but 
introduces a minor reduction in α  (α  is reduced from 3.35 to 3.34). A sidelong glance 
at Figures 2.7 and 2.9 reveals that a 0.01 variation of parameter α  induces a radical 
transformation of firm i’s output pattern. 
 
Property (iii): Qualitative breaks 

A peculiar feature of complex dynamics is that a chaotic trajectory is associated 
with sudden breaks in the qualitative pattern. The fourth simulation experiment (IV) 
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reveals this feature as supply suddenly shows a regularity for two significant time 
intervals. Figure 2.10 presents the result (L = 0.48). For two (short) periods of time 
the pattern suggests that history repeats and also suggest a stabilizing supply level. 
But the occurrence of these (fake) equilibria is just a temporary event. 
 

 
 
Fig. 2.10  Qualitative breaks with α = 3.35 and xi,0 = 0.998. 
 

Experiment IV retains s'α  value at simulation I and II’s level, but assumes 
monopoly output to increase from 300.00, =ix  to 998.00, =ix . From period 10=t  to 

18=t  and 104=t  to 112=t  (see arrows) firm i’s supply remains almost constant, 
which suggests convergence to a single equilibrium point. However, after period 

20=t  respectively 114=t  the pattern breaks down again. 
 
Econometric Dilemma. 

Deterministic chaos poses serious problems to econometric estimation (Baumol 
and Benhabib, 1989). On the one hand, a time trajectory which is extremely 
sensitive on initial conditions, is difficult to predict. On the other hand, it is 
problematic to distinguish deterministic chaos from stochastic randomness. This is 
even more relevant if one recognizes Kelsey’s (1988, p. 12) observation that 
imposing a random error term on a hill-shaped function implies that chaos becomes 
more common. However, (at least) three arguments can be put forward to modify 
this claim. 

First, chaotic trajectories are associated with (long) periods of regularity. This 
follows from the feature that sudden regularities characterize the qualitative pattern. 
Second, new econometric techniques have been (and are) developed to test 
whether deterministic chaos or stochastic randomness (predominantly) underlies a 
particular time series (Brock (1986)). Third, an additional argument follows from the 
specifics of this Chapter’s application. The fact that individual firms can offer a 
chaotic series of quantities, does not necessarily mean that the trajectory of market 
supply is dictated by chaos as well. 
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First, if a dualist faces an imitator, the firms’ chaotic output trajectories are 
replicated at the market level. To be precise, if market supply follows from the 
summation of two subsequent moves (i.e., an output decision of both rivals), market 
output is determined by )(2 ii xx δ+⋅ . Perfect imitation of a dualist (corresponding 
with 0)( =ixδ ) implies that one firm’s chaotic output trajectory is duplicated at the 
market level. Second, if a dualist and perfect accommodator are engaged in duopoly 
Cournot competition, the result is reversed. The firms’ chaotic trajectories are not 
observed at the market level as market output follows from 1)1( =−+ ii xx . That is, 
perfect accommodation induces stationary market supply. 

The implications for market output are not so obvious if two dualists compete 
over quantities. Summation of two subsequent output levels in the four simulation 
experiments mimics market supply (X) in a dynamic dualist against dualist game with 
doubled period lengths (T). Hence, 12,2, ++= TjTiT xxX : that is, 1,0,0 ji xxX += , 

3,2,1 ji xxX +=  etcetera. The four simulation experiments give the same result: the 
chaotic output trajectories of both rivals seem to induce chaotic patterns of market 
supply. Bearing in mind that 120 moves give market supply for 60 periods 
( 59...,,0   =T ), Figure 2.11 illustrates this result for simulation III. 
 

 
 
Fig. 2.11  Chaotic market supply with α = 3.34 and xi,0 = 0.310. 
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5. Appraisal 
 

This Chapter improves upon Rand’s (1978) and Dana and Montrucchio’s (1986) 
models of Cournot duopoly competition by permitting monopoly output to be positive. 
Bulow et al.’s (1985) argument indicates the economic plausibility of hill-shaped 
Cournot reaction curves with positive monopoly output. Specification of such a hill-
shaped reaction function with positive monopoly output - the reaction function of the 
so-called dualist - leads to (individual) chaotic supply levels in three cases: (1) a 
dualist against an (imperfect) imitator, (2) a dualist against an accommodator and (3) 
a dualist against a dualist. And the cases (1) and (3) also imply a chaotic market 
supply and market price. Future research can be directed to several topics. First, this 
Chapter ignores the dilemma of the specification of cost and demand functions, as 
hill-shaped reaction curves (Figure 2.2 and Proposition 2.1) are postulated on the 
basis of a priori arguments. This raises the question whether there is a (large) class 
of economically plausible demand and/or cost functions which predicts such 
asymmetries. We already mentioned the contributions to this question of Puu (1991) 
- who uses  the assumption that the quantity demanded is reciprocal to price - and 
Kopel (1996), who uses cost functions incorporating an interfirm externality. 
However their specifications lead to reaction functions with a zero monopoly output. 

Second, other models of competition can be analyzed as to the (non)existence 
of complex dynamics, where the quest for chaotic regimes in models of competition 
is not to be restricted to one-shot Cournot games. Chapter 5 provides one answer to 
this second question. There we will prove that incorporating preference for market 
share as a non-profit part of the traditional objective function (eq. (2.2)) also leads to 
hill-shaped analytical and nonanalytical reaction curves. 

Furthermore the influence of a difference in capacity of  two rivals on the 
existence of chaotic regimes is an interesting topic for further research. And if the 
number of competing firms exceeds 2 - leading to complicated higher dimensional 
dynamics in the case of simultaneously reacting firms – we can ask ourselves under 
which conditions chaotic individual supplies and market supply still exist. 
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Appendix 2.1  
 
Proof of Proposition 2.1; dualist against imitator. 
 

Firm j acts as a perfect imitator, which gives (with doubled length of the time 
intervals) the following difference equation for ix : 
 

)( ,1, ti
i

ti xRx =+  (A1) 
 
For the sake of convenience, ix  is replaced by x and iR  by f. Second-degree 
polynomials with the following properties are considered: 
 

and         , ith         w max 101)()(
10

<<=== ∗∗

≤≤
xxxfxf mx

 (A2.i) 

0)1( =f . (A2.ii) 
The parabola 
 

1)/11(1)( 2 >+−⋅−= αααα            withxxf  (A3) 
 
satisfies the conditions (A2.i) and (A2.ii) (then α/11−=∗x ). Applying Li and Yorke’s 
(re-expressed) condition - )1())0()(2 =<≤= ∗     (  mm xxfxf  - with the further 
restriction 0)0( >f  (positive monopoly output) to the parabola (A3) leads to the 
inequalities 
 

ααααα /112)1/1(10 2 −≤−=−⋅−< . (A4) 
 
The inequality on the left hand side can be solved analytically and gives 
 

40 << α . (A5) 
 
Numerically solving the inequality ααα /112 −≤−  (which is equivalent to 

012 ≥−+⋅−⋅ αααα  ) imposes a second restriction on the parameter α  : 
 

0795.3≥α  ... . (A6) 
 
We note that the inequality is equivalent with 01)(2)( 23 ≥−+− ααα and also can 
be solved analytically using Cardan’s Method leading to ...0795957.3≥α  
Combining (A3), (A4), (A5) and (A6) now gives the result that the class of parabolas 
 

40795.3
10)/11(1)( 2

<≤
≤≤+−⋅−=

α
ααα

...          and
           with xxxf  (A7) 

 
has the properties (A2.i) and (A2.ii), 0)0( >f  and satisfies Li and Yorke’s condition. 
Therefore, the difference equation (A1) gives rise to chaotic regimes. 
 [End of proof] 
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Appendix 2.2 
 
Proof of Proposition 2.2; dualist against an imperfect imitator. 
 

The reaction functions 
 

and         , ... 
ith         w

40795.3
)/11(1)( 2

<≤

+−⋅−=

α
αα jj

i xxR  (A8.i) 

0)0()()( ≥+= δδ         th        wiiii
j xxxR  (A8.ii) 

 
are assumed. With doubled length of the time intervals the output of firm i at “time     
t + 1” is 
 

.         )()/11(2)]([)/11(1

]/11)([1))((

,,
2

,
2

,

2
,,,1,

titititi

tititi
ji

ti

xxxx

xxxRRx

δααδααα

αδα

⋅−−⋅⋅+⋅−+−⋅−=

=+−+⋅−==+  (A9) 

 
If again ix  is replaced by x, substitution of the function )(xfα , as indicated by (A3) in 
Appendix 2.1, gives 
 

and       ,)()(1 ttt xxfx τα +=+  (A10.i) 
.  )()/11(2)]([)( 2

tttt xxxx δααδατ ⋅−−⋅⋅+⋅−=  (A10.ii) 
 
where τ  is a “disturbance term”. If the function αf  satisfies Li and Yorke’s condition, 
then this condition can still be satisfied when αf  is disturbed by a small  (and 
continuous) τ . So, if δ  (the disturbance of the linear reaction function jR ) is “small 
enough”, the conditions for the existence of chaotic time paths can still be satisfied. 
 [End of proof] 
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Appendix 2.3 
 
Proof of Proposition 2.3; dualist against (perfect) accommodator. 
 

Firm j acts as a perfect accommodator, which gives (with doubled length of time 
intervals) the following difference equation for  ix : 
 

. )1( ,1, ti
i

ti xRx −=+  (A11) 
 
If 2)/11(1)( αα +−⋅−= jj

i xxR  with 40 << α  (reaction curve of a dualist with positive 
monopoly output), (A11) gives 
 

.            with 40)/1(1 2
,1, <<−⋅−=+ ααα titi xx  (A12) 

If again, for the sake of convenience, ix  is replaced by x, (A12) can be rewritten as 
 

40
)/1(1)()( 2

1
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α
αα

        and
        with xxfxfx tt  (A13) 

 
The function )(xf  is a second-degree polynomial with maximum location α/1=∗x  
and maximum value 1=mx . Applying Li and Yorke’s condition - )1()(2 =<≤ ∗  mm xxxf  
- to the function (A13) gives the inequalities 
 

. 1/1)/12(1 2 <≤−⋅+−⋅− ααααα  (A14) 
 
Combining the inequality on the right hand side with 40 << α  reveals 
 

41 << α  (A15) 
 
Numerically solving the inequality on the left hand side (which is equivalent to 

αα ⋅3  014244 223 ≥+⋅⋅−⋅+⋅⋅+⋅− αααααα ) imposes a second restriction on 
the parameter α : 
 

.  ... 6708.3≥α  (A16) 
 
Combining (A13), (A15) and (A16) provides the result that the class of parabolas 
(composed of a hill-shaped reaction function with positive monopoly output and the 
reaction function of a perfect accommodator) 
 

.  ...     and        with 46708.310
)/1(1)( 2

<≤≤≤
−⋅−=

α
ααα

x
xxf  (A17) 

 
satisfies Li and Yorke’s condition. Therefore, the difference equation (A11) gives rise 
to chaotic time paths. 
 [End of proof] 
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CHAPTER 3 
 
 
BIG IS BEAUTIFUL 

Cournot competition, habit formation and exit 
 
 
This Chapter was previously published as a research memorandum (RM 93-016, Maastricht University 
of Limburg). Some minor changes have been made. 
 
1. Introduction 
 

Starting from the seminal contributions of Beaver (1966) and Altman (1968) many 
studies into the (ex post) prediction of bankruptcies have appeared in the literature 
on Accounting and Finance (AF). The key issue in this literature is the identification of 
financial ratios that can predict corporate failure a few years before the actual date of 
bankruptcy. The results indicate that bankrupt firms are associated with financial 
ratios that started to deteriorate several years (in general, 1 to 5) before the year of 
failure (Foster (1986: Chapter 15)). For example, Zmijewski (1983) reports that in a 
sample of 72 bankrupt and 3,573 nonbankrupt firms over the 1972-1978 period the 
former showed a net income/net  worth ratio of -.591 and the latter of 0.091 one year 
prior to bankruptcy. Another example is Hambrick and D’Aveni (1989). Hambrick and 
D’Aveni (1988: 10) report the results of an investigation into 57 large corporate 
failures during the period 1972-1982. They point out that “the bankrupts showed 
signs of relative weakness as early as ten years before failing. ... That these 
bankruptcies were culminations of often ten-year declines is compelling testimony to 
organizational inertia” (1988: 13 and 20). For example, in the five years prior to the 
date of bankruptcy (t) the series of the mean net income/assets ratio of bankrupt 
firms is −4.56 (t−5), −21.79 (t−4), −21.30 (t−3), −85.11 (t−2) and −107.89 (t−1). 

Moreover, a few exceptional studies take account of nonfinancial predictors. 
Noteworthy are Altman, Haldeman and Narayanan (1977), Ohlson (1980), Zmijewski 
(1983), Keasey and Watson (1987) and Storey, Keasy, Watson and Wynarczyk 
(1987), which include a measure of size as predictor of corporate bankruptcy. Their 
results indicate that “size appears as an important predictor” (Ohlson (1980: 122)) as 
bankrupt firms are, on average, significantly smaller than nonbankrupt corporations. 
This result is supported by empirical research on entry into and exit from industries. 
McDonald (1986), Dunne, Roberts and Samuelson (1988 and 1989), Baden-Fuller 
(1989), Lieberman (1990) and Baldwin and Gorecki (1991) reported that the exit rate 
is, by and large, significantly higher among small and young firms. For example, 
Dunne, Roberts and Samuelson (1989: 689) report that “in summary, failure rates are 
lower for older plants ... and for larger plants” on the basis of patterns of failure 
statistics for over 200,000 plants that entered manufacturing in the U.S. in the period 
1967-1977. 

The bottom line is that the key finding of the bankruptcy prediction models is that 
firms start to accumulate losses many years before the actual date of exit. However, 
apart from critique of the methods of empirical analysis and sample selection 
(Zavgren (1983)), Foster (1986: 559) notes that “economic theory has played a small 
role in the development of univariate or multivariate distress prediction models.” That 
is, the model testing is not theory-guided, but based on ad hoc arguments. As Rees 
(1990: 406) observes: “Most of the empirical studies ... are wide-ranging searches for 
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any statistically reliable relationships between failure and accounting variables 
without the benefit of theoretical backing. As such they have been occasionally 
characterised as ‘brute empiricism’”. Therefore, “if the literature on distress/failure 
prediction is to progress further, then more explicit and formal modelling of the 
economic interests and decision processes of the firm’s major stakeholders will 
probably have to be undertaken” (Keasey and Watson (1991: 100)). The current 
paper takes up this challenge. 

So far, the scarce theoretical AF-contributions have been of three types. First, 
statistical ruin theory is applied to the issue of the determination of the risk of 
bankruptcy. For example, Vinso (1979) introduces initial reserves, fixed costs and 
expected profit flows to calculate a firm’s risk of failure. Second, a few theoretical AF-
models focus on explaining bankruptcy by modeling creditors’ confidence in terms of 
catastrophe theory. Notably Ho and Saunders (1980) and Scapens, Ryan and 
Fletcher (1981) argue that poor financial performance may induce creditors to 
suddenly withdraw credit. So, this type of model is concerned with explaining the 
breakdown of chronically failing firms by interference of outside stakeholders. Third, 
Wadhwani (1986) and Simmons (1989) derive reduced-form equations from a profit-
maximizing framework in which firms engaged in price-taking (perfect) competition 
take account of determinants such as (future) product prices, debt ratios, interest 
rates, inflation levels, money wages, bankruptcy costs, share prices and bankruptcy 
probabilities. 

The theoretical modeling of financial distress is, however, still in its infancy. 
Particularly the role of strategic competition in explaining financial distress is, as yet, 
largely ignored. The isue of strategic competition is central to Industrial Organization 
(IO). For a long time IO has relatively ignored the issue of organizational failure. In 
the 1980s a countable number of analytical papers started to model exit decisions of 
firms in a competitive environment. The notable contributions are  Jovanovic (1982), 
Lippman and Rumelt (1982), Ghemawat and Nalebuff (1985 and 1990), Fudenberg 
and Tirole (1986), Frank (1988), Reynolds (1988), Whinston (1988), Baden-Fuller 
(1989), Dixit (1989,1992), Jovanovic and Lach (1989), Fishman (1990), 
Londregan(1990) and Dierickx, Matutes and Neven (1991). All models start from the 
assumption that firms seek to maximize the discounted profit flow. The key issue in 
this literature concerns the question which (group of) firm(s) decides to exit first, 
where firms’ heterogeneity is, by and large, reflected in cost or size features. 

Without exception, the models assume quantity (Cournot) competition, either 
among n atomistic firms or two duopolists (with endogenous or exogenous profit 
levels). Competition is strategic, as individual profit levels crucially depend upon the 
(exit and output) decisions of rivals. Cost differences may originate from many 
sources, for example, efficiency of closing (Baden-Fuller (1989)), learning-by-doing 
(Jovanovic and Lach (1989)), scale economies (Ghemawat and Nalebuff (1985)) and 
talent (Frank (1988)). The results of the models are diverse, and appear to depend 
crucially upon the underlying assumptions. Two results are worth noting. First, the 
well-documented natural selection argument is supported if inefficient firms decide to 
exit first (Jovanovic (1982), Lippman and Rumelt (1982), Fudenberg and Tirole 
(1986), Frank (1988), and Jovanovic and Lach (1989)). Second, the contrary result 
holds if small and inefficient firms survive at the detriment of large and efficient rivals 
(Ghemawat and Nalebuff (1985,1990), Baden-Fuller (1989), Fishman (1990), 
Londregan (1990), and Dierickx, Natutes and Neven (1991)). This counterintuitive 
result is supported by Baden-Fuller’s (1989) investigation of the steel castings 
industry in the U.K., being the only empirical IO-study on exit that takes account of 
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profit performance. His finding is that, although a significant number of closures 
suffered from negative cash flow/sales ratios prior to exit, “the least profitable plants 
... did not close” (1989: 956). 

Except for Dixit (1989, 1992), the consequence of organizational failure in IO-
models is just-in-time exit. This result is driven by the assumption of long-run 
backward induction. That is, firms are perfectly forward-looking: calculating the 
(expected) future stream of profit, taking account of the end-game equilibrium that 
results from strategic competition, they decide to exit at the moment profitability falls 
below zero. Although Dixit’s (1989) model describes a case where firms accept 
temporary losses, this result also follows from long-run calculations. The point is that 
Dixit (1989: 629) argues that firms take account of favourable demand developments 
in the future: “The firm knows that by remaining active it can avoid incurring [costs] 
for reentry should future developments turn favourable; therefore, it is willing to incur 
some current loss to preserve this option”. The focus of the IO-models on just-in-time 
exit (or in Dixit’s case: temporary losses) makes the results unable to explain the 
empirical findings in the AF-literature that more often than not firms accumulate 
losses before actually exiting the market. This state of the art is the result of IO-
models’ reliance on assumptions of extreme rationality. Whinston (1988: 584, note 
27) argues that “in fact, the results are, if anything, overly favourable about the 
possibility of prediction, since they rely heavily on long chains of backward inductive 
reasoning that are likely to be quite sensitive to even small amounts of irrationality”. 
After observing the same flaw Fishman (1990: 71) concludes that “this consideration 
should lead economists to proceed with caution before taking such results at face 
value”. The assumptions of extreme rationality are, moreover, reflected in the fact 
that all IO-models take firms to seek maximization of the future profit flow. 

So, the AF-studies on financial distress clearly reveal that firms’ bankruptcies are, 
by and large, preceded by many years in which losses are accumulated. However, 
the formal modeling of the economics behind this result is still in its infancy, and the 
recent exit games in the IO-tradition fail to give in to the request for theoretical 
explanations by their exclusive focus on extreme rationality and just-in-time exit. This 
Chapter is a preliminary attempt to fill the gap by focusing on two strategies in 
particular: just-in-time (zero-profit) exit versus chronic failure (ongoing operation 
whilst accumulating losses). Van Witteloostuijn (1998) distinguishes four possible 
outcomes of the process of a firm’s downturn (measured in terms of profitability): 
immediate exit, turnaround success, flight from losses and chronic failure. He 
presents a framework that summarizes arguments from varying economic (IO) and 
organizational (OS) perspectives that have, for the most part, developed 
independently. His framework provides an overview of the literature on organizational 
decline, related to (internal and external) causes, (financial and nonfinancial) 
conditions, (shape and size) courses and (profits or losses) consequences. In this 
Chapter answers to two questions are investigated: under what conditions of 
competition and demand does either strategy (exit or chronic failure) occur?; and 
what features, in terms of efficiency and scale, characterize the firms that either exit 
or stay? Both questions are scrutinized by extending Vickers’ (1985) model of 
managerial economics by introducing cost asymmetries and habit formation. Like 
Vickers, Sklivias (1987) also considers a two-stage sequential game with cost 
symmetries, whereas Fershtman and Judd (1987) and Basu (1995) introduce cost 
asymmetries between competing firms. Concerning all these models, owners write  
an incentive contract for their managers in stage one of the game and then, in the 
second stage, managers play the Cournot or Bertand game. By backward induction 
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the owners determine the incentive contract such that profitability is maximized, given 
the rival’s incentive contract. This implies that the values of the weights (α  or θ  in 
these models) of the nonprofit parts of managers’ objective functions (size or 
revenues) are determined and fixed (Nash equilibrium) by the owners in this two-
stage game. So these models assume a high degree of rationality. However, we will 
examine all weight combinations (of the nonprofit parts of the objective functions) 
between rivals and will not restrict ourselves to the fixed weigths resulting from a two-
stage sequential game. We consider the nonprofit-maximizing behaviour of 
managers (their “love for sales volume”) as a habit, developed in time and such a 
habit can be part of the “blueprint” of the firm (Hannan and Freeman (1984)).  The 
concept of habit formation has been applied to the explanation of preference 
changes in models of decision making on consumption (Pollak (1970) and Alessie 
and Kapteyn (1991)) and labour supply (Phlips (1978) and Vendrik (1992)). This 
Chapter introduces the notion of habit formation in the theory of the firm. This is 
explained in Section 3.2. Section 3.3 goes on to present the results of the model for 
the case where firms are facing symmetric cost conditions: that is, firms control 
equally efficient production technologies. Section 3.4 deals with cost asymmetries: 
both efficient and inefficient firms (may) operate in the market. Section 3.5 concludes 
the Chapter by offering an appraisal and conclusion. 
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2. A model 
 

In accordance with the exit games in the IO-literature the model is Cournot: 
competition is in quantities. The prime deviation from standard Cournot, and so IO’s 
exit games, is the introduction of sales (production volume) in the objective function 
of Cournot oligopolists. To be precise, the point of departure is a combination of 
Vickers’ (1985) analysis of sales maximization in Cournot-Nash competition, Becker 
and Murphy’s (1988) explanation of rational addiction through habit formation, and 
Akerlof’s (1991) arguments in favour of myopic behaviour. These elements - sales 
maximization, habit formation and myopic behaviour - imply a departure from 
extreme rationality. Below the key assumptions are discussed in turn. 

Vickers (1985) presents a modern version of the old theory of managerial 
economics. The key assumption in managerial economics is that firms (or, to be 
precise, managers) fail to maximize profits, but are driven by other motives, well-
known examples being sales (Baumol (1953)), growth (Marris (1964)) and staff 
expenditures (Williamson (1964)). The common denominator of such nonprofit 
motives is that managers are assumed to favour the promotion of a measure of size: 
managers prefer to be head of large budgets, organizations or staffs rather than 
small ones. This hypothesis is confirmed by studies in public choice (Mueller (1989)), 
which, for example, indicate that bureaucrats maximize budgets (Niskanen (1971)). 
Similarly, theories of economic organization (Milgrom and Roberts (1992)), 
particularly principal-agent models, emphasize the nonprofit motives of nonowning 
managers (Vickers (1985), Fershtman and Judd (1987), Sklivias (1987) and Basu 
(1995)). Note that size preference implies an asymmetry: managers like to grow, but 
dislike to retrench. Vickers (1985: 141) starts from the assumption that firms 
maximize in a period t 
 

ttt xu αΠ += , (3.1) 
 
where α  is a weight parameter, and u denotes utility, Π  profit and x output or sales. 
So, equation (3.1) implies that “those who take the decisions in large firms are 
advanced by high sales rather than purely by profits” (Vickers (1985: 141)). The 
current model diverges form Vickers (1985) in three respects in order to fit more 
closely with the issues at hand: first, habit formation and myopic behaviour are 
included; second, cost asymmetries are introduced; and, third, firms are not subject 
to a zero-profit constraint. The bottom line is that these extensions permit an explicit 
focus on exit competition. 

Becker and Murphy (1988) build upon the notion of rational habit formation 
(Stigler and Becker (1977) and Spinnewyn (1981)) in their explanation of addiction. 
As noted in the introduction, the concept of habit formation has been applied to the 
explanation of preference changes in models of decision making on consumption 
(Pollak (1970) and Alessie and Kapteyn (1991)) and labour supply (Phlips (1978) and 
Vendrik (1992)). The key argument is that people start to develop stronger 
preferences for consumption or working patterns over time if they get used to specific 
levels of consumption or numbers of working hours. A linear approximation of a habit 
formation function pertaining to Vickers’ (1985) output or sales volume is 
 

1)1( −−+= ttt hxh γ  (3.2) 
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where γ  is a depreciation factor and h denotes a habit parameter. If x is interpreted 
as consumption, equation (3.2) implies that “increases in past consumption raise 
current consumption” (Becker and Murphy (1988: 694)). 

However, rational habit formation assumes that people in their current decisions 
take account of the future implications of developing a habit. As Akerlof (1991) notes, 
in practice “the standard assumption of rational, forward-looking, utility maximizing is 
violated” (1991: 1). This points to myopic habit formation. Recently, Akerlof (1991) 
lists arguments in favour of shortsightedness. For example, he notes that “the 
nonindependence of errors in decision making in the series of decisions can be 
explained with the concept from cognitive psychology of undue salience or vividness. 
For example, present benefits and costs may have undue salience relative to future 
costs and benefits” (1991: 1). One of his examples is organizational failure caused by 
escalating commitment (1991: 7-8), arguing that procrastination does not only occur 
in project initiation, but also in project termination. Note, moreover, that the standard 
assumption of Cournot-Nash conjectures implies a kind of myopic behaviour (to be 
precise, shortsighted expectations) as well. The three elements – sales (production) 
maximization, habit formation and myopic behaviour - give the essential assumption 
on firms’ decision making in the current model. To be precise, firms are assumed to 
maximize 

 
ttt hu αΠ += , (3.3) 

 
which implies that firms maximize a utility function that is composed of profit and 
output, while output is subject to habit formation (ht follows from equation (3.2)). That 
is, after a while firms increasingly prefer to be large; to paraphrase Becker and 
Murphy (1988: 694), increases in past size raise preference for current size. 

Note that the interpretation of equation (3.3) from the perspective of studies on 
organizations (OS) is straightforward (Cameron, Sutton and Whetten (1988)). 
Evidence from OS-contributions clearly indicates that managers prefer volume. 
Particularly, studies of firms’ growth point out that “growth is frequently sought directly 
because it facilitates the internal management of an organization” (Whetten (1987: 
30)). As far as habit formation is concerned, references to routinized behaviour 
abound in the OS-literature, notably the literature on forms of (managerial) inertia 
(Hannan and Freeman (1984) and Tushman, Newman and Romanelli (1986)). Note 
moreover that equation (3.3) implies that managerial inertia are asymmetric. Apart 
from the literature on corporate growth, Porter’s (1976) arguments on managerial exit 
barriers, for example, support this view: “Managerial exit barriers are characteristics 
of the company’s decision-making process which deter its management from making 
decisions to exit from a particular business even though they are justified on 
economic grounds” (1976: 23). Last but not least, the important role of myopic 
behaviour is stressed time and again in OS-contributions, an excellent example being 
Staw, Sandelands and Dutton (1981). 

The model introduces strategic competition by assuming Cournot-Nash duopoly: 
two incumbent rivals, firm 1 and 2, compete over quantities by deciding on the output 
volume they bring to the market in period t. The model is completed by defining unit 
production cost c to be scale- and time-independent, and taking demand to be 
represented by the linear downward-sloping function 

 
tttt xxmp ,2,1 −−= , (3.4) 
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where p denotes price, m is a size parameter, and x1 and x2 are the output volumes of 
firm 1 and firm 2, respectively. Noting that profit follows from xcp )( −=Π , 
substitution of the inverse demand function (3.4) and habit formation equation (3.2) 
into maximand (3.3) gives a firm’s decision rule. That is, in a period t + 1 firm i 
decides to produce the output volume xi,t+1 that maximizes 
 

])1([)( ,1,1,,1,11 tiitiitiitjtitt hxxcxxmu γα −++−−−= +++++ , (3.5) 
 
where i, j = 1, 2 and ji ≠ . Recall that the well-known Cournot-Nash assumption 
implies that firm i myopically expects firm j to sustain its period t’s output volume in 
period t + 1: tj

e
tj xx ,1, =+ , where e is an expectational operator. To focus on strategic 

competition only, assume for the time being that demand is stationary (m is time-
independent) and cost is symmetric (c1 = c2). 

Standard Cournot-Nash competition assumes pure profit maximizers, which 
follows from equation (3.1) or (3.5) by taking 0=iα . This gives the familiar Cournot-
Nash duopoly equilibrium output ( *x ) where 3/)(* cmx −= . Strict sales maximization 
without habit formation follows from 0>iα  and 1=iγ , which reduces decision rule 
(3.5) to utility function (3.1). Then, Vickers (1985) shows that symmetric Nash 
equilibrium of the game setting-α  (in a two-stage sequential game) gives output 

5/)(2* cmx −= . So, “compared with the case in which firms are managed by profit-
maximizers, output per firm is higher, price is lower and profits are lower” (Vickers 
(1985: 142)). However, cases with negative profitability remain unexplored. On the 
one hand, if m > c, in both cases neither firm decides to exit, since both firms capture 
a positive profit in equilibrium. On the other hand, with m < c both firms decide to 
undertake just-in-time exit. The outcome may be different if habit formation is 
introduced ( 0>iα  and 10 << iγ ): that is, now iα  does not follow from highly rational 
decision making, but is the result of (fixed) managerial inertia. This allows us to 
consider a large set of ),( ji αα - combinations of the two rivals (satisfying nonnegative 
price restrictions) and reflect on the corresponding implications. 

The basic model reflected in the equations (3.1)-(3.5) is developed below for two 
cases: Section 3.3 deals with cost symmetry (c1 = c2: Proposition 3.1), and Section 
3.4 with cost asymmetry ( 21 cc ≠ : Proposition 3.5). In addition, spread over both 
sections attention is paid to five specific issues. Section 3.3 contains discussions of 
(i) disequilibrium and equilibrium profit (Proposition 3.2), (ii) speed of adjustment 
toward equilibrium (Proposition 3.2), and (iii) ‘optimal’ (that is: profit-maximizing) 
levels of habit formation (Proposition 3.4); Section 3.4 analyzes (iv) the n-firm case 
(Proposition 3.7); both sections include a discussion of (v) comparative statics of exit 
decisions (Propositions 3.3 and 3.6). When convenient, the results for both cases are 
compared in Section 3.4. 
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3. Cost symmetry 
 

The first case assumes cost symmetry: ji cc = . By introducing ccc ji ==  in the 
basic model (3.1)-(3.5) stationary-state-equilibrium strategies can be calculated. The 
result is summarized in Proposition 3.1. 
 
Proposition 3.1. A Cournot-Nash duopoly stationary-state-equilibrium with symmetric 
cost conditions ( 21 cc = ) and asymmetric habit formation ( ji αα ≠ ) can be calculated, 
and is asymptotically stable for 10 << ji γγ  , . 
 
Proof. With ccc ji ==  maximization of utility function (3.5) gives a system of four 
difference equations: 
 
(i) 2/)(2/ 1,21,1 α+−+−=+ cmxx tt , 
(ii) 2/)(2/)1( 1,2,111,1 αγ +−+−−=+ cmxhh ttt , 
(iii) 2/)(2/ 2,11,2 α+−+−=+ cmxx tt , and 
(iv) 2/)(2/)1( 2,1,221,2 αγ +−+−−=+ cmxhh ttt . 
 
In matrix form this is xt+1 = Axt + b, where xt = [x1,t, h1,t, x2,t, h2,t]T, 
b = [(m - c + α1)/2, (m - c + α1)/2, (m - c + α2)/2, (m - c + α2)/2]T and 
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A . The eigenvalues of matrix A are found by solving 

the equation 0)2/1)(2/1)(1)(1()(det 21 =−+−−−−=− λλλγλγλIA  with the sufficient 
and necessary conditions ]1[ <∨ ii λ  for asymptotic stability. Hence, asymptotic 
stability occurs for 10 << iγ , where i = 1, 2. From the equilibrium condition 

bxAx += **  and so bxAI =− *)(  follow the stationary-state-equilibrium outcomes 
(3.6), (3.7) and (3.8) below. 
 [End of proof] 
 
If habit asymmetry is introduced ( ji αα ≠ ), Cournot-Nash duopoly competition with 
habit formation gives firm i’s stationary-state-equilibrium output 
 

3/)2(* cmx iji −+−= αα  (3.6) 
 
and stationary-state-equilibrium level of habit formation ( *h ) 
 

)3/()2(*
iiji cmh γαα −+−= , (3.7) 

 
where i, j = 1, 2 and ji ≠ . For brevity’s sake henceforth the ‘stationary-state-
equilibrium’ is, except in propositions and proofs, referred to as ‘equilibrium’. 
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Equilibrium sales (3.6) support the intuition that firm i’s production exceeds firm j’s 
output if ji αα > . Firm i’s equilibrium profit (  Π ) follows from 
 

9/)2)(( cmcm ijji
i −+−−−−= ααααΠ   (3.8) 

 
where i, j = 1, 2 and ji ≠ . So, firm i’s profit falls below zero if cmji −>+αα . 
Equation (3.6) confirms that symmetric pure profit maximization ( 0== ji αα ) gives 
the symmetric Cournot-Nash equilibrium output 3/)(* cmx −= . Moreover the evident 
observation that firm i’s equilibrium output increases in its own habit formation ( iα ) 
and decreases in its rival’s preference for size ( jα ), is supported, where the first 
force is twice as influential as the second ( iα2+  versus jα− ). Note that iγ  and jγ  
have no impact on equilibrium volumes (but they do influence the habits *

ih  in 
equilibrium). Furthermore, note that the concept of habit formation doesn’t influence 
equilibrium’s stability. Proposition 3.2 deals with the speed at which the (supply) 
equilibrium is reached. 
 
Proposition 3.2. Output volumes converge rapidly toward stationary-state-equilibrium 
values. The case where both firms decide to exit is reached immediately, for 
example. Therefore, the disequilibrium profit captured during the time of adjustment 
is negligible. 
 
Proof.  
 
We use the difference equations, concerning the firms’ supplies (Proposition 3.1): 
 

2/2/)( ,211,1 tt xcmx −+−=+ α , 
2/2/)( ,121,2 tt xcmx −+−=+ α , 

 
Using the initial conditions ( 0,20,1 , xx ) we obtain the following solutions 
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So both x1,t and x2,t converge to their stationary-state-equilibrium values rapidly. Take, 
for example, the case where both firms decide to exit. Then: mc −≤1α  and 

mc −≤2α , which implies that 
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02/2/)( 0,210,21,1 ≤−≤+−−= xxcmx α  and 
02/2/)( 0,120,11,2 ≤−≤+−−= xxcmx α . 

 
Hence, both firms simultaneously leave the market in period t = 1. Over T + 1 periods 
firm i’s average profit per period (i = 1, 2), i

t
 Π , follows from 
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Summing the sequences after substitution of the above expressions for x1,t and x2,t 
gives i

i
i

t Ta   ΠΠ += )( , where ai(T) indicates the disequilibrium profit during the 
adjustment phase and i Π  is the stationary-state-equilibrium profit expressed in 
equation (3.8). The adjustment profit can be expressed as 
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where the constants E1, E2, E3 and E4 depend on 0,20,1 xx  , , m, c, α1 and α2. Using 
summation of geometric sequences, one can easily observe that the adjustment 
profit goes to zero with increasing T. Since stationary-state-equilibrium values are 
reached rapidly, total profit can be approximated by ignoring the payoff during the 
period of adjustment, which gives equation (3.8). 
 [End of proof] 
 

So, the period of adjustment after setting an arbitrary pair of (positive) starting 
values of output volumes, x1,0 and x2,0 , is short. For the case where both firms exit in 
equilibrium this state of affairs is reached in the subsequent period (t = 1). Therefore, 
the value of total profit can be approximated by ignoring the adjustment payoff, which 
gives equation (3.8). 

Starting from Propositions 3.1 and 3.2 a set of equilibria can be characterized. 
The equilibrium features (and, for that matter, adjustment dynamics) crucially depend 
on the precise values of 1α , 2α , m and c. The fact that prices cannot be negative, 
imposes three restrictions on the set of feasible equilibria. Demand function (3.4) 
indicates that nonnegative prices result if 
 

cmmxx 221
*
2

*
1 +≤+⇔≤+ αα , (3.9) 

cmmx +≤−⇔≤ 22 21
*
1 αα , and (3.10) 

cmmx +≤−⇔≤ 22 12
*
2 αα . (3.11) 

 
Total exit implies that 0* ≤ix . So, firm i leaves the market if 
 

cmij −≥− αα 2 , (3.12) 
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where i, j = 1, 2 and ji ≠ . 

With the help of the equations (3.6) to (3.12) environmental regimes and 
competitive equilibria can be identified. For the sake of argument, four distinct cost-
demand regimes (each being composed of many market periods t) are discussed. 
First, the benchmark regime (Figure 3.1) is the case where c = 0 < m. Second, in the 
next regime (Figure 3.2) the market can be served profitably by two standard 
Cournot-Nash duopolists: 0 < c < m. Third, a border regime (Figure 3.3) occurs for 

mc = . Fourth, in the subsequent regime (Figure 3.4) demand has fallen below the 
level where any output volume can be sold profitably, either by duopolists or by a 
monopolist: c > m. The shift from Figure 3.1 to Figure 3.4 can be interpreted as being 
the result of a dramatic decline in demand in the sense that environmental conditions 
change from favourable to unfavourable. Compare, for example, Figures 3.2 and 3.4 
for the cases where c = 12 and m drops from 15 (Figure 3.2) to 10 (Figure 3.4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.1 Equilibrium outcomes for c1 = c2 = 0 < m 
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Fig. 3.2  Equilibrium outcomes for 0 < c1 = c2 = c < m 
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Fig. 3.3  Equilibrium outcomes for c1 = c2 = c = m 
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Fig. 3.4  Equilibrium outcomes for c1 = c2 = c > m 
 
Beyond lines I, II and III price falls below zero (equations (3.9), (3.10) and (3.11), 
respectively). Lines IV and V depict firm 1’s and firm 2’s exit condition (equation 
(3.12): cm −=− 12 2αα  and cm −=− 21 2αα , respectively). Beyond lines VI profit 
starts dropping below zero (equation (3.8): cm −=+ 21 αα ). At the right-hand side of 
lines VII firm 1’s output exceeds firm 2’s sales, whereas at the left-hand side of lines 
VII the opposite holds ( 21 αα >  and 12 αα > , respectively). Figures 3.1-3.4 depict six 
specific equilibrium areas (A-F), apart from the border cases on the lines VI (zero 
profit) and VII (symmetric scale). 

The six equilibrium outcomes can be briefly characterized as follows. In Figure 3.1 
cost and demand conditions are favourable ( mc <= 0 ). Point A’ is the standard 
Cournot-Nash equilibrium ( 021 == αα ). In equilibrium areas A both firms move away 
from standard Cournot-Nash by decreasing profit (though not below zero, given the 
condition that mc <= 0 ) as a result of increasing habit formation ( 0, 21 >αα ), where 
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firm j exceeds its rival i in size in equilibrium region Ai. On line VI the equilibrium 
takes the form of a zero-profit duopoly (with symmetric scale at the intersection point 
of the lines VI and VII, and with asymmetric size otherwise). In two limit cases the 
habit-motivated firm ( 0>>iα ) expels the profit-maximizing rival ( 0=jα ) from the 
market (points B’ and B’’) so that a zero-profit monopoly is reached. In Figure 3.2 
cost conditions have deteriorated ( 0>c ), though not dramatically ( mc < ). Equilibrium 
areas Ai have decreased in size. In equilibrium areas Bi firm i is expelled from the 
market by its loss-making rival j, since firm j’s managerial inertia dominates over firm 
i’s preference for size ( ij αα >> ). Although market demand would enable two firms to 
produce profitably, in equilibrium areas Ci price falls below the level of average cost 
as a result of excessive market supply. Firm 1 is larger than firm 2 if 21 αα >  (C2), firm 
2 exceeds firm 1 in scale if 21 αα <  (C1), and both firms are of equal size if 21 αα =  
(line VII). In Figure 3.3 profit opportunities, even for a monopolist, are bound to 
disappear ( mc = ). Equilibrium areas Ai have finally disappeared. In equilibrium point 
D’ both firms have decided to exit just in time. Neither firm is willing to accumulate 
losses for the sake of sustaining sales volume. Equilibrium point D’ reflects a 
standard outcome of exit games in the IO-literature: 021 == αα  with simultaneous 
just-in-time exit. In Figure 3.4 the market is no longer viable, under whatever 
conditions ( mc > ), and equilibrium point D’ has expanded to equilibrium area D: the 
profit motive dominates over habit formation. In equilibrium areas Ei, although the 
market is nonviable in terms of profitability, both firms stand the test of environmental 
decline (firm j being larger than rival i at either side of line VII). Given their 
preference for bigness, both firms are prepared to sacrifice profitability, even by 
accepting prices below the economic shut-down level ( cp < ). In equilibrium area Fi 
firm i gives in to deteriorating environmental circumstances, whilst firm j perseveres 
with operation. Contrary to firm i, firm j is willing to accept below average cost prices 
in order to be able to sustain sales volume. 

So, from Figures 3.1 to 3.4 equilibrium areas appear and disappear, and grow 
and shrink. The results of this comparative statics can be summarized in Proposition 
3.3. 
 
Proposition 3.3. The (relative) size of the stationary-state-equilibrium areas where 
one or both firms decide to exit increases in c and decreases in m, with two notable 
exceptions: the size of the stationary-state-equilibrium area where only one firm 
leaves the market is independent from m for mc ≤≤0 , and the stationary-state-
equilibrium area where both firms stay in the market is independent from c for mc > . 
 
Proof. The size of the admissible region is mccm 22

2
12

2
1 ++ . Define three ratios of 

stationary-state-equilibrium areas: 
stay firms Both

exits firm One=1R ; 
stay firms Both
exit firms Both=2R ; and 

exits firm One
exit firms Both=3R . Note that A = A1 + A2, B = B1 + B2, C = C1 + C2, E = E1 + E2 and 

F = F1 + F2 . By way of illustration, consider the following comparative statics. First, 
take the case where mc <≤0 . The size of the stationary-state-equilibrium areas A 
and C (where both firms stay in the market) is 22

2
1 2 cmcm −+ . Stationary-state-

equilibrium area B (where one of both firms expels the rival from the market) is 2
2
3 c , 
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which is independent from m. So, 22

2
1

24
3

cmcm
c

CA
BR

−+
=

+
= , indicating that for a 

fixed value of m the size of the exit area B increases with c. Note that 032 == RR . 
Second, both stationary-state-equilibrium areas are of equal size ( BCA =+ ) if mc = : 
then 11 =R , and 032 == RR . Third, take the case where mc > . Stationary-state-
equilibrium area D (where both firms exit from the market) is 2

2
1 )( mc − . Stationary-

state-equilibrium area E (where both firms stay in the market) is 2
2
3 m , which is 

independent from c. The size of stationary-state-equilibrium areas F (where only one 
firm leaves the market) is )2(2

3 mcm − . So, with a fixed parameter m the ratios 
EFR /1 = , EDR /2 =  and FDR /3 =  increase with c, implying an ((asymptotically) 

linear or quadratic) increase in the incidence of exit with increasing c: 
m

mcR −= 21 , 

2

2
2

3
)(

m
mcR −= ; and 

)2(3
)( 2

3

mcm
mcR
−

−= . Opposite results can be derived for the 

combination of variable m and fixed c. 
 [End of proof] 
 
Of course, the result that the incidence of exit goes up if cost increases (c↑) (and, for 
that matter, if demand decreases (m↓)) is hardly surprising. Additionally, however, the 
model permits the calculation of (shifts in) absolute and relative sizes of the 
equilibrium areas. Figure 3.5 illustrates Proposition 3.3 for three cases: 

stay firms Both
exits firm One  ( )/(1 CABR += , or EFR /1 = ): Figure 3.5), 

stay firms Both
exit firms Both  

( EDR /2 = : Figure 3.6) and 
exits firm One

exit firms Both  ( FDR /3 = : Figure 3.7). 

 

            
Fig. 3.5  Comparative statics for R1: One firm exits / Both firms stay 
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Fig. 3.6  Comparative statics for R2: Both firms exit / Both firms stay 
 
 

           
 
Fig. 3.7  Comparative statics for R3: Both firms exit / One firm exits 
 
Figures 3.5-3.7 depict the results for two cases of the demand parameter m: 21 mm < . 
Clearly, apart from the indicated exceptions, exit areas increase in c and decrease in 
m, either in a linear (R1), quadratic (R2) or asymptotically linear (R3) way. 

A final issue is related to Vickers’ (1985) model, which assumes that firms decide 
on their preference for size (α ) in an α -setting game. This paper relates to this issue 
by asking the question: what values of iα  maximize firm i’s profit in equilibrium, given 
firm j’s choice of jα (we note that Fershtman and Judd (1987), Sklivias (1987) and 
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Basu (1995) also consider the choice of the weight attributed to revenues or, 
equivalently, sales volumes in a two-stage game; but we also consider the market 
size m , production costs c and habit formation symmetry). Proposition 3.4 indicates 
an answer to this question. 
 
Proposition 3.4. With habit formation symmetry ( ααα == ji ) the profit-maximizing 
stationary-state-strategy for both firms is: 
(i) negative habit formation ( 0<α ) if mc < ; 
(ii) (zero-profit or standard, respectively) Cournot-Nash ( 0=== ααα ji ) if mc =  or 

mc <  and α  restricted to be nonnegative; and 
(iii) exit if mc > . 

With habit formation asymmetry ( ji αα ≠ ) the profit-maximizing stationary-state-reply 
of firm i to a fixed habit parameter jα  of firm j is: 
(i) positive habit formation ( 0)(4

1 >−− jcm α ) if mc <  and cmj −<α ; 
(ii) Cournot fringe follower ( 0=iα ) if mc <  and cmj −=α ; and 
(iii) exit otherwise. 

 
Proof. First, take the case where ααα == ji . From equation (3.8) stationary-state-
equilibrium profit ])()(2[ 22

9
1 cmcmji −+−−−=== ααΠΠΠ   , which indicates a hill-

shaped parabola of Π  in α . Note that 2
9
1 )( cm −=Π  if 0=α , and 0=Π  for 

)(2
1 cm −=α . Furthermore the fact that both firms stay in the market (positive 

production) leads to the condition )( cm −−>α . The parabola shifts to the “South-
East” with decreasing m. The parabola has a maximum at )(4

1 mc −=α , which is 
positive for mc > , zero for cm =  and negative for mc < . For mc >  stationary-state-
equilibrium profit, Π , is negative, irrespective of the value of α . 
Second, take the case where ji αα ≠ . Assume that jα  is fixed and nonnegative. 
Equation (3.8) determines firm i’s stationary-state-equilibium profit, which is a hill-
shaped parabola in iα  with one maximum at )(4

1
ji cm αα −−= . The parabola shifts to 

the “South-West” if jα  increases. With mc >  or mc <  but cmj −>α  profit is 
negative, whatever value of iα  is considered (see also Figures 3.4 and 3.2). If mc <  
but cmj −>α , the maximum is at 0=iα . In the case where both mc <  and 

cmj −<α , firm i’s profit is maximized at 0)(4
1 >−−= ji cm αα . 

 [End of proof] 
 
The intuition is illustrated in Figures 3.8 and 3.9 . 
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Fig. 3.8 The α-setting game for αi = αj = α. 
 
Figure 3.8 summarizes the implications for the case with habit symmetry. The curve 
ABCC’  depicts symmetric profit (      ΠΠΠ == 21 ) for symmetric habit formation 
( ααα == 21 ). The ABCC’-curve shifts to the “South-East” with decreasing demand 
parameter m. If mc = , the ABCC’-curve intersects the  Π -axis at the parabola’s 
maximum in (0,0), which indicates zero-profit Cournot-Nash behaviour as the profit-
maximizing strategy. Exit is the profit-maximizing strategy for mc > , because profits 
always lie below zero. The interesting case is mc < . If α  is restricted to be 
nonnegative, both firms maximize profit in the standard symmetric Cournot-Nash 
duopoly outcome by setting 021 === ααα  (point B), as the admissible equilibria are 
restricted to the first quadrant. That is, at point B profit is maximized by having no 
preference for sales volume, which gives the standard profit objective function. 
Moving from point B to A along the AB-line, profit declines with increases in sales 
preference. At point A a zero profit is earned, which resembles the perfectly 
competitive outcome of a  standard Bertrand-Nash duopoly game. At point A α  
equals )(2

1 cm − . The line AB is the right half of a parabola, which intersects the  Π -
axis at )0)( 2

9
1 =−= αΠ (  cm . If α  is allowed to be negative, the “left half” of parabola 

ABCC’, curve BCC’, indicates a preference for smallness (that is, 0<α ), or: a 
negative utility of sales. At point C both firms maximize profit by restricting output, 
which resembles the collusive Cournot duopoly outcome ( 2

8
121 )( cm −==   ΠΠ ). 

In Figure 3.9 the EFGG’-parabola depicts profit for iα -choices, given a 
predetermined jα . The EFGG’-curve shifts to the “South-West” if jα  increases, with 
its maximum at point H at (0,0) for cmj −=α . If mc <  and cmj −<α , the firm i 
benefits from positive habit formation up to a maximum at point F at 

)(4
1

ji cm αα −−= . For mc <  and cmj −=α  this expression is maximized at point H 
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by setting 0=iα , which indicates Cournot fringe follower strategies by firm i in a 
leader-follower (Stackelberg) setting, where a small firm i ( 0=iα ) follows a large 
leader j ( 0>>jα ). If mc >  or mc <  but cmj −>α , exit is the profit-maximizing reply: 
the case with mc >  is trivial; with mc <  but cmj −>α  (see also Fig. 3.2) rival j has 
expanded such that firm i cannot operate profitably in the competitive fringe. Figure 
3.9 supports, though in a different context, Dixit’s (1992) observation that managerial 
inertia may well be optimal in the context of decision making in a dynamic 
environment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.9 The α-setting game for αi  ≠  αj . 
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4. Cost asymmetry 
 
A popular explanation of organizational decline and exit is efficiency differentials: that 
is, ji cc ≠ . The basic model (3.1)-(3.5) can now be re-analyzed, which gives 
Proposition 3.5. 
 
Proposition 3.5. A Cournot-Nash duopoly stationary-state-equilibrium with 
asymmetric cost conditions ( ji cc ≠ ) and asymmetric habit formation ( ji αα ≠ ) can be 
calculated, and is asymptotically stable for 1,0 << ji γγ  . 
 
Proof. With ji cc ≠  maximizing equation (3.5) gives a set of four difference equations: 
 
(i) )( 112

1
,22

1
1,1 α+−+−=+ cmxx tt , 

(ii) )()1( 112
1

,22
1

,111,1 αγ +−+−−=+ cmxhh ttt , 
(iii) )( 222

1
,12

1
1,2 α+−+−=+ cmxx tt , and 

(iv) )()1( 222
1

,12
1

,221,2 αγ +−+−−=+ cmxhh ttt  . 
 
In matrix form this is bxAx tt +=+1  with 
 

T
222

1
222

1
112

1
112

1 )](),(),(),([ αααα +−+−+−+−= cmcmcmcmb  
 
and A as in the proof of Proposition 3.1. Equilibrium conditions bxAx += **  ⇔  

bxAI =− *)(  determine the stationary-state-equilibrium values (3.13), (3.14) and 
(3.20), which, from condition 10 << iγ , are asymptotically stable. 
 [End of proof] 
 
If ji cc ≠ , firm i’s equilibrium sales (3.6) transform into 
 

)22(3
1*

jiiji ccmx +−+−= αα , (3.13) 
 
and firm i’s equilibrium habit formation (3.7) changes into 
 

i

jiij
i

ccm
h

γ
αα +−+−

=
22

3
1* , (3.14) 

 
where i, j = 1, 2 and ji ≠ . Note that equation (3.13) confirms the intuition that firm i’s 
equilibrium output increases in firm j’s cost level. Equilibrium sales (3.13) indicate 
that firm i’s output exceeds firm j’s production if 
 

)( jiji cc −+> αα  . (3.15) 
 
Condition (3.15) implies that lower habit formation can be compensated by an 
efficiency advantage. 

The equivalence of the nonnegative price condition (3.9) to (3.11) is 
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)( 2121

*
2

*
1 ccmmxx ++≤+⇔≤+ αα , (3.16) 

1221
*
1 222 ccmmx +−≤−⇔≤ αα , and (3.17) 

2112
*
2 222 ccmmx +−≤−⇔≤ αα  . (3.18) 

 
Firm i’s exit condition (3.12) shifts to 
 

jiij ccm +−≥− 22αα , (3.19) 
 
where i, j = 1, 2 and ji ≠ . Firm i’s equilibrium profit (3.8) transforms into 
 

)22)(2(9
1

jiijjiji
i ccmccm +−+−+−−−= ααααΠ    (3.20) 

 
where i, j = 1, 2 and ji ≠ . So, firm i’s profit is negative for jiji ccm +−>+ 2αα . 

By way of illustration, this section explores the implications of cost asymmetry for 
two cases: 10 c< , mc <2  and 210 cmc <<< . For the sake of convenience, the 
assumption is that 21 cc < : so, firm 1 is the lowest-cost producer. If 10 c< , mc <2 , 
demand decline cannot explain exit, so that the focus is on the impact of strategic 
competition in combination with managerial inertia. Figures 3.1-3.4 are Figures 3.10-
3.12’s counterparts. The shift from Figures 3.1-3.4 to Figures 3.10-3.12 can, for 
example, be interpreted as being the result of a change in competitive conditions 
following an efficiency-enhancing innovation by firm 1. Two subcases can be 
discerned as to the size of firm 1’s cost reduction (that is, 12 cc − ): 02 12 >+− ccm  
(Figure 3.10) and 02 12 <+− ccm  (Figure 3.11). For example, take the case where 

15=m , 122 =c  and c1 drops from 12 to 10 in the first subcase, and subsequently from 
10 to 8 in the second subcase. The third case follows from 210 cmc <<< : firm 2, 
contrary to firm 1, cannot profitably operate in the market (Figure 3.12). This can be 
the result of, for example, a drop in demand from 15 to 10. 
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Fig. 3.10  Equilibrium outcomes for 0 < c1 < c2 and m – 2c2 + c1 > 0 
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Fig. 3.11  Equilibrium outcomes for 0 < c1 < c2 and m – 2c2 + c1 < 0 
 

2α

1α

IV 

0*
1 =x

III 0* =p  

VIII 

*
2

*
1 xx =  

II 

0* =p

V 0*
2 =xVI’ 

m+c1-c2/2 m+c1+c2 

H1 

K 

J1 

J2 

I 

m+c2-c1/2 

m+c1+c2 

I2 

I1 

m-2c1+c2 

0* =p

H2 

VI”’ 

VI” 

K ’ 

c2-c1 

c2-(m+c1)/2 
     = K” 



Chapter 3 Big is Beautiful 59 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.12  Equilibrium outcomes for  c1 < m < c2  
 
The nonnegative price conditions determine the lines I, II and III (conditions (3.16) to 
(3.18), respectively). Lines IV and V represent firm 1’s and firm 2’s exit conditions, 
respectively (equation (3.19)). Lines VI’-VI’’’ and VII’-VII’’ depict firm 1’s and firm 2’s 
zero-profit points (equation (3.20)). Finally, at the right-hand side of line VIII firm 1’s 
output exceeds firm 2’s sales, whereas at the left-hand side of line VIII the opposite 
holds (equation (3.15)). For the sake of brevity, this symmetric scale case is not 
discussed explicitly below. 

Relative to the case with cost symmetry, the introduction of cost asymmetries 
triggers results that are different in emphasis or nature. As far as shifts in emphasis 
are concerned, the fact that the firms’ exit and profit conditions have changed in 
favour of the lowest-cost firm is worth noting. For example, the intuition is confirmed 
that the exit areas of the efficient and inefficient firm are relatively reduced (I1 and L) 
and enlarged (I2 plus K), respectively. Differences in nature are more interesting, 
however. First, the interpretation of equilibria may have to be changed. Most 
importantly, equilibrium areas I1 and L imply that the inefficient firm 2 survives at the 
detriment of the lowest-cost rival 1, and at the left-hand side of line VIII in the 
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equilibrium regions G1, H1, J1, M1 and N1 and on the quilibrium lines VI’ and VII’ the 
highest-cost firm 2’s production volume exceeds the sales of its efficient rival 1. In 
both cases the explanation is that the preference for bigness overcompensates the 
efficiency disadvantage in the motive scheme of firm 2, whereas the opposite occurs 
in firm 1’s motivation structure. Note that equilibrium areas L, M1 and N1 even occur if 

mc >2  (Figure 3.12), implying that the inefficient rival 2 dominates over the efficient 
firm 1 even in an environment that is only viable for an efficient supplier! 

Second, if c1 is reduced to such an extent that 02 12 <+− ccm  (Figures 3.11 and 
3.12), the standard Cournot-Nash duopoly equilibrium G’ (pure profit maximizers: 

021 == αα ) vanishes. The reason is that in this case firm 1’s cost advantage is such 
that standard Cournot-Nash duopoly competition drives the profit of the inefficient 
firm below the economic shut-down point ( 2cp < ): firm 1 can exploit its efficiency 
advantage, and is able to operate as a natural monopoly. Third, two new equilibrium 
areas have emerged. In equilibrium regions Hi and Mi both firms have decided to stay 
in the market (firm j exceeding rival i in size). Cournot-Nash duopoly competition 
gives a price 21 cpc <<  (or 21 ccp <=  on lines VI’ and VI’’). So, firm 1 earns a 
positive profit (or zero on lines VI’ and VI’’), whilst firm 2 accumulates losses as a 
result of its efficiency disadvantage. Firm 2’s habit of liking bigness overcompensates 
its profit motive. Condition (3.15) determines the firms’ relative sizes. In equilibrium 
area K the lowest-cost firm 1 survives at the detriment of the inefficient rival 2. Firm 1 
operates as a natural monopoly which exploits its cost advantage so as to capture a 
positive profit (or zero on line VI’’’). Note that equilibrium line K’-K’’ implies that 

01 =α , firm 1 being a standard, efficiency-protected monopoly. Firm 2’s preference 
for large sales cannot compensate the negative profit so as to trigger a decision to 
stay. 

In comparison with the cost-symmetric case (Proposition 3.3) the comparative 
statics of the exit game with efficiency differentials introduces an additional finding 
worth reporting. This finding is summarized in Proposition 3.6. 
 
Proposition 3.6. For the case where 21 cc < , the (relative) size of the stationary-state-
equilibrium areas where the inefficient firm 2 decides to exit increases (in a nonlinear 
way) in 2c  with one notable exception: the size of the exit stationary-state-equilibrium 
region of firm 2 is independent from 2c  for )(2 12 cmc +≥ . 
 
Proof. Define an additional ratio of stationary-state-equilibrium areas: 

exits 1 Firm
exits 2 Firm=4R . Distinguish three cases (for 21 cc < ). For all cases stationary-state-

equilibrium areas I1 and L (where firm 1 decides to leave the market) are 2
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3 )(c . This 
is different for the sum of stationary-state-equilibrium areas I2 and K (where firm 2 
leaves the market), and so for R4 . 

(i) )( 12
1

2 cmc +< : 2
24

32 )(cKI =+ ; and 2
1

2
24

)(
)(

c
cR = . 

(ii) )(2)( 1212
1 cmccm +<≤+ : 2

124
12

24
32 )2()( mcccKI −−−=+ ; and 

2
1

2
12

3
1

2
1

2
24

)(
)2(

)(
)(

c
mcc

c
cR −−−= . 



Chapter 3 Big is Beautiful 61 

(iii) )(2 12 cmc +≥ : 2
14

32 )( cmKI +=+ ; and 2
1

2
14

)(
)(

c
cmR += , which is independent from 

2c . 
 [End of proof] 
 

The result is illustrated in Figure 3.13, where 
LI
KIR

+
+== 1

2
4

exits 1 Firm
exits 2 Firm . 

 
 

                       
 
 
Fig. 3.13  Comparative statics for R4:  Firm 2 exits / Firm 1 exits 
 
Figure 3.13 clearly depicts that R4 remains constant beyond )(2 12 cmc +≥ . For 

)(2 12 cmc +<  the intuitive result is obtained that the ratio R4, reflecting the relative 
incidence of firm 2’s exit decision, increases (in a nonlinear way) in 2c . 

The results for the duopoly model can easily be extended to the n-firm case. 
Proposition 3.7 summarizes the results of the n-firm Cournot-Nash competition game 
with habit formation and cost asymmetry. 
 
Proposition 3.7. A Cournot-Nash oligopoly stationary-state-equilibrium with n firms, 
asymmetric cost conditions ( ji cc ≠ ) and asymmetric habit formation ( ji αα ≠ ) can be 
calculated, and is asymptotically instable for 3>n . 
 

Proof. With n firms ∑
=
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i
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,  (equation (3.4)). Maximizing the objective function 
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∑
≠
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∑
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In matrix form this is bxAx tt +=+1 , where 
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and A the n-dimensional variant of matrix A in the proof of Proposition 3.1. Now the 
stationary-state-equilibrium volumes (21) and habit formations (22) can be calculated. 
The eigenvalues of matrix A are found by solving the equation 
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Hence, noting that )1(2
1 −−= nnλ , the stationary-state-equilibrium outcomes are 

asymptotically unstable for 3>n . For 3=n  the eigenvalues are 11 1 γλ −= , 22 1 γλ −= , 
33 1 γλ −= , 2

1
54 == λλ  and 16 −=λ , which gives small upward and downward 

movements close to the stationary-state-equilibrium outcome. For 3>n  there exists 
one eigenvalue the absolute value of which exceeds 1. Now the fluctuations are 
limited by the nonnegative price restriction. 
 [End of proof] 
 
Equilibrium volumes are 
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and equilibrium habit formation is 
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both for nji ,...,1, = , ji ≠  and 1>n . Hence, if 0=iα  ( ni ,...,1= ) and nji ccc === ... , 
the standard Cournot-Nash outcome with n firms is reached. The counterparts of the 
nonnegative price conditions (3.16) to (3.18) are 
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for nji ,...,1, =  and ji ≠ . Now equilibrium profit can be calculated. 

So, the n-firm case is a straightforward extension of the duopoly game implying a 
multiplication of the number of equilibrium regions without changing the qualitative 
features of the equilibrium outcomes. Model (3.21) to (3.24) defines an n-dimensional 
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area being constrained by 1+n  hyperplanes in the first quadrant ( 0≥iα  for ni ,...,1= ). 
An important deviation from the duopoly case is however that for 3>n  asymptotic 
instability occurs. The model can be analyzed through computer simulation by 
supplementing the model with the condition that sales are not allowed to fall below 
zero. That is, in period t firm i’s sales volume follows from 
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for nji ,...,1, =  and ji ≠ . 
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5. Appraisal 
 
The model reveals the precise conditions that underlie specific outcomes, ranging 
from standard Cournot-Nash duopoly competition over just-in-time exit to chronic 
failure, even by efficient firms. Essential in our model is that the weights attributed to 
size in the objective function, iα , do (except from Proposition 3.4) not follow from 
highly rational decision making like in principal-agent models (such as Vickers 
(1985), Fershtman and Judd (1987), Sklivias (1987) and Basu (1995)), but are 
assumed to be the result of managerial inertia (habit formation). The analysis of all 
sorts of ),( 21 αα -combinations leads to a variety of outcomes, such as an inefficient 
loss-making monopoly (region I1 in Figures 3.10 and 3.11).  On the one hand, as far 
as empirical regularities are concerned, the model outcomes support the two well-
documented stylized facts referred to in the introduction. First, the observation that 
bankruptcy is negatively correlated to size is reflected in equilibrium areas Bi, Fi, Ii, K 
and L where the (larger) habit-motivated firm survives to the detriment of the 
(smaller) profit-motivated rival. Second, the empirical finding that, in many cases, 
firms accumulate losses before the actual date of bankruptcy appears in equilibrium 
areas Bi, Ci, Ei, Fi, Hi, Ii, Ji, L, Mi and Ni (ignoring the border cases on the line 
segments), where chronic failure is associated with pertaining negative profits for one 
or both firms. 

On the other hand, from a theoretical angle the model reveals a broad set of 
outcomes and underlying causes through varying mixtures of cost (a)symmetries, 
demand turbulence, managerial inertia and strategic competition. Again, two remarks 
are worth making. First, IO-models concerning environmental decline, ignoring 
managerial inertia (so 021 ==αα ) are captured by the equilibrium points A’ (cost-
symmetric Cournot-Nash duopoly profit maximization), D’ (duopoly just-in-time exit), 
G’ (cost-asymmetric Cournot-Nash duopoly profit maximization) and K’-K’’ (profit-
maximizing efficient monopoly). Second, a key feature of this Chapter’s model is the 
explanation of chronic failure by large, inefficient firms in equilibrium areas H1, J1, M1 
and N1 (where the inefficient firm is larger than the lowest-cost rival) and, particularly, 
I1 and L (where the inefficient firm has expelled the lowest-cost rival from the market). 
Table 3.1 summarizes the outcomes. For the sake of brevity, the cases with 
symmetric scale on the line segments VII (Figures 3.1-3.4, apart from the equilibrium 
point A’) and VIII (Figure 3.10-3.12) are not included. 
 
Table 3.1. Equilibrium outcomes 
 
EQUILIBRIUM INTERPRETATION CONDITIONS 
 
A’ Cost-symmetric profit-maximizing 

duopoly with symmetric scale facing 
favourable demand 

c1 = c2 = c; 1α = 2α = 0; 1Π = 2Π > 0; 
*
1x  = *

2x  > 0; 0 ≤  c < m 
 

A1,A2 Cost-symmetric habit-motivated 
profit-making duopoly with 
asymmetric scale facing favourable 
demand 

c1 = c2 = c ; 0 < iα < jα ; 0 < iΠ < jΠ ; 

0 < *
ix  < *

jx ; 0 ≤  c < m 

VI Cost-symmetric habit-motivated 
zero-profit duopoly with asymmetric 
scale facing favourable demand 

c1 = c2 = c; 0 < iα  < jα ; iΠ = jΠ = 0; 

0 < *
ix  < *

jx ; 0 ≤  c < m 
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B’,B’’ Habit-motivated zero-profit 
monopoly facing favourable demand 

c1 = c2 = c; 0 < iα  < jα ; iΠ = jΠ = 0; 
*
ix  = 0 < *

jx ; 0 ≤  c < m 
B1,B2 Habit-motivated loss-making 

monopoly facing favourable or 
neutral demand 

c1 = c2 = c; 0 < iα  < jα ; jΠ < iΠ = 0; 
*
ix  = 0 < *

jx ; 0 < c ≤  m 

C1,C2 Cost-symmetric habit-motivated 
loss-making duopoly with 
asymmetric scale facing favourable 
or neutral demand 

c1 = c2 = c; 0 < iα  < jα ; jΠ < iΠ < 0; 

0 < *
ix  < *

jx ; 0 < c ≤  m 

D’ Cost-symmetric profit-maximizing 
just-in-time exit with neutral or 
unfavourable demand 

c1 = c2 = c; 1α  = 2α  = 0; 1Π = 2Π = 0; 
*
1x  = *

2x  = 0; c ≥  m 

D Cost-symmetric habit-motivated just-
in-time exit with unfavourable 
demand 

c1 = c2 = c; 1α , 2α  > 0; 1Π = 2Π = 0; 
*
1x  = *

2x  = 0; c > m 

E1,E2 Cost-symmetric habit-motivated 
loss-making duopoly with 
asymmetric scale facing 
unfavourable demand 

c1 = c2 = c; 0 < iα  < jα ; jΠ < iΠ < 0; 

0 < *
ix  < *

jx ; c > m 

F1,F2 Habit-motivated loss-making 
monopoly facing unfavourable 
demand 

c1 = c2 = c; 0 < iα  <<  jα ; jΠ < iΠ = 0; 
*
ix  = 0 < *

jx ; c > m 

G’ Cost-asymmetric profit-maximizing 
duopoly facing favourable demand 
with efficient leader 

m − 2c2 + c1 > 0; 1α  = 2α  = 0; 
0 < 2Π  < 1Π ; 0 < *

2x  < *
1x ; c1 < c2 < m 

G1 Cost-asymmetric habit-motivated 
profit-making duopoly facing 
favourable demand with inefficient 
leader 

m − 2c2 + c1 > 0; 0 < 1α  + (c2 - c1) < 2α ; 
1Π , 2Π > 0; 0 < *

1x  < *
2x ; c1 < c2 < m 

VII’ Cost-asymmetric habit-motivated 
duopoly facing favourable demand 
with inefficient zero-profit leader and 
efficient profit-making follower 

m − 2c2 + c1 > 0; 0 < 1α  + (c2 - c1) < 2α ; 
2Π  = 0 < 1Π ; 0 < *

1x  < *
2x ; c1 < c2 < m 

G2 Cost-asymmetric habit-motivated but 
profit-making duopoly facing 
favourable demand with efficient 
leader 

m − 2c2 + c1 > 0; 0 < 2α  < 1α  + (c2 - c1); 
0 < 2Π  < 1Π ; 0 < *

2x  < *
1x ; c1 < c2 < m 

 

VII’’ Cost-asymmetric habit-motivated 
duopoly facing favourable demand 
with efficient profit-making leader 
and inefficient zero-profit follower 

m − 2c2 + c1 > 0; 0 < 2α  < 1α  + (c2 - c1); 
2Π  = 0 < 1Π ; 0 < *

2x  < *
1x ; c1 < c2 < m 

H1 Cost-asymmetric habit-motivated 
duopoly facing favourable demand 
with inefficient loss-making leader 
and efficient profit-making follower 

m − 2c2 + c1 <
>  0; 0 < 1α  + (c2 - c1) < 2α ; 

2Π  < 0 < 1Π ; 0 < *
1x  < *

2x ; c1 < c2 < m 

VI’ Cost-asymmetric habit-motivated 
duopoly with inefficient loss-making 
leader facing (un)favourable demand 
and efficient zero-profit follower 
facing favourable demand 

m − 2c2 + c1 <
>  0; 0 < 1α  + (c2 - c1) < 2α ; 

2Π  < 1Π  = 0; 0 < *
1x  < *

2x ; c1 < c2 < m 
(or c1 < m < c2) 

H2 Cost-asymmetric habit-motivated 
duopoly facing favourable demand 
with efficient profit-making leader 
and inefficient loss-making follower 

m − 2c2 + c1 <
>  0; 0 < 2α  < 1α  + (c2 - c1); 

2Π  < 0 < 1Π ; 0 < *
2x  < *

1x ; c1 < c2 < m 
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VI’’ Cost-asymmetric habit-motivated 
duopoly with efficient zero-profit 
leader facing favourable demand 
and loss-making follower facing 
(un)favourable demand 

m − 2c2 + c1 <
>  0; 0 < 2α  < 1α  + (c2 - c1); 

2Π  < 1Π  = 0; 0 < *
2x  < *

1x ; c1 < c2 < m 
(or c1 < m < c2) 

I1 Inefficient habit-motivated loss-
making monopoly facing 
(un)favourable demand 

m − 2c2 + c1 <
>  0; 0 < 1α  + (c2 - c1) <<  2α ; 

2Π  < 1Π  = 0; 0 = *
1x  < *

2x ; c1 < c2 < m 

I2 Efficient habit-motivated loss-making 
monopoly facing favourable demand 

m − 2c2 + c1 <
>  0; 0 < 2α  <<  1α  + (c2 – c1); 

1Π  < 2Π  = 0; 0 = *
2x  < *

1x ; c1 < c2 < m 
J1 Cost-asymmetric habit-motivated 

loss-making duopoly facing 
favourable demand with inefficient 
leader 

m − 2c2 + c1 <
>  0; 0 < 1α  + (c2 - c1) < 2α ; 

2Π  < 1Π  < 0; 0 < *
1x  < *

2x ; c1 < c2 < m 

J2 Cost-asymmetric habit-motivated 
loss-making duopoly facing 
favourable demand with efficient 
leader 

m − 2c2 + c1 <
>  0; 0 < 2α  < 1α  + (c2 - c1); 

1Π , 2Π  < 0; 0 < *
2x  < *

1x ; c1 < c2 < m 

K’-K’’ Efficient profit-maximizing monopoly 
facing favourable demand 

m - 2c2 + c1 < 0; 1α  = 0 ≤  2α ; 
2Π  = 0 < 1Π ; *

2x  = 0 < *
1x ; c1 < m < c2 

K Efficient habit-motivated profit-
making monopoly facing favourable 
demand 

m - 2c2 + c1 <
>  0; 0 < 2α  <<  1α  + (c2 - c1); 

2Π  = 0 < 1Π ; *
2x  = 0 < *

1x ; c1 < m < c2 

VI’’’ Efficient habit-motivated zero-profit 
monopoly facing favourable demand 

m - 2c2 + c1 <
>  0; 0 < 2α  <<  1α  + (c2 - c1); 

1Π  = 2Π  = 0; *
2x  = 0 < *

1x ; c1 < m < c2 
L Inefficient habit-motivated loss-

making monopoly facing 
unfavourable demand 

m - 2c2 + c1 < 0; 0 < 1α  + (c2 - c1) <<  2α ; 
2Π  < 1Π  = 0; *

1x  = 0 < *
2x ; c1 < m < c2 

M1 Cost-asymmetric habit-motivated 
duopoly with inefficient loss-making 
leader facing unfavourable demand 
and efficient profit-making follower 
facing favourable demand 

m − 2c2 + c1 < 0; 0 < 1α  + (c2 - c1) < 2α ; 
2Π  < 0 < 1Π ; 0 < *

1x  < *
2x ; c1 < m < c2 

M2 Cost-asymmetric habit-motivated 
duopoly with efficient profit-making 
leader facing favourable demand 
and inefficient loss-making follower 
facing unfavourable demand 

m − 2c2 + c1 < 0; 0 < 2α  < 1α  + (c2 - c1); 
2Π  < 0 < 1Π ; 0 < *

2x  < *
1x ; c1 < m < c2 

N1 Cost-asymmetric habit-motivated 
loss-making duopoly with inefficient 
leader facing unfavourable demand 
and efficient follower facing 
favourable demand 

m - 2c2 + c1 < 0; 0 < 1α  + (c2 - c1) < 2α ; 
2Π  < 1Π  < 0; 0 < *

1x  < *
2x ; c1 < m < c2 

N2 Cost-asymmetric habit-motivated 
loss-making duopoly with efficient 
leader facing favourable demand 
and inefficient follower facing 
unfavourable demand 

m - 2c2 + c1 < 0; 0 < 2α  < 1α  + (c2 - c1); 
1Π , 2Π  < 0; 0 < *

2x  < *
1x ; c1 < m < c2 

 
 
This Chapter’s model has, of course, its limitations. Table 3.1 reveals that the model 
does not cover two scenarios: temporary downturn, where a firm recovers after a 
temporary period of negative profit (Dixit (1989 and 1992)), and ultimate exit, where a 
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firm leaves the market after a period of accumulated losses (Ho and Saunders (1980) 
and Scapens, Ryan and Fletcher (1981)). Van Witteloostuijn (1998) uses the terms 
“turnaround success” and “flight from losses” in his framework. Therefore, an 
immediate extension of the model could be in line with the theoretical exercitions 
from an AF-perspective (Ho and Saunders (1980) and Scapens, Ryan and Fletcher 
(1981)) by introducing the influence of institutional restrictions through modeling 
creditors’ confidence. This means that the firm’s profit constraint (or, to be precise, 
loss constraint) is endogenized rather than fixed to zero (IO-literature) of infinite (this 
Chapter). 

Moreover, by way of illustration, three further extensions are worth mentioning. 
First, following Vickers (1985), the assumption of myopic behaviour may be relaxed. 
That is, habit formation becomes a strategic variable if managers (or other 
stakeholders, for that matter) are able to decide, at least to some extent, on routines 
formation by in advance taking account of the implications of specific decisional, 
organizational and ownership structures on the parameter α (in the models of Vickers 
(1985) and Fershtman and Judd (1987) owners write incentive contracts for their 
managers. Owners influence managers’ objective functions in such a way that profit 
is maximized, given the rival’s objective function). Proposition 3.4 reflects on the 
strategic choice of the weights iα . Second, expansion (and shrinkage) may be 
assumed to be costly. In the well-established IO-tradition on decision making on 
capacity, expansion (or exit) requires investment (or loss) of sunk cost in building up 
(or breaking down) productive capacity (Tirole (1988)). Third, and related to the 
second, firms may be assumed to operate in a multimarket context, which has an 
impact on the nature and size of exit barriers (Van Wegberg and Van Witteloostuijn 
(1992) and Van Witteloostuijn and Van Wegberg (1992)). The key point is that the 
modeling framework in this paper permits the introduction of these and other 
extensions, and subsequently facilitates the analysis of the implications of newly 
introduced parameters. 
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CHAPTER 4 
 
COURNOT COMPETITION WITH ASYMMETRICAL ADJUSTMENT COSTS 
SUBJECT TO A BUSINESS CYCLE 
 
 
1. Introduction 
 

In Chapter 3 we examined the consequences of managerial growth preferences 
and we used a game theoretical approach to model this form of firm’s inertia. One of 
the intriguing results of this analysis is that management’s preference for size (and its 
resistance to downsize) may be strategically beneficial in direct competition. For 
instance van Witteloostuijn, Boone and van Lier (2003) state that  “A cost-efficient 
(i.e., low-cost) and managerial flexible (i.e., profit-maximizing) firm may well be 
outcompeted by a cost-inefficient (i.e., high-cost) and managerially inert (i.e., 
nonprofit-maximizing) rival. In the extreme, the latter firm may even survive at the 
expense of the former”. 
This outcome of mathematical modelling also supports the path-breaking inertia  
theorem in Organizational Ecology of Hannan and Freeman (1984). Briefly speaking, 
they argue that “Selection in populations of organizations in modern societies favors 
forms with high reliability of performance and high levels of accountability” This high 
levels of reliability and accountability require that organizational rules, procedures 
and structures are highly reproducible. Naturally the same factors that make a 
system or structure highly reproducible also cause firm’s inertia (relative to 
environmental changes). These arguments, roughly speaking, lead to Hannan and 
Freeman’s theorem (1984): “Selection within populations of organizations in modern 
societies favors organizations whose structures have high inertia”. 

Chapter 3 deals with the implications of a special form of inertia, namely 
managerial inertia under environmental turbulence. The behaviour of the firm’s 
management – reflected in “love for size” and “resistance to retrenchment” is 
imprinted thoroughly in firm’s structures and procedures and appararently this firm’s 
blueprint is favoured in a selection process. Of course, under the assumption that 
firms are able to adapt rationally to environmental turbulence or competitive threats 
(rational adaptation theory versus the selection perspective), manipulation of the level 
of preference for size can serve as a strategic instrument. The α-setting game (which 
is closely related to the “delegation games” of Vickers (1985), Fershtman and Judd 
(1987) and others) and the optimal level of inertia in Chapter 3 are examples of 
rational and strategic action. 

In this Chapter we focus on another form of inertia, reflected by firm’s adjustment 
costs due to a change of production levels. Obviously the adjustment of production 
volumes is associated with all sorts of costs, because neither a decrease nor an 
increase of a firm’s production level is likely to be costless. The form of inertia 
associated with adjustment costs could be called organizational inertia besides the 
other form - managerial inertia - considered in Chapter 3 (in Chapters 5 and 6 also 
managerial inertia reflected by preference for market share will be examined). 
Realizing that changes in firm’s production volumes cause additional expenses, on 
top of the usual unit production costs, we briefly reflect on the main sources of these 
adjustment costs, inter-firm differences, and their functional form concerning the 
Cournot duopoly model in this Chapter. First prominent long-run cost of production 
change follows from investment or devestment of capital. 
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And second a major short-run cost of production change originates in human 
resources. Expansion of the usual supply, results in overwork and the recruitment of 
additional labour force. Both overwork pay and the attraction of new employees imply 
extra costs and may delay the firm’s decision to enlarge production. On the other 
hand a decrease of production levels may imply the necessity to fire personnel and is 
associated with redundancy payments and golden handshakes. Besides extra costs 
also firm’s specific skills and knowledge may be lost as a consequence of 
downsizing. 

Concerning the shape of the firm-level employment adjustment cost function 
Hamermesh and Pfann (1996) discuss a large number of empirical studies and argue 
that the adjustment cost function may be symmetric or asymmetric and linear or non-
linear, depending upon the country, industry and period under study. These 
adjustment costs may be very large. For example “Hamermesh (1989) suggests that 
lumpy costs of adjustment in the manufacturing plants he studies are so large that a 
shock must alter demand by 60 percent before employment is changed”.  One may 
expect that the implication of adjustment costs is that firms are more or less slow in 
changing their employment size over a downward or upward phase of the business 
cycle. Indeed Hamermesh and Pfann argue that the response to environmental 
shocks will not be instantaneous. 

There also exist inter-firm differences in terms of adjustment as management 
literature reveals. Huselid (1995) reveals that firms differ in their choice for high- or 
low-commitment human resource management practices. Naturally high-commitment 
human resource practices are associated with high salaries, long- term contracts and 
permanent appointments, implying that such practices are relatively expensive in 
comparison to low-commitment human resource practices. Even between countries 
there exist differences between human resource management practices. 
Gooderham, Nordhaug and Ringdal (1999) report significant and systematic cross-
country heterogeneity concerning these practices. On the one hand relatively 
expensive human resource practices dominate in Denmark, Germany, and Norway, 
whereas their relatively cheap counterparts are typical for France, Spain and the UK. 
Another source of differences between firms’ organizational inertia may be the well-
established phenomenon of resistance to change on an organization’s work floor. A 
clear case of organizational inertia is caused by retrenchment costs and van 
Witteloostuijn (1998) presents a recent review of this issue, which has been studied 
heavily in the literature of organizational decline. 

 
How do we use the conclusions of these empirical findings in our game theoretic 

approach?  As a first step in modelling mathematically the complicated issue of 
organizational inertia, in this Chapter, we focus on a Cournot duopoly game, with 
asymmetrical adjustment costs of both competitors around the Cournot-Nash 
equilibrium. Production cost functions will be chosen both linear and quadratic. We 
note that, concerning most studies, unit production cost, i.e. marginal costs, are 
considered to be constant. The presence of a quadratic term in the production cost 
function enables us to examine the consequences of production technologies with 
decreasing and increasing returns to scale as well, albeit this choice sometimes 
complicates the expressions and formulas. Concerning the functional form of the 
adjustment costs, many choices can be made as empirical research reveals. For 
instance, Szidarovsky and Yen (1995) focus on conditions for the stability of dynamic 
oligopolies (with discrete time scale) under the assumption of quadratic adjustment 
costs concerning the production level of the previous period. 
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So concerning their model, adjustment costs take the functional form                   
C = k(xt – xt-1)2, where k is a constant and the quantities xt , xt-1 represent the actual 
and previous supply levels respectively. However, we consider the quadratic 
functional specification rather nonrealistic in the context of hiring and firing 
employees; if adjustment costs are strongly related to human resource management 
practices, at least a linear term should have been added. In our duopoly model 
adjustment costs are constant per unit production change related to a fixed 
production level (corresponding to a reference market size m=1 in a normalized 
model). Then, the possible necessity to increase or decrease supply is induced by 
environmental turbulence, namely fluctuations in demand, i.e. the occurrence of 
business cycles. 

The analysis of this Chapter focuses on the behavioral phases of two 
competitors, which may possess different adjustment costs per unit production 
change, as an implication of decreased or increased economic activity. The 
introduction of adjustment costs in the Cournot duopoly model naturally supports 
Hammermesh and Pfann’s findings that the response to environmental shocks will 
not be instantaneous. Furthermore the forthcoming analysis reveals intriguing 
implications of inter-firm differences in adjustment costs, related to strategic benefits. 
Here we mention one of the outcomes: 
 

An organizationally flexible (i.e., without production costs) firm may well be 
outcompeted by an organizationally inert (i.e., with production adjustment costs) rival. 
In the extreme, the latter may even survive at the expense of the former. 
 

The “may” formulation of this statement has to do with a period of decreased or 
increased economic activity. It turns out that organizational inertia pays off in a 
declining market, whereas in a booming market flexibility pays off. The outcomes of 
the analysis of this Chapter can be looked upon from two different theoretical 
perspectives. First from the rational adaptation perspective and under the assumption 
that a change in the adjustment costs (per unit) is possible, these costs can serve as 
a firm’s strategic instrument. By manipulating these adjustment costs (for instance by 
a change in human resource practices) a firm is able to expel its rival from the market 
or to make relatively higher profits during a period of economic upswing or 
downswing.  

However the second, Organizational Ecology (OE), perspective, which focuses 
on Darwinian selection processes is also (partly) supported by the analytical 
outcomes, because selection favors firms with a high level of organizational inertia in 
a declining market. 

 
How is this Chapter organized? 

Section 4.2 deals with the formulation and normalization of the “classical” Cournot 
duopoly model, i.e. the model without adjustment costs,. A summary of both 
competitor’s profits and social welfare is provided, subject to a business cycle. These 
“classical” outcomes will serve as a point of reference concerning the analytical 
results of the other Sections. Section 4.3 deals with the precise formulation of the 
Cournot model with asymmetrical adjustment costs around the original Cournot-Nash 
equilibrium. The Propositions derived in this Section describe the properties of 
reaction curves, as a consequence of adjustment costs and a change in market size. 
These findings play a central role in the analysis of the other Sections. 
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In Section 4.4 the behavioral phases of both rivals are considered in a declining 
market. We compare both firms’ profits to the classical outcomes and reflect on 
several exit conditions concerning the competitor with the lowest adjustment cost 
parameter. Section 4.5 deals with a booming market and again classical profit will 
serve as a point of reference during three behavioral phases. Both competitors’ 
profits will be compared. Computer experiments illustrate the analytical results. In 
Section 4.6 we use integral calculus to compute the total profits of both competitors 
during a downward, upward and a complete business cycle. This technique enables 
us to derive expressions concerning the relative profits of one firm in comparison to 
its rival over a period with decreased or increased economic activity. These 
outcomes lead to considerations whether a firm - with knowledge of its rival’s 
adjustment cost parameters - can choose its own adjustment costs such that the 
rival’s relative profits during a complete business cycle are minimized. These 
considerations refine the exit criteria suggested in Section 4.4. 

The analysis of Section 4.7 focuses on the implications of adjustment costs 
concerning social welfare. Welfare is compared to the classical outcome of a Cournot 
duopoly game and also total welfare is considered over (parts of) a business cycle. 
Section 4.8 concludes with an appraisal. 
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2. Classical Cournot duopoly and a business cycle 
 

The variables under manipulation in a classical Cournot model are the quantities 
both firms will produce. We assume a homogeneous market, i.e. each firm offers the 
same good for sale on the market. Furthermore we will assume that the inverse 
demand curve is linear and decreasing. If X1+X2 equals total output of both firms, firm 
1 and 2, market price is determined by 
 

p(X1,X2) = mA - b(X1+X2), A > 0 and b > 0 (4.1) 
 
In this expression the variable m equals market size and m = 1 will be our point of 
departure, whereas m < 1 and m > 1 respectively refer to a decreased and an 
increased market size. We also assume that in every period the whole production is 
sold i.e. excess demand equals precisely zero. For both firms the functional form of 
the production costs is chosen to take the quadratic form C(xi) = CXi + DXi

2, with 
0 < C < A. This will allow us to study cases with linear production costs (D = 0), 
decreasing marginal costs (D < 0) and increasing marginal costs (D > 0) i.e. we study 
production processes (functions) with constant, increasing and decreasing returns to 
scale. Marginal costs will always be positive on the interval 0 < Xi < (A/b)mmax for 
D > -(C/2)(b/A)/mmax. Here mmax equals maximal market size. Under the assumption of 
naïve (myopic) expectations of both firms (Xi,t

e = Xi,t-1, i = 1,2) and the restriction of 
nonnegative prices we obtain the following optimization problem for firms 1 and 2: 
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We can normalize these equations by the transformation X1,t = (A/b)x1,t and 
X2,t = (A/b)x2,t. In the following we will restrict our study to the transformed equations 
of both competitors (we use c,d for the production cost parameters instead of C,D): 
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Now it holds that c = C/A and d = D/b, so for quadratic production costs the two 
transformed conditions equal (i) 0 < c < 1 and (ii) d > (-c/2)/mmax > -1/2. Solving this 
optimization problem for both competitors we obtain a classical decreasing Cournot 
reaction curve (that never meets the restriction) with slope -1/(2+2d). This leads to the 
following set of first order, linear difference equations: 
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The intersection point of both reaction curves is the unique and symmetrical 
Cournot-Nash equilibrium )23()(*

2
*
1 dcmxx +−==  (under the usual textbook 

assumption that firms possess constant unit production costs C, this equilibrium, 
corresponding with the non-normalized model and market size m=1, 
equals bCAxi 3)(* −= ).The sufficient conditions for the asymptotic stability of this 
equilibrium can be found in Fudenberg and Tirole (1991) or Devaney (1989) and are 
satisfied for d > -1/2, because the eigenvalues of this set of difference equations 
equal λ1,2 = + 1/(2+2d). The basin of attraction of this stable Cournot-Nash equilibrium 
equals the whole set of feasible (i.e. nonnegative price p) initial values (x1,0 , x2,0). 
Note that the eigenvalues inform us about the speed at which the equilibrium is 
approached; the smaller the absolute values of these eigenvalues are, the larger the 
speed will be at which the equilibrium will be approached. In this sense stability will 
be “weakened” if d decreases, for instance for production costs with decreasing 
marginal costs (i.e. concave cost functions, production processes with increasing 
returns to scale). 

If we were to consider a three player model where each firm reacts on the 
aggregate production of the other competitors, the eigenvalues would be λ1,2 = 
1/(2+2d) and λ3 = -1/(1+d), implying that stability conditions no longer hold for d < 0. 
For linear cost functions Theocharis (1960) already investigated the classical case 
with 3 or more players, under the assumption of naïve expectations, and found 
cyclical solutions for 3 players and explosive solutions for more than 3 players. In 
case of instability, solutions are limited by the nonnegative price restriction. 
Concerning our duopoly model profits corresponding with the Nash equilibrium are 
equal for both firms: 
 

2
221

)23(
)1()(

d
dcmΠΠ clcl +

+−==  (4.5) 

During a downward business cycle i.e. during a depression (m decreasing from 
m=1) both rivals will equally decrease their production levels and of course their 
profits will also decrease equally. Using calculus reveals that profits are decreasing 
functions with respect to the increasing parameters d, for d > -1/2, and c respectively. 
The more negative the parameter d is, the more concave the production cost function 
is; with constant c this parameter d reflects scale advantages of the production 
process. As one might expect the more efficient the production technologies, which 
these firms control are, the more profitable this is for both firms even in periods of 
depression. The expression for the profits also holds for m > 1, i.e. during an upswing 
of economic activity, and if we were to display the profit during a whole business 
cycle we would obtain a fluctuating pattern which keeps pace with the (graph of the) 
business cycle, but which is not symmetrical with respect to m=1 (the expression of 

i
clΠ  contains the quadratic term (m-c)2). 

The consequences for the welfare W concerning two firms with adjustment costs 
will be the main issue of Section 4.7 so we now give the expression for the classical 
case. In the normalized model the consumer surplus CS equals 2*

2
1 )(qCS =  with 

*
2

*
1

* xxq +=  , the market supply of both competitors. Substituting firms’ production 
levels corresponding with the Cournot-Nash equilibrium we obtain 

2

2

)23(
)(2

d
cmCScl +

−=  (4.6) 
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Social welfare is defined as the sum of producer surplus and  consumer surplus. 
Substitution of the expressions of firms’ profits and consumer surplus leads to the 
following expression for social welfare pertaining to the classical case: 
 

2
2

)23(
)24()(

d
dcmWcl +

+−=  (4.7) 

Because Wcl increases as d decreases (or c decreases) we obtain the natural result 
that the more efficient a production technology is, the larger welfare will be. In the 
usual textbook benchmark case firms have constant unit production costs 
corresponding to d=0 (for the non-normalized model and market size m=A this usual 
assumption leads to the expression Wcl = 4(A-C)2/(9b) for the welfare). 
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3. The model with asymmetrical linear adjustment costs 
 

We now introduce linear adjustment costs pertaining to firm 1 around the 
production level *

11 xx = ( for instance, *
1x  can be equal to the “classical” Cournot-Nash 

equilibrium (1-c)/(3+2d) corresponding to market size m=1). We will distinguish 
adjustment costs equal to l1 per unit of production decrease and equal to u1 per unit 
of production increase where in general l1 and u1 are allowed to be different. Using 
normalized variables similar to Section 4.2, concerning firm 1, this model leads to the 
following optimization problem with restrictions: 
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This optimization problem is usually solved by setting the marginal profit equal to 
zero (first order condition), but here we have to deal with a discontinuity of the 
marginal profit at *

1,1 xx t = . 
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Marginal profit displays a “jump” the size of l1+u1 and the second order condition 

for a maximum is satisfied ( 022)( 2
1

12 <−−=∂∂ dxΠ ,t ). The optimal profit occurs for 
a specific *

,1 tx satisfying 01
1 ≥∂∂ ,tx/Π  for *

,1,1 tt xx ≤ and 01
1 ≤∂∂ ,txΠ  for *

,1,1 tt xx > . Note 
that the value *

,1 tx is uniquely determined, because of the ever-decreasing marginal 
profit as x1,t increases. In the following analysis we use the expression “conditional 
reaction curve” indicating a reaction curve with adjustment costs around *

1x and 
corresponding with market size m. We will use the notation x1,t = R1(x2,t-1, m| *

1x ) for 
player 1. The following Proposition reveals that there exists an interval of values x2,t-1 
of player 2, for which player 1 always reacts with *

1,1 xx t = . In other words, as a 
consequence of adjustment costs, player 1 doesn’t react immediately upon a change 
of its rival’s production level (like in the classical Cournot model) but remains inert. 
 
Proposition 4.1 (the inertia interval). 
 
For  max{0, m-c-(2+2d) *

1x  - u1} < x2,t-1 < min{m- *
1x , m-c-(2+2d) *

1x +l1} it holds that 
x1,t = R1(x2,t-1, m| *

1x ) = *
1x . 
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Proof 
First we use the expression of the marginal profit ,txΠ 1

1 ∂∂ for *
1,1 xx t ≤ . It follows 

that for x2,t-1 < m-c-(2+2d) *
1x +l1 the marginal profit ,txΠ 1

1 ∂∂ > 0 at *
1,1 xx t = . The 

marginal profit increases for lower values of x1,t ( 022)( 2
1

12 <−−=∂∂ dxΠ ,t ) so 

,txΠ 1
1 ∂∂ > 0 for *

1,1 xx t ≤ . 
From the expression of the marginal profit ,txΠ 1

1 ∂∂ for *
1,1 xx t > , it follows that for 

x2,t-1 > m-c-(2+2d) *
1x  - u1 the marginal profit ,txΠ 1

1 ∂∂ < 0 at *
1,1 xx t = .  Because the 

marginal profit decreases for higher values of x1,t  it holds that ,txΠ 1
1 ∂∂ < 0 for 

*
1,1 xx t > . For m-c-(2+2d) *

1x  - u1 < x2,t-1 < m-c-(2+2d) *
1x +l1 the change of the sign of the 

marginal profit (from positive to negative) always takes place at *
1,1 xx t = and player 1 

reaches the optimum location of his profit. The expressions “max” and “min” in the 
interval of inertia clearly follow from the restrictions x2,t-1 > 0 and x1,t + x2,t-1 < m. 
 [End of proof] 
 

Proposition 4.1 tells us that the lenght of the inertia interval equals l1+u1, the sum 
of the two adjustment costs per unit of decrease and increase of production 
respectively (of course under the condition that this interval does not meet the 
nonnegativity restrictions of production and price). Furthermore a point on the graph 
of this conditional reaction curve in the “midst of” the inertia interval is                     
(m-c -(2+2d) *

1x  , *
1x ) This point lies also on the graph of the nonconditional curve 

(without adjustment costs). The following Proposition reveals the functional form of 
firm 1’s reaction curve concerning values of x2,t-1 out of the inertia interval. 
 
Proposition 4.2  (shifts of reaction curves, due to adjustment costs). 
 
For x2,t-1 < m-c-(2+2d) *

1x  - u1 the functional form of the conditional reaction curve can 
be obtained from the functional form of the nonconditional curve (no adjustment 
costs) by 

)22(
)(

)22(
)()()( 112

112
1*

112
1

1 d
ux

d
cm,muxR,m|xxRx ,t

,t,t,t +
+

−
+
−=+== −

−−  (4.10) 

And for x2,t-1 > m-c-(2+2d) *
1x +l1 the following holds 
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(Note that the two parts of the graphs of the conditional reaction curve for 
x2,t-1 < m-c-(2+2d) *

1x  - u1 and for x2,t-1 > m-c-(2+2d) *
1x +l1 originate in the nonconditional 

curve by translation to the left and the right respectively.) 
 
Proof 

For x2,t-1 < m-c-(2+2d) *
1x  - u1 the marginal profit ,txΠ 1

1 ∂∂ > 0 at *
1,1 xx t = . The 

marginal profit is decreasing with respect to the variable x1,t and will be equal to zero 
for the unique value of *

1,1 xx t >  satisfying m-c-(2+2d)x1,t -x2,t-1-u1 = 0. 
Slightly rewriting this expression gives m-c-(2+2d)x1,t -(x2,t-1+u1) = 0. 
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Concerning the nonconditional reaction curve the variable x1,t equals the solution of 
m-c-(2+2d)x1,t -x2,t-1 = 0. This proves part one of the proposition. 
For x2,t-1 > m-c-(2+2d) *

1x +l1 the marginal profit ,txΠ 1
1 ∂∂ < 0 at *

1,1 xx t = . Now the unique 
value of *

1,1 xx t <  is obtained from m-c-(2+2d)x1,t -(x2,t-1-l1) = 0. 
 [End of proof] 
 

The form of the conditional reaction curve R1(x2,t-1, m| *
1x ) of firm 1 is fully 

determined by Propositions 4.1 and 4.2. Note that these Propositions also hold for 
arbitrary (non-linear) production cost functions c(x1) and that the linearity of x2,t-1 in the 
formulas of the marginal profit leads to this rather simple expression for the inertia 
interval. An example of the graph of a conditional reaction curve together with the 
graph of the nonconditional curve serves as a visual illustration. 
 

 
 
Fig. 4.1 Comparison of conditional and nonconditional reaction curves 
 

The graph of the conditional reaction function is displayed in bold here. Here the 
production cost function equals c(x1) = 0.4x1-0.1(x1)2, *

1x = 0.2143 (Cournot-Nash 
equilibrium for two identical players), and the adjustment costs around *

1x per unit are 
l1=0.15 (for *

1,1 xx t < ) and u1=0.10 (for *
1,1 xx t > ). The inertia interval is determined by 

0.2143-0.10 < x2,t-1 < 0.2143+0.15. The intersection point of the two curves equals the 
Cournot-Nash equilibrium ( (1-c)/(3+2d), (1-c)/(3+2d) ) = (0.2143 , 0.2143). 
In Sections 4.4 and 4.5 we will consider the behaviour of two competitors subject to 
environmental turbulence, namely fluctuations in the market size m. Therefore we 
have to consider the functional form of the conditional reaction function subject to 
such downswings and upswings of economic activity. The following Proposition 
shows that if the market size decreases (increases) with an amount ∆m (starting from 
size m) the graph of the conditional reaction function of firm 1 shifts to the left (right) 
over a distance ∆m. 
 
 
 
 
 

Conditional 
curve 
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Proposition 4.3 (shifts of reaction curves due to fluctuations in market size). 
Using the notation R1(x2,t-1, m+∆m| *

1x ) for the conditional reaction function of firm 1 
corresponding with market size m+∆m it holds that 
 

R1(x2,t-1, m+∆m| *
1x ) = R1(x2,t-1-∆m, m| *

1x ) (4.12) 
 
Proof 

This property can be easily understood by consideration of the manner the 
market size m appears in the formulas of Proposition 4.1 and 4.2. 
For x2,t-1 < m+∆m-c-(2+2d) *

1x  - u1 and x2,t-1 > m+∆m-c-(2+2d) *
1x +l1 the functional form 

of the conditional reaction curve R1(x2,t-1, m+∆m| *
1x ) can be obtained by solving 

respectively the equations (see Proposition 4.2): 
 

m+∆m-c-(2+2d)x1,t -x2,t-1-u1 = 0 and m+∆m-c-(2+2d)x1,t -x2,t-1+l1 = 0 
 
Rearranging the terms in both equations leads to 
 

m-c-(2+2d)x1,t -(x2,t-1-∆m)-u1 = 0 and m-c-(2+2d)x1,t -(x2,t-1-∆m)+l1 = 0 
 
In these equations x1,t simply equals R1(x2,t-1-∆m, m| *

1x ). 
Using Proposition 4.1 for market size m+∆m it is clear that the inertia interval also 
shifts. 
 [End of proof] 
 

Note that the fact that the expressions for the marginal profit depend linearly on 
the variable x2,t-1 enables us to rewrite these expressions effectively. We again 
consider  firm 1 with a production cost function equal to c(x1) = 0.4x1-0.1(x1)2, *

1x = 
0.2143, and adjustment costs around *

1x per unit equal to l1=0.15 (for *
1,1 xx t < ) and 

u1=0.10 (for *
1,1 xx t > ). The following graphical presentation shows the shifting to the 

right of the conditional reaction curve of this firm subject to an increasing market size 
(departing from a full market size m=1, next m=1.1, and finally m=1.2). 
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Fig. 4.2 The conditional reaction curve subject to an increasing market size 

Shift 
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4. Phases of behaviour in a declining market 
 

We have to be precise about what we mean by a declining market. During this 
following analysis our point of departure is a market size m=1 and we assume that 
this market size decreases till an all time low of the whole business cycle. In general 
four periods can be distinguished as parts of the business cycle. We can distinguish 
a period of expansion or upswing during which the economy recovers from the 
downswing (depression). The upper turning point, the crisis, is the (small) period in 
the economic development between (relative) growth and (relative) decline.The 
revival (period) corresponds to the lower turning point. So if the market size 
decreases, starting from m=1, the forthcoming period corresponds with the second 
half of the downswing moving to the lower turning point. 

We now introduce a second competitor, firm 2, with the same (quadratic) 
production cost function C(x2,t) = c.x2,t+d.(x2,t)2 implying that in this Chapter both firms 
possess an equally efficient production technology (in Chapter 3 we examined the 
case with cost asymmetry as well). However both firms can have different (linear) 
adjustment costs per unit production change around the Cournot-Nash equilibrium for 
m=1. Concerning firm 2 the optimization problem can be formulated as: 
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Adjustment cost parameters u1 (competitor 1) and u2 are not of importance in this 

section because we analyse the behavioural consequences of a declining market.  
We assume that l1 > l2 i.e. the adjustment costs of firm 1 per unit production in a 
declining market (m<1) exceed those of its rival. As an example we choose the 
values l1=0.15, l2=0.05 and u1=0.10, u2=0.05 of the adjustment cost parameters around 

*
2

*
1 xx = =(1-c)/(3+2d). If the production cost function of both rivals equals 

C(xi) = 0.4xi-0.1(xi)2 , i=1,2 , then the Cournot-Nash equilibrium of both firms equals 
*
2

*
1 xx = = 0.2143. For m=1 the resulting graphs of the two reaction curves in Figure 4.3 

clarify both firms’ initial situation. The curve of firm 1 is printed bold. Note that these 
reaction curves still intersect at the (symmetric) Cournot-Nash equilibrium      

*
2

*
1 xx = = 0.2143. Due to both inertia intervals around ( *

2
*
1 , xx ) the two derivatives 

dx1/dx2 and dx2/dx1 are zero and the eigenvalues at this equilibrium equal λ1,2 = 0. The 
sufficient conditions for (global) asymptotic stability of this equilibrium are clearly 
satisfied and we could call this equilibrium “superstable” (from each initial situation 
the equilibrium is reached in at most 5 steps). 
Stability of the equilibrium is crucial in the discussion of this section; because the 
Cournot-Nash equilibrium is reached very quickly we can compare supplies and 
profits of both firms with an easy mind. Comparative statics only makes sense in 
case of a stable equilibrium, otherwise we would have to study the consequence of 
the time path as well. 
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Fig. 4.3 The reaction curves of both firms at the start of phase 1 (m=1) 
 

Due to a continuously decreasing market size (Proposition 4.3), the two reaction 
curves are shifted more and more (inwards) and three phases, each phase with its 
own characteristical behaviour of both firms, will occur. The following analysis 
focusses on the (“superstable” and stable) equilibria and their consequences for the 
profits of both rivals and not on the timepaths of the dynamical system (we leave out 
the t and t-1). During the analysis we will also apply general results on two 
benchmark cases. The first benchmark case is characterized by equal adjustment 
cost parameters l1=l2, i.e. we deal with completely symmetrical players and the 
second benchmark case corresponds with the choice l1=l > 0 and l2=0, i.e. firm 2 has 
no adjustment costs. 
 
Phase 1: The “complete inertia” phase. 

Using the “shifting” property we may conclude that both rivals maintain their 
original production levels for all market sizes m with 1 - l2 < m < 1, in spite of a 
declining market. Note that the market size for which phase 1 ends is fully 
determined by the firm with the smallest adjustment costs. As a consequence phase 
1 doesn’t exist if one of the competitors has no adjustment costs (benchmark case 2). 
In general it holds that during phase 1 the two firms meet no adjustment costs and 
their output levels both equal the original Cournot-Nash equilibrium for m = 1. If ∆m1 
equals the decrease of the market size departing from m = 1, the end of the phase of 
complete inertia occurs at ∆m1 = l2  corresponding with a market size of 1-l2. Before 
we analyse both rivals’ profits in detail some brief qualitative comments can be made. 
The classical production level would be *

clx = (1-∆m1-c)/(3+2d). However, due to  
adjustment costs, both rivals’ productions are kept on a higher level. This upholding 
of original supply causes a lower price in comparison to the classical outcome and 
,thus,  consumers benefit from adjustment costs (the consumer surplus exceeds the 
surplus of the classical case; this is one of the subjects of Section 4.7). Also 
employees benefit from high commitment human resource practices reflected in 
beneficial labour contracts and permanent appointments. As we already mentioned in 
the introduction, adjustment costs are directly related to the costs of changing 
production levels and costs of changing labour force. 

Superstable  
equilibrium 
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To support the line of thought the situation concerning both firms at the end of 
phase 1 (here m = 0.95) is displayed in Figure 4.4. As usual firm 1’s reaction curve is 
printed in bold. 
 

 
 
Fig. 4.4 The end of phase 1, m=1-l2 
 

Both firms’ profits are equal during this phase and, using m = 1 - ∆m1 , we obtain 
*
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that the first part of this expression equals the profit corresponding to m=1. We 
summarize the results. 
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During the “complete inertia” phase 1 the (linearly) decreasing profits of both firms 
are independent of l1. In Section 4.2 we computed both competitors’ profits 
concerning the classical situation without adjustment costs (eq. 4.5). It can be proved 
easily (by rewriting Πcl in terms of ∆m1) that during phase 1 always Πcl > Π 1 (or Π 2) 
and the difference is increasing with respect to the variable ∆m1. 
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Phase 2: The “inertia outperforms flexibility” phase 
Let ∆m2 be equal to the further decrease of the market size, starting at the end of 

phase 1. During this phase market size equals m = 1-l2-∆m2. Firm 1 maintains its 
production level, whereas competitor 2 reduces its supply. The market size at which 
this phase ends can be computed by using the following graph: 
 

 
 
Fig. 4.5  The position of both reaction curves at the end of phase 2 
 

We observe that, at the end of phase 2, the relevant part of the conditional 
reaction curve of player 2 just intersects the (shifted) inertia interval in point A of the 
conditional reaction curve of player 1. Concerning the point A on the inertia interval, it 
holds that *

11 xx =  whereas the other co-ordinate equals x2 = *
2x +l1-l2-∆m2 (at the start 

of phase 1 this co-ordinate equalled 1
*
2 lx + , and market size has now decreased by 

l2+∆m2). Using Propositions 4.2 and 4.3, the relevant part of the curve of firm 2 
satisfies the equation (leaving out t and t-1) 1-∆m2-c-(2+2d)x2-x1=0. 
Substituting the co-ordinates of point A in this equation, using *

2
*
1 xx = = (1-c)/(3+2d) 

leads to the following property 
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The expression for ∆m2 contains the difference 21 ll −  between both rivals’ adjustment 
costs, so obviously by enlarging its adjustment costs l1 firm 1 is able to enlarge the 
duration of this specific “inertia outperforms flexibility” phase. 
 

We will now compute both firms’ profits during this phase in such a way that the 
profits at the end of the previous phase will appear naturally in the formulas. Using 
the notation '

1x  and '
2x  for the equilibrium outputs of firms 1 and 2 respectively we 

have *
1

'
1 xx = (= (1-c)/(3+2d)) and the supply '

2x  is obtained by substituting '
1x  in the 

expression of the relevant part of rival 2’s conditional reaction curve. 

A 
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Before putting into practice comparative statics, a brief comment on the stability 

of the Cournot-Nash equilibrium in this new phase is at place. Due to the inert 
reaction of player 1, during phase 2, the eigenvalues at the equilibrium ),( '

2
'
1 xx  still 

equal λ1,2=0. Therefore this equilibrium maintains its “superstability”, like in the 
“complete inertia” phase. Having expressed equilibrium supplies during this second 
phase in the equilibrium outputs of both competitors at the end of phase 1, we now 
substitute these quantities in the expressions for firm’s profits. Note that the market 
size now equals m=1-l2-∆m2 and that we have to take into account adjustment costs 
in the expression of Π 2. 
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Evaluating these two expressions we summarize in (4.19) the results for the supplies 
and profits of both players during phase 2 and at the end of phase 2: 
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 (4.19) 
Of course for linear production costs, i.e. d=0, these expressions can be simplified a 
lot, but by allowing parameter d to be nonzero we can also study firms with 
decreasing or increasing marginal production costs. 
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First we return to the two benchmark cases. In case 1 (l1=l2) phase 2 doesn’t 
occur and for benchmark case 2 (l1=l, l2=0) we can prove that the properties Π 1 > Πcl 
and Π 2 < Πcl hold in general during phase 2 (for case 2 phase 1 doesn’t occur and 
the market size m equals m = 1 - ∆m2). The following proposition also contains a 
general result for firm 2 concerning the case l1>l2. 
 
Proposition 4.4 (profits of both firms during phase 2). 
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Proof 
First we consider benchmark case 2. Substituting l2=0 in the expressions for the 

profits of the firms during phase 2 and rewriting Πcl = (1-∆m2-c)2(1+d)/(3+2d)2 we 
obtain 
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The specific limiting values concerning the variable ∆m2 for which Π 1>Πcl and Π 2<Πcl 
hold can be derived easily. Imposing the condition that these specific values exceed 
the lenght of phase 2 (= l(2+2d)/(1+2d) ) leads to the conditions for the adjustment 
cost parameter l (of firm 1). 
For the case with l1 > l2 >0 we obtain (now Πcl = (1-l2-∆m2-c)2(1+d)/(3+2d)2) for firm 2 
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If ∆m2 > (l1-l2)(2+2d)/(1+2d) then Π 2<Πcl holds for the whole phase 2.  
 [End of proof] 
 

Consider the case with l2=0. Choosing the specific values c=0.4 and d=-0.1 for the 
production cost parameters leads to Π 1>Πcl and Π 2<Πcl  for l1 < 0.165 and l1 < 0.209 
(in 3 decimals) respectively. Proposition 4.4 reveals that the firm with adjustment 
costs in benchmark case 2 benefits in two ways from the asymmetry of the 
adjustment costs. First the profit of this firm exceeds the profit of the classical case 
and second, the profit of the firm with adjustment costs exceeds its rival’s profit 
(without adjustment costs). And also in the general case with l1>l2 it holds that the 
profit of firm 2 is below the classical profit. We already demonstrated that firm 1 can 
enlarge the duration of phase 2 by enlarging its adjustment cost parameter and, as 
will become apparent from the analysis below (Proposition 4.5), this specific 
behavioral phase passes in favour of this firm, so that the adjustment cost parameter 
may act as a strategic instrument. 

Then, of course, we assume that firm 1 actually is able to change its adjustment 
costs and acts rationally. However, from an Organizational Ecology point of view, 
apparently selection favors the competitor with the largest adjustment costs, whether 
this firm is aware of these benefits (and adapts rationally) or not. The results of our 
game theoretical model are in accordance with the conclusions of Hannan and 
Freeman (1984) who argue that:  “…selection processes tend to favor organizations 
whose structures are difficult to change. That is, we claim that high levels of structural 
inertia in organizational populations can be explained as an outcome of an 
ecological-evolutionary process”. 

We have to realize that in the general expressions for both profits (during phase 
2) firm 1’s adjustment cost parameter l1 is absent; profits are fully determined by the 
market size m, parameter l2, and the production cost parameters. The question arises 
in what manner firm 1 would be able to use this parameter l1 as a strategic weapon 
(under the assumption of rational adaptation). First we have to contemplate the 
underlying assumptions of the expressions for the profits. The supply levels (and so  
resulting profits) of both rivals are fully dictated by the intersection point of their 
reaction curves. And these reaction curves are already the consequence of a 
strategic decision; firm 1, for instance, maximizes its profit subject to the expected 
output of its rival. And because l1 is absent in the expression for Π 1 firm 1 can’t 
maximize its profit with respect to the parameter l1. 

However the analysis of benchmark case 2 leads one to suspect that enlarging 
the duration of phase 2 by enlarging the parameter l1 does make sense. Although the 
profit of firm 1 also decreases in the declining market, the profit of its rival decreases 
more quickly. This result holds in general during phase 2 if l1>l2 and follows directly 
from the (negative) slopes of the profits with respect to ∆m2 during phase 2. From the 
formulas during the phases 1 and 2 it clearly follows that the slope with respect to 
∆m2 of firm 1’s profit is less negative than the slope with respect to the variable ∆m1 
(after all it holds that { } { } )23(

)1(
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d
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d

d
d
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− −>∗− . However the slope of firm 2’s 
profit at the start of phase 2 and with respect to ∆m2 equals )23(
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d

c
+

−−  (and increases 
somewhat because the expression of the profit contains a term with (∆m2)2). 

Therefore firm 1’s profit decreases less quickly than the profit of its rival indicating 
that during phase 2 the difference in profits clearly increases; the graphical display of 
Figure 4.6 confirms this fact. By enlarging its adjustment costs firm 1 would be able to 
enlarge the difference in profits, but note that this strategic action is at the expense of 
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its own profit. However, enlarging the adjustment costs can be very useful if, during 
this “inertia outperforms flexibility” phase, the profit of firm 2 drops below zero, while 
firm 1 still enjoys positive profits. If firm 2 is forced to exit,  firm 1 acquires a monopoly 
status with the corresponding larger monopoly profit thereafter.  We have to analyse 
this case thoroughly. Using the expressions for Π 1 and Π 2, we can compute the 
difference in profits between both firms, and the condition for which competitor 1 
keeps an advantage in profit over its rival (possibly during the remainder of phase 2) 
is easily derivable. We can also compute the unique ∆m2 (corresponding with market 
size m=1-l2-∆m2) at which firm 2 faces profit equal to zero, by solving the quadratic 
equation Π 2 = 0. 

Combining the two results leads to a condition for the difference in adjustment 
costs between both competitors such that, during this phase, firm 2’s profit drops 
below zero whereas firm 1 still possesses positive profits at that specific moment.The 
following proposition summarizes the analytical results. 
 
Proposition 4.5  (exit and survival conditions concerning firm 2). 
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Proof 

Solving the quadratic equation (with respect to ∆m2) Π 2=0 leads to 
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Firm 2 faces profit equal to zero during phase 2 if 
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From the expressions of the profits of both firms we can compute the difference 
during phase 2; Solving Π 1-Π 2 > 0 we obtain a condition for ∆m2: 
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This advantage in profit of firm 1 over its rival holds during phase 2 if l1-l2 < A. 
The conditions for L < A are easily derivable for d < 0 and d > 0. 
 [End of proof] 
 

Note that the condition L < A is always satisfied for linear production costs and 
quadratic production costs functions with decreasing marginal costs. For positive d, 
i.e. a convex production cost function, the condition L < A is already satisfied for 
small adjustment costs of firm 2. Proposition 4.5 is an important one, because it 
reveals that, if firm 1 is capable of choosing its adjustment costs in the well defined 
interval (L,A), the rival can be expelled from the market during phase 2. We have to 
emphasize that the essence of firm 1’s strategic action, provided that rational 
adaptation is possible,  is to prolong this beneficial phase by using its adjustment 
costs. It should be mentioned that, although this rival faces smaller profits during this 
phase, for nonpositive profits it is required that the decline of the market is large 
enough. Moreover, even if a firm faces temporary negative profits, such a firm can 
remain active for some time awaiting a more prosperous period (Dixit (1989)). Van 
Witteloostuijn (1998) notes that: “Except for Dixit, the consequence of organizational 
failure in Industrial Organization models is immediate exit. This result is driven by the 
assumption that firms are perfectly forward-looking: calculating the expected future 
stream of profit, taking into account of the end-game equilibrium that results from 
strategic competition, they decide to exit at the moment profitability falls below zero. 
… Dixit argues that firms take notice of the chance that demand will develop 
favourably in the future…The outcome of Dixit’s (1989) model resembles turnaround 
success or flight from losses, depending on the expected and actual development of 
demand.” 

In case of a small decline of the market size firm 2 keeps positive profits, but his 
profit continues to decrease not only absolutely but also relatively. And in case that 
the difference of the adjustment cost parameters isn’t large enough, 0 < ∆l=l1-l2 < L, 
firm 2 may survive phase 2. This surviving is relative because firm 2 has fallen behind 
in profit during that period of decreased economic activity in comparison with its 
competitor. Therefore in Section 4.6 we develope an analytical instrument to compute 
the relative profit of firm 2 (in comparison with firm 1) over a whole period of 
depression. To illustrate Proposition 4.5 we consider the example of both rivals we 
used before (adjustment cost parameters l1=0.15, l2=0.05 around *

2
*
1 xx = =(1-c)/(3+2d) 

and production costs C(xi) = 0.4xi-0.1(xi)2 , i=1,2). Applying Proposition 4.5 we can 
conclude that, if the difference in adjustment costs ∆l=(l1-l2) lies between L=0.0841 
and A=0.1905, firm 2 will face negative profits while firm 1 still has positive profits (in 
this case even during the remainder of phase 2). Because ∆l=0.10 the condition        
L < ∆l < A is clearly satisfied. The profit of firm 2 becomes zero for m=0.7607. If l1=0.15 
phase 2 ends for ∆m2 =∆l (2+2d)/(1+2d) =  (0.1)(1.8)/(0.8)=0.225 so for a market size 
equal to m=1-0.05-0.225=0.725. 

Both firms’ profits during the consecutive phases 1 and 2 are graphically 
displayed in Figure 4.6 (as usual the graph of firm 1 is printed in bold). Note that at a 
market size of 0.76 the profit of player 2 becomes negative, but at that specific market 
size player 2 already has fallen behind in profit for a longer period (starting at the end 
of phase 1, m=0.95). 
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Fig. 4.6 The profits of the two firms during phases 1 and 2. 
 

We will conclude the analysis of the “inertia outperforms flexibility” phase by 
displaying the consequence of Proposition 4.5 graphically. For every chosen 
production cost function (C(x)=cx+dx2), Proposition 4.5 defines two specific regions in 
the ∆l-l2-plane (where ∆l=l1-l2). Two important regions can be distinguished. The 
region D2 consists of those (∆l,l2) combinations for which firm 2 faces nonpositive 
profits during phase 2 whereas firm 1 still possesses positive profits at that moment. 
And the “survival” region S consists of those (∆l,l2) combinations for which competitor 
2 maintains positive profits but falls behind in profit in comparison with its rival during 
phase 2. 

For linear production costs (c=0.4,d=0) the boundaries are printed as thin lines; 
region D2 is bounded by the straight (horizontal) line and the curved line. The 
“survival” region S is bounded by the curved line and the nonnegative l2-axis (and a 
part of the positive ∆l-axis). The straight (bold) line and the curved (bold) line 
correspond with the boundaries of the regions D2 and S for the concave cost function 
(c=0.4,d=-0.1). Note that the point (∆l, l2) = (0.10,0.05), corresponding with the previous 
example (Fig. 4.6), lies in the interior of region D2. Computation shows that for the 
lineair cost case with c=0.4 the point (0.10,0.05) lies exactly on the curved thin line 
indicating that firm 2’s profit becomes zero precisely at the end of phase 2. All 
benchmark cases 2 (l1 = l >0, l2 = 0) correspond to points on the ∆l-axis. If production 
cost parameters equal c=0.4 and 10.d −= , firm 1 has to possess adjustment costs 
with l at least 0.171, in order to ensure that its rival faces nonpositive profits. 
 

Possible exit 
firm 2 
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Fig. 4.7 The regions D2 and S, for linear and concave production costs. 
 
Phase 3: The “complete flexibility” phase. 

The variable ∆m3 equals the further decrease of the market size, starting at the 
end of phase 2. During phase 3 the market size equals m = 1-l2-(l1-l2)(2+2d)/(1+2d)-
∆m3. Both firms will decrease their production levels equally. To determine production 
levels and profits of both firms we will use techniques analogous to those we used for 
phase 2. It will turn out that, even if firm 2 survives the “inertia outperforms flexibility” 
phase, a condition for the difference in adjustment costs of both firms can be derived 
, such that during this “complete flexibility” phase firm 2 is forced to exit (because of 
accumulated losses). 
We will now use the notations "

1x  and "
2x  for the production levels of firm 1 and its 

rival respectively. This Cournot-Nash equilibrium equals the intersection point of the 
relevant parts of both reaction curves. Taking into account market size the relevant 
parts of these curves for both competitors satisfy the equations (after rearranging 
terms): 
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Using some linear algebra the Cournot-Nash equilibrium concerning phase 3 can be 
obtained. 
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Note that the Cournot-Nash equilibrium corresponding to m=1 and also 

equilibrium supplies reached at the end of phase 2 appear in these expressions. The 
eigenvalues at this equilibrium equal λ1,2 = + 1/(2+2d), like in a classical Cournot 
duopoly game (see Section 4.2), so stability is guaranteed during phase 3. We can 
interprete these production levels "

1x  and "
2x as downward adjustments of the output 

D2 

S 
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levels '
1x  and '

2x  at the end of the previous phase 2. Making use of this interpretation, 
computation of both rivals’ profits concerning this phase goes smoothly. We present 
a summary (4.24) of the results. 
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 (4.24) 
Naturally for ∆m3=0 these profits equal the profits at the end of phase 2. 

Furthermore note that four terms of the rather complicated expressions of both firms’  
profits are exactly equal. We first concentrate on the two benchmark cases and we 
discuss some results concerning the differences of these profits with the classical 
profit. For the symmetric benchmark case 1 (l1=l2=l) the results during phase 3 are 
straightforward; like in phase 1 it holds that Π i < Πcl, i=1,2. We already observed that 
the asymmetry of benchmark case 2 (l1=l>0, l2=0) leads to the asymmetric conclusion 
Π 1>Πcl, Π 2<Πcl, during the second phase. Naturally at the start of phase 3 these 
results still hold, but due to firm 1’s adjustment costs (the production level of this firm 
now decreases too) the profit of this firm drops below classical profit in a further 
declining market.  However, in most cases, firm 2’s profit stays below the classical 
profit. 
 
Proposition 4.6  (profits compared to classical Cournot-Nash profits). 
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Proof 
Using the expressions for the profits during phase 3 for l1=l2=l we obtain 
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Concerning the first benchmark case clearly this negative difference increases with 
respect to the variables ∆m3 and l. For the second benchmark case we again use the 
expressions for both profits Π 1 and Π 2 substituting l1=l,l2=0 and we rewrite classical 
profit as Πcl = [1-l(2+2d)/(1+2d)-∆m3 -c]2(1+d)/(3+2d)2. Evaluation of these formulas 
leads to the required expressions for the differences Π 1-Πcl and Π 2-Πcl : 
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The proof is completed by solving the equations Π 1-Πcl > 0 and Π 2-Πcl < 0 with 
respect to the variable ∆m3. 
 [End of proof] 
 

For the production cost parameters we make the usual choice c=0.4 and d=-0.1 
and for the choice of the adjustment cost parameters l1=0.1, l2=0 the application of 
Proposition 4.4 clearly shows that Π 1>Πcl and Π 2<Πcl at the end of phase 2 (market 
size m=0.775). Now Proposition 4.6 reveals that firm 2’s profit stays below the 
classical profit for ∆m3 < 0.313. Then the market size equals 0.463 corresponding with 
a deep depression. So we may conclude that competitor 2’s profit even stays below 
the classical profit for a long period during the “complete flexibility” phase 3. We 
argued that firm 1’s profits drop below classical profit because of its adjustment costs; 
the result of a computation indeed confirms that for m=0.702 the beneficial situation  
Π 1>Πcl no longer holds. At this point we have to realize that firm 1’s adjustment costs 
not only can serve as a strategic instrument, but that there exists another incentive to 
enlarge adjustment costs as well. Because as a consequence of enlarging the 
parameter l1 the profit of the firm stays above the classical profit during a long period 
of recession (at the expence of its rival). Combining the results of Propositions 4.4 
and 4.6 it follows that Π 1>Πcl  for all market sizes with m >1- 0.25(1-c)/(1+d)2 -
l1(1+d)/(1+2d). 

Using the expressions of the profits corresponding with phase 3 we now return to 
the analysis of the difference in profits between the two competitors. 
It appears that the analysis leading to Proposition 4.5 can be expanded to phase 3. 
The market size for which Π 2 = 0 can be determined solving a quadratic equation 
with respect to ∆m3. Combining this result with the condition Π 1 > Π 2 leads to the 
following proposition: 
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Proposition 4.7 (exit and survival regions concerning firm 2). 
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Proof 

Using the expressions for the profits of both firms the condition ∆Π = Π 1-Π 2 >0 
leads to 
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Solving the quadratic equation Π 2=0 with respect to ∆m3 gives 
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Imposing the condition that (∆m3)L < (∆m3)A completes the proof. 
 [End of proof] 
 

Naturally the situation as decribed in Proposition 4.7 only occurs if the decline of 
the market is large enough.To illustrate Proposition 4.7 we consider the example of 
both rivals with the usual production cost parameters c=0.4 and d=-0.1. We now 
choose the adjustment cost parameters of both firms equal to l1=0.10 and l2=0.05 
implying that the difference in adjustment costs per unit ∆l  equals 0.05. Note that the 
point (∆l,l2) = (0.05,0.05) no longer lies in the interior of region D2. Proposition 4.5 
ensures us that firm 2 survives phase 2 (in the sense of Π 2>0), because                   
∆l < L=0.0841. Using c=0.4, d=-0.1 and l2=0.05 application of Proposition 4.7 reveals 
that M is negative, namely M=-0.0222. This negative value of M has an important 
implication; it means that for 0 < ∆l < 0.0841 firm 2 always faces nonpositive profits 
during phase 3, whereas its rival still has positive profits at that specific moment. 
The graph of both firms’ profits, during three phases, can serve as an illustration (see 
Figure 4.8). In this graph kinks in the smooth curves of both profits, occurring at a 
market size m equal to 0.8375 correspond precisely with the start of behavioural 
phase 3. Note also that at that specific market size the slope of the curve of firm 1 
decreases due to its adjustment costs whereas the slope of its rival increases 
somewhat (but stays negative). 
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Fig. 4.8  Firm 2 faces nonpositive profits during phase 3. 
 

Of course using the expression for (∆m3)L the market size at which Π 2=0 can be 
computed exactly (here m = 0.8375 - 0.1195 = 0.718). 
By Proposition 4.7 a new region D3 can be added to the (∆l,l2)-plane, which consists 
of those (∆l,l2) combinations for which Π 2=0 while Π 1>0, during phase 3. 
Although firm 2 was able to survive phase 2 (in a way) yet its profits drop below zero 
during phase 3. The consequences of Propositions 4.5 and 4.7 can be displayed in 
one figure; choosing the concave production cost function C(x)=0.4x-0.1x2 for both 
rivals leads to the following illustration: 
 

 
 
Fig. 4.9 The regions D2 , D3 and the “survival” region S. 
 

Possible exit 
Firm 2 

D2

D3S 
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As also indicated in the legenda the region D2 is bounded by the straight line and 
the curve, both printed bold (and a very small part of the positive ∆l-axis) whereas the 
region D3 is bounded by the two curves printed bold and thin respectively, a part of 
the positive l2-axis and a small part of the positive ∆l-axis. The intersection point *

2l of 
the “lower boundary” curve with the positive l2-axis has an important interpretation: if 
firm 2’s adjustment cost parameter l2 exceeds *

2l , then for all adjustment cost 
parameters l1 of rival 1 with l1>l2 firm 2 faces nonpositive profits during phase 2 or 3. 
The value *

2l can be easily solved by setting M (Proposition 4.7) equal to zero and 
leads to the following property. 
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Applying this property to the case with production cost parameters c=0.4 and    

d=−0.1 we may conclude that, if firm 2’s adjustment cost parameter exceeds the 
value 0.038, then for all l1>l2 the profit of this competitor will drop below zero, whereas 
firm 1 still possesses positive profits (naturally under the assumption that the decline 
of the market is large enough). The region S consists of those values for ∆l and l2 for 
which firm 1’s profits drop to zero before the rival’s profits fall below zero. The choice 
l2=0, ∆l=0.06 (so l1=0.06) provides an example of this case. However a graphical 
display of both firms’ profits shows clearly that, although Π 1=0 before Π 2=0, the 
competitor with the smallest adjustment costs has fallen behind in profit during a long 
period of  economic recession. 
 

 
 
Fig. 4.10  The case “Π 1=0 before Π 2=0”. 
 
Phase 1 doesn’t occur for this benchmark case and the “inertia outperforms flexibility” 
phase 2 ends at market size m=0.865, indicated by the kinks in both curves. 
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5. Phases of behaviour in an expanding market 
 

In this section we again consider both rivals, but now subject to an expanding 
market. The adjustment costs (per unit production) for firms 1 and 2 for *

ii xx > (i=1,2), 
where *

ix equals the Cournot-Nash equilibrium for m=1, equal u1 and u2 respectively. 
We assume that u1 > u2 so firm 2 also possesses a smaller adjustment cost 
parameter corresponding with an increasing production. Due to a gradually 
increasing market size, both reaction curves are shifted (outwards) and as a 
consequence again three phases of production behaviour can be distinguished.  
Phase 1 is determined by the smallest adjustment cost parameter u2 and holds for a 
market size m satisfying 1 < m < 1+u2 and during this specific phase, as a 
consequence of both inertia intervals, both firms maintain their supply levels 
at *

2
*
1 xx = =(1-c)/(3+2d). The positions of both reaction curves at the end of phase 1 

and the end of phase 2 are displayed in the Figures 4.11a and 4.11b respectively. In 
this example production cost parameters are c=0.4, d=-0.1 for both firms and the 
adjustment cost parameters equal u1=0.1 and u2=0.05 for firm 1 and firm 2 
respectively (l1=0.15, l2=0.05). 
 

     
 
Fig. 4.11a  The end of phase 1.                   Fig. 4.11b  The end of phase 2. 
 

The “complete inertia” phase 1 ends at a market size of 1.05 and during this 
phase both firms maintain their supply at level *

2
*
1 xx = = 0.214. During phase 2 the firm 

with the smallest adjustment costs, firm 2, loses its inertness and increases its 
production, whereas its rival, firm 1, maintains its supply level. Phase 2 ends at 
m = 1.1625.  Finally during phase 3 both firms will increase their production levels 
equally (in comparison to their levels at the end of phase 2). During each phase  
production levels and profits can be determined by using similar computation 
techniques, so we will briefly summarize these results and lay the emphasis on 
interpretation. Like in Section 4.4 the difference between both competitors’ profits 
besides the difference between the profits of each firm and classical profit (no 
adjustment costs at all) deserve our attention. 

Shift 
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First we focus on both differences Π 1−Πcl and Π 2−Πcl during the first two 

behavioural phases and we analyse two benchmark cases. Like in Section 4.4 case 
1 concerns symmetrical players (u1=u2=u>0) whereas case 2 deals with an 
asymmetrical situation (u1=u>0, u2=0). It appears that for symmetrical firms profits 
exceed classical profits during the “complete inertia” phase 1 (phase 2 doesn’t 
occur), whereas the difference Π i-Πcl (due to the adjustment costs) drops below zero 
during the “complete flexibility” phase 3. Concerning the asymmetrical benchmark 
case 2 phase 1 doesn’t occur and during phase 2 we obtain the interesting result that 
Π 1-Πcl < 0 and Π 2-Πcl >0. So now, in contrast with the outcomes corresponding with a 
declining market (compare Proposition 4.4), asymmetry in adjustment costs benefits 
the competitor without adjustment costs. This result leads one to suspect that the 
essential strategic behaviour during a prosperous period corresponding to an 
increasing market size is flexibility, i.e. keeping the adjustment costs as small as 
possible. Proposition 4.8 summarizes the analytical results in detail. 
 
Proposition 4.8 (profits of both firms during phases 1 and 2). 

 i.e. 1, case benchmark Consider uuu == 21 . For 
d
cu

+
−<

1
1 , so in general, it holds that 

cl
i ΠΠ >  during phase 1 and phase 2 does not occur. 

Consider benchmark case 2, i.e. 01 >= uu  and 02 =u . Phase 1 does not occur and 
during phase 2 it always holds that 12 ΠΠΠ >> cl . 
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Proof 
Considering benchmark case 1 we use the expressions for Π i during phase 1. 

Evaluating the expression for Πcl = (1+∆m1-c)2(1+d)/(3+2d)2 leads to 
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For benchmark case 2 we use the expressions for the profits during phase 2 and 
substitute u2=0. Rewriting the classical profit as Πcl = (1+∆m2-c)2(1+d)/(3+2d)2 gives 
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 [End of proof] 
 

To clarify the results of Proposition 4.8 graphically both firms’ profits in relation to 
the classical profit, concerning benchmark cases 1 and 2, are displayed in Figures 
4.12a and 4.12b respectively.  For both cases we choose c=0.4, d=-0.1 as usual; the 
choices u1=u2=u =0.15 and u1=u=0.15,u2=0 correspond with the respective benchmark 
cases 1 and 2. The graph of the classical profit is printed in bold. 
 

    
 
Fig. 4.12a  Π i and Πcl for case 1.              Fig. 4.12b Π 1,Π 2 and Πcl for case 2. 
 

Note that also phase 3 is included in the graphs.  Corresponding to case 1 the 
transition from phase 1 to phase 3 occurs at m = 1.15 and concerning case 2 the 
behavioral change from phase 2 to phase 3 occurs at market size m = 1.3375. 
Apparently for case 1 profits drop below classical profits during phase 3 and for the 
asymmetrical case 2 the results for phase 2 also seem to hold during phase 3. Proofs 
concerning these phenomena will be given in the remainder of this section. 
 
 

Πcl 

Π 2 

Π 1 
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We now return to the difference in profits between both competing firms. By 
computing the difference in profits Π 2-Π 1 it can be proved easily that, during phase 2, 
firm 2 always enjoys an advantage in profit over its rival, assuming that u1>u2 ; this 
advantage is increasing with respect to the variable ∆m2 (see Proposition 4.9). At the 
end of phase 2 the profits and production levels of both firms become (4.28): 
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Now it holds that the smaller firm 2’s adjustment cost parameter u2 is, the bigger 
the advantage in profits of firm 2 over its rival at the end of the “flexibility outperforms 
inertia” phase 2 will be. The flexibility of firm 2 in comparison to its competitor pays 
off. This advantage in profits increases even further in a continuously expanding 
market during the next and third “complete flexibility” phase (4.29). 
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 (4.29) 
Proposition 4.9  (profits of both firms subject to an increasing market size). 
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Proof 

During phase 1 it holds that the derivatives of Π 1 and Π 2 with respect to ∆m1 both 
equal (1-c)/(3+2d) > 0. This proves the first part of the proposition. 
During the phases 2 and 3 we obtain for the difference in profits 
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Clearly both differences are always positive and the derivatives of ∆Π with respect to 
∆m2 and ∆m3 are also positive. 
 [End of proof] 
 

Note that the difference in profits during phase 3 is also increasing with respect to 
the difference in adjustment costs (per unit production) ∆u between both competitors. 
We illustrate Proposition 4.9 with a graph of both firms’ profits. Again choosing the 
production cost function equal to C(x)=0.4x-0.1x2 concerning both rivals and choosing 
the adjustment costs (per unit) for firms 1 and 2 equal to u1=0.10 and u2=0.05 
respectively, leads to the following graph (the graph corresponding with firm 1 is 
printed in bold): 
 

 
 
Fig. 4.13  Firms’ profits subject to an increasing market size. 
 

Note that phase 1 ends for m=1.05 and that phase 2 ends for m=1.1625. 
The widening gap between both curves from the start of the second phase illustrates 
Proposition 4.9. 

For the two benchmark cases we already showed some properties of both firms’ 
profits in comparison to the classical profit (see Figures 4.12a and 4.12b). Using the 
expressions for the profits of both competitors during the “complete flexibility” phase 

Increasing 
difference 

Ph.2 Ph.3 Ph.1 
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3 we now are able to give the proof we promised above of the phenomena occurring 
during this third behavioural phase. 

 
Proposition 4.10  (profits compared to classical profits concerning phase 3). 
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Proof 

Using the expressions for the profits during phase 3 for u1=u2=u and rewriting the 
classical profit as Πcl = (1+u+∆m3-c)2(1+d)/(3+2d)2 (please bear in mind that phase 2 
doesn’t occur)  we obtain 
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For the second benchmark case we use the expressions for the profits Π 1 and Π 2 
during phase 3. Substituting u1=u, u2=0 and rewriting the classical profit as (phase 1 
doesn’t occur) Πcl = [1+u(2+2d)/(1+2d)+∆m3 -c]2(1+d)/(3+2d)2 we obtain the required 
expressions for the differences Π 1-Πcl and Π 2-Πcl : 
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Clearly Π 1-Πcl < 0 and Π 2-Πcl > 0 both hold. The proof is completed by observing that 
the expression Π 1-Πcl  has a negative derivative and Π 2-Πcl  possesses a positive 
derivative with respect to the variable ∆m3. 
 [End of proof] 
 

We conclude this section with some reflections. From Propositions 4.8 and 4.10 it 
follows that for “symmetrical” (u1=u2=u) rivals, adjustment costs - corresponding to an 
increasing production level - cause beneficial effects at least for some period. If both 
competitors, due to their adjustment costs, keep their production at a lower level in 
comparison with the classical situation, their profits exceed the classical profits. 
However in the long term, in case of a further increasing market size, this policy leads 
to relative losses. During the “ complete flexibility” phase 3 profits of the symmetrical 
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firms drop below classical profit implying that the earlier advantage changes into a 
disadvantage (combining the results of the Propositions 4.8 and 4.10 this occurs at a 
market size m=1+u/2+(1-c)/(2+2d) ). 

So if a firm is able to reduce its adjustment cost it should do this; sticking to 
adjustment costs is a short-sighted policy because this strategy, however inviting this 
may appear in the first period, only leads to benefits which are temporary. 
Moreover the main result of Proposition 4.9 reveals that the rival which is able to 
lower its adjustment costs first, obtains a strategic benefit over its competitor. The 
analysis of benchmark case 2 shows that the profits of the flexible player (without 
adjustment costs) even exceed classical profit whereas the profits of the inert rival lie 
below classical profit. Summarizing: In the expanding market  flexibility pays off at the 
expence of the rival. So starting from a completely symmetrical situation with 
adjustment costs the rival that is able to lower its adjustment costs first, obtains an 
advantage. In other words: the early bird catches the worm! Note that, from the 
standpoint of Organizational Ecology, the model’s results, concerning an expanding 
market, do not support Hannan and Freeman’s (1984) “Inertia hypothesis”; in a 
booming market Darwinian selection processes favor organizationally flexible firms. 
This conclusion is totally opposed to the results corresponding to a declining market. 
There the firm with the highest level of organizational inertia, reflected by larger 
adjustment costs, has all the advantages and is even capable of forcing its rival to 
exit (nonpositive profits). Note that concerning completely symmetrical players 
(l1=l2=l>0), Proposition 4.6 reveals that both profits are always below classical profits 
during the consecutive phases 1 and 3. At first sight one would say that it is beneficial 
to lower adjustment costs (if possible), but appearances are deceptive. The results of 
Section 4.4 show clearly that, in the declining market, the less flexible player is 
strategically stronger. 
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6. Total profits and relative profits over a whole period 
 

This section contains an analysis of both competitors’ total profits during a period 
of decreased or increased economic activity. In our model the period of decreased 
activity is characterized by a market size m < 1. So starting at m=1 the market 
declines, reaches its lower turning point (point of revival) and then recovers again till 
its original level m=1. The period of increased activity, the prosperous period, 
corresponds to m > 1.To support our line of thought we first look back on the results 
of Section 4.4 corresponding to a period of decreased activity. 

The Propositions 4.5 and 4.7 of that section revealed that firm 1 may use its 
adjustment cost parameter l1 as a strategic instrument. By raising its adjustment 
costs (parameter l1), the duration of the beneficial second behavioural phase is 
enlarged as well. As a consequence the rival’s profits may drop below zero during 
phases 2 or 3, whereas firm 1’s profits still are positive. But we also showed that 
there exist combinations (∆l,l2), for which firm 1’s profits (Π 1) exceed its rival’s profits 
(Π 2) during phase 2 and a part of phase 3, and yet for a certain market size Π 1 drops 
below zero, whereas Π 2 still remains positive for a short period. Such a case is 
displayed in Figure 4.10 of Section 4.4. The fact that firm 1 faces losses just before 
its competitor faces nonpositive profits should be put in perspective, because (as we 
already observed) firm 2 has fallen behind in profit over a long period during 
decreased economic activity. A leeway in total profits may, for instance, lead to less 
investment in comparison to the rival over a certain period. Therefore not only 
nonpositive profits, but also the total leeway in profits over a certain period of 
recession can serve as a, more refined, exit criterion. 

We start our considerations by noting that the manner in which the market size 
decreases (or increases) during a period of decreased (or increased) economic 
activity doesn’t need to be linear. Under the assumption of symmetry, a  business 
cycle (or parts of such cycle) can be modeled using a sine function. Assuming that 
both competitors’ reaction period is small in comparison with the whole period, 
integral calculus and areas play a crucial role in the analysis of this section. Before 
going more deeply into technical details, we want to clarify the basic idea visually 
using Figure 4.14. Assuming that the market size is a decreasing (sine) function this 
graph shows the development of the profits over time. Considering the time period 
0 < t < 0.5, during which the market size decreases from 1 till 0.7, the area of the 
region bounded by the bold curve, the lines t=0, t=0.5 and the t-axis can serve as a 
representation of firm 1’s total profit. A similar observation holds for firm 2’s total 
profit. As can be observed in the graphical display, firm 2’s total profit over this period 
(Πtot

2) equals a fraction R of its rival’s total profit (Πtot
1), i.e. R = Πtot

2/Πtot
1, and 

therefore equals the fraction of two areas. The further elaboration of this basic idea 
and the application to specific cases, subject to a period of decreased or increased 
economic activity, forms the essence of this section. First we specify our assumptions 
and conditions. Without loss of generality we consider a normalized time period, 0 < t 
< 2, and we will perform the analysis under the assumption that the period of time 
between two reactions of both rivals equals 1/n, where n (the number of reactions) is 
large enough.This assumption is crucial, because it allows us to replace finite sums 
by integrals. The goniometrical function with a market size equal to m(t)=1-α.sin(πt) 
can serve as a model for a (part of a) business cycle; For 0 < t < 1 this specific 
function describes the market size during a whole period of decreased economic 
activity. 
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The all time low occurs at t=0.5, corresponding with a market size of m=1-α, and 
total recovery takes place at t=1 (for 1 < t < 2 this function describes a complete 
period of increased activity with m > 1).The (output) behaviour of both rivals during a 
period with m < 1 depends on the value of the model parameter α  which indicates the 
“depth” of the depression. If α < l2 both firms show a supply behaviour corresponding 
with the “complete inertia” phase 1, i.e. they maintain their production levels. With 
equal profits of both firms during the whole period this case isn’t very exiting 
analytically. But for a value of α which is big enough - the condition derived in Section 
4.4 equals α > l2+(l1-l2)(2+2d)/(1+2d) - both firms will pass through the respective 
behavioral phases 1,2,3 and 2,1 consecutively. Both profits over the time period        
0 < t < 1 then equal Π i(m(t)), i=1,2 (of course the same considerations hold during a 
period with m > 1; replace li by ui). To illustrate this development of those profits over 
time graphically during a period of depression, we choose two firms with the usual 
production cost function C(x)=0.4x-0.1x2 and with adjustment costs per unit equal to 
l1=0.06 and l2=0 (also the benchmark case corresponding to Figure 4.10).The model 
for the market size m(t) = 1-0.3sin(πt) leads to goniometrical expressions for the two 
profits over time and the kinks in both graphs display transitions from one behavioural 
phase to another. Because firm 2 has no adjustment costs, phase 1 doesn’t occur. 
Note that the smallest market size occurs for t=0.5 (and equals 0.7) and that both 
competitors still don’t suffer losses at this all time low.The transition from phase 2 to 
phase 3 takes place at a market size m = 0.865; this corresponds to t = 0.149 (and 
later at t =0.851 the reverse transition takes place). 
 

 
 
Fig. 4.14 Profits over time during a period of decreased economic activity, 
Business cycle model: m(t) = 1- 0.3sin(πt), 0 < t < 1. 
 

In general the following expressions can be used for the computation of both total 
profits and the fraction Rd (which expresses firm 2’s total profit as a fraction of the 
rival’s total profit during a period with m < 1, and 0 < t < 1): 

Ph.2 Ph.3 Ph.2 
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Such expressions, consisting of finite sums, can be computed easily using 
spreadsheet programmes. For n large enough the expressions for both total profits 
can be rewritten using integrals over the (corresponding) interval (here the interval 
[0,1]). We now refer to a property, concerning the approximation of integrals, which 
can be found in many books on numerical methods f.i. Kammer (1987). 
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 (4.31) 
Concerning our application, a value of n=10 (indicating ten reactions of both 
competitors during the time period) can be large enough and concerning symmetrical 
functions (Figure 4.14) the integral’s approximation by summation works even much 
more adequately (the maximum error E  is less than C/n2 with C a constant). Firm 2’s 
total profit considered as a fraction of firm 1’s total profit, during a period of 
decreased or increased activity (m < 1, m > 1 respectively), can now be rewritten. We 
distinguish between the fractions Rd and Re corresponding to m < 1 and m > 1 
respectively. Note that in the expressions for Rd and Re it holds that 0 < t < 1 and 
1 < t < 2 respectively. 
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The expressions for Rd  and Re  quickly become complicated in cases for which 
both firms’ behaviour passes through several phases over time.The reason for this 
complication is straightforward: then several expressions for the profits have to be 
distinguished and the resulting formulas will not clarify the case under consideration. 
Of course these analytically complicated cases deserve our attention as well and can 
be studied by using computer simulations. We will apply this integral calculus to the 
second benchmark case (the first benchmark case, l1=l2=l, u1=u2=u, leads to equal 
profits and so Rd = Re = 1). Concerning this second asymmetrical case, with l1=l>0, 
l2=0 and u1=u>0, u2=0 we impose a condition on the amplitude of the sine function 
used to model the market size m. The condition α < Min[l(2+2d)/(1+2d), 
u(2+2d)/(1+2d)] ensures us that the behavioural phase corresponding to this 
benchmark case always equals phase 2 during both periods with m < 1 and m > 1 and 
enables us study this case analytically. The condition for α needs some further 
explanation. It means that one firm is still inert, because of its larger adjustment 
costs, whereas its rival is flexible and changes its output level. Corresponding to the 
benchmark case with production cost parameters c=0.4,d=-0.1 and l=u=0.10 the 
condition for α equals α < 0.225 and concerning benchmark cases with linear 
production costs α has to be less than the minimum of 2l and 2u. 
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The analytical results for the fractions Rd, Re and the fraction R corresponding to a 
total business cycle are summarized in Proposition 4.11. 
 
Proposition 4.11 (relative total profits of firm 2 compared to its rival). 
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Proof 
For the whole period with decreased economic activity (m < 1) we substitute 

∆m2=αsin(πt) (∆m2 is positive for 0 < t < 1) and l2=0 in the expressions for Π 1 and Π 2 
during phase 2 (Section 4.4). The (goniometric) expressions for these profits equal: 
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For the whole period with m > 1 we use ∆m2=-αsin(πt) (∆m2 is positive for 1 < t < 2) and 
u2=0 in the expressions for Π 1 and Π 2 during phase 2 (Section 4.5) and we obtain the 
same expressions for the profits, but now for 1 < t < 2. 
The fraction Re can be computed using ∫∫ =−=

2

1 2
122

1
)d(2)d( tπtsin,πtπtsin . 

And, concerning the complete business cycle, we can use the goniometric 
expressions for the profits as well, but now for 0 < t < 2. Then the fraction R equals 
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 [End of proof] 
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These expressions for the relative total profits simplify for linear costs (d=0). 
To gain insight in the meaning of these fractions we will present some tables and 
graphs for various values of α and for various production cost functions. But first we 
draw several conclusions from the general expressions. One of the main results of 
Section 4.5 is that the most flexible competitor benefits from an expanding market. 
Concerning the second benchmark case firm 2 is the beneficial one during such a 
prosperous period and the first result states that 
 
• for all 0 < c < 1, d > -1/2 and α > 0 it holds that Re, firm 2’s relative total profit in 

comparison with its rival’s total profit during the whole period with m > 1, exceeds 
1. 

 
And during a period with a decreased economic activity we observed in Section 4.4 
that the ”flexible” firm, i.e. the firm with the smallest adjustment costs, has lower 
profits than its rival. The second result can be proven easily and states that 
 
• the corresponding fraction Rd is less than 1 for )23(

)1(8
dπ

cα +
−< and this 

condition holds for almost all reasonable cases (c=0.4,d=-0.1 gives α < 0.546). 
 
The third result, concerning the relative total profits of the firm without adjustment 
costs in comparison with its rival, is interesting and can be concluded directly from 
the expression for R: 
 
• For all α > 0, 0 < c < 1 and d > -1/2 the fraction R, corresponding to the whole and 

completely symmetric business cycle, exceeds 1. 
 

Apparently the advantages during the period of increased economic activity 
exceed the disadvantages during the whole period with m < 1. This interesting 
property can be illustrated with a graphical presentation of both rivals’ profits subject 
to a complete business cycle. We consider an example of the second benchmark 
case with l1=0.1, l2=0 and u1=0.1, u2=0 (and the usual production cost function) and we 
choose the parameter α equal to 0.2 (the condition for α in Proposition 4.11 is 
satisfied). Figure 4.15 clearly shows that the volatility of the profits without adjustment 
costs exceeds the volatility of the profits with adjustment costs; adjustment costs 
damp the amplitude of the profit cycle (as we will illustrate this damping also holds for 
the total supply with adjustment costs). Furthermore the graph of the profits without 
adjustment costs also reveals an asymmetry around the (classical) profit for m=1; the 
amplitude of the profit corresponding to the period m > 1 is larger than the amplitude 
concerning the period with decreased economic activity. As already noted in Section 
4.2 the expression for the classical profit i

clΠ contains the quadratic term (m-c)2 and 
this mathematical fact can serve as an explanation for the asymmetry.  Sound 
intuition also leads to the same insight. Concerning linear production costs, the profit 
equals the product of two factors namely “output” and “market price minus costs” per 
unit product and during an expanding market both factors “output” (= (m-c)/3) and 
“price minus costs” per unit   (= (m-c)/3) increase. The larger this market size m is, the 
larger these two factors become and also the larger profit’s sensitivity to changes in 
output and price becomes. 
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This sensitivity property implies that decreasing the output (due to adjustment 
costs) by a fixed amount during the period of prosperity has a larger impact on the 
difference in profits, Πadj - Πcl, than increasing the supply by the same amount during 
the period of recession. This is exactly what happens in the case with adjustment 
costs. The formulas for the outputs during the behavioural phases 1, 2 and 3 
corresponding to the declining and the expanding market reveal a beautiful 
symmetry. But the restriction of the output (compared with the classical output) during 
the prosperous period results in a larger difference in profits than supply’s upholding 
during the period of recession. Therefore, over a complete business cycle, the totally 
flexible firm still keeps an advantage over its rival with adjustment costs. This 
argumentation clarifies the fact that concerning a completely symmetrical business 
cycle the factor R exceeds 1. 
 

 
 
Fig. 4.15 Profits over time during a complete business cycle; firm 1 possesses 
adjustment costs whereas its rival has no adjustment costs. 
 

In this example with α = 0.2 (c=0.4, d=-0.1) the relative advantage of firm 2 over 
its rival is substantial; application of Proposition 4.11 gives R = 1.134 which indicates 
that firm 2’s total profit is about 13% higher than its rival’s total profit. So, in the end, 
flexibility outperforms inertia. Of course we have to realize that during the first period 
of decreased economic activity - this period corresponds to 0 < t < 1 in our model of 
the whole cycle - Rd drops below 1. Therefore it is quite possible that firm 2 doesn’t 
survive the period of recession and may never taste the benefits of the prosperous 
period. Application of Proposition 4.11 leads to a relative total profit of firm 2 
compared with its rival of Rd=  0.671. The graphical display of the development of the 
fraction Π 2

tot/Π 1
tot during the complete business cycle illustrates this phenomenon 

(the fraction is obtained by computer simulation). 
 

Adjustment costs; 
less volatility 
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Fig. 4.16 The quotient of the total profits Π 2

tot/Π 1
tot over time during a complete 

business cycle with α=0.2 (l1=0.1, l2=0 and u1=0.1, u2=0 and c=0.4, d=-0.1). 
 

We already stated that adjustment costs also influence market supply; the market 
supply’s amplitude with adjustment costs is less than the amplitude corresponding to 
classical market supply (= 2(m-c)/(3+2d) in our normalized model). Figure 4.17 
illustrates the effect of the adjustment costs on the market supply; we again make the 
choice corresponding with the second benchmark case namely l1=0.1, l2=0, u1=0.1, 
u2=0 (and c=0.4,d=-0.1) and α=0.2. The benchmark case’s market supply (one firm 
possesses adjustment costs) is printed in bold. We argue that adjustment costs may 
serve as a policy instrument to bring peace to the economy. 
 

 
 
Fig. 4.17 Market supply corresponding to the second benchmark case (l1=0.1, 
l2=0, u1=0.1, u2=0) and classical market supply, with α=0.2. 

Dampened 
amplitude 

Rd 
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In the introduction of this Section we referred to the benchmark case with c=0.4, 
d=-0.1, l1=0.06 and l2=0. We noted that the fact that Π 1 drops below zero whereas Π 2 
still remains positive for a short period, should be put in perspective and that a total 
leeway in profits over a certain period can also serve as a refined exit criterion. The 
results of Proposition 4.11 can be applied to support this statement. For all α with     
α < 0.135 the proposition’s condition is satisfied and for α = 0.1 computation leads to 
Rd = 0.824 as a measure for firm 2’s relative total profit compared to its rival during the 
whole period with 0.9 < m < 1. For α = 0.4 (corresponding to a deep depression) we 
must resort to a spreadsheet programme to compute the value of the fraction Rd at 
the exact moment in time corresponding to Π 1 = 0 (then the market size equals 
m=0.6, see Fig. 4.10). In our model of the business cycle the market size equals 
m=0.6 at t=0.5 and the corresponding value of firm 2’s relative total profit equals 0.76. 
 

Such low values concerning the relative total profits of the firm without 
adjustment costs during a period with decreased economic activity aren’t exceptional. 
To gain further insight in the values of the fractions Rd,  Re and R , concerning the 
second benchmark case (l1>0,l2=0; u1>0,u2=0), we present three tables with these 
values for several values of α and c. We choose linear production cost functions 
(d=0) and for the adjustment cost parameters we choose l1=0.10 and u1=0.10. 
Proposition 4.11 can be applied for all amplitudes α < 0.2. And for all larger values of 
the business cycle’s amplitude we use computer simulation to compute the quotients 
of the total profits Π 2

tot/Π 1
tot over a complete period with m<1, m>1 and a complete 

business cycle.The fractions are rounded off to two decimals. 
 
Table 4.1, relative total profits Rd = Π 2

tot/Π 1
tot over the whole period with m<1. 

 c=0.2 c=0.4 c=0.6 
α=0.10 0.88 0.85 0.78 
α=0.20 0.78 0.72 0.62 
α=0.30 0.74 0.69 0.78 
 
Table 4.2, relative total profits Re = Π 2

tot/Π 1
tot over the whole period with m>1. 

 c=0.2 c=0.4 c=0.6 
α=0.10 1.12 1.16 1.25 
α=0.20 1.25 1.34 1.51 
α=0.30 1.31 1.41 1.62 
 
Table 4.3, relative total profits R = Π 2

tot/Π 1
tot over the whole cycle. 

 c=0.2 c=0.4 c=0.6 
α=0.10 1.02 1.03 1.07 
α=0.20 1.07 1.13 1.28 
α=0.30 1.13 1.23 1.52 
 

The conclusions from Proposition 4.11 (which hold for a limited set of α’s) still 
hold for larger amplitudes of the business cycle: in general Rd < 1, Re > 1 and R >1. Of 
course for large values of α, the advantages of the firm with adjustment costs, during 
a period with decreased economic activity, may change into disadvantages. 
Obviously this is due to the adjustment costs which occur as extra costs during the 
behavioural “complete flexibility” phase 3. 
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Consideration of these three tables leads to the observation that in general the 
fraction Rd decreases if the “depth” of the recession (α) increases or the production 
costs per unit (c) increase. And the fractions Re and R both increase if α or c 
increases. So in general relative benefits or losses become enlarged if the production 
process is less efficient or the amplitude of the business cycle is larger. 

From the results presented in Table 4.3 we can draw another important 
conclusion. A totally flexible firm, without adjustment costs in both directions of 
production change, enjoys substantial benefits over a complete business cycle. Of 
course this statement only holds under the assumption that this flexible firm survives 
the period of recession (see Figure 4.16). However it should be noted that the 
strategically strongest firm has asymmetrical adjustment costs: the results concerning 
the fractions Rd and Re clearly show that a strategically strong firm possesses 
sufficient adjustment costs corresponding to a decreasing output and is totally flexible 
- if possible the firm has no adjustment costs at all - if the output level has to be 
increased. 

In Section 4.4 we reflected on the strategic behaviour of the firm with the largest 
adjustment costs during a period with a decreasing market size. By enlarging these 
adjustment costs this firm is able to enlarge the duration of the beneficial phase 2 
and Propositions 4.5 and 4.7 provide some possible exit conditions for the rival (of 
course this rational behaviour assumes knowledge of the implications of adjustment 
costs, imformation concerning the rival and also the possibility to change the 
adjustment cost parameter l). 
These reflections on exit criteria can be refined if we use the indicator Rd for firm 2’s 
relative total profit in comparison with its competitor. Even if firm 2 maintains 
nonnegative profits over the whole period with decreased economic activity, total 
leeway in profits, expressed by Rd, can serve as another criterion for leaving the 
market. A value of  Rd = 0.69 (Table 4.1, c=0.4,α=0.3) could mean for instance that firm 
2’s total investments, over the past period of recession, only add up to 69% of the 
competitor’s total investments (assuming that investments are proportional to profit). 
If firm 1 is able to invest more over a period of recession, firm 2 can even be expelled 
from the market in future, because in the just recently recovered market firm 1 may 
react more adequately. In the following we reflect on the general case with l1 > l2 > 0. 

Assuming that firm 1 has information about its rival’s adjustment cost parameter 
l2 and is also able to estimate the parameter α (the depth) of the downward business 
cycle, the parameter l1 can also serve as a strategic instrument.  Firm 1 may choose 
its adjustment cost parameter in such a way that the fraction Rd at the end of this 
recession (total recovery m=1 occurs at t = 1) is minimized. Because the behavioural 
“inertia outperforms flexibility” phase 2 is the most advantageous one for firm 1, in 
comparison with its rival, the optimal choice for l1 satisfies the equation (assume       
α > l2) 
 

α
d
dlll ≥

+
+−+

)21(
)22()( 212  (4.33) 

 
This choice guarantees that the “complete flexible” behavioural phase 3 does not 
occur (If α < l2, Rd = 1 of course). We formulate Proposition 4.12: 
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Proposition 4.12 (minimization of firm 2’s relative total profit due to recession). 
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Concerning benchmark case 2 the parameter l2 equals zero and the minimized 

value of Rd then equals the expression in Proposition 4.11. As noted earlier the 
analytic expression for the fraction Rd is too complicated if l2 > 0, but then Proposition 
4.12 is also confirmed by computer experiments. These experiments show that if l1 
increases, the fraction Rd  falls for l1 < *

1l and for l1 > *
1l  Rd remains constant. Table 4.4 

contains the values of *
1l and the minimized value of Rd for several values of l2 and α 

(with production cost parameters c=0.4 and d=-0.1). 
 
Table 4.4, some values of *

1l . 
 l2 = 0 l2 = 0.05 l2 = 0.1 
α=0.10 *

1l =0.044 ,Rd=0.82 *
1l =0.072 ,Rd=0.92 Only phase 1 , *

1l =0.1 
α=0.20 *

1l =0.089 ,Rd=0.67 *
1l =0.117 ,Rd=0.71 *

1l =0.144 ,Rd=0.78 
α=0.30 *

1l =0.133 ,Rd=0.56 *
1l =0.161 ,Rd=0.47 *

1l =0.189 ,Rd=0.39 
 

Note that if firm 1 were to overestimate the amplitude parameter α a little bit the 
fraction Rd would still be minimized by the choice of l1. Also note that, if rival 2 were to 
increase its adjustment cost parameter l2 with an amount ∆l2, firm 1 only has to 
increase l1 with ∆l1=∆l2/(2+2d) to minimize Rd over the whole period. We note that the 
strategic choice of the adjustment cost parameter is also related to two-stage games, 
such as “delegation games” (Fershtman and Judd (1987), Vickers (1985) and 
others). Owners of the firms (who hire their managers) may change managers’ 
salaries and contracts in such a way that adjustment costs increase, for instance in 
accordance with Proposition 4.12. The study of such game in relation to adjustment 
cost will be a topic for future research. 

We conclude this section with an example of a firm 1 that is able to choose both 
its adjustment cost parameters l1 and u1, given the adjustment cost parameters of its 
rival. Note that we assume rational behaviour of this incumbent firm, besides its 
ability to obtain the relevant information concerning its competitor and the possibility 
to adapt. Furthermore we assume that firm 1 is able to estimate the amplitude α of 
the future business cycle. Lets assume that the amplitude equals 0.25 and that firm 
2’s adjustment cost parameters equal l2=0.05 and u2=0.05 (both firms possess the 
usual production cost parameters c=0.4,d=-0.1). The best strategic choice for firm 1 
during the prosperous period (market size m > 1) is straightforward: firm 1 has to 
react as flexibly as possible, i.e. u1=0.  And Proposition 4.12 reveals that if l1 > 0.139 , 
firm 2’s relative total profit compared to its rival over the whole period with decreased 
economic activity (m < 1) is minimized. There is a big chance that firm 2 doesn’t 
survive the recession, because Proposition 4.5 (Section 4.4) shows that firm 2 also 
meets losses during phase 2 (and firm 1’s profits even remain positive). Should firm 2 
survive the recession waiting for more properous times, the development of the 
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relative total profit over the complete cycle (obtained by computer simulation) speaks 
volumes. At the moment of (first) recovery of the market (t=1) firm 2’s relative total 
profit in comparison with the total profit of its rival - over the whole period of recession 
- is somewhat more than 0.5. The relative total profit rises slowly till approximately 
70%. 
 

 
 
Fig. 4.18 The development of Π 2

tot/Π 1
tot over time during a complete 

business cycle with α=0.25 (l1=0.139, l2=0.05 and u1=0, u2=0.05). 
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7. Adjustment costs and welfare consequences 
 

The main subject of this section is the analysis of the difference in welfare 
between classical Cournot competition of two firms without adjustment costs and two 
competing firms with adjustment costs. In Section 4.4 we already noted that during 
behavioural phase 1 in the declining market, as a consequence of adjustment costs, 
total market supply is larger. This implies that the consumer surplus increases in 
comparison to the classical Cournot case and this observation holds for all three 
phases during a period with decreased economic activity. During a prosperous period 
the reverse phenomenon occurs caused by a restricted output level of both 
competitors.  However the analysis of both rivals’ profits in comparison to the 
classical case (Propositions 4.4, 4.6, 4.8,4.10) reveals that several cases have to be 
distinguished. Important differences occur not only concerning a period of recession 
and a period of prosperity, but also concerning the two benchmark cases as well. 
Therefore the analysis in this section is dedicated to social welfare (defined as the 
sum of consumer surplus and producer surplus). The organization of this section is 
as follows: the first and second part deal with the examination of the welfare during a 
period with decreased economic activity (market size m < 1) and during a prosperous 
period (m > 1) respectively. In each part we will distinguish between the symmetrical 
benchmark case 1 (l1=l2=l>0 and u1=u2=u>0) and the asymmetrical benchmark case 2 
(l1=l>0, l2=0 and u1=u>0, u2=0). Computer simulations will support the analysis of 
these two benchmark cases and for general cases (l1>l2>0, u1>u2>0) such 
experiments will clarify the welfare properties as well. 

Finally the third part focusses on the relative total welfare in comparison to the 
total classical welfare over a period of decreased economic activity, a period of 
increased economic activity and over a complete business cycle. Like in Section 4.6, 
in cases where the analysis refines the insight (and is feasible), we will make use of 
integral calculus. 

First we consider briefly the expressions and formulas that we will use in this 
section. In Section 4.2  we already provided the general expression of the consumer 
surplus. Concerning a linear inverse demand function the consumer surplus CS 
equals **

max )(5.0 qpp − ,  where pmax, *p and *q equal the maximum price of the good, 
equilibrium price and total equilibrium supply of both firms respectively. In our 
normalized model it holds that  pmax = m (market size) and *

max
* qpp −= ,  implying that 

the expression for CS becomes: 
 

*
2

*
1

*2*
2
1 ,)( xxqqCS +==     with  (4.34) 

 
In this whole section we will use the notations ∆W, ∆CS and ∆Π  for the differences in 
welfare, consumer surplus and total profit between the case with adjustment costs 
and the classical case respectively. So it holds that 
 

ΠCSW,  ΠΠΠΠ,  CSCSCS clclcl ∆∆∆∆∆ 2121 +=−−+=−= Π  (4.35) 
 
Furthermore, in computing ∆Π, we will make use of the expressions for Π 1-Πcl and   
Π 2-Πcl which are derived concerning both benchmark cases in Sections 4.4 and 4.5. 
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Part 1: A period with decreased economic activity, i.e. m < 1 
 

First we consider benchmark case 1 with l1=l2=l>0. 
We present a table with the values of relative differences in welfare ∆W/Wcl for 
various adjustment cost parameters l. Concerning the production cost parameters we 
make the (usual) choice c=0.4 and d=-0.1. In each cell also the behavioural phase of 
both firms is indicated. Note that, as a consequence of symmetry in adjustment costs 
the “inertia outperforms flexibility” phase 2 doesn’t occur. Also note that, during phase 
1 (m > 1-l), the value of ∆W/Wcl  increases if the market size m decreases, whereas 
the relative difference in welfare falls quickly during the “complete flexibility “phase 3. 
 
Table 4.5, the relative difference in welfare for l > 0 and various market sizes. 
 m=0.95 m=0.90 m=0.85 m=0.8 m=0.75 m=0.70 
l=0.05 (1), 0.044 (3), 0.033 (3), 0.016 (3),-0.011 (3), -0.055 (3), -0.130 
l=0.10 (1), 0.044 (1), 0.086 (3), 0.057 (3), 0.010 (3), -0.069 (3), -0.205 
l=0.15 (1), 0.044 (1), 0.086 (1), 0.123 (3), 0.062 (3), -0.042 (3), -0.224 
l=0.20 (1), 0.044 (1), 0.086 (1), 0.123 (1), 0.145 (3),  0.026 (3), -0.187 
 

Quick observation of this table reveals that rather large values of the relative 
difference in welfare ∆W/Wcl can occur; for instance, corresponding to an adjustment 
cost parameter of l=0.15 and a market size of m=0.85, this relative difference has 
risen to more than 12%! It appears to be possible to analyse the development of the 
difference in welfare during the phases 1 and 3 completely. Proposition 4.13 not only 
reveals the market sizes for which this difference is positive, but also gives the 
interval of the market size parameter m for which the difference in welfare rises or 
falls. Naturally the classical welfare is decreasing with respect to a decreasing market 
size.Therefore it holds that, if the difference in welfare increases (decreases), the 
relative difference in welfare even rises (falls) stronger with respect to a decreasing 
market size. 
 
Proposition 4.13 (difference in welfare, concerning benchmark case 1). 
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Proof 
During phase 1 the equilibrium outputs of both firms equal *

2
*
1 xx = = (1-c)/(3+2d) 

(see Section 4.4) and the classical total output equals *
clq = 2(m-c)/(3+2d). The market 

size m equals 1 - ∆m1 and for the difference in consumer surplus during phase 1 we 
obtain 
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Using the expression for Π i - Πcl, i=1,2 of Section 4.4, we find for the difference in 
total profits 

2
2

121
21

)23(
)1(2)(∆

)23(
)1(2∆2∆

d
dm

d
cmΠΠΠΠ cl +

+−
+

−−=−+=  

 
The difference in welfare is obtained bij adding the expressions for ∆CS and ∆Π. 
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So ∆W > 0 during the whole phase 1 for l < (1-c)/(2+d) (all reasonable adjustment 
costs) and rises (with respect to ∆m1) for ∆m1 < (1-c)/(4+2d). 
By deriving an expression for the difference in welfare during phase 3 (phase 2 
doesn’t occur), we can show that ∆W is a linearly decreasing function if m decreases. 
Using the equilibrium outputs of both firms during phase 3 and the formulas for the 
expressions Π i - Πcl, i=1,2  (Proposition 4.6, Section 4.4) expressions for ∆CS, ∆Π 
and ∆W can be obtained (m = 1-l-∆m3): 
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Part (i) is proved by solving ∆W = 0 (with respect to ∆m3) and using m = 1-l-∆m3. 
Part (ii) is proved by realizing that during phase 3 the derivative of ∆W with respect to 
∆m3 is always negative. 
 [End of proof] 
 

Note that the larger the adjustment costs are, the quicker ∆W  (and so ∆W/Wcl) 
falls with respect to a decreasing market size m during phase 3. This phenomenon 
can be observed in Table 4.5. Application of Proposition 4.13 to the (benchmark) 
case with l1=l2=l=0.15 and c=0.4,d=-0.1 leads to (i) the difference and relative 
difference in welfare are both positive for m > 0.767 (and drop below zero for              
m < 0.767) and (ii) ∆W and ∆W/Wcl both rise for m > 1 - min{0.15 , 0.158} = 0.85 (and fall 
for m < 0.85 during phase 3). One can compute that at a market size of m = 0.779 the 
profits of both symmetrical firms become zero (use the formula for (∆m3)L, see the 
proof of Proposition 4.7, Section 4.4 and use m = 1-l-(∆m3)L). Then, welfare may drop 
to zero, due to immediate exit of both competitors. The result of Proposition 4.13, 
concerning the interval of values of m for which ∆W is positive, leads one to suspect 
that the larger the adjustment costs are the more beneficial this is for social welfare. 
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However we have to modify this statement, because too large adjustment costs also 
sooner lead to nonpositive profits in a declining market and may trigger exit. 

The graphical presentation of the relative difference in welfare during a period of 
decreased economic activity, corresponding to this case, completes the analysis of 
benchmark case 1. 

 

 
 
Fig. 4.19 The development of ∆W/Wcl in a declining market . 
 

We now consider benchmark case 2 concerning an asymmetry in adjustment 
costs between both competitors, i.e. l1=l>0, l2=0. For the production cost parameters 
we again choose c=0.4, d=-0.1. To gain a clear insight in the development of the 
relative difference in welfare, subject to a decreasing market size, we first present a 
table with some computed values of the fraction ∆W/Wcl . For several market sizes m 
and various values of l the behavioural phase is also indicated. Note that for this 
asymmetrical case 2 the “complete inertia” phase 1 doesn’t occur. 
 
Table 4.6, the relative difference in welfare for l>0, l2=0 and various market 
sizes. 
 m=0.95 m=0.90 m=0.85 m=0.8 m=0.75 m=0.70 
l=0.05 (2), 0.011 (2), 0.024 (3), 0.023 (3), 0.013 (3), -0.003 (3), -0.032 
l=0.10 (2), 0.011 (2), 0.024 (2), 0.040 (2), 0.061 (3), 0.064 (3), 0.031 
l=0.15 (2), 0.011 (2), 0.024 (2), 0.040 (2), 0.061 (2), 0.088 (2), 0.125 
l=0.20 (2), 0.011 (2), 0.024 (2), 0.040 (2), 0.061 (2), 0.088 (2), 0.125 
 
The results of Table 4.6 suggest some qualitative properties of the welfare 
 
• The relative difference in welfare between benchmark case 2 and the classical 

case is positive during phase 2 and rises with respect to a decreasing market 
size. 

• The larger firm 1’s adjustment costs are, the more beneficial this is for the social 
welfare. 

Possible exit of both firms 

Ph.1 Ph.3 
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• During phase 3 the relative difference in welfare falls quickly subject to a further 
decreasing market size and finally becomes negative. 
 
It appears that these results hold for a wide range of adjustment cost parameters 

and production cost parameters. Proposition 4.14 contains the precise and analytical 
formulation of these properties with regard to the occurring phases 2 and 3. 
Note that in (the proof of) this proposition again the difference in welfare ∆W is 
considered. Because the classical welfare is decreasing with respect to a decreasing 
market size these results also hold for ∆W/Wcl . 
 
Proposition 4.14 (difference in welfare, concerning benchmark case 2). 
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Proof 

We use the expressions for the outputs '
1x  and '

2x  during phase 2 (see Section 
4.4) and the classical total output equals '

clq  = 2(m-c)/(3+2d). Because the market size 
m equals m = 1 - ∆m2 (phase 1 doesn’t occur) we obtain for the difference in 
consumer surplus 
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Using the expressions for Π 1-Πcl and Π 2-Πcl of the proof of Proposition 4.4, Section 
4.4, the expression for ∆Π is easily derivable. 
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The difference in welfare is obtained bij adding the expressions for ∆CS and ∆Π. 
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For d < -0.2594 the polynomial P(d):=8d3+28d2+26d+5 is nonpositive and this 
observation proves case (i). 
For the remaining two cases ∆m2 has to satisfy the condition  
∆m2 < 4(1-c)(1+d)(1+2d)/P(d).This condition holds during the whole phase 2 if and only 
if l(2+2d)/(1+2d) < 4(1-c)(1+d)(1+2d)/P(d). So for the adjustment cost parameter l we 
obtain the condition 
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The function F(d) is monotonically decreasing for -0.2594 < d < 0.5 (the function 
H(d):=1/F(d) can be rewritten as H(d) = d+5/2+2d/(4d2+4d+1) and is monotonically 
increasing for -0.2594 < d < 0.5). So for the cases (ii) and (iii) the conditions for l 
become l <(1-c)F(0) and l <(1-c)F(0.5) respectively. 
For case (i) (d<-0.2594) the derivative of ∆W with respect to ∆m2 is always positive 
and for the cases (ii) and (iii) the quadratic form ∆W is increasing with respect to ∆m2 
as long as ∆m2 < 2(1-c)(1+d)(1+2d)/P(d) holds. 
 

The analysis corresponding with phase 3 is similar. Now we use the expressions 
for the outputs "

1x  and "
2x  during phase 3 (see Section 4.4, with l=l1, l2=0) and the 

classical total output "
clq  = 2(m-c)/(3+2d) with m = 1-l(2+2d)/(1+2d)-∆m3 . We obtain for 

the difference in consumer surplus 
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Using the expressions for Π 1-Πcl and Π 2-Πcl  ( see the proof of Proposition 4.6, 
Section 4.4) and ∆W = ∆CS + ∆Π , we obtain a linear decreasing expression for the 
difference in welfare with respect to ∆m3 . 
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 [End of proof] 
 

Proposition 4.14 looks rather complicated and this is mainly due to the distinction 
of the three cases (i), (ii) and (iii) concerning the production cost parameter d. For a 
linear production cost function it holds that d=0 and this choice leads to a 
simplification of the proposition. Concerning the linear production cost case it holds 
that the difference and the relative difference in welfare are positive during phase 2 
for all l < 0.4(1-c). Furthermore, for d=0, the relative difference ∆W/Wcl is rising (with 
respect to a decreasing market size) for m > min{2l, 0.4(1-c)}. Case (ii) also contains a 
wide class of concave production cost functions, corresponding to an efficient 
production technology. Case (iii) corresponds to convex production cost functions     
(d > 0) and we observe that the set of adjustment cost parameters for which the 
welfare result holds becomes somewhat smaller. 
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Application of Proposition 4.14 to the benchmark case with l1=l=0.15, l2=0 and c=0.4, 
d=-0.1 reveals that ∆W/Wcl remains positive (at least) during phase 2 (m > 0.663) and 
is even rising for m > 0.677. 
We conclude the analysis of benchmark case 2 with a graphical display of the relative 
difference in welfare, during the “inertia outperforms flexibility” phase 2 and the 
“complete flexibility” phase 3, of this case. 
 

 
 
Fig. 4.20 The development of ∆W/Wcl during a declining market . 
 

Note that this relative difference in welfare reaches a value of more than 16% and 
then falls very quickly. For the general case with l1 > l2 >0 the analysis becomes too 
complicated and computer experiments can be used to compute relative differences 
in welfare. We conclude part one of this section with a table containing the relative 
differences in welfare, subject to a decreasing market size. For the adjustment cost 
parameter of firm 2 we choose l2 = 0.05 and concerning the production cost 
parameters we make the usual choice c=0.4, d=-0.1. Behavioural phases are also 
indicated. 
 
Table 4.7, the relative difference in welfare for l1 >l2 = 0.05 and various market 
sizes. 
 m=0.95 m=0.90 m=0.85 m=0.8 m=0.75 m=0.70 
l1 =0.10 (1), 0.044 (2), 0.046 (2), 0.046 (3), 0.018 (3), -0.037 (3), -0.134 
l1 =0.15 (1), 0.044 (2), 0.046 (2), 0.046 (2), 0.040 (2), 0.024 (3), -0.043 
l1 =0.20 (1), 0.044 (2), 0.046 (2), 0.046 (2), 0.040 (2), 0.024 (2), -0.011 
 
The table reveals that for large values of l1 the relative difference in welfare first rises 
somewhat and then falls during the rest of the behavioural phase 2 and more quickly 
during phase 3. However in general the relative difference in welfare ∆W/Wcl is 
positive in the declining market. So we may conclude that the analysis of the two 
benchmark cases reveals all important qualitative properties of the relative difference 
in welfare. 

Ph.2 Ph.3 
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Part 2: A period with increased economic activity, i.e. m > 1 
 

In the introduction of this section we already stated that during a period with 
increased economic activity, as a consequence of adjustment costs, both firms’ 
supply levels may be restricted (in comparison to the classical output). Therefore it is 
self-evident that the difference in consumer surplus ∆CS (=CS-CScl) is negative. In 
Proposition 4.8, Section 4.5, we proved that the profits of two symmetric firms (with 
respect to adjustment costs) exceed the classical profit for a long period in the further 
expanding market. However it will appear that the positive difference in profits ∆Π 
isn’t large enough to compensate the negative difference ∆CS. Therefore the 
difference in welfare is always negative in a booming market and this result is clearly 
opposite to the results corresponding to a period of recession. First we focus on 
benchmark case 1 with u1=u2=u>0. 

Table 4.8 contains some values of the relative differences in welfare ∆W/Wcl for 
various values of u, besides the behavioural phase corresponding to the market size 
(we again choose c=0.4, d=-0.1 for the production cost parameters). 
 
Table 4.8, the relative difference in welfare for u > 0 and various market sizes. 
 m=1.05 m=1.10 m=1.15 m=1.20 m=1.25 m=1.30 
u=0.05 (1), -0.043 (3), -0.048 (3), -0.050 (3),-0.052 (3), -0.053 (3), -0.053 
u=0.10 (1), -0.043 (1), -0.085 (3), -0.092 (3), -0.096 (3), -0.099 (3), -0.101 
u=0.15 (1), -0.043 (1), -0.085 (1), -0.124 (3), -0.133 (3), -0.138 (3), -0.142 
u=0.20 (1), -0.043 (1), -0.085 (1), -0.124 (1), -0.161 (3), -0.170 (3), -0.177 
 
Clearly the relative difference in welfare is always negative and decreases further 
with respect to an increasing market size. Furthermore it is obvious that the larger the 
adjustment costs are the more negative ∆W/Wcl is during phase 3. The analytical 
results corresponding to this benchmark case are summarized in Proposition 4.15. 
Because classical welfare is increasing with respect to a increasing market size, the 
relative difference in welfare falls less strongly than the difference in welfare. But also 
note that (compare Tables 4.5 and 4.8), because of the increasing classical welfare, 
the absolute differences in welfare ∆W are even larger than those corresponding with 
a declining market and a similar deviation ∆m from m=1. 
 
Proposition 4.15 (difference in welfare, concerning benchmark case 1). 
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Proof 

Using the equilibrium outputs of the two firms, *
2

*
1 xx = = (1-c)/(3+2d), during phase 

1 (see Section 4.5) and the expression for the classical total output,                      
*
clq = 2(m-c)/(3+2d) with m = 1 + ∆m1, we obtain for the difference in consumer surplus 

during this phase 
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Using the expression for Π i - Πcl, i=1,2 of Proposition 4.8, Section 4.5 we obtain for 
the difference in total profits 
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The difference in welfare is obtained bij adding the expressions for ∆CS and ∆Π and 
is clearly always negative and decreasing with respect to ∆m1. 
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The expression for the difference in welfare during phase 3 (phase 2 doesn’t occur), 
clearly reveals that ∆W is a linearly decreasing function if m increases. 
To compute ∆W  we use the equilibrium outputs of both firms during phase 3 and the 
formulas for the expressions Π i - Πcl, i=1,2, Proposition 4.10, Section 4.5. The 
expressions for ∆CS, ∆Π and ∆W are : 
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During phase 3 it holds that ∆W is negative and decreasing with respect to ∆m3. 
 [End of proof] 
 
We illustrate the analytical results, concerning the first benchmark case, with a 
graphical presentation of the relative difference in welfare during a period of 
increased economic activity (with the choice u1=u2=u=0.10 and c=0.4, d=-0.1). 
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Fig. 4.21 The development of ∆W/Wcl during an expanding market . 
 

Note that this relative difference gradually decreases till roughly -10%. The result 
of Proposition 4.15 reveals that adjustment costs in a prosperous period are not 
beneficial to the social welfare. The larger these adjustment costs are the more 
negative the (relative) difference in welfare will be (see Table 4.8). In the concluding 
reflections of Section 4.5 we stated that the most flexible firm has strategic benefits 
over its rival. Besides this fact we may conclude that flexible behaviour also benefits 
society. 
 

We now continue our discussion concerning the welfare with the analysis of the 
second benchmark case, i.e. u1=u>0, u2=0. Table 4.9 reveals that the relative 
difference in welfare (W-Wcl)/Wcl is negative during the behavioural phases 2 and 3 
(phase 1 doesn’t occur and for the production cost parameters we make the usual 
choice c=0.4, d=-0.1). 
 
Table 4.9, the relative difference in welfare for u>0, u2=0 and various market 
sizes. 
 m=1.05 m=1.10 m=1.15 m=1.20 m=1.25 m=1.30 
u=0.05 (2), -0.009 (2), -0.017 (3), -0.020 (3),-0.021 (3), -0.022 (3), -0.023 
u=0.10 (2), -0.009 (2), -0.017 (2), -0.023 (2), -0.029 (3), -0.033 (3), -0.036 
u=0.15 (2), -0.009 (2), -0.017 (2), -0.023 (2), -0.029 (2), -0.034 (2), -0.038 
u=0.20 (2), -0.009 (2), -0.017 (2), -0.023 (2), -0.029 (2), -0.034 (2), -0.038 
 
These computer simulations suggest some other qualitative properties of the welfare 
as well. 
 
• The negative relative difference in welfare between benchmark case 2 and the 

classical case decreases slowly with respect to an increasing market size. 
• These negative values of the relative difference are much smaller than those 

corresponding to symmetrical firms (and equal values of u). 

Ph.1 Ph.3 
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• Under the assumption that phase 3 occurs it holds that the larger the adjustment 
costs of firm 1 are the less beneficial this is for social welfare. 

 
These results hold for all adjustment cost parameters u and for all reasonable 
production cost parameters.The analytical conclusions, concerning this second 
benchmark case, are summarized in Proposition 4.16 and the proof is straightforward 
for most values of the production cost parameter d. 
 
Proposition 4.16 (difference in welfare, concerning benchmark case 2). 
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Proof 

We use the expressions for the outputs '
1x  and '

2x  during phase 2 (see Section 
4.5) and  the classical total output equals '

clq  = 2(m-c)/(3+2d). Because the market 
size m equals m = 1 + ∆m2 (phase 1 doesn’t occur) we obtain for the difference in 
consumer surplus 
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Using the expressions for Π 1-Πcl and Π 2-Πcl of the proof of Proposition 4.8, Section 
4.5, the expression for ∆Π  becomes 
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The difference in welfare is obtained bij adding the expressions for ∆CS and ∆Π. 
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For d > -0.2594, the third degree polynomial P(d) = 8d3+28d2+26d+5 is nonnegative and 
then ∆W is always negative and decreasing with respect to ∆m2 ;this proves case (i). 
For d < -0.2594 (case (ii)) this polynomial becomes negative and ∆W < 0 if the 
following condition is imposed on ∆m2:  ∆m2 < -4(1-c)(1+d)(1+2d)/P(d). 



Chapter 4 Cournot Competition with Asymmetrical Adjustment Costs 
                 subject to a Business Cycle 

126 

This condition holds during the whole of phase 2 if and only if the following holds for 
the parameter u: 
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The function H(d) is monotonically increasing for -0.5 < d < -0.2594 and H(-0.5)=0. The 
fact that H(-0.35)=0.178 proves case (ii). 
The analysis corresponding to phase 3 is similar. Now we use the expressions for the 
outputs "

1x  and "
2x  during phase 3 (see Section 5.5, with u=u1, u2=0) and the classical 

total output "
clq  = 2(m-c)/(3+2d) with m = 1+u(2+2d)/(1+2d)+∆m3 . For the difference in 

consumer surplus we obtain 
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Using the expressions for Π 1-Πcl and Π 2-Πcl  ( see the proof of Proposition 4.10, 
Section 4.5) and ∆W = ∆CS + ∆Π we obtain a linearly decreasing expression for the 
difference in welfare with respect to ∆m3 . 
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 [End of proof] 
 

We emphasize that the results concerning the difference and the relative 
difference in welfare hold for a wide range of production cost parameters d. If the 
marginal production costs are constant, the welfare results hold for all adjustment 
cost parameters u during phase 2 and 3.  For this second asymmetrical benchmark 
case it holds that u2=0, so we have one totally flexible firm and the negative values of 
the relative difference are much smaller than those corresponding to symmetrical 
firms (and equal values of u). Apparently the fact that one of both rivals has no 
adjustment costs, makes a significant difference and naturally the best “advice” for 
both firms is to be as flexible as possible. 
We present a graphical display of the development of ∆W/Wcl subject to an expanding 
market for the parameter choice u=0.10, c=0.4 and d=-0.1. Comparison of Figures 4.21 
and 4.22 reveals the difference between the two benchmark cases. 
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Fig. 4.22 The development of ∆W/Wcl during an expanding market . 
 

To conclude part two of this section we present a table containing the relative 
differences in welfare in a booming market size for a general case with 
u1 > u2 >0. Firm 2 ‘s adjustment cost parameter equals u2 = 0.05 (and c=0.4, d=-0.1). 
Behavioural phases are also indicated. 
 
Table 4.10, the relative difference in welfare for u1 >u2 = 0.05 and various market 
sizes. 
 m=1.05 m=1.10 m=1.15 m=1.20 m=1.25 m=1.30 
u1 =0.10 (1), -0.043 (2), -0.055 (2), -0.065 (3), -0.069 (3), -0.072 (3), -0.073 
u1 =0.15 (1), -0.043 (2), -0.055 (2), -0.065 (2), -0.072 (2), -0.078 (3), -0.083 
u1 =0.20 (1), -0.043 (2), -0.055 (2), -0.065 (2), -0.072 (2), -0.078 (2), -0.083 
 
We observe that the relative difference in welfare ∆W/Wcl is always negative. Again 
we may conclude that the analysis of the two benchmark cases reveals all important 
qualitative properties of the relative difference in welfare. 

Ph.2 Ph.3 
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Part 3: Total welfare over (parts of) a business cycle 
 

Clearly social welfare and the difference in welfare (compared to the classical 
case with no adjustment costs) are influenced by environmental turbulence. 
Propositions 4.13 - 4.16 and the corresponding tables, concerning both benchmark 
cases, reveal that (in general) the difference in welfare ∆W is positive during a period 
with decreased economic activity and is negative during a properous period. Under 
the assumption that the number of reactions of both competitors, n, is large enough 
(see also Section 4.6) we can use integral calculus and computer simulations to 
examine  relative total welfare over a period with m < 1, m > 1, and over a complete 
business cycle. By using these mathematical techniques the total effect of the 
adjustment costs on welfare over a whole period can be examined. Like in Section 
4.6 the goniometrical function m(t)=1-αsin(πt) with 0 < t < 2 can serve as a model for a 
(part of a) symmetrical business cycle with amplitude α. Again the time interval          
0 < t < 1 corresponds to a period of decreased economic activity, whereas for 1 < t < 2 
the market size corresponding to a prosperous period is described. Concerning the 
following analysis, the quantities Fd, Fe and F express the total welfare (with 
adjustment costs) as a fraction of the total classical welfare (without adjustment 
costs) during the periods with m < 1, m > 1 and the whole period respectively. The 
following holds (under the assumption that n is large enough and with the usual 
notations W and Wcl for the welfare and the classical welfare respectively): 
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In our examinations both benchmark cases will play a central role and we will use 

integral calculus to prove some general propositions in cases that only one 
behavioural phase occurs (during the declining or booming market). In Section 4.6 
we already noted that, if several phases occur, several expressions for W(m(t)) have 
to be distinguished, thus complicating the analysis. However computer simulations 
will be used to support our insight concerning these complicated cases. 
We start our discussion with benchmark case 1’s analysis and first we prove a 
Proposition that holds for business cycles with smaller amplitudes, i.e. α < min(l,u). 
 
Proposition 4.17 (relative total welfare, concerning benchmark case 1) 
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Proof 
For the whole period with decreased economic activity (m < 1) we substitute 

∆m1=αsin(πt) (∆m1 is positive for 0 < t < 1) in the expressions for ∆W and Wcl .The 
(goniometric) expressions during phase 1 equal: 
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The fraction Fd can be computed using W = Wcl + ∆W and 
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For the whole period with m > 1 we obtain the same expressions for ∆W and Wcl, but 
now for 1 < t < 2. Using ∫∫ =−=
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computed. And, concerning the complete business cycle, we can use the goniometric 
expressions for 0 < t < 2. Then the fraction F equals 
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 [End of proof] 
 

Naturally these expressions for the relative total welfare simplify concerning d=0 , 
which corresponds to constant marginal production costs.Tables containing 
computed values of the fractions Fd, Fe and F will support our insight in the meaning 
of these relative total welfares. First we draw some conclusions from the expressions 
of Proposition 4.17. Of course we have to realize that these expressions only hold for 
business cycles with a limited amplitude. In part 1 of this section we showed that the 
(relative) difference in welfare, corresponding with benchmark case 1 is positive 
during phase 1 and a part of phase 3 and therefore the following statement will not 
be surprising 
 
• for all 0 < c < 1, d > -1/2 and α < (4/π)(1-c) /(2+d) it holds that Fd, the relative total 

welfare during the whole period with m < 1, exceeds 1. So for all reasonable 
adjustment cost parameters l this property holds (for instance for the production 
cost parameters c=0.5, d=0 the parameter l has to be smaller than 0.32). 
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And during a period with a increased economic activity we observed in part 2 that 
the (relative) difference, corresponding to benchmark case 1 is always negative. 
Clearly it holds that 
 
• the fraction Fe is less than 1 for all α < min{l,u}, 0 < c < 1 and d > -1/2 
 
The third result, concerning the relative total welfare over a complete business cycle, 
can be concluded directly from the expression for F and states that 
 
• for all α < min{l,u}, 0 < c < 1 and d > -1/2 the fraction F is less than 1. 
 

Apparently, for the symmetric benchmark case 1 total welfare over a whole 
business cycle is less than the total welfare corresponding to firms without 
adjustment costs. However, the property Fd >1 implies that adjustment costs benefit 
welfare during a whole period of decreased economic activity. We may expect that, in 
case the business cycle’s amplitude is large enough to include behavioural phase 3           
(i.e.α > min{l,u}), relative total welfare always decreases. This is simply due to the 
fact that, in phase 3, extra adjustment costs occur. 

We now present three tables with values of the fractions Fd, Fe and F for several 
values of α  and  c. We choose d=0 (constant marginal production costs) and 
adjustment cost parameters equal to l1=l2=0.10, u1=u2=0.10.  Proposition 4.17 can be 
applied for business cycle’s amplitude α = 0.1, whereas for all larger values of the 
amplitude we use computer simulations to determine the relevant quotients Wtot/Wcl,tot 
over a period with m<1, m>1 and a complete business cycle. The fractions are 
rounded off to two decimals. 
 
Table 4.11, relative total welfare Fd = Wtot/Wcl,tot  over the period with m<1. 
 c=0.2 c=0.4 c=0.6 
α=0.10 1.04 1.05 1.07 
α=0.20 1.04 1.04 1.00 
α=0.30 1.02 0.99 0.79 
 
Table 4.12, relative total welfare Fe = Wtot/Wcl,tot  over the period with m>1. 
 c=0.2 c=0.4 c=0.6 
α=0.10 0.96 0.95 0.92 
α=0.20 0.94 0.92 0.88 
α=0.30 0.93 0.91 0.87 
 
Table 4.13, relative total welfare F = Wtot/Wcl,tot  over the whole cycle. 
 c=0.2 c=0.4 c=0.6 
α=0.10 0.99 0.99 0.97 
α=0.20 0.97 0.96 0.91 
α=0.30 0.96 0.93 0.86 
 

We observe that the fraction F is less than 1, not only for α < min{l,u}, but also for 
larger amplitudes of the cycle. Furthermore all fractions Fd, Fe and F are decreasing 
with respect to an increasing business cycle’s amplitude (for α < min{l,u} this can be 
proved). 
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The first and important conclusion from Proposition 4.17 (which holds for a 
limited set of α’s),  that the relative total welfare during a whole period with decreased 
economic activity exceeds 1 also holds for a wider range of amplitudes. 
It strikes the eye that the fraction F is less than 1, which means that the total welfare - 
over the complete (and symmetrical) business cycle - corresponding to the case with 
equal adjustment costs (l = u) is less than the total welfare concerning the classical 
case (with no adjustment costs at all). Apparently there exists an asymmetry in the 
difference in welfare ∆W with respect to the respective periods with m<1 and m>1. In 
Section 4.6 we observed that a similar asymmetry exists for the difference in profits 
∆Π in comparison to the classical profits which can be explained by the asymmetry of 
the classical profit ( i

clΠ contains the quadratic term (m-c)2). There we argued that 
supply’s restriction (compared to classical market supply) during the prosperous 
period results in a larger (and negative) difference in profits than the upholding of the 
production during the period of recession. This observation served as an explanation 
for the phenomenon that the totally flexible firm (=the classical case) has an 
advantage over the whole cycle. The fact that, in spite of a symmetrical business 
cycle, the fraction F is less than 1 also deserves an explanation. Because it holds that 
∆W = ∆Π + ∆CS, the argumentation concerning the asymmetry in ∆Π  explains “half” 
of the asymmetry in ∆W : total contribution of ∆Π  to the difference in welfare over the 
whole cycle is indeed negative because the disadvantages of the firm with 
adjustment costs during the period of prosperity exceed the advantages during the 
period with m<1. What about the contribution of ∆CS, the difference in consumer 
surplus? It holds that CS = 0.5 2* )(q , where *q equals total market supply, so CScl  (like 
Πcl) displays an asymmetry with respect to the market size m=1 as well. And so the 
larger CS is, the more impact a change in supply level has (the difference in 
consumer surplus resulting from a (small) change in output equals approximately the 
product of the two factors “original output” and “price-difference”). Therefore the 
negative effect on the consumer surplus caused by the restriction of the total output 
during the period with m>1 exceeds the positive effect of supply’s upholding on CS 
during the period of recession. So the total contribution of ∆CS to the difference in 
welfare over a complete business cycle is also negative implying that the fraction F is 
less than 1. 
 
We have to realize that Table 4.13 contains the fractions F for benchmark case 1 with 
l1=l2=l=0.1 and u1=u2=u=0.1, i.e. the adjustment costs with respect to a decreasing and 
an increasing level of production are equal. In case of asymmetrical adjustment costs 
with respect to a decreasing and an increasing level of production, ul ≠ , the following 
holds (and is confirmed by computer simulations): 
 
• If, departing from a case with l=u, u decreases, the factor F increases and 

becomes larger than 1 for u=0. For instance the case c=0.4 (d=0),α=0.2 and l=0.1, 
u=0.05 leads to a fraction F equal to 0.98 and the case c=0.4,α=0.2 and l=0.1,u=0 
leads to F=1.01. 

• If, departing from a case with l=u, l decreases, the factor F decreases (somewhat) 
further. For instance the case c=0.4,α=0.2 and l=0.05, u=0.10 leads to a fraction F 
equal to 0.95 and the case c=0.4,α=0.2 and l=0,u=0.10 leads also to F=0.95. 

 
Not only the “shape” of the adjustment costs but also the shape of the business cycle 
can influence the fraction F. Such an asymmetry in the business cycle can be 
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reflected in the amplitude corresponding to the recession, αr, and the amplitude αp 
concerning the prosperous period. The following holds (and is confirmed by computer 
simulations) 
 
• If, departing from a symmetrical business cycle (αr=αp), αp decreases, i.e. the 

recession is deeper than the revival, the factor F increases. The welfare 
advantages, due to adjustment costs, during the period of decreased economic 
activity are the decisive factor (for αp=0, F becomes larger than 1). 

• If, departing from a symmetrical business cycle), αr decreases, i.e. the recession 
is less deeper than the revival, the factor F decreases. Now welfare 
disadvantages, due to adjustment costs, during the prosperous period are the 
decisive factor. 

 
We continue our analysis with the examination of the second benchmark case. If 

the production behaviour of both firms remains in behavioural phase 2, so again for 
limited values of the business cycle’s amplitude, we are able to derive expressions 
for the three fractions Fd, Fe and F. We present these results in the following 
proposition; although these expressions look rather complicated these derivations 
lead to some general conclusions concerning relative total welfare. 
 
Proposition 4.18 (relative total welfare, concerning benchmark case 2) 
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Proof 
For the whole period with decreased economic activity (m < 1) we substitute 

∆m2=αsin(πt) (∆m2 is positive for 0 < t < 1) in the expressions for ∆W and Wcl 
corresponding to phase 2 (see the proof of Proposition 4.14).These (goniometric) 
expressions equal: 
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Then the fraction Fd  (using W=Wcl+∆W) equals 

 
∫
∫+= 1

0

1

0

))d((

))d((∆
1

ttmW

ttmW
F

cl

d . Using ∫∫ ==
1

0 2
121

0
)d(2)d( tπtsin,πtπtsin  we obtain Fd. 

For the period with m > 1 and the complete business cycle we can use the same 
expressions for ∆W and Wcl with 1 < t < 2 and 0 < t < 2 respectively. 
 [End of proof] 
 

From the expressions of the fractions Fd, Fe and F we can draw some general 
conclusions which are comparable to the conclusions corresponding to the first 
benchmark case. 

 
• Clearly the relative total welfare Fe over the whole period with increased economic 

activity is less than 1. The same holds for the fraction F corresponding to the 
relative total welfare for the complete business cycle (if the polynomial P(d) > 0 i.e. 
d > -0.2594 ).These results are similar to the results concerning benchmark case 
1. 

• For a very wide range of production cost parameters and adjustment cost 
parameters (l) the relative total welfare Fd over the whole period with decreased 
economic activity exceeds 1. 

 
This second conclusion needs some further explanation and can be clarified by 

further analysis of the formula for Fd. It always holds that Fd > 1 if the polynomial P(d) 
is nonpositive, so for -0.5 < d < -0.2594. And if P(d) is positive, for d > -0.2594, the 
numerator in the expression for Fd is positive if 
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monotonically decreasing function (with respect to d) so for -0.2594 < d < 0 the 
condition imposed on l equals: l < 1.6(1-c)/π = 0.51(1-c). This means that for c=0.5 the 
adjustment cost parameter l has to be smaller than 0.255. Indeed for a wide range of 
production cost parameters and adjustment cost parameters the property Fd > 1 
holds. 

By computer simulation we examine whether these properties of Fd, Fe and F still 
hold for larger amplitudes α of the business cycle. The results of these computations 
for several linear cost functions (d=0) and for the benchmark case with l1=l=0.10, l2=0 
and u1=u=0.10, u2=0 are presented in the following tables. For all values of α < 0.2 only 
phase 2 occurs and the corresponding simulation results confirm the complicated 
formulas for the relative total welfare of Proposition 4.18. 
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Table 4.14, relative total welfare Fd = Wtot/Wcl,tot  over the period with m<1. 
 c=0.2 c=0.4 c=0.6 
α=0.10 1.01 1.01 1.02 
α=0.20 1.02 1.03 1.04 
α=0.30 1.02 1.02 1.00 
 
Table 4.15, relative total welfare Fe = Wtot/Wcl,tot  over the period with m>1. 
 c=0.2 c=0.4 c=0.6 
α=0.10 0.99 0.99 0.98 
α=0.20 0.98 0.98 0.97 
α=0.30 0.98 0.97 0.96 
 
Table 4.16, relative total welfare F = Wtot/Wcl,tot  over the whole cycle. 
 c=0.2 c=0.4 c=0.6 
α=0.10 1.00 1.00 1.00 
α=0.20 1.00 0.99 0.98 
α=0.30 0.99 0.98 0.96 
 

We have to realize that a value of Fd=1.04 (Table 4.14, c=0.6, α=0.2) indicates that  
total welfare over such a period with decreased economic activity is 4% more than 
the total welfare concerning the classical situation (with totally flexible firms). 
These simulations show that the results of Proposition 4.18 still hold for larger values 
of the business cycle’s amplitude. If we compare these fractions of benchmark case 2 
with the corresponding values (the same c and α) of benchmark case 1 it strikes the 
eye that in all cases, concerning the fractions Fe and F, the deviations from 1 are 
smaller than the deviations corresponding to benchmark case 1. This observation 
also holds for most fractions Fd (except for a few cases with larger c and α). Naturally 
this is due to the fact that in benchmark case 2 one firm has no adjustment costs so 
the effects on welfare become smaller. For benchmark case 1 we made some 
remarks on the fraction F in relation to an asymmetry in adjustment costs and an 
asymmetry in the business cycle. Concerning the “shape” of the adjustment costs, 
i.e. an asymmetry between l1 and u1, and the shape of the business cycle, i.e. 
nonequal amplitudes corresponding to the period of recession and the prosperous 
period, results similar to those concerning benchmark case 1 hold. 

For general cases with l1>l2>0 and u1>u2>0 simulations confirm that the values of 
the fractions (for corresponding c and α) lie between the values of both benchmark 
cases. Because, concerning both benchmark cases, the relative total welfare Fd over 
a period with decreased economic activity exceeds 1 (except for some cases with 
large α, so that phase 3 plays a crucial role) it is beneficial for the welfare that both 
firms possess organizational inertia, reflected by adjustment costs. One of the main 
conclusions of Section 4.4 is that, in the declining market, the firm with the largest 
adjustment cost parameter has a strategic advantage over its rival. If both firms 
(firms’ owners) are aware of these strategic benefits (rational adaptation perspective), 
an adjustment cost-setting game may start; both firms increase their level of 
organizational inertia in turns. Naturally such a game ends with larger adjustment 
cost parameters l1 and l2 concerning both competitors and as a consequence total 
welfare benefits from this situation. However, the results of Section 4.5 reveal that, in 
a booming market, the most flexible firm is the strategically beneficial one, so an 
adjustment cost-setting game could end with two totally flexible firms, i.e. u1=u2=0. 
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Because, for all cases with u1>0 or u2>0, the relative total welfare over a 
prosperous period is always less than 1, society benefits most from totally flexible 
firms. We can state that two firms with equal adjustment cost parameters l>0 and u=0 
benefit welfare the most. Apparently there exists an endogeneous drive toward 
welfare-maximizing adjustment costs, because of rivals’ strategic advantages. 
We conclude Section 4.7 with a table containing the relative total welfare F (over the 
whole business cycle) and the relative total welfare Fd over a whole period with 
decreased economic activity as well. These fractions are presented for several 
adjustment cost parameters l1=l2=l (and u1=u2=0) and various values of the business 
cycle’s amplitude. Production cost parameters equal c=0.4 and d=0. The fractions Fd 
and F both increase with respect to an increasing l. 
 
Table 4.17, relative total welfares Fd and F for various l and α. 
 l=0.05 l=0.10 l=0.15 l=0.20 
α=0.10 Fd=1.03, F=1.01 Fd=1.05, F=1.02 Fd=1.05, F=1.02 Fd=1.05, F=1.02 
α=0.20 Fd=1.02, F=1.00 Fd=1.04, F=1.01 Fd=1.06, F=1.02 Fd=1.08, F=1.02 
α=0.30 Fd=0.99, F=1.00 Fd=0.99, F=1.00 Fd=1.00, F=1.00 Fd=1.03, F=1.01 
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8. Appraisal 
 

In this chapter we examined the effects of linear (asymmetrical) adjustment costs 
in a declining and expanding market, around the Cournot-Nash equilibrium for a 
(neutral) market size of m=1. These adjustment costs reflect the level of 
organizational inertia. We focused on the output levels and profits of both competitors 
and on the consequences concerning social welfare as well. Because of these 
adjustment costs the (Cournot) reaction curves of the firms contain an interval of 
inertia and as an implication of this temporary inertness - in the declining or 
expanding market - three behavioural (supply) phases can be distinguished. The 
analysis of Section 4.4, concerning a declining market, revealed that the firm with the 
largest adjustment costs outperforms its rival. If the difference in adjustment costs is 
large enough the most flexible firm may face nonpositive profits during the “inertia 
outperforms flexibility” phase 2 or the “complete flexibility” phase 3 (see Propositions 
4.5 and 4.7) and possibly is forced to exit. So during a period with decreased 
economic activity inertia outperforms flexibility, which confirms Hannan and 
Freeman’s (1984) inertia hypothesis. However, the analysis of Section 4.5 shows 
that, during a period with increased economic activity, flexibility pays off; the firm with 
the smallest adjustment costs - with respect to an increasing production level - enjoys 
increasing advantages over its rival in the further expanding market. 

Section 4.7 deals with social welfare and the main macro-economic conclusion is 
that there exist welfare maximizing adjustment costs. During a period with decreased 
economic activity (rather) large adjustment costs have a beneficial effect on welfare , 
whereas during a prosperous period total flexibility is the most advantageous. The 
awareness of both rivals of the strategic consequences of the adjustment costs may 
result in an adjustment-cost-setting game. The end result of such a game - large 
adjustment costs with respect to a decreasing output and total flexibility 
corresponding to an increasing production level - would precisely lead to the 
maximizing of the welfare. Of course much more work has to be done to model such 
an adjustment-cost-setting game and this will be the subject of future research. 

Another macro-economic conclusion is that the adjustment costs can serve as a 
policy instrument to bring peace to the economy, because due to adjustment costs 
the volatility of total market supply decreases (Section 4.6). One of the limitations of 
our model is that we only consider (asymmetrical) adjustment costs around the 
original Cournot-Nash equilibrium. Therefore future research has to be dedicated to 
the consequences of stepwise adjustment costs around several production levels. 
Furthermore, concerning this Chapter’s analysis, both firms control equally efficient 
production technologies reflected in equal production cost functions. In Chapter 3 we 
also examined the consequences of differences in production efficiency and naturally 
the implications of such a heterogeneity in efficiency will be an interesting subject for 
further analysis. Another limitation of the Cournot-model of this chapter is that only 
two competitors have been considered. Many studies deal with n-firm competition 
and often the main subject of these studies is the stability of the resulting Cournot-
game. Therefore we are highly interested in the effects of adjustment costs on 
stability in the case with 3 or more competitors and the implications of such costs on 
market supply. So a lot of future work has to be dedicated to these expansions of the 
research of this Chapter, concerning the effects of adjustment costs. 
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CHAPTER 5 
 
COURNOT COMPETITION WITH NON-PROFIT-MAXIMIZING OBJECTIVES IN 
GENERAL AND PREFERENCE FOR MARKET SHARE IN PARTICULAR 
 
 
1. Introduction 
 

In this chapter our main object of study will be a Cournot duopoly game with a 
non-profit-maximizing objective function and therefore this research is strongly 
related to the study of Chapter 3. There we analyzed Cournot duopoly competition 
with a non-profit-maximizing objective as well and we stated that - supported by the 
literature on managerial economics - managers are not only motivated by profit 
maximization, but like to achieve growth (size) as well. In a recent paper Deneffe 
and Masson (2002) formulate a test for non-profit-maximizing hospitals and apply it 
to hospitals in Virginia. Both hypotheses, that not-for-profit hospitals maximize profits 
or maximize pure output, are rejected on the basis of their data. The conclusion of 
their research is that these hospitals consider both profits and outputs as objectives. 

In Chapter 3 the introduction of a double motivation in the Cournot competition 
model, namely profit and size, combined with habit formation, heterogeneity in 
production costs and demand turbulence permitted the identification of various 
equilibria. It appeared that firms may decide to stay in the market notwithstanding 
the prospect of a negative profit. In Chapter 3 we emphasized the “blueprint” of the 
firm, reflected in managerial inertia. From the standpoint of Organizational Ecology 
(OE), managers’ preference for size is determined by a firm’s culture and cannot be 
changed as quickly as their environments change. Hannan and Freeman (1984) 
state that: “Since lags in response can be longer than typical environmental 
fluctuations and longer than the attention spans of decision makers and outside 
authorities, inertia often blocks structural change completely”. This OE perspective 
enabled us to study the implications of all sorts of weight combinations ( 21,αα ) 
(where iα  equals the weight attributed to production size concerning the objective 
function of firm i). 

As already mentioned in Chapter 3, the “delegation games” (Vickers (1985), 
Fershtman and Judd (1987), Sklivias (1987) and Basu (1995)) provide another 
explanation for managers’ non-profit-maximizing motives. The analysis of Fershtman 
and Judd (1987) demonstrates that competing firms’ owners will often distort their 
managers’ objectives away from strict profit maximization for strategic reasons. 
However these two-stage games, which lead to fixed weights α, assume highly 
rational behaviour of firms’ owners. In this chapter we examine, among other topics, 
the implications of another double motivation in the Cournot competition model, 
namely profit and market share. Again we analyze the consequences of all sorts of 
weight combinations (a1,a2), where ai is the weight attributed to market share 
concerning firm i’s objective function. 

We start with the examination of the consequences of more general non-profit-
maximizing motives on outputs and profits of two competitors. We deal with the 
important question whether general extra motives - like the preference for size in 
Chapter 3 – may imply strategic advantages in direct competition (whether firms are 
aware of these strategic implications or not). Furthermore the effect on social welfare 
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of such extra motives is investigated. Of course comparative statics ,which leads to 
some general properties, only holds under the assumption that the Cournot-Nash 
equilibrium is stable, so general conditions for the stability of the equilibrium of the 
duopoly Cournot game will be considered. 

In particular we will examine the consequence of status motives between two 
competitors - besides the traditional profit-maximizing motive - in our Cournot model. 
Such status motives are not new because in modeling consumer behaviour, status 
motives have been used to describe the additional purpose of consuming a so-called 
positional good. Rauscher (1992) considers a status game between two neighbours 
and notes that “Since each person wants to rank as high as possible in society, he or 
she consumes the more of these positional goods the more the other people are 
consuming. This may result in a rat race or treadmill in which inefficiently large 
quantities of positional goods are consumed”. In his example Rauscher defines the 
status function s by s=y/Y, where y and Y equal the respective amounts of the 
positional good acquired by one family and the “competing” family and he shows that 
chaotic adjustment paths of consumption are a possible outcome of rational utility-
maximizing behaviour. 

In line with these models on consumer behaviour we will introduce a status 
motive as well in this chapter and we will examine the consequences of preference 
for market share. This very natural and plausible status motive of both competing 
firms leads to a non-linear Cournot reaction curve and under certain assumptions 
even to a hill-shaped reaction function. This interesting fact provides a strong link to 
Chapter 2 where the assumption of a hill-shaped Cournot reaction curve with a 
nonzero monopoly output leads to possibly complicated dynamics with chaotic 
output- and profit- patterns. In Chapter 2 we raised the crucial question whether an 
economic rationale can be provided for the (rather extreme) nonlinear shape of the 
Cournot reaction curves. Since the publication of the corresponding paper “Chaotic 
Patterns in Cournot Competition” (1990) several researchers have tried to provide an 
answer to this essential problem and at least two valuable contributions should be 
mentioned. The first microeconomic foundation is provided by Puu (1991,1998) who 
proved that under the assumption of the often used nonlinear inverse demand 
function (the quantity demanded is reciprocal to the price), and, secondly, constant 
returns to scale production processes (leading to a linear production cost function) 
the reaction curves are unimodal. Second Kopel (1996) assumes production cost 
functions with an interfirm externality (costs are influenced by the output of the rival). 
In this paper marginal production costs first decrease with respect to an increasing 
output level of the rival and then increase corresponding to a further rise of the 
production quantities of the rival. For an example of such an interfirm externality 
Kopel refers to Poston and Steward (1978) who mention the book-buying habit: “If 
you start producing books, when no one else is, you will not sell many. There will be 
no book-buying habit among the public, and no distribution industry to take and 
display your products to Hull and Halifax. On the other hand, if other people are 
producing books in huge numbers, yours will be invisible among so many, and again 
you will sell rather few. Your sales will be best when other output exists but is 
moderate”.  Under this specific assumptions of interfirm externality with respect to 
production costs Kopel shows that the functional form of the Cournot reaction curve 
appears to be quadratic (the two dimensional equivalent of the famous quadratic 
map of May (1976)) and possibly leads to nonstable equilibria and very complicated 
two dimensional nonlinear dynamics. Although these two microeconomic foundations 
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to explain the nonlinear form of the reaction curves, are well thought-out and are 
also pleasant from a mathematical point of view - complicated chaotic time-paths 
concerning the output of the firms occur under certain conditions imposed on the 
model parameters - these explanations display some shortcomings. First the 
reaction functions R(q) possess the property that R(0)=0, that is: monopoly output is 
zero. However, as already stated in Chapter 2, it doesn’t seem very realistic that the 
strategic answer to a zero production of the rival is also a zero output. Second one 
cannot escape the impression that, in order to derive these hill-shaped reaction 
curves in the paper of Kopel, the assumption of a rather mathematically constructed 
cost function is needed. And in the papers of Puu a, (for economists) second-
favourite demand curve, leads to a zero monopoly output as well.  

In this chapter we will present a third and plausible rationale for hill-shaped 
Cournot reaction curves, which also overcomes the shortcoming of the zero 
monopoly output. The assumptions that (i) firms consider both profits and market 
share as objectives and (ii) the inverse demand curve is linear, lead to hill-shaped 
reaction curves with a positive monopoly output for certain parameter constellations. 
As we will see the natural assumption that the preference for the market share is 
included as a part of the maximand (besides the classical profit) unfortunately - but 
inevitable - leads to a complicated functional form of the reaction curves (a third 
degree equation has to be solved using Cardan’s method). In spite of this analytical 
complication it is possible to give some examples of complicated dynamical time-
paths of output and profits, which will be the subject of Chapter 6. 
 

How is this chapter organized? Section 5.2 contains the model with the non-
profit-maximizing objective and some notes on the properties of the non-profit part of 
the objective function. A general expression for the slope of the reaction function will 
be considered in relation to these mathematical properties. Section 5.3 focuses on 
the consequences of the “status function” - the non-profit part of the objective 
function - concerning production levels and profits of the two firms and social 
welfare. Using a power series approximation some general propositions can be 
derived under the assumption that the “weight” attributed to the status function in 
comparison with the “weight” attributed to the profit part of the objective function is 
small.  

In Section 5.4 this status function is specified; the market share i.e. the fraction 
of a firm’s output in relation to total market supply is concerned. This specific non-
profit part leads to several properties of the resulting reaction curves and also leads 
to a typology of the reaction curves which depends on the weight attributed to 
market share. If this weight is large enough (reflecting a high level of preference for 
market share as a blueprint of the firm), the resulting reaction curve appears to be 
hill-shaped. The consequences for the (stability of) Cournot-Nash outputs and profits 
for the benchmark case (1) of two completely symmetrical firms - with respect to the 
attributed weight to market share - will the subject of Section 5.5. There, the stability 
of the Cournot-Nash equilibrium allows us to examine the influence of this complete 
symmetry in preference for market share on social welfare as well. 

Section 5.6 deals with a second benchmark case - one firm attributes a weight  
a1 = a to the status function whereas the other firm only maximizes its profit 
(classical, a2 = 0). This complete asymmetry leads also to a stable Cournot-Nash 
equilibrium for a < abif which again makes the analysis of equilibrium profits and 
social welfare possible. This examination reveals the existence of a specific profit 



Chapter 5 Cournot Competition with Non-Profit Maximizing Objectives in General 
    and Preference for Market Share in Particular 

140 

maximizing and an advantage maximizing weight a for the “market share loving” firm 
(similar to the results of Chapter 3, where preference for size or sales is considered). 
Section 5.7 contains some concluding remarks on this chapter. 
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2. The general model and the properties of the non-profit part 
 

Like in Chapter 4 we consider a Cournot competition model, concerning two 
firms,  under the assumption of a homogeneous market and a linearly decreasing 
inverse demand function (with intercept A and negative slope − b, see also Chapter 
4, Section 4.2). In this Chapter we don’t study the consequences of a business cycle 
and this is reflected in a neutral market size m=1 (using the terminology of Chapter 
4). Again we include production processes (functions) with constant, increasing and 
decreasing returns to scale i.e. production cost functions with constant, decreasing 
and increasing unit (marginal) costs. Our aim is not to restrict this study to linear cost 
functions only, but to prove the propositions for a wide class of quadratic cost 
functions (with nonnegative marginal costs). Similar to Chapter 4 we normalize the 
model with the general linearly decreasing inverse demand function. Let x1 and x2 be 
the (normalized) outputs of firm 1 and 2 respectively and let s(x1,x2) be the non-profit 
part of the objective function U (the maximand). Under the assumption of myopic 
expectations of the two rivals (xi,t

e = xi,t-1, i = 1,2) and the restriction of nonnegative 
prices we can formulate the following optimization problem for the firms 1 and 2: 
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Note that we use the symbol U for the maximand because we consider a utility 
function - adopted from the theory of consumer behaviour - which consists of two 
parts, the (classical) profit part Π and the non-profit part s (this part will be a specified 
function in Section 5.4). The nonnegative parameters a1 and a2 equal the weights 
which the firms 1 and 2 attribute to the non-profit part of their objective function 
respectively. Furthermore note that both firms possess the same functional 
expression concerning the non-profit parts and that only the role of the outputs is 
interchanged. So in the modeling we only need one function (with its specific 
properties) and to clarify this imagine that s equals the market share. Then the 
expressions for the non-profit parts of firm 1 and 2 equal x1/(x1+x2) and x2/(x2+x1) 
respectively. It is obvious from this model that, like in Chapter 4, we consider two 
firms which control equally efficient production processes and for the parameters c 
and d it holds that (i) 0 < c < 1 and (ii) d > (− c/2) > − 1/2. So the only asymmetry 
between the two competitors is determined by the two weights a1 and a2 attributed to 
the non-profit parts. For the choice a1=a2=0 we obtain the classical Cournot 
competition model (the usual textbook benchmark case) resulting in a stable 
Cournot-Nash equilibrium. We refer to Chapter 4, Section 4.2 for an overview of the 
equilibrium profits i

cl
 Π  , the consumer surplus CScl and the welfare Wcl (choose m=1 

in these expressions). We reflect on the properties of the non-profit part s and for the 
sake of brevity we will often use the term “status” for the function s. In his study 
concerning a status game between two neighbours Rauscher (1992) imposes 
several natural conditions - widely used in the theory of consumer behaviour - on the 
utility function (such as quasi-concavity) and keeping in mind these natural 
conditions we impose the following conditions on the non-profit part s (the brief  
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notations 
1xs and

2xs are used to indicate the partial derivatives of the function s with 
respect to the first and second argument respectively): 

0
)(

),((0),((0),()( 2
1

21
2

2

21

1

21
1121

≤
∂

∂=<
∂

∂=>
∂

∂=
x

xxss
x

xxss
x

xxs s  ) (iii)  and   ) (ii)   , (i) xxxx  (5.2) 

(These three conditions are formulated concerning firm 1 and if we interchange 
the two output variables we obtain the conditions for firm 2). The first mathematical 
condition states that the marginal status with respect to one’s own output level is 
positive; if the output of the rival is fixed, the more the firm produces the more status 
it acquires. Condition (iii) expresses the plausible property that the marginal status 
decreases (to be precise:is non-increasing) with respect to one’s own production (if 
you already are the happy owner of ten old-timers an extra one will not raise your 
status very much anymore; the surplus value of an extra car decreases). Condition 
(ii) expresses the fact that status is decreasing if the output level of the rival 
increases. Rauscher imposes a fourth condition on the status function namely 
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This fourth inequality states that  marginal status is a decreasing (or non-

increasing) function of the rival’s production level x2. The more the rival produces, 
the more difficult it is to raise one’s own status by producing additional units of the 
good. If the non-profit part s equals (only) preference for output - in Chapter 3 we 
modeled the preference for size combined with habit formation - then s(x1,x2) = x1 for 
firm 1 and the conditions (i),(iii) and (iv) are satisfied with 00,1

21111
=== xxxxx sss  and . 

Note that 0
2

=xs . As we will show in Section 5.4 the choice 
s(x1,x2) = x1/(x1+x2) (equals the market share of firm 1) satisfies the conditions (i), (ii) 
and (iii) and the fourth condition is satisfied for x1 < x2. These qualitative properties 
can have important implications for the slope of the reaction curves. The 
maximization problem of firm 1 leads to the following equation for the marginal utility 
(apart from the restriction x1,t + x2,t-1 < 1): 
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Note that the marginal utility decreases monotonically with respect to the 

variable x1,t because it holds that (use condition (iii) for s and the fact that d > − 1/2) 
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For a1=0 the equation for the marginal utility leads to the classical Cournot reaction 
curve with a constant negative slope (= − 1/(2+2d) ). However property (i) of the 
function s implies that, if the weight a1 is positive, the value of the marginal utility in 
each point of the classical curve is positive. So we may conclude that, because of 
the monotonically decreasing marginal utility with respect to x1,t, the response of firm 
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1 to the rival’s output x2,t-1 is higher than the corresponding reaction concerning the 
classical case.  

The qualitative property (i) of the non-profit part of the objective function leads to 
an outward shift of the (graph of the) classical Cournot reaction curve (note that in 
Chapter three preference for size also led to an outward shift of the reaction curves). 
Without solving the central equation for the marginal utility we can derive a general 
expression for the slope of the reaction curve by using the technique of implicit 
differentiation. Implicit differentiation of the equation 0

1

1
=∂

∂
,tx

U  with respect to the 

rival’s output in the previous period, x2,t-1, leads to: 
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From this equation the general formula for the slope of the reaction curve of firm 1 
can be solved: 
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For the classical case corresponding with a1=0 we obtain the usual constant 
negative slope of the reaction curve. And in case that the non-profit part s equals 
preference for size - s(x1,t,x2,t-1) = x1,t for firm 1 - the fact that all the second order 
partial derivatives are zero implies that the slope also equals the classical slope 
−1/(2+2d). 

At this point it is important to emphasize that the slope of the reaction curve is 
completely determined by the properties (iii) and (iv) of the non-profit part of the 
objective function (the positive slope is associated with strategic complements, 
whereas the classical negative slope is related to strategic substitutes; note that in 

general the slope equals 2
,1

2
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2
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). To obtain a hill-shaped 

reaction curve the sign of the slope has to change from positive to negative with 
respect to an increasing production level of the rival. This mathematical expression 
provides us with an instrument to examine the possibility of such a sign change in 
relation with non-profit maximizing motives of firms which forms the main subject of 
an analysis of van Witteloostuijn and Boone (1997). In this analysis, concerning the 
plausibility of hill-shaped reaction curves, they also discuss interpretations of such an 
asymmetrical reaction pattern of a firm and provide an interpretation by considering 
a situation where one firm produces the monopoly output. They argue that “If a 
(potential) rival enters the market the monopolist is willing to increase its production 
initially [this argumentation is based on the theory of entry-deterrence strategies; 
added]. However when the size of the rival becomes too big this expansion strategy 
isn’t profitable anymore. In other words: In contrast with the usefulness of an 
aggressive strategy, the benefit of accommodation increases with respect to the size 
of the competitor (which implies the standard negative slope of the Cournot-reaction 
curve)”. 
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The third property of the “status” function s - the decrease of marginal status with 
respect to one’s own production - implies that the denominator of the expression of 
the slope remains negative. So the sign of the numerator has to change from 
negative to positive, with respect to an increasing production level of the rival, to 
obtain our desired unimodal reaction curve. If the fourth property of the function s, as 
proposed by Rauscher, were to hold for every x1,t and x2,t-1 the sign of the reaction 
curve would always be negative. However, anticipating the results of Section 5.4, it 
will appear that in the case that s equals the market share the expression 
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xx
,xxs can be positive indeed for small values of the rival’s output. 
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3. The non-profit part as a strategic instrument and  welfare consequences 
 

In this section we will examine the influence of small weights, attributed to the 
non-profit part s of the maximand, on the profits of two competitors and we will also 
investigate the effect of these weights on the social welfare. In other words: the 
parameters a1 and a2 of the general Cournot competition model formulated in the 
previous section are considered to be small (and nonnegative). This essential 
condition imposed on the weight-parameters allows us to approximate the 
equilibrium outputs, the equilibrium profits of both firms and the welfare as well using 
a so called Taylor power series around a1=a2=0. For a1=a2=0 this power series 
solution equals exactly the classical equilibrium output (or profit or welfare) of the 
duopoly Cournot game and furthermore this approximation provides exact 
expressions for the derivatives of the equilibrium quantities with respect to the 
weights ai . The technique of approximation is often used in the case that a small 
non-linear disturbance of a set of linear equations occurs. Because the non-profit 
parts s with small weights can be considered as small disturbances of the classical 
system of linear equations this technique can be applied adequately in our 
examination. Naturally the comparative statica which leads to some general 
properties only holds under the assumption that the Cournot-Nash equilibrium is 
stable. We start our analysis with the derivation of such a Taylor series for both 
equilibrium outputs. Then we prove that the Cournot-Nash equilibrium remains stable 
for small weights a1 and a2 attributed to the “status” function s.  

The location of the equilibrium depends on the two weights a1 and a2 so let 
(x1

*(a1,a2); x2
*(a1,a2)) be equal to the Cournot-Nash equilibrium of the two firms. For 

both weights a1=a2=0 we obtain (x1
*(0,0);x2

*(0,0)) = ((1− c)/(3+2d); (1− c)/(3+2d)), the 
classical outcome. From the general optimization model concerning the two firms 
(see Section 5.2) we obtain a set of nonlinear equations by setting the marginal 
utility functions of both firms equal to zero. We anticipate the fact that the equilibrium 
is stable and leave out the subscripts t and t − 1 of the outputs and we also leave out 
the weights a1 and a2 in the arguments of the partial derivatives for brevity’s sake in 
the notation.The equilibrium (x1

*(a1,a2); x2
*(a1,a2)) has to satisfy the following 

equations: 
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Note that in the equation for firm 2 the role of the two (equilibrium) outputs is 

interchanged. For the expression of the partial derivative of firm 2 we can write 
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This rewritten expression clarifies that we only need the functional expression of 

the partial derivative of the “status” function s(x1,x2) with respect to x1 and, to simplify 
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the notation in the forthcoming analysis, we will use the notation 
1xs for this 

derivative. The set of the two nonlinear equations can be rewritten in a matrix-vector 
form as follows: 
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Let a be the maximum of the two weights a1 and a2 and let the expansion of the 
equilibrium-vector in a power-series be given by 
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 (5.11) 
Note that the first index of x on the right side of this expansion indicates the firm 

number (1 or 2) and that the second index indicates the rank in the power series. 
The remainder O(a3) - with Landau’s symbol “O” - expresses that the maximum error 
of  this power series in comparison with the exact solution is a constant C times a3 
(this constant can be estimated by an expression containing second and third order 
partial derivatives of the “status” function s and in many standard textbooks on 
analysis this error term is referred to as the Taylor remainder). This power series for 
the equilibrium outputs of both firms enables us to expand the expressions 
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x  as well (using second order partial 
derivatives): 
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We now substitute the power series concerning the partial derivatives, into the 

nonlinear matrix-vector equation and use the fact that x1,0 = x2,0 (the solution for 
a1=a2=0 is symmetric!). So the arguments of the partial derivatives of s always both 
equal (1− c)/(3+2d) and we leave them out in the following expression. This leads to: 
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Setting equal the vectors on the left- and right side of this expression, 
corresponding to equal powers of a1, a2 or a1a2, we first note that the solution for 
a1=a2=0 equals the classical Cournot-Nash equilibrium (we already used that fact). 
By comparing the vectors corresponding to a1 and a2 we observe that the symmetry 
in the “zero-solution” leads to x1,1 = x2,2 and x2,1 = x1,2. This latter fact can be used to 
solve the vectors corresponding with (a1)2, a2)2 and a1a2 and leads to x1,3 = x2,4 and  
x2,3 = x1,4. The following proposition contains the complete expression for the power 
series approximation of the equilibrium outputs of both firms. 
 
Proposition 5.1. 
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 (5.14) 
The arguments of the partial derivatives 

111 xxx ,ss  and 
21xxs  in this expression are 

equal to the classical Cournot-Nash equilibrium values. Naturally this expression 
plays a central role in computing (equilibrium) profits of both firms, consumer surplus 
and social welfare. Because of the error term O(a3) it holds that the smaller the 
weights are, the better this approximation will be. As already mentioned in the 
introduction of this section this approximation provides exact expressions for the 
derivatives of the equilibrium outputs with respect to the weights ai for ai=0. The first 
derivative with respect to the weight ai reveals information about the increase of the 
output - or size - of firm i if the weight attributed to the non-profit part of the objective 
function is small and increases somewhat. And if the “status” function s equals the 
size of firm i, i.e. s(xi)=xi,  the second (and higher order) partial derivatives in the 
formula for the outputs are zero and the expression provides exactly the equilibrium 
output.  Before we continue with the analysis we have to show that for small weights 
a1 and a2 the Cournot-Nash equilibrium is stable. In the proof we apply the general 
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expression for the slope of the reaction curve of Section 5.2 on the equilibrium. 
Furthermore we use a theorem on the local stability of equilibria of a system of 
nonlinear difference equations which can be found in Devaney (1989) . 
 
Proposition 5.2. 
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Proof. 
The output levels x1,t and x2,t of both firms satisfy the following system of nonlinear 
first order difference equations: 
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We linearize this system around the Cournot-Nash equilibrium (x1
*(a1,a2);x2

*(a1,a2)) 
and examine the stability of the linearized system in this equilibrium. The 
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reaction curves in (x1
*(a1,a2);x2

*(a1,a2)) of firm 1 and firm 2 respectively. Using the 
general expression for the slope of the reaction curve (eq. 5.7,Section 5.2) - a similar 
expression holds for the slope concerning firm 2 - we obtain a general formula for 
the eigenvalues of the linearized system: 
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(Note that for a1=a2=0 we obtain the classical eigenvalues λ1,2=+1/(2+2d) with 
absolute values less than 1 for d > − 1/2 which guarantees even global stability) 
Using the following approximating expressions for the partial derivatives (with 
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the classical “zero-order” solution is symmetric, i.e. x1,0=x2,0=(1− c)/(3+2d) we can 
rewrite the expression for the eigenvalues of the linearized system: 
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The arguments of the partial derivatives both equal (1− c)/(3+2d). Clearly the 
absolute values of these eigenvalues satisfy the necessary and sufficient condition 
for the stability of linearized system - 121 <,λ  - for small values of a1 and a2.  
And if the second order partial derivatives of the “status” function satisfy the condtion 

0)22(
11

21
<++− d

ss xx
xx  at point ((1− c)/(3+2d),(1− c)/(3+2d)) the absolute value of the 

eigenvalues even decreases in comparison with the classical case. 
And if the linearized system is stable, i.e. the Cournot-Nash equilibrium is a positive 
attractor, local stability of the nonlinear system is guaranteed. 
 [End of proof] 
 

If the “status” function s equals the market share - s(x1,x2) = x1/(x1+x2) - it holds 

that 0
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Proposition 5.2 reveals that, for small weights a1,a2, the absolute values of the 
eigenvalues decrease in comparison with the classical case. This means that the 
attribution of small weights to the market share has a stabilizing influence on the 
equilibrium. In the Sections 5.5 and 5.6 we will investigate whether this important 
property also holds for general weights a1 and a2. 

Having established the stability of the Cournot-Nash equilibrium for small 
weights, we now continue the analysis of the profits of both firms with an easy mind. 
The substitution of both power series of the equilibrium outputs (Proposition 5.1) in 
the expression for the profit of firm 1 − Π 1(a1,a2) = x1

*(a1,a2){1− x1
*(a1,a2) − x2

*(a1,a2)} − 
cx1

*(a1,a2) − d{x1
*(a1,a2)}2 - leads to the following approximating power series: 

 
The equilibrium output of firm 1 can be approximated by the power series 
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 (5.15) 
Here )00(1 ,Π  equals the classical profit (= (1− c)2(1+d)/(3+2d)2) and the arguments of 
the partial derivatives are both (1− c)/(3+2d). The expression for the profit of firm 2 
can be obtained by interchanging the parameters a1 and a2. 
 

This expression looks rather complicated, but we will use it to derive some 
important properties of the welfare as a consequence of the non-profit part of the 
objective function. The first order part of this formula (only the terms corresponding 
to a1, a2 and the term )00(1 ,Π  are considered) already reveals some interesting 
consequences. The following proposition summarizes these implications for firm 1 : 
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Proposition 5.3. 
 
For small weights a1 and a2 attributed to the function s, with 0

1
>xs , it holds that 

 
(i) The production level (=size) of firm 1 exceeds the production level of its rival if    

a1 > a2. 
(ii) The profit level of firm 1 exceeds the classical profit (a1=a2=0) if a1 > (2+2d)a2. 
(iii) The profit level of firm 1 exceeds the profit level of its rival if a1 > a2. 
  
(the same conclusions hold for firm 2 by interchanging a1 and a2) 
 
Proof. 
Using the first order approximation of the Cournot-Nash equilibrium vector 
(Proposition 5.1) the difference of the equilibrium outputs of firm 1 and firm 2 equals 
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s
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This proves part (i). Part (ii) is also proved easily because the first order 
approximation of the difference Π1(a1,a2) − Π 1(0,0) (use the first order part of the 
expression for Π 1(a1,a2)) equals 
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This difference is positive if a1 − (2+2d)a2 > 0. Part (iii) is proved by substracting the 
first order expressions for the profits of firm 1 and firm 2: 
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 [End of proof] 
 

We reflect on the results of the Propositions 5.1 and 5.3. Note that the first order 
expression (Proposition 5.1) for the output of firm 1, x1

*(a1,a2), shows that this output 

increases in its own weight a1 - )23)(21(
)22(

1
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1

dd
sd

a
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++
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∂  - and decreases in it’s rival’s 

weight a2 because 
)23)(21(
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2

1

dd
s

a
x x

*

++
−=

∂
∂ .  For linear costs, i.e. d=0, the first force is 

twice as influential as the second. This property can be considered as a 
generalisation - for small weights of course - of the results of Chapter 3 where we 
observed that firm i’s equilibrium output increases in its own preference for size and 
decreases in its rival’s preference for size (the habit formation in the model of 
Chapter 3 has no influence on the location of the equilibrium).The second and third 
part of Proposition 5.3 reveal that the weight attributed to the non-profit part of the 
maximand may serve as a strategic instrument (of course this assumes highly 
rational behaviour of the firm and contradicts managerial inertia). Firm 1 can 
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outperform its rival by choosing the weight of the “status” function a1 such that a1>a2 
(part (ii) also shows that there exists an incentive for raising the weight a1). 
By raising the weight of the non-profit part the profit can rise above the classical level 
at the expense of the rival. Of course we have to realize that this general conclusion 
only holds under the condition that both weights are small. For larger weights a1 and 
a2 the particular specification of the “status” function s has to be studied. Because 
weights are small, a profit-maximizing weight ai, concerning firm i,  cannot be 
computed using expression 5.15 (compare the two-stage games of Fershtman and 
Judd (1987) and others, where owners write managers’ contracts and “dictate” the 
weight a). From the viewpoint of managerial inertia, the weights are rather fixed and 
the firm with the largest weight is favoured in a Darwinian selection process. 

We continue our general analysis with an examination of the implications of non-
profit maximizing objectives on social welfare and we will consider two benchmark 
cases. The first benchmark case consists of two symmetric firms, with respect to the 
weights attributed to the function s, i.e. a1=a2=a >0. 
Because the firms already possess the same production cost function we deal with 
completely symmetric firms.The choice a1=a>0, a2=0 determines the second, 
asymmetric, benchmark case. Our subject of interest consists of two parts. First the 
influence of an increase of the weight a on the welfare W, indicated by the first 
derivative a

W
d

d  , is examined. Second also the concavity (or convexity) of the 

welfare function W(a) with respect to the weight, determined by 2
2

d
d

a
W , is 

considered. To investigate the concavity of the welfare function, concerning the two 
benchmark cases, we use second order approximations of the profits Π i(a1,a2) 
(already derived), the consumer surplus CS(a1,a2) and the welfare W(a1,a2) 
corresponding with the Cournot-Nash equilibrium (for the symmetrical benchmark 
case 1 another general approach is also possible - using implicit differentiation - and 
we will conclude this section with a discussion of this method). The following 
proposition summarizes the general expressions for the consumer surplus and the 
welfare. Of course these rather complicated expressions simplify for the two 
benchmark cases, but the general expression (concerning a1 and a2) also makes a 
general statement on the concavity of the welfare function possible (Appendix 5.1). 
 
Proposition 5.4. 
 
The second order power series for the consumer surplus equals 

[ ]

[ ]

[ ]
  ). ( surplus consumer classical the equals  Here 2

2

21111

1

21111

1

21111

1

11

)23(
)1(2

32
2221

2
2

1
22

2
2

2
2

1
22

2
1

222121

)00(

)0()()22(
)23(

)1)(21(4)21(
)23()21(

)(

)22(
)23(

)1)(21(2)21(
)23()21(

)(

)22(
)23(

)1)(21(2)21(
)23()21(

)(

)23(
)1(2

)23(
)1(2

)00()(

d
c

xxxxx
x

xxxxx
x

xxxxx
x

xx

,CS

a,aOsds
d

cdsd
dd

s
aa

ssd
d

cdsd
dd

s
a

ssd
d

cdsd
dd

s
a

d
sc

a
d

sc
a,CS,aaCS

+
−=

→+






 ++−

+
−+++

++

+








−+
+

−+++
++

+








−+
+

−+++
++

+
+
−

+
+
−

+=

 

For the welfare the second order approximation equals 
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The arguments of all partial derivatives in these expressions equal the co-ordinates 
of the classical Cournot-Nash equilibrium ((1-c)/(3+2d), (1-c)/(3+2d)). 
 
Proof. 
The consumer surplus, for our normalized model, equals CS = ½(x1

*+x2
*)2, where x1

* 
and x2

* equal the respective equilibrium outputs of firm 1 and firm 2. Substitution of 
the second order power series for the outputs (Proposition 5.1) and arranging the 
terms by a1, a2, (a1)2, (a2)2 and (a1a2) leads to the expression for CS. 
To obtain an expression for the welfare we use W(a1,a2) = Π 1(a1,a2) + Π 2(a1,a2) + 
CS(a1,a2). Substitution of the two power series for the profits (Π 2 is obtained by 
interchanging the weights a1 and a2 in the expression for Π 1) and the power series 
for the consumer surplus leads to the desired expression for the welfare. 
 [End of proof] 
Benchmark case 1: a1=a2=a>0 
Substitution of a1=a2=a into the second order power series for the welfare leads 
directly to the following proposition: 
 
Proposition 5.5. 
 
Consider two symmetric firms, with respect to the weights a1 and a2 attributed to the 
non-profit part s of the maximand, i.e. a1=a2=a > 0.  Let 0

1
>xs . Then it holds that 

(both arguments of the partial derivatives of s equal (1-c)/(3+2d) ) 

(i) 
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−=  (at a=0), so welfare increases if the weight a increases. 
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≤+ xxxx ss  holds the welfare function with respect to the weight is concave 
for small a, i.e. the increase of the welfare decreases if a increases. 

Proof. 
If we substitute a1=a2=a in the expression for the welfare (Proposition 5.4) we obtain 
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Both the arguments of the partial derivatives in this expression equal (1− c)/(3+2d). 
Computation of the first and second order derivatives of the function W(a) in a=0 with 
respect to the weight a (for the second derivative we assume that the power series is 
convergent) completes the proof. 
 [End of proof] 
 

Part (i) of Proposition 5.5 has a clear economic interpretation. If the marginal 
function s is positive with respect to one’s own output (which is very plausible, see 
eq. 5.2, Section 5.2), social welfare benefits from the weights attributed to the non-
profit part. Proposition 5.3 reveals that the weight a may serve as a strategic 
instrument to outperform the rival. An a-setting game, consisting of the heightening 
of these weights by turns, would lead to a step by step increase of the welfare under 
the assumption that a remains small. So society may benefit from a game between 
the competitors. In general non-profit motives can be beneficial for the welfare, 
whether firms are aware of the (strategic) implications or not.  

Unfortunately part (ii) of Proposition 5.5 indicates that the sky is not always the 
limit, because under the sufficient condition that 0

2111
≤+ xxxx ss  (at the point                      

((1− c)/(3+2d), (1− c)/(3+2d)) the second derivative of the welfare function is negative 
at a=0. And this concavity of the welfare function indicates that the increase of social 
welfare decreases if the weight a is heightened further. Note that if the conditions (iii) 
and (iv) (Section 5.2), imposed by Rauscher (1992) on the “status” function, are 
satisfied this sufficient condition is already fulfilled. If the function s describes 
preference for size, s(x1)=x1, the second derivative of the welfare function (for a=0) 
with respect to a equals − 4(1+d)/(3+2d)2 < 0. In the concluding part of this section we 
will apply the general propositions concerning profits and welfare on this specific 
choice of the “status” function. And if the “status” function s equals s(x1,x2) = x1/(x1+x2) 
(market share) it holds that the sum of the second-order partial derivatives in        
((1− c)/(3+2d),(1- c)/(3+2d)) is negative, which again guarantees the concavity of the 
welfare function for small a’s.  

We have to realize that the implications on welfare following from the statements 
of Proposition 5.5 - because of the use of a power series approximation - are (in 
general) restricted to small weigths attributed to the non-profit part. The concave 
character of the welfare function for small a leads one to suspect that the welfare 
decreases if the weight a becomes large enough and if an a-setting game were to 
degenerate into a rat race this indeed could happen!  Obviously Proposition 5.5 is 
inadequate to describe the effect on social welfare for those larger weights a.  But in 
the concluding part of this section we show that for symmetric firms, under general 
and plausible conditions imposed on s, the welfare function first rises, reaches its 
maximum value and then falls with respect to an increasing a. However a simple 
workable general statement concerning the concavity of the welfare function for 
larger weights a can not be given. In Section 5.5 it will appear that, in the special 
case that s equals the market share, the welfare corresponding with benchmark case 
1 is a concave function (with respect to the weight) for large values of a as well. For 
this specific function s the qualitative properties of Proposition 5.5 also continue to 
hold for large weights. We now continue our examinations with the analysis of 
benchmark 2. 
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Benchmark case 2: a1=a>0, a2=0. 
Again we use the general second order power series for the welfare and substitute 
a1=a and a2=0 in this expression. The following proposition summarizes the analytical 
results. 
 
Proposition 5.6. 
 
Consider two completely asymmetric firms, with respect to the weights attributed to 
the non-profit part s of the maximand, i.e. a1=a > 0, a2=0.  Let 0

1
>xs . Then it holds 

that (both arguments of the partial derivatives of s equal (1− c)/(3+2d) ) 

(i) 
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Proof. 
If we substitute a1=a and a2=0 in the expression for the welfare (Proposition 5.4) we 
obtain 
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The two arguments of the partial derivatives in this expression equal (1-c)/(3+2d). 
The proof is completed by computing the first and second order derivatives of the 
function W(a) at a=0 with respect to the weight a. 
 [End of proof] 
 

The economic interpretation of part (i) of Proposition 5.6 is straightforward; social 
welfare also benefits from this asymmetric situation (assuming that 0

1
>xs ). However 

note that the increase of the welfare resulting from an increase of the weight a (for 
small a’s) equals only half of the increase corresponding to the symmetric 
benchmark case 1. Apparently the results of the parts (i) of the Propositions 5.5 and 
5.6 lead one to suspect that the largest level of welfare is achieved if both firms 
attribute (equal and not too large) weights to their non-profit motives. Part (ii) of 
Proposition 5.6 contains a rather complicated expression for the second derivative of 
the welfare function. One cannot simply draw a conclusion concerning the sign of 
this second derivative, because first the polynomial 217104 23 /ddd +++  is only 
positive for d > − 0.0804 and second the sign of the expression 

2111
)22( xxxx ssd −+  can 

take both negative and positive values as well. Under the conditions (i) d > − 0.0804 
and (ii) 0)22(

2111
≤−+ xxxx ssd  in the point        ((1− c)/(3+2d), (1− c)/(3+2d)) the welfare 

function is concave in a neighbourhood of a=0. And if s equals market share the 
second condition is satisfied because 0

21
=xxs  in ((1− c)/(3+2d), (1− c)/(3+2d)). 
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Besides the analysis of the two benchmark cases some remarks can be made 
on the general case with a1>0 and a2>0. The first order approximation for the 
equilibrium welfare (see Proposition 5.4) equals 
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It is clear that, for small weights, the welfare is rising with respect to both weights a1 
and a2 . And for a general statement on the concavity of the welfare function W(a1,a2) 
we refer to the Appendix 5.1, where we use the complete second order 
approximation of the welfare. We now apply the general propositions, concerning 
profits and welfare, on the case with two firms with equal preference for size (see 
also Chapter 3). 
 
Application to “preference for size”. 

For this interesting case with a1=a2 and the specified “status” function s(x1,x2)=x1 
the laborious calculations of this section pay off. Because we assume that both firms 
attribute the same weights to the non-profit part of the maximand we can use the 
expression for the equilibrium production levels (Proposition 5.1) with a1=a2=a (the 
equilibrium is stable because the general expression for the eigenvalues in the proof 
of Proposition 5.2 leads to λ1,2=+1/(2+2d)). 

As already mentioned earlier in this section all second- and higher-order partial 
derivatives of the function s(x1,x2)=x1 equal zero and therefore Proposition 5.1 
provides exact expressions for the equilibrium outputs! This implies that the 
expressions for the profits and the welfare (Proposition 5.5), concerning these 
symmetrical firms, are no longer approximations but provide exact formulas. 
Substitution of a1=a2=a and 1

1
=xs  in the expressions for the profits and the welfare 

(benchmark case 1,Proposition 5.5) leads to: 
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 (5.17) 

It strikes the eye that the welfare function W(a) is not only rising and concave for 
small values of a - which neatly illustrates the general result on welfare of 
Proposition 5.5 - but remains concave for large weights as well. Furthermore quick 
observation of the expression for the profits reveals that the profits of both firms drop 
below the classical level (for a=0) as soon as some weight is attributed to size (= 
production level). The profit is decreasing  with respect to an increasing weight and it 
is obvious that the non-profit motive reduces the profit. For large weights, namely for 
a > (1-c)(1+d)/(2+d), these profits may even become negative. However  preference 
for size is advantageous for the social welfare; the (quadratic) expression for the 
welfare reveals that the welfare rises above the classical level, reaches its maximum 
value and then begins to fall with respect to an increasing weight a. Two graphs of 
the profits iΠ and the relative welfare compared to the classical welfare    
(=100%W(a)/W(0) ) illustrate these properties for the choice c=0.4 and d= − 0.1 
concerning the production cost parameters. The Figures 5.1a and 5.1b reveal that 
the maximum relative welware is reached while profits are negative. Assuming exit of 



Chapter 5 Cournot Competition with Non-Profit Maximizing Objectives in General 
    and Preference for Market Share in Particular 

156 

the loss-bearing firms in the long run the (realistic) maximum occurs for that weight 
which corresponds to zero-profits (a=0.284). 
 

                 
 
Fig. 5.1a The relative welfare.                     Fig. 5.1b The profit Π i(a). 
 
Proposition 5.7 contains the implications of (symmetric) preference for size, 
concerning profits and welfare. The proof of this proposition is straightforward by 
using the expressions for )(aΠ i and W(a) and needs no further clarification. 
 
Proposition 5.7. 
 
Consider two symmetric firms, with respect to the weights a1 and a2 attributed to the 
size (as the non-profit part of the maximand) i.e. a1=a2=a > 0. Then it holds that 
 
(i) the welfare lies above the classical welfare, W(a)>W(0),  for a < (1-c)/(1+d). 
(ii) the difference W(a) - W(0) rises for a < (1− c)/(2+2d), is maximized for                

as,max = (1− c)/(2+2d) and falls for a > (1− c)/(2+2d). 
(iii) for linear production costs the welfare is maximal if 0)( =aΠ i  for quadratic 

production costs with d > 0 the welfare is maximized if still 0)( >aΠ i  holds 
and for quadratic production costs with d < 0 the welfare is maximized if 
already 0)( <aΠ i  holds. So then the maximum is reached for as,max= (1− 
c)(1+d)/(2+d). 

 
The application of the general power series approximations for profits and social 

welfare developed in this section on the case where s equals the size easily leads to 
useful expressions and conclusions for those quantities. In fact the second and third 
part of Proposition 5.7 are related to a general property on welfare for symmetrical 
firms with respect to the weights attributed to the non-profit part of the maximand. 
Therefore we conclude this section with some general reflections on these properties 
concerning  welfare. The following analysis only makes sense under the crucial 
assumption that the equilibrium (x*(a),x*(a)) is stable. For small a’s Proposition 5.2 
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provides a proof for the required stability of the Cournot-Nash equilibrium. And for 
general weights a the stability condition equals (see the proof of Proposition 5.2 with 
a1=a2=a) 
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Note that this latter condition holds if s equals the market share. First we prove 

that the equilibrium output x*(a) of both firms increases with respect to the weight a 
attributed to an arbitrary non-profit part s under very plausible conditions. The 
equilibrium outputs of both firms equal x*(a) and satify the equation (see eq. 5.8 with 
a1=a2=a) 
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Implicit differentiation of this equation with respect to a leads to  
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If 0)(

1
>**

x ,xxs  holds - which is very plausible (condition (i) of eq. 5.2, Section 5.2) - 
and the condition 0)()(

2111
≤+ **

xx
**

xx ,xxs,xxs  is satified (conditions (iii) and (iv) of eq. 
5.2 and eq. 5.3) then the first derivative of x* with respect to a is positive. 
 
The two equilibrium profits are equal and can be expressed as 
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These profits become zero for x* = (1− c)/(2+d) (break-even point). The expression 
for the welfare equals (in both expressions x*=x*(a)) 
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Using the chain rule for differentiation we easily obtain 
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a
xxdc

a
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d
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For positive dx*/da the welfare is maximized if the output level (per firm) equals 

x* = (1− c)/(2+2d). To find the maximizing value of the weight a attributed to the non-
profit part of the maximand we only have to solve this latter equation with respect to 
a. If dx*/da > 0 the function x*(a) is invertible and the value of a for which the welfare 
is maximized is either never reached or determined uniquely. We now formulate a 
generalization of Proposition 5.7: 
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Proposition 5.8. 
 
Consider two symmetric firms, with respect to the weights a1 and a2 attributed to the 
non-profit part s of the maximand i.e. a1=a2=a > 0. Under the assumption that  
(a) the equilibrium (x*,x*) is stable 
(b) the function s satisfies 0)(

1
>**

x ,xxs  
(c) the function s satisfies 0)()(

2111
≤+ **

xx
**

xx ,xxs,xxs  
 
it holds that with respect to the weight a 
(i) the equilibrium welfare W(a) rises for x*(a) < (1− c)/(2+2d), is maximized for                      

x*(amax) = (1− c)/(2+2d) and falls for x*(a) > (1− c)/(2+2d). 
(ii) for linear production costs the welfare is maximal if Π i(a)=0, for quadratic 

production costs with d > 0 the welfare is maximized if still Π i(a) > 0 holds and 
for quadratic production costs with d < 0 the welfare is maximized if already         
Π i(a) < 0 holds. So then the (realistic) maximum is reached for                      
x*(amax) = (1− c)/(2+d). 

 
This concluding reflection, which only uses the technique of (implicit) 

differentiation, leads to pleasant results for benchmark case 1 and supplements the 
results of Proposition 5.5 concerning larger values of a. We emphasize that this 
reflection concerning symmetrical players does not make the detailed expressions 
for the second order power series approximations of the equilibrium profits and 
welfare needless. It just provides a different point of view. For benchmark case 2 a 
general analysis appears to be possible also, which will be used in Section 5.6. Even 
for the general case it appears to be possible to derive expressions for the partial 
derivatives of the welfare function using the technique of implicit differentiation. 
However there this method doesn’t require less computations. Furthermore the 
derived power series in this section provide useful approximations in all cases for 
which equilibrium quantities cannot be solved analytically for small weights ai and the 
approximations clarify general properties of profits and social welfare in the 
neighbourhood of a1=a2=0. 
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4. Market share as the non-profit part of the objective function 
 

In this section we study the implications, concerning the Cournot reaction curve, 
of a specified non-profit part of the maximand namely market share. Preference for  
market share - defined as the fraction of the output of a firm and total market supply - 
provides a natural non-profit part of the utility function of a firm. As we will see 
maximizing this specific utility function leads to very interesting properties of the 
reaction curve and also to a classification of these curves. These properties and the 
typology lay the foundation for a further study of a Cournot duopoly game between 
firms with symmetric or asymmetric preferences for their market shares, which is the 
main subject of Sections 5.5 and 5.6. In this section we limit our examination to the 
reaction curve of one firm, firm 1, which attributes a weight a1 to its market share. 
The specification of the “status” function s(x1,x2) = x1/(x1+x2) leads to the following 
optimization problem (with the restriction of nonnegative prices, see also eq. 5.1 
Section 5.2, for the general formulation): 
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 (5.18) 

By computation of the relevant partial derivatives of the function s(x1,x2) we show 
that crucial assumptions (see eq. 5.2 and 5.3, Section 5.2) concerning the non-profit 
part are satisfied.  

(i) 000
)( 122

21

2
1

≥>>
+

= x,x
xx

xsx   for  , which indicates the plausible property that 

the marginal market share with respect to one’s own output level is positive. 

(ii) 000
)( 212

21

1
2

≥><
+

−= x,x
xx

xsx   for  , which expresses the fact that the market 

share decreases if the output of the rival increases. 

(iii) The second order partial derivative 000
)(

2
123

21

2
11

≥><
+

−= x,x
xx
xs xx   for   and 

reveals that the surplus value of market share decreases with respect to an 
increase of one’s own production level. 

(iv) The cross-partial derivative 3
21

21

)(
)(

21 xx
xxs xx +

−=  can be positive, zero and 

negative as well. The expression shows that for x1 > x2 marginal market share 
is an increasing function of the rival’s production level. 

 
Setting the marginal utility equal to zero we obtain the following nonlinear 

equation which determines the Cournot reaction curve x1,t = R1(x2,t-1|a1) (apart from 
the restriction x1,t + x2,t-1 < 1): 
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The fact that the marginal market share (with respect to one’s own output level) is 
positive has important consequences for the reaction curve. 
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In Section 5.2 we already noted that this qualitative property (i) of the non-profit part 
of the utility function leads to an outward shift of the (nonlinear) reaction curve in 
comparison to the classical Cournot curve. The marginal utility decreases 
monotonically with respect to one’s own output x1,t for all nonnegative x1,t and x2,t-1 
because property (iii) of the “market share” function s holds. Mathematically this 
latter fact means that the nonlinear equation 0

1

1
=∂

∂
,tx

U  possesses one real positive 

solution provided that the marginal utility is positive for x1,t = 0 (and if the marginal 
utility is nonpositive for x1,t = 0 the reaction R1(x2,t-1|a1) equals zero). The nonlinear 
equation 0

1

1
=∂

∂
,tx

U  can be rewritten into a third degree equation with respect to the 

variable x1,t. Using a tranformation of the variable and the coëfficients and applying 
Cardan’s method on the transformed equation, the output x1,t can even be solved 
analytically (Appendix 5.2).  

However in order to give an adequate and complete functional expression for the 
reaction curve we first need to know for which values of the rival’s output, x2,t-1, the 
reaction x1,t equals zero. And secondly we need to know under which condition the 
reaction curve meets the restriction x1,t +x2,t-1 = 1 and thus leads to the (perfectly 
accommodating) reaction x1,t = 1 −  x2,t-1. Fortunately both conditions can be derived 
without using the complicated analytical solution of the nonlinear equation. The first 
condition can be obtained by imposing a condition on the marginal utility at x1,t = 0. 
For those values of the rival’s output, x2,t-1, for which the marginal utility 

,tx
U

1

1

∂
∂ is 

already nonpositive at x1,t = 0 the reaction x1,t will be x1,t = 0 , because the marginal 
utility is a decreasing function with respect to x1,t . This argumentation leads to the 
condition (note that for a1=0 this condition leads to the classical condition x1,t = 0 for 
x2,t-1 > 1− c) 
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Because differentiation reveals that the marginal utility at x1,t = 0 decreases with 
respect to x2,t-1 we may conclude that the smallest value of x2,t-1 for which the reaction 
x1,t equals zero satisfies 1− c −  x2,t-1 + a1/x2,t-1 = 0. This latter equation can be solved 
and leads to 1

2
2

1
2

1
12 4)1()1( acc x ,t +−+−=− . Note that this smallest value of the 

rival’s output - for which the response equals zero - increases with respect to the 
weight a1 attributed to the market share. This smallest value equals 1 for a1=c and for 
this specific weight a1 the reaction curve precisely intersects the restriction              
x1,t + x2,t-1 = 1 at point (x1,t,x2,t-1) = (0,1). This property leads one to suspect that for all 
values of a1 with a1 > c the reaction curve R1(x2,t-1|a1) meets the restriction which links 
this first condition for the zero output, to the second condition concerning the 
intersection with the (nonnegative price) restriction.  

The intersection point of the reaction curve R1(x2,t-1|a1) with the restriction can be 
solved by substituting x1,t + x2,t-1 = 1 into the equation 0

1

1
=∂

∂
,tx

U . This directly leads 

to 0)1()1()22(1 1111 =−+−−+−− ,t,t,t xaxxdc  from which the co-ordinate x1,t of the 
intersection point can be solved. This co-ordinate equals x1,t = (a1− c)/(1+2d+a1) 
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(which is nonnegative for a1 > c). The derivation of the two properties - concerning x1,t 
= 0 and the perfect accommodation - enables us to summarize the complete 
functional form of the reaction curve (which depends on the weight parameter a1, the 
production cost parameters c and d and the rival’s output x2,t-1). The expression  
G(x2,t-1|a1) equals the solution of the nonlinear equation 0

1

1
=∂

∂
,tx

U  (for a1) and for 

the derivation of this formula and the complete expression we refer to Appendix 5.2. 
 
Proposition 5.9 (the functional form of the reaction curve). 
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Although the expression for G(x2,t-1|a1) is complicated, it will be of great value in 

the computer simulations of the reaction paths of two asymmetrical firms with 
respect to the weight attributed to the market share. We present a graph of the 
reaction curve corresponding to the production cost parameters c=0.4 and 
d=− 0.1, whereas the level of preference for market share is determined by a1=0.30. 
 

 
 
Fig. 5.2 The Cournot-reaction curve of firm 1; c=0.4, d=−0.1, a1=0.3. 
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Because a1 < c it follows from Proposition 5.9 that the output x1,t equals zero for  
x2,t-1 > 0.924 (in 3 decimals), which fits with the graphical display. 
One observes that the monopoly output R1(0|a1) is positive, comparable to the 
classical case with a1=0. The strategic answer to a zero production of the rival is a 
positive output and apparently this production is not negligible. Furthermore it strikes 
the eye that the slope of the Cournot reaction curve at x2,t-1 = 0 is positive, the curve 
reaches a maximum, and subsequently displays the standard downward slope. 
Proposition 5.10 deals with these two important properties of the reaction curve. 
Although it isn’t possible to provide a simple expression for the maximum location 
(and the corresponding maximum output) of the reaction curve - due to the 
analytically complicated expression G(x2,t-1|a1) - a proof of the existence of a 
maximum under clear conditions for a1 can be given. In the proof we use the 
powerful technique of implicit differentiation, like we did in the general considerations 
of Section 5.2. 
 
Proposition 5.10 (properties of the reaction function). 

(i) For all a1 > 0 the monopoly output equals 
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−>  the slope of the reaction curve at x2,t-1 = 0 is positive and 

the reaction curve displays a maximum. The slope at x2,t-1 = 0 is equal to 
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−  and can be made arbitrarily large by increasing the 

weight a1. 
(iii) The maximum location (if it exists, see (ii)), x2,max satisfies the equation 
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Proof. 
Setting x2,t-1 equal to zero in the equation 0
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∂
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U  directly leads to the monopoly 

output x1,t = (1− c)/(2+2d) for all weights a1 (one can check that G(0|a1) leads to the 
same outcome). This proves part (i). Implicit differentiation of the expression  
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with respect to the variable x2,t-1 leads to a formula for the slope (see also the general 
expression for the slope in eq. 5.7,  Section 5.2): 
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Substituting x2,t-1 = 0 in this expression gives .
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For fixed c and d > − 1/2 this slope can be made arbitrarily large by increasing the  

parameter a1. It immediately follows that for all 2

2

1 )22(
)1(
d

ca
+
−>  the slope of the 

reaction curve at x2,t-1 = 0 is positive. If a1 > c the reaction curve meets the restriction 
(Proposition 5.9) and clearly a change of the sign of the slope from positive to 
negative occurs. If the reaction curve doesn’t intersect the restriction it certainly has 
to intersect the line x1,t = x2,t-1 and if we call this intersection point (x*,x*) it follows from 
the formula of the slope that at (x*,x*) the slope equals 
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Again a change of the sign of the slope from positive to negative occurs indicating 
that the maximum location is reached for some 0 < x2,t-1 < x* (Again using implicit 
differentiation w.r.t. 1,2 −tx , leads to an expression for the second derivative of the 
reaction function. One can prove that this second derivative is negative if 01 >a ; so 
the maximum of the reaction function is determined uniquely). 
The exact maximum location is reached for that specific value x2,max of x2,t-1 which 
satisfies dx1,t/dx2,t-1 = 0. Part (iii) is proved by using the general formula for the slope 
and x1,t = G(x2,max|a1). 
 [End of proof] 
 

The results of part (i) and part (ii) of Proposition 5.10 reveal that the introduction 
of preference for market share as the non-profit part of the utility function not only 
leads to a positive monopoly output - which overcomes the shortcomings of the 
former studies of Kopel (1996) and Puu (1991,1998) - but provides a plausible 
rationale for a hill-shaped Cournot reaction curve as well. Part (ii) shows that, if the 
weight attributed to this specific non-profit part is large enough, an increase in the 
rival’s output - assuming that this output is still small - leads to an increase in one’s 
own production level. Apparently the optimal response to more aggressive play of 
the rival is also more aggressive play. This behaviour, referred to as the reaction 
pattern of an imitator or follower in Chapter 2, is fully determined by the sign of the 

slope, i.e. 0d
d

12

1 >
−,t

,t
x

x , and of course contradicts the slope of the standard Cournot 

curve.  
However the occurrence of a maximum of the reaction curve at x2,max indicates 

that, if the rival (2) expands its output beyond a certain level, x2,max,  firm 1 starts to 
act as an accommodator. The change of the sign of the slope from positive to 
negative at the maximum location reveals that the reaction to more aggressive play 
of the rival - provided that the rival’s output exceeds x2,max - is less aggressive play. 
The fact that the firm’s reply can be to imitate as well as to accommodate reflects its 
dualistic behaviour (see also Chapter 2). Furthermore the results of Proposition 5.10 
show that the slope at x2,t-1 = 0 can be made arbitrarily large and leads one to 
suspect that for large preferences for market share the reaction curve rises very 
quickly (with respect to an increasing output of the rival) and meets the restriction. 
Thus a large preference for market share may result in an unimodal function which 
can be compared with the well known non-analytical tent map. Such hill-shaped 
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functions open up the possibility for the occurrence of complicated or even chaotic 
reaction patterns of the two competitors. In Chapter 6 we will need the results of the 
Propositions 5.9 and 5.10 to apply the Theorem of Li & Yorke (1975) on reaction 
functions in order to show that chaos is even possible for firms with cost symmetry. 

We continue with the analysis of the properties of the reaction curves and 
introduce a workable classification of these curves which also serves the 
forthcoming analysis of the Sections 5.5 and 5.6. This typology is based on the value 
of the weight a1 attributed to the market share and its purpose is to distinguish the 
reaction curves in four types with easily recognizable and salient characteristics. We 
now present the four types in a proposition and after the proof we will illustrate this 
classification with several graphical displays. 
 
Proposition 5.11 (a typology of the reaction curves). 
 
(i) Type 1, T1, exclusively possesses a negative slope if the weight a1 satisfies 

the condition 2

2

1 )22(
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−≤≤  (this curve only intersects with the restriction           

x1,t + x2,t-1 = 1 (for a1 > c) if it holds for the production cost parameters c and d 
that 1)1()1(2)1(210 22 +++−++≤< dddc ). 

(ii) Type 2, T2, possesses a positive slope at x2,t-1 = 0 and also reaches a 
differentiable maximum; if this curve intersects the restriction (x1,t = 1 - x2,t-1) 
then for the co-ordinate x”

2,t-1 of the intersection point it holds that x”
2,t-1 > 0.5. 

The weight a1 satisfies the condition dca
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(iii) Type 3, T3, intersects with the restriction and for the co-ordinate x”
2,t-1 of the  

intersection point it holds that x”
2,t-1 < 0.5. Furthermore T3 possesses a 

differentiable maximum (the maximum location occurs before the restriction is 
reached, x2,max < x”

2,t-1). The weight a1 satisfies the condition 
ddcdcadc 21)1(1221 2

1 +++++++<<++ . 
(iv) Type 4, T4, intersects with the restriction and for the co-ordinate x”

2,t-1 of the  
intersection point it holds that x”

2,t-1 < 0.5. The function possesses a non-
differentiable maximum because this maximum location equals x”
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condition for the weight a1 equals ddcdca 21)1(1 2
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Proof. 
Part (i) follows directly from the results of Proposition 5.10, part (ii): the slope at  

x2,t-1 = 0 is nonpositive if 0
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. The T1-curve 

already meets the restriction (for a1 > c) if it holds that (1− c)2/(2+2d)2 > c (see 
Proposition 5.9) and this latter condition can be rewritten as 

1)1()1(2)1(210 22 +++−++≤< dddc  (if we include the condition d > − c/2 
(nonnegative marginal costs) it holds that d > − 0.099, c < 0.198, so the 
T1- curve only meets the restriction (for a1 > c) if the firm possesses a very efficient 
production technology).  
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Part (ii), concerning the T2-curve, follows from the expression of the co-ordinates of 
the intersection point of Proposition 5.9. For the co-ordinate x”

2,t-1 it holds that  

x”
2,t-1 > 0.5 if dca

ad
dcx ,t

" 2215.0
)21(
)21(
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12 ++≤↔≥
++

++=− . The condition for a positive 

slope at x2,t-1 = 0 leads to the condition for the weight a1. 
We continue with part (iii) concerning the T3-curve. The left hand side of the 
inequality in the condition for the weight a1 directly follows from x”

2,t-1 < 0.5. To prove 
the right hand side of the inequality we subsitute the two expressions for the co-
ordinates of the intersection point with the restriction, x”

1,t and x”
2,t-1, into the general 

expression for the slope. This leads to a formula for the slope of the reaction curve 
(the left-derivative to be precise) at the intersection point (before perfect 
accommodation sets in): 
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Note that this slope can be made arbitrarily large! The reaction curve possesses a 
differentiable maximum for those weights a1 for which this slope at the intersection 
point is still negative. Imposing the condition a1(a1 − 2 − 2c − 2d) − (1+2d) < 0 leads to 
the condition for a1. Finally the condition concerning the fourth type T4 directly follows 
from dx1,t/dx2,t-1 > 0 at the intersection point. Then the maximum location equals x”

2,t-1 
and the right-derivative equals −1 at the maximum location. 
 [End of proof] 
                                                                                                                 

Application of the results of Proposition 5.11 on a case with production cost 
parameters c=0.4 and d=− 0.1 leads to a diagram which summarizes the types of the 
reaction curves corresponding with a rising weight a1 attributed to the market share. 
 

Rising weight  

Type 1 Type 2 Type 3 Type 4

0 0.11 1.60 2.88

 
 
Diagram 5.1. Change of the behavioural types in relation to the weight a1. 
 
In the Figures 5.3a and 5.3b examples of the types T1 and T2 are presented. 
Corresponding to the first type T1 the choice a1 = 0.05 has been made and the choice 
concerning the second type equals a1 = 0.5.  
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Fig.5.3a  Type 1 for a1 = 0.05.                  Fig.5.3b  Type 2 for a1 = 0.5. 
 

The curve T1 clearly shows the standard negative slope, although we have to 
realize that - as a consequence of the (small) positive weight attributed to the market 
share - this curve is shifted somewhat outwards in comparison with the classical 
Cournot reaction curve. Note that the output of firm 1 equals zero for x2,t-1 > 0.674 
(Proposition 5.9), which is indeed a larger value for the rival’s production than the 
one corresponding to the classical Cournot curve. The curve of the second type, T2, 
shows a dualistic behaviour of the firm, because this curve possesses a 
(differentiable) maximum. Furthermore it strikes the eye that, whatever the rival’s 
output will be, the reaction never will be equal to a zero output (except for x2,t-1 = 1) 
and that for x2,t-1 > x”

2,t-1 (= 0.923 here) firm 1 starts to accommodate perfectly 
because of the nonnegative price restriction. 
Two graphs of the respective types T3 and T4 are presented in the Figures 5.4a and 
5.4b; T3 corresponds to a1 = 1.80 and corresponding to the graph of T4 the weight 
equals a1 = 4.00. 
 

                   
 
Fig.5.4a  Type 3 for a1 = 1.80.                  Fig.5.4b  Type 4 for a1 = 4.00. 
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The curve of type 3 still possesses a maximum which is not the consequence of 
the intersection with the restriction (at the maximum location the function is 
differentiable). Firm 1 perfectly accommodates for the rival’s output x2,t-1 >  0.462 
(Proposition 5.9). The maximum occurring in curve T4 is caused by the intersection 
of the reaction curve with the nonnegative price restriction and the co-ordinates of 
this maximum equal (x2,max, 1 − x2,max)  = (0.25, 0.75). Note that the extreme weight of         
a1 = 4.00 attributed to the market size causes a very aggressive reaction of firm 1 if - 
starting from a small output level - the competing firm increases its production. 
However, if the rival’s production exceeds 0.25, firm 1’s answer is perfect 
accommodation.The preceding four graphical illustrations clearly demonstrate that 
managerial inertia, reflected by preference for market share, determines a firm’s 
(production) behaviour in direct competition. 
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5. Implications of symmetry concerning preference for market share 
 

In this section we study the benchmark case of two symmetrical firms 
concerning their preferences for market share, i.e. the respective weights a1 and a2 
attributed to this non-profit part of the maximand are equal. Because both firms 
control equally efficient production technologies we are dealing with a completely 
symmetrical case. First we reflect on the question how such complete symmetry can 
arise. The results of Proposition 5.3 of Section 5.3 provide us with an argument, 
because this proposition reveals that - for small weights ai and aj - firm i outperforms 
its rival (concerning both the production level and profit level) if ai exceeds aj. 
Moreover there may exist another driving force behind enlarging the weights; if ai > 
(2+2d)aj the profit of firm i even rises above the classical level (ai=aj=0). So starting 
from the classical situation an a-setting game may take place. In stage one the two 
firms determine their level of a, whereas in the second stage of the game Cournot 
competition takes place. The analysis of a two-stage sequential game will be the 
subject of future research and is related to the analysis of the “delegation” games of 
Vickers (1985), Fershtman and Judd (1987), Sklivias (1987) and Basu (1995), where 
owners and managers are separated and owners “dictate” managers’ objective 
function.  

We mention that the results of Proposition 5.3 are even robust with respect to 
larger weights as the following explanation shows. If (x1

*,x2
*) equals the Cournot-

Nash equilibrium corresponding with certain weights a1 = a2, a heightening of the 
weight a1 leads to a further outward shift of the reaction curve of firm 1 (e.g. observe 
the evolution of the curves in Fig. 5.3 a,b and 4 a,b of Section 5.4). The result of 
such a shift is a (further) increase of firm 1’s output level x1

* at the expense of the 
rival’s production size x2

* and in general the implication of a1 > a2 is x1
* > x2

*. The 
difference in profits of firm 1 and firm 2 can be expressed in the co-ordinates of the 
equilibrium by 
 

)])(1(1)[()()( 212121
2

21
1 ******** xxdcxx,xxΠ,xxΠ ++−−−=−  (5.21) 

 
(for linear costs, i.e. d = 0, this difference equals (x1

*− x2
*)(p*− c) where p* is the 

equilibrium price) So this formula clarifies that, if a1 > a2,  firm 1 keeps an advantage 
in profit over its rival, provided that total supply is restricted. These considerations 
are also related to Chapter 3 where we studied the implications of preference for 
size (or growth of size which leads to the same mathematics) and one of the results 
was that - given the preference for size of the rival - a firm can determine it’s own 
profit-maximizing preference for size. We note that in the case that owners write the 
incentive contract for their managers, and the managers’ objective function is a 
(weighted) combination of profit and market share, such a “delegation” game leads 
to a complicated nonlinear analysis. Such a two-stage sequential game would lead 
to equal weights concerning market share in oligopoly (because of equally efficient 
production technologies). Of course all these arguments, concerning a-setting 
games, are related to strategic benefits in a direct-competition setting and assume 
knowledge of the decision makers of the implications of heightening the weight a and 
therefore assume also highly rational behaviour.  

To motivate the analysis for larger equal weights attributed to market share, we 
need other arguments, coming from an empirical angle, and concerning the inert 
behaviour of (top) managers. Cumulative evidence supports the claim that, besides 
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the profit maximization, also (psychological) preference for (growth of) size or market 
share drives firm’s (top-management) behaviour and may imply larger values of a. In 
their forthcoming paper van Witteloostuijn, Boone & van Lier (2003) relate 
preference for (growth of) size to inertia at the managerial level (besides inertia on 
the organization level reflected in adjustment costs). They argue that “Downsizing 
comes with high political costs through resistance from those organizational 
participants - work floor and management - who are confronted with retrenchment, 
whereas expansion tends to be received with applause by those who may grow. ...  
...The preference for size or market share implies asymmetric inertia, as the positive 
utility from sales growth impedes the management’s incentive to downsize but 
increases the management’s willingness to expand, even if this implies that profit is 
sacrificed”. The relevance of the preference for market share is supported by a study 
of Peck (1988) which reports the results of a survey into corporate objectives among 
1000 American and 1031 Japanese top managers: two findings are that increasing 
market share ranks third in the American and second in the Japanese subsample, 
whereas return on investment is first among American and third among Japanese 
top managers. If executive bonuses and salaries depend on both profit level and size 
or market share, naturally managers tend to increase their weight attributed to the 
preference for size or market share. A large number of studies into managerial 
compensation (Jensen & Murphy (1990) and Lambert, Larcker & Weigelt (1991)) 
revealed that the correlation between salaries (bonuses) and size is the stronger one 
in comparison to the correlation between salaries and profit level.  

So the preference for size or market share is encouraged by these practices. 
Obviously the behaviour of the top management is strongly correlated with the 
managerial compensation practices. These considerations provide another intuitive 
argument for a strong symmetry concerning the weights attributed to the market 
share. If two firms - possessing an equally efficient production technology and 
producing homogeneous goods - were to differ strongly in their bonuses and salary 
incentives, a manager would certainly have the inclination to offer his/her experience 
to the most beneficial firm (in terms of compensation practices). The resulting 
similarity of managerial compensation practices (otherwise talented managers will go 
over to the competitor) of both firms probably also leads to more or less equal 
preferences for the non-profit parts of the maximand reflected in equal weights a1 
and a2. All these arguments (although requiring more empirical research), 
concerning the symmetry in preferences, certainly justify a detailed examination of 
the properties of the equilibrium quantities of two complete symmetrical competitors. 
An interesting issue will be the implication for the equilibrium profits and welfare 
corresponding to larger values of the weight a. After all we may not exclude 
managers’ larger (or even extreme) levels of preference for market share.   

We start our investigation, concerning two symmetrical firms, with the derivation 
of the co-ordinates of the Cournot-Nash equilibrium and the proof of stability. For 
small values of a we refer to the Propositions 5.2 and 5.1, Section 5.3 concerning the 
stability of the equilibrium and the approximating expression for the equilibrium co-
ordinates (choose a1=a2=a). In the following proof for arbitrary values of a, we will 
use the general formula for the eigenvalues of the linearized system of the proof of 
Proposition 5.2.   
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Proposition 5.12 (output equilibrium and stability). 
 
Consider two symmetric firms, with respect to the weights a1 and a2 attributed to the 
market share (as the non-profit part of the maximand) i.e. a1=a2=a > 0.  
 
(i) the output-equilibrium co-ordinates equal )()( *

2
*
1 axax = =x*(a) with 

)23(2
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++−
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(ii) For a < 1+2c+2d the equilibrium is stable and for a > 1+2c+2d there exists a 
line segment of (neutral) equilibria located on the nonnegative price 
restriction, namely *

2
*
1 1 xx −= , (1+c+2d)/(1+2d+a) < *

2x  < (a-c)/(1+2d+a). 
 
Proof. 
Substituting x1,t = x2,t-1 = x* in the expression for the marginal utility, 
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(which determines the reaction curve of firm 1) leads to 0
4

)23(1 *
* =++−−

x
axdc  

from which x* can be solved directly. This proves part (i) (see also Section 5.3 for the 
general equation for the equilibrium output of two symmetric players). This 
equilibrium is unique for a < 1+2c+2d whereas for larger values of a the two reaction 
curves belong to type T3 or T4 (Proposition 5.11) and have a (symmetrical) part of the 
nonnegative price restriction in common. First consider the stability of the unique 
equilibrium. For a1=a2=a the eigenvalues of the linearized system (see the proof of 
Proposition 5.2, Section 5.3 with s equal to the market share and *

2
*
1 xx = =x*(a) ) are 

real and equal 

2*
21

)(4)22(
1

x
ad

λ , ++
±=  

We used the expressions for the partial derivatives
11xxs  and 

21xxs  of Section 5.4. 
Stability of the linearized system is guaranteed for d > − 1/2, a > 0, because then the 
absolute values of these eigenvalues are less than 1. Because the equilibrium (x*,x*) 
is a positive attractor of the linearized system ( 1<iλ ) it is also a (local) positive 
attractor of the nonlinear system of first order difference equations (Devaney 
(1989),Theorem 6.3, Chapter 2). This proves the (local) stability for 
a < 1+2c+2d.  
For a > 1+2c+2d the two reaction curves - which are symmetric with respect to the 
line x1=x2 - have a part of the line x1+x2=1 in common. The description of this line 
segment follows directly from the co-ordinates of the intersection point of the 
reaction curve (of firm 1) with the nonnegative price restriction (Proposition 5.9). In 
each of these equilibria the slopes equal −1 which indicates neutrality. 
 [End of proof] 
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Before we illustrate the results of Proposition 5.12 with some graphs, we make 
several remarks on these results in relation to the power series approximations and 
stability properties for arbitrary functions s (Section 5.3). For small values of a 
application of Proposition 5.1, Section 5.3 leads to a power series approximation of 
the equilibrium outputs x*(a). The specific choice s(x1,x2) = x1/(x1+x2) leads to the 
required partial derivatives in ((1− c)/(3+2d),(1− c)/(3+2d)): 
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 (5.22) 
Choosing a1=a2=a in the power series expression we obtain 
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Fortunately we were able to derive an expression for the equilibrium outputs for all 
values of a and if we expand this expression for x*(a) into a power series (using the 
expansion )(11 32

8
1

2
1 yOyyy +−+=+ ) it fits completely with the expression which 

follows from the application of Proposition 5.1, Section 5.3. The power series 
approximation already reveals that (for small values of a) the function x*(a) is rising 
and concave with respect to an increasing weight a attributed to market share.  

Furthermore note that for a < 1+2c+2d only local stability of the Cournot-Nash 
equilibrium has been proved. Local stability means that there exists a neighbourhood 
N of the equilibrium with the property that, for all (initial) outputs of both firms in N, 
supplies converge to the equilibrium under forward iteration. Such a neighbourhood 
N is often called the “basin of attraction”. However observation of two (symmetrical) 
reaction curves obviously reveals that the basin of attraction consists of all possible 
(feasible) initial outputs of both firms and therefore the equilibrium is also globally 
stable.  Because of the equilibrium’s global stability, comparative statics in this 
section makes sense. 

For small values of a, Proposition 5.2 (Section 5.3) reveals that the preference 
for the market share has a stabilizing influence on the equilibrium, because the 
absolute value of the eigenvalues decreases in comparison to the classical case. 
The exact expression for the absolute value of both eigenvalues (in the proof of 
Proposition 5.12) allows us to examine this stabilizing property for all values of a. 
Using the chain rule we obtain 
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a
λ ,

d
d 21  is negative if and only if the expression 

a
xaax

d
d2)(

*
* −  is positive. Using the 

formula for x*(a) of Proposition 5.12 the latter can be proved easily. So now we have 
proved for arbitrary values of a that the absolute value of both eigenvalues 
decreases if the weight attributed to preference for market share increases. The 
smaller the absolute value of the eigenvalues is, the larger the speed will be at which 
the equilibrium will be approached. In other words: preference for market share has 
a stabilizing influence on the equilibrium outputs and equilibrium’s disturbances will 
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be restored more quickly. This stabilizing property also holds for more than two 
(symmetrical) competing firms. As we already noted in Chapter 4, Theocharis (1960) 
examined the stability of the n-firm oligopoly Cournot solutions and found that for the 
classical case with 3 firms and constant unit production costs cyclical solutions 
occur. By introducing preference for the market size it is possible to prove that the 
equilibrium corresponding to the 3-firm case becomes stable and that the 
endogenous business cycles caused by the (classical) cyclic outputs no longer 
occur.  

We now illustrate part (i) of Proposition 5.12 with two graphs of the output x*(a) 
and in both graphs we combine the output x*(a) with the output )(* axs  which 
corresponds to the preference for size (so s(x1,x2) = x1, see also Chapter 3).  
Why this comparison of both outputs is an interesting issue? As already mentioned 
in the introduction of this section managers like to grow, but dislike to retrench. This 
managerial (asymmetric) inertia is in general reflected in the weight attributed to the 
non-profit part of the maximand. The general consideration in Section 5.3 reveales 
that, if 0

1
>xs , also the equilibrium output x* is (for small a) a rising function of the 

weight a. The use of the function s in the general model - with the property that the 
more the firm produces, the more status it acquires - nicely shows that the 
implication of such a non-profit part clearly is an enlargement of the firm’s size (and 
sales). The application of Proposition 5.1 of Section 5.3 gives (choose a1=a2=a) 
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This latter mathematical property illustrates the behaviour of managers - they 

prefer to be the head of large budgets, organizations or staffs rather than small ones 
- but obviously the exact specification of the function s determines, besides the 
weight a,  the degree of influence on the size of the firm. Therefore paying attention 
to the implications of both preference for size and preference for market share is 
useful because it reveals the different consequences of both preferences. 
Note that - by using the equation 1− c− (3+2d) *

sx  + a = 0 (see also the general 
considerations on equilibria of two symmetric firms at the end of Section 5.3) - the 
output )(* axs , concerning the preference for size,  equals 
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(If the nonnegativity condition is imposed on the price, multiple equilibria occur for 
the weight a > ½ +c+d). The first graphical display, Fig. 5.5a, shows how both 
outputs x* and *

sx  depend on the weight a; for the production cost parameters the 
choice c=0.2, d=0 is made. So the first graph deals with an efficient production 
technology as indicated by the small unit production costs (on a scale from 0 to 1). 
The graphs of Fig.5.5b allow us to compare the outputs x* and *

sx  for a less efficient 
production technology with constant unit costs c=0.6. In both figures the output 
concerning preference for market share is printed bold.  
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Fig. 5.5a  x*(a) and x*

s(a) for c=0.2,d=0.       Fig. 5.5b  x*(a) and x*
s(a) for c=0.6,d=0. 

 
Clearly both graphs of x*(a) show that the output - corresponding to the 

preference for market share - is not only concave for small values of a, but displays 
an overall concave and rising behaviour with respect to a, whereas )(* axs  behaves 
linearly. And the increase of the output, in terms of percentage, compared with the 
classical Cournot output (=(1− c)/(3+2d)), is substantial: A weight of a=0.1 attributed 
to the preference for market share raises the classical equilibrium output by 11% 
(Fig.5.5a) and almost 35% (Fig.5.5b).  But another phenomenon strikes the eye. 
Apparently x* < *

sx  for all positive values of the weight a if the firm controls an 
efficient production technology, whereas in the case of the less efficient cost regime 
there exists an interval (of values of a) where x* > *

sx . The necessary and sufficient 
condition for the existence of such an interval is - because of the concavity of x*(a) - 
that the slope dx*/da exceeds the slope d *

sx /da at a=0. We summarize these 
considerations in a Proposition. 
 
Proposition 5.13 (properties of the outputs x* and *

sx  related to the weight a). 
 
Let x*(a) and )(* axs  be the equilibrium outputs of two completely symmetric firms, 
corresponding to the preference for market share and size respectively. 
 

(i) For all weights a it holds that 0
d
d0

d
d

2

*2*

<>
a
x

a
x  and , so the output 

corresponding with preference for market share is a rising and concave 
function with respect to the weight a (and )(* axs  is a linear function) . 

(ii) If c < ¼ − ½ d then for all a > 0 it holds that x* < *
sx . If c > ¼ − ½ d then for all a 

with 0 < a < − ¼ + c + ½ d it holds that x* > *
sx . 
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Proof. 
Part (i) can be proved easily by differentiation of the expression for the equilibrium 
output x* (Proposition 5.12) with respect to a.  
There only exists an interval of values of a with x* > *

sx  if the slope dx*/da at a=0 
exceeds the slope d *

sx /da at a=0, i.e. 1/(4 − 4c) > 1/(3 + 2d). The latter inequality is 
equivalent with c > ¼ − ½ d and the interval of values of a for which x* > *

sx  holds can 
be obtained by solving 
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 [End of proof] 
 

Note that the application of the result of part (ii) of Proposition 5.13 to the case of 
Fig.5.5b with c=0.6, d=0 leads to x* > *

sx  for 0 < a < 0.35, which is confirmed by the 
graphical display. Clearly the output level of a firm - which is heightened by 
preference for size or market share - determines its profit level. Therefore the 
differences between x* and *

sx  under various cost regimes may have important 
implications for the degree of sacrifice of profits by managerial preferences. We now 
continue with the analysis of the (equilibrium) profits of both firms and start with a 
consideration corresponding to larger weights a i.e. a > 1+2c+2d. Then both reaction 
curves belong to the T3 - or T4 - type and Proposition 5.12 (ii) reveals that multiple 
equilibria exist. We deal with a rather large preference for the market share; for 
c=0.4, d=0 the weight a has to exceed 1.8 (in the maximand the weight attributed to 
the profit equals 1). Apparently more importance is attached to market share in 
comparison to profit. 
 
The case of multiple equilibria. 

In the Figures 5.6a and 5.6b both reaction curves are displayed graphically for 
the production cost function with parameters c=0.4 and d=0 but for different weights 
a. Fig. 5.6a corresponds with a=2.2 and shows the “T3 - T3” case and Fig. 5.6b 
displays the “T4 - T4” case corresponding with a=3.5 (firm 1’s curve is printed bold). 

               
 
Fig. 5.6a “T3 - T3” for c=0.4,d=0,a=2.2.  Fig. 5.6b “T4 - T4” for c=0.4,d=0,a=3.5.  
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Note that for a=2.2 both firms possess a reaction curve with an analytical 
maximum, whereas for a=3.5 both maxima are non-differentiable (see also 
Proposition 5.11). All these equilibria located on the common line segment of both 
curves (for a=2.2 this segment equals *

2
*
1 1 xx −= , 0.4375 < *

2x  < 0.5625) still satisfy the 
definition of a (strict) Nash-equilibrium provided by Fudenberg and Tirole (1991):  

“A Nash equilibrium is a profile of strategies such that each player’s strategy is 
an optimal response to the other players’ strategies. Because each player has a 
unique response to his rivals’ strategies the Nash equilibrium is strict”. 

However in each of these equilibria both firms face losses, because the line 
segment of multiple equilibria is located on the nonnegative price restriction, i.e. the 
equilibrium market price p* equals zero. We have to realize that this uncommon 
nonbeneficial situation, with give-away prices, is caused by the rather large weight 
attributed to the market share. The large preference for market share (in comparison 
to preference for profit) permits the existence of these equilibria and implies total 
sacrifice of the profit. 

Why pay attention to these equilibria if each equilibrium corresponds with losses 
for both competitors, due to zero-prices? As already mentioned in Chapter 3 there 
exists empirical evidence that in many cases firms accumulate losses before they 
are forced to exit. For instance a central issue in the literature on Accounting and 
Finance is the identification of financial ratios that can predict bankruptcy even a few 
years before the actual date of this corporate exit. A study of 57 large corporate 
failures of Hambrick and D’Aveni (1988) showed that, in the five years prior to the 
date of bankruptcy (say t), the series of the (mean net income/assets) - ratios equals 
−4.56 (t − 5), −21.79 (t − 4), −21.30 (t − 3), −85.11 (t − 2) and −107.89 (t − 1). These 
ratios clearly indicate that the decision to exit may be taken after a long period of 
losses. Now if we assume that firm i can endure losses for some time, this firm has 
the possibility to choose its strategic actions in such a way that the rival j suffers 
more severe losses. 

An adequate strategy may open the possibility to drive the competitor out of the 
market, notwithstanding negative profits for some period of time. We have to realize 
that products are available free and one could think of an advertising stunt with give-
away prices as a strategic move. After the exit of the rival in the duopoly game the 
remaining firm can act as a monopolist. By more detailed examination of the 
properties of the multiple equilibria we can gain a more clear insight into these 
beneficial strategies. Additionally some marginal comments have to be made 
concerning the types (T3 or T4) to which the reaction curves belong.  
Since the market price p* is zero in each of the equilibria ( *

1x , *
2x ) on the line segment, 

the losses of both firms are only determined by their production costs, i.e.  
2**** )(),( iiji

i xdcxxx −−=Π  for firm i. Clearly the equilibrium (on the segment) with the 
smallest production level *

ix  is the most beneficial “choice” for firm i, because by 
keeping its output level small this firm can restrict its inevitable losses. The 
behaviour of the rival j however is dictated by its Cournot reaction curve: firm j 
accommodates perfectly and the smaller the output of firm i will be the larger firm j’s 
production level will be. So this reaction mechanism leads to more severe losses of 
firm j. The simple expression of the equilibrium profits on the line segment and the 
property that 1*

2
*
1 =+ xx  enable us to obtain an analytical expression for the absolute 

advantages of the strategically strongest firm.  
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Proposition 5.14 (multiple equilibria and strategy (advertising stunt)). 
 
If a > 1+2c+2d multiple Cournot-Nash equilibria occur on the nonnegative price 
restriction and both firms accumulate losses. The best strategy for firm i is to keep its 
equilibrium output *

ix  as small as possible i.e. *
ix  = (1+c+2d)/(1+2d+a).  

By doing so it holds that the absolute advantage over its rival equals  
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On the line segment of multiple equilibria this difference is maximized for the 
smallest value of *

ix  (see Proposition 5.12 (ii)). In general it holds that 
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For d=0 this expression simplifies to − 1 + 1/ *

ix  with *
ix  = (1+c)/(1+a). 

 [End of proof] 
 

We apply Proposition 5.14 to example 1: For c=0.4, d=0 and a=2.2 (Fig.5.6a) the 
equilibrium on the line segment with the smallest output for firm 1 equals  
( *

2
*
1 , xx ) = (0.4375 , 0.5625). This equilibrium leads to losses of 0.175 and 0.225 per 

period for firm 1 and 2 respectively and the loss of firm 2 equals about 1.3 times the 
loss of firm 1. Because both reaction curves possess an analytical maximum - for 
firm 2 (by simulation, Proposition 5.10) the maximum occurs for x1,max = 0.285 and the 
maximum value equals G(x1,max|2.2) = 0.578 - firm 1 can start with output 0.285 (in fact 
firm 1 can start with an output in the interval [0.169 , 0.4375]). The relatively beneficial 
equilibrium for firm 1 is reached after a few steps and starting with x1,t = 0.285 the 
outputs, obtained by simulation, are x2,t+1 = 0.578, x1,t+2 = 0.422 (perfect 
accommodation), x2,t+3 = 0.565, x1,t+4 = 0.435 (perfect accommodation), x2,t+5 = 0.563. 
Note that in the first period, consisting of the time periods t and t+1, the losses of 
firm 1 and 2 equal 0.075 and 0.152 respectively which is even more beneficial for firm 
1. This example clarifies that - due to the analytical maximum of the T3-type - firm 1 
can choose its initial output level in a broader interval and each of these initial values 
leads to the equilibrium on the segment of multiple equilibria with the smallest output 
for firm 1. Furthermore the relative advantage for firm 1 is even larger during the first 
periods. 

Example 2 corresponds with Fig. 5.6b and for this larger value of a=3.5 both 
curves possess a nonanalytical maximum (type T4). To reach the smallest 
equilibrium production level ( *

1x = 0.311) firm 1 can only start with this specific output 



Chapter 5 Cournot Competition with Non-Profit Maximizing Objectives in General 
    and Preference for Market Share in Particular 

177 

of 0.311. Equilibrium losses of firm 1 and 2 equal 0.124 and 0.276 respectively and the 
loss of firm 2 is more than two times the loss of its rival. Proposition 5.14 and the two 
examples reveal that - under the assumption of temporary losses and with the 
prospect of being a monopolist - there indeed exists an adequate strategic action, 
with give-away prices,  which may drive the rival out of the market.  

However some comments have to be made here. Each equilibrium belonging to 
the set of multiple equilibria is not asymptotically stable but neutral (slope = −1) and 
as a consequence disequilibrium will not be reversed. So once the equilibrium is 
reached this equilibrium can be shifted along the segment of multiple equilibria. If we 
assume learning by experience, the firm which suffers the largest losses in 
equilibrium may shift the equilibrium along the line segment to a more beneficial 
output location, i.e. a new equilibrium with a smaller output. This learning by doing 
can only occur if a firm is able to drop its usual (Cournot) reaction pattern. Note that 
there exists a difference between the “T3-T3”- and the “T4-T4”-competition (examples 
1 and 2). If the reaction curves belong to the T3-type the neutral equilibrium on the 
segment is not reached immediately and the firm with an adequate strategic output 
already benefits from the reaction pattern before its rival is possibly able to drop its 
former habits and starts to learn by experience.  

The previous analysis, concerning the multiple equilibria, shows that, 
notwithstanding the negative profits of both rivals, some strategic moves are still 
possible. However such large managerial preference for the market share, indicated 
by a > 1+2c+2d, inevitably leads to a complete sacrifice of the profits, as long as the 
two firms can stay in the market. After a period of a “war of attrition”, one firm may 
leave the market whereas the other firm becomes a monopolist. For smaller values 
of a (a < 1+2c+2d) Proposition 5.12 (ii) reveals the existence of a unique and 
(asymptotically) stable equilibrium and the reaction curves belong to the T1- or the 
T2-type. We continue our analysis with the examination of the equilibrium profits and 
equilibrium welfare. Central issue is the sacrifice of profits in relation to managerial 
inertia, i.e. the weight attributed to the market share (or size). 
 
The case of the unique equilibria. 

Using the general expression for the equilibrium profits Π i in the equilibrium  
(x*(a), x*(a)) it follows that - without specifying x*(a) - the heightening of the weight a 
always implies a further sacrifice of the profit level. 
From [ ] { } { }2**2**** )()2()()1()()()(21)()( axdaxcaxdacxaxaxa +−−=−−−=iΠ  it follows 

by differentiation with respect to the weight a that [ ]
a
xaxdc

a d
d)()24(1

d
d *

*+−−=
iΠ . 

The latter expression is always negative if 0
d
d *

>
a
x  (clearly x*(a) > (1− c)/(3+2d) >           

(1− c)/(4+2d), for a > 0). Obviously - under the assumption that x*(a) is an increasing 
function of a - the equilibrium profits of both firms decrease with respect to an 
increasing a, so each heightening of the weight a leads to further decreasing profits 
(for the general expression for dx*/da see Section 5.3)  

For the specific choice s(x1,x2) = x1/(x1+x2) of the non-profit part of the maximand 
we can use the power series approximation of Π i of Section 5.3 to obtain a second 
order approximation of the equilibrium profits. Choosing a1=a2=a and substituting the 
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expressions for the partial derivatives 
111 xxx ,ss  and 

21xxs in the point with co-ordinates 
((1− c)/(3+2d), (1− c)/(3+2d)) leads to the following approximation for small a : 
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This expression shows that the profit is not only decreasing but also concave with 
respect to small weights a. Note that for small weights a the (absolute) amount of 
sacrificed profit is given by the sum of the terms with a and a2 of this expression.  
The use of general techniques is very useful if the expression for the equilibrium 
outputs is too complicated, but here we fortunately have a convenient expression for 
x*(a) at our disposal (Proposition 5.12 (i)). The exact expression for the equilibrium 
profits allows us to make a statement on the concavity of the profit function for all 
values of a and enables us to compute that specific value of a for which profits are 
sacrified completely. Also a comparison with preference for size as the non-profit 
part of the objective function can be made. 
 
Proposition 5.15 (sacrifice of profits by managerial inertia). 
 
Consider two completely symmetric firms, with respect to the weight a attributed to 
the preference for market share and let a < 1+2c+2d. Let )(aiΠ  be the equilibrium 
profit of firm i (i=1,2), corresponding with the unique (stable) equilibrium output.  
 

(i) For all 0 < a < 1+2c+2d it holds that 0
d

d0
d

d
2

2

<<
aa

ii ΠΠ  and , so the profit 

corresponding with the preference for the market share is a falling and 
concave function with respect to the weight a. 

(ii) The profit is completely sacrificed, i.e. 0)( =aiΠ , for 2

2

)2(
)1()1(4

d
dca

+
+−= . 

(iii) Now consider two symmetric firms with preference for size instead of market 
share and let )(aΠ i

s  be the equilibrium profit. This profit is completely 

sacrificed for 
)2(

)1)(1(
d

dca
+

+−=s  and as < a for c < ½ − ¼ d.  

Proof. 
Substituting the expression for x*(a) (Proposition 5.12(i)) in the expression for the 
equilibrium profits { }2** )()2()()1()( axdaxca +−−=iΠ  leads to 
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(for a=0 this profit equals the classical profit (1− c)2(1+d)/(3+2d)2). By differentiating 
this expression with respect to the variable a we obtain 
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which proves part (i). Part (ii) is proved by using that Π i(a) = 0 for x*(a) = (1− c)/(2+d). 
Solving the latter equation concerning the equilibrium output gives the formula for a. 
Using the equilibrium output )(* axs , concerning the preference for size, the 
corresponding profit )(ai

sΠ  is completely sacrificed for that specific value as for which 
)(* axs  = (1− c)/(2+d) holds. This consideration easily leads to an expression for as and 

to the condition (for c and d) for which as < a holds. 
 [End of proof] 
 

The result of part (i) of Proposition 5.15 indicates that profit is sacrificed 
increasingly if the weight attributed to the market share increases further. In other 
words: the larger the managerial inertia will be the more extra profit will be sacrificed. 
This mathematical result confirms the statement in the introduction of this section 
that “the positive utility from sales (or market share) increases the management 
willingness to expand, even if this implies that profit is sacrificed”. The second part 
reveals that this managerial inertia can even lead to a complete sacrifice of the firm’s 
profitability if a is large enough. Note that for all 0 < c < 1 and d > − 1/2 this specific 
value of a satisfies  a < (1-c)2 < 1 (for constant unit costs the weight corresponding to 
“total sacrifice” equals a = (1− c)2), so the profits drop to zero whereas the weight 
attributed to the profit in the objective function (=1) is still the largest one. Application 
of the result of part (iii) of Proposition 5.15 to the case with linear production costs 
reveals that as < a if c < ½. Apparently, if both firms control a more efficient 
production technology, a total sacrifice of firm’s profitability occurs at an earlier stage 
of managerial inertia if preference for size is concerned. Note that Proposition 5.13 
shows that, for small values of c, the output level corresponding to preference for 
market share (x*) is smaller than the equilibrium production associated with 
preference for size ( *

sx ) . 
To gain a more clear insight in the amount of profit that is sacrificed as a 

consequence of managerial preference for market share we present two graphs of 
the profits Π i(a) expressed as a percentage of the classical profit Πcl (corresponding 
with a=0 and equal to the standard expression (1− c)2(1+d)/(3+2d)2).  
Figure 5.7a shows the decline of the equilibrium profits for c=0.4 and d=0 whereas 
Fig.5.7b graphically displays the falling profit levels for c=0.6 and d=0. 
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Fig. 5.7a Πi(a)/Πcl *100% for c=0.4,d=0.       Fig. 5.7b Πi(a)/Πcl *100% for c=0.6,d=0. 
 

Total profit is sacrificed for the weights a=0.36 and a=0.16 corresponding with 
unit costs of 0.4 and 0.6 respectively. Because we do not assume immediate exit 
related to zero profits beforehand, losses are also displayed. The numerical 
information of Table 5.1 allows us to compare the percentage of the profits (in 
comparison with classical profit) that has been sacrificed due to the weight attributed 
to market share and size respectively; for the production cost parameters we choose 
c=0.4 and d=0. Note that in accordance with Proposition 5.15 (part (iii)) )(as

iΠ - the 
profit corresponding to preference for size - becomes zero for as=0.3. 
 
Table 5.1, percentage of classical profit that has been sacrificed; c=0.4, d=0. 
 a=0.05 a=0.10 a=0.15 a=0.20 a=0.25 a=0.30 a=0.35 a=0.40 
[Πcl−Πi(a)]/Πcl 
*100% 

11% 24% 37% 52% 66% 81% 97% losses 
 

[Πcl−Πs
i(a)]/Πcl 

*100% 
10% 22% 37% 56% 76% 100% losses losses 

 
For instance this table reveals that, corresponding with a weight of a=0.1 

attributed to market share or size, almost a quarter of the (classical) profit has been 
sacrificed and that equilibrium profits show a decrease of more than 50% for a=0.2. 
Table 5.2 illustrates the differences between the (sacrifice of the) profits concerning 
preferences for market share and size, but now related to a less efficient production 
technology (c=0.6 and d=0). 
 
Table 5.2, percentage of classical profit that has been sacrificed; c=0.6, d=0. 
 a=0.05 a=0.10 a=0.15 a=0.20 a=0.25 a=0.30 a=0.35 a=0.40 
[Πcl−Πi(a)]/Πcl 
*100% 

27% 59% 93% losses losses losses losses losses 
 

[Πcl−Πs
i(a)]/Πcl 

*100% 
16% 37% 66% 100% losses losses losses losses 
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As Proposition 5.15, part (iii), predicts, now profit is sacrificed completely for a 
smaller weight if preference for market share is concerned (a = 0.16 < as = 0.2). Now 
for a weight of a=0.1 concerning managerial preference for market share more than 
half of the (classical) profit has been sacrificed. Clearly the graphs of Fig. 5.7a and 
5.7b and both tables show that the managerial “love for market share or sales” has a 
larger impact on the equilibrium profit levels if both firms control a less efficient 
production technology reflected in larger unit costs. Before we continue with the 
(mathematical) analysis of the implications of the behaviour of (top) management on 
social welfare some brief and intuitive considerations concerning this welfare are in 
place. Although both firms - due to their “love for market share” - face declining 
profits or even absolute losses related to an increasing weight attributed to this non-
profit part of the managerial objective, the consumer benefits from the situation. 
Clearly the consumer can acquire products at a low market price, due to the 
increased production level. This abundant supply at a low market price causes a 
significant rise of the consumer surplus, which amply compensates both firms’ 
decreased profits. Obviously social welfare benefits from the “love for market share” 
by a firm’s management. 
 

We start the welfare analysis with the application of Proposition 5.5 of Section 
5.3, where a general power series expression for the welfare concerning two 
symmetric firms is given. Choosing a1=a2=a and using the expressions for 

111 xxx ,ss  
and 

21xxs  in the point ((1− c)/(3+2d), (1− c)/(3+2d)) (see Section 5.4) we obtain the 
following approximation of the welfare for small a : 
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Clearly this second order power series reveals that W(a) is rising and concave 

with respect to small weights a. Although the welfare initially rises with an increasing 
a the concavity indicates that the sky is not the limit (see also the reflections on 
Proposition 5.5, Section 5.3 where we provided a link between the concavity of the 
welfare function and general conditions for

11xxs and
21xxs ). Again the expression for 

x*(a) of Proposition 5.12 (i) and the general expression for the welfare (Section 5.3) - 
2** ))(22()1(2)()()()( xdxcaCSaaaW +−−=++= 21 ΠΠ  - allow us to derive an exact 

expression for the welfare in equilibrium. The rising and concave character of the 
welfare function can be proved for arbitrary values of the weight a. Furthermore the 
welfare maximizing value of the weight a can be derived if we take into account the 
fact that permanently failing firms may exit in the long run. The exit of the firms 
means that no products are available anymore and thus implies a complete collapse 
of social welfare. Proposition 5.16 contains a summary of these general results.  
 
Proposition 5.16 (Properties of the welfare and welfare-maximizing weights). 
 
Consider two completely symmetric firms, with respect to the weight a attributed to 
the preference for market share and let a < 1+2c+2d. Let W(a) be the equilibrium 
welfare, corresponding with the unique (stable) equilibrium output. 
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W  and  for max , so the welfare corresponding with the 

preference for the market share is a concave function with respect to the 
weight a and reaches a maximum for amax. 

(ii) If d < 0 the maximum welfare would be reached for amax corresponding to 
negative profits of both firms. Assuming that these firms will face bankruptcy 

in the long run, the maximum welfare is reached for 2

2
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corresponding with a production level at the break-even point. If, however, 

d > 0 the maximum welfare is reached for the weight 2

2
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corresponding to nonnegative profits for both firms. 
 
Proof. 
From the general expression for the welfare - { }2** )()22()()22()( axdaxcaW +−−= - it 
follows that  
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Because x*(a) is a monotonically rising function with respect to a (Proposition 5.13 
(i)) the maximum of the function W(a) is reached for amax satisfying 
x*(amax) = (1− c)/(2+2d) (see also Proposition 5.8, Section 5.3). Using the expression 
for x*(a) the value amax can be solved easily. The expression for the welfare function 
equals 
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The concavity of the welfare function follows directly from 
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This proves part (i). For d < 0 the maximum welfare is reached for negative profits of 
both firms (see also the general result of Proposition 5.8, Section 5.3). Under the 
assumption that these firms will exit in the long run the (realistic) maximum welfare 
corresponds with zero profits and amax follows from Proposition 5.15 (ii). Concerning 
d > 0 the maximum welfare is reached while the profits are still nonnegative, so no 
extra restriction has to be imposed on amax. 
 [End of proof] 
 

We stress that, concerning the period of time for which loss-bearing firms still 
decide to stay in the market, the maximum welfare is reached for amax = (1-c)2/(1+d)2, 
so the expression for amax for d < 0 clearly rests on the assumption of exit of (one or) 
both firms after some time. We use two graphs to clarify the development of the 
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welfare as a percentage of the classical (equilibrium) welfare, corresponding with a 
rising weight attributed to the market share. Figure 5.8a shows the relative welfare 
level concerning a more efficient production technology with constant unit costs c=0.4 
whereas the development of the (relative) welfare, corresponding with a less efficient 
production technology (c=0.6), is displayed in Figure 5.8b. Because the production 
cost parameter d equals zero the maximum level of (relative) welfare is reached 
exactly for that specific weight amax corresponding with zero profits, i.e. production at 
the break-even point. For larger weights the final collapse of the social welfare - due 
to exit - is displayed in the graph. 
 

        
 
Fig. 5.8a W(a)/Wcl *100% for c=0.4,d=0.       Fig. 5.8b W(a)/Wcl *100% for c=0.6,d=0. 
 

Clearly the maximum welfare level (equal to 112.5%) for the efficient production 
technology is reached for amax = 0.36 for which 100% of the profit is sacrificed (see 
Fig. 5.7a). Corresponding with the less efficient production technology the maximum 
welfare (of again 112.5%) is reached for a smaller value amax = 0.16 (also 
corresponding with firm’s production level at the break-even point). Table 5.3 
contains numerical information about the relative welfare level for c=0.4 concerning 
both preference for market share and for size. The relative welfare level 
corresponding with preference for size is indicated by Ws(a)/Wcl *100%. Proposition 
5.15, part (iii), predicts that - corresponding to this more efficient production 
technology - profit is sacrificed completely for a smaller weight if the preference for 
size is concerned (as = 0.30 versus a = 0.36). This observation implies that the 
maximum welfare is reached also for a (somewhat) smaller weight (indicated by 
as,max, see Proposition 5.7,Section 5.3) if the firms’ love for size is considered.  
 
Table 5.3, welfare as a percentage of the classical welfare; c=0.4, d=0. 
 a=0.05 a=0.10 a=0.15 a=0.20 a=0.25 a=0.30 a=0.35 a=0.40 
[W(a)/Wcl] 
*100% 

104% 107% 109% 111% 112% 112% 112% W=0 
 

[Ws(a)/Wcl] 
*100% 

104% 107% 109% 111% 112% 113% W=0 W=0 
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Table 5.4 allows us to compare the relative welfare levels for both preference for 
market share and preference for size corresponding with a less efficient production 
technology reflected by c=0.6. Both maximizing values of a are smaller in 
comparison to the values related to lower unit production costs. Furthermore now the 
maximum welfare level is reached at a somewhat earlier stage - amax=0.16 - if 
preference for market share is concerned in comparison to the welfare maximizing 
weight - as,max=0.2 - attributed to preference for size.  
 
Table 5.4, welfare as a percentage of the classical welfare; c=0.6, d=0. 
 a=0.05 a=0.10 a=0.15 a=0.20 a=0.25 a=0.30 a=0.35 a=0.40 
[W(a)/Wcl] 
*100% 

108% 111% 112% W=0 W=0 W=0 W=0 W=0 
 

[Ws(a)/Wcl] 
*100% 

105% 109% 112% 113% W=0 W=0 W=0 W=0 

 
In the previous analysis, concerning the weights a for which profits are sacrificed 

completely or welfare is maximized, we made several distinctions. First we 
confronted an efficient production technology with an inefficient technology. And 
second, we considered preference for market share and preference for size as the 
non-profit parts of firms’ objectives, which provides a link between this chapter and 
Chapter 3 (concerning symmetric firms with respect to cost regimes and weights a).   
Besides these two major distinctions the production cost parameter d also plays a 
role, because the welfare-maximizing weight is restricted by nonnegative profit levels 
for d < 0. For nonnegative values of d the maximum welfare is reached 
corresponding to positive profits and the results of Proposition 5.16 and Proposition 

5.7, Section 5.3 reveal that 
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maximizing weights decrease if the unit costs c increase, similar to the results 
concerning d < 0. In general we can make the following statement related to firm’s 
technological efficiency: 
 
• The less efficient the production technology which firms control, the lower the 

weights corresponding to a complete sacrifice of the profits or related to a 
maximum welfare level. This relation between the firms’ efficiency and profit-
sacrificing or welfare-maximizing weights holds for both preferences for market 
share and size. 

 
For d < 0 welfare maximizing weights correspond with the weights concerning 

zero-profits. If we compare both welfare maximizing weights, corresponding with the 
preference for market share and preference for size, the result of Proposition 5.15 
(iii) reveals that as,max < amax for c < ½ − ¼ d.  
And for nonnegative values of the parameter d it holds that as,max < amax if c < ½ − ½ d, 
this latter relation also indicates a more efficient production technology. Therefore 
we can formulate the following general qualitative statement: 
 
• Concerning an efficient production technology the welfare maximizing weight 

corresponding to preference for size is lower than the welfare maximizing weight 
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corresponding to preference for market share. The opposite result holds for an 
inefficient production technology. 

 
Note that Table 5.3 and Table 5.4 show that the maximum relative welfare level 

is always about 112% and this phenomenon leads one to suspect that the maximum 
relative level seems to be independent of the precise nature of the non-profit motive 
(size or market share or any other motive) under consideration.  
Using the general expression for the welfare (Section 5.3) it can be proved that the 
maximum relative welfare level that can be reached for a certain value of the weight 
a is independent of the cost parameter c. It can be derived that (taking into account 
the restriction of nonnegative profits for d < 0) 

(i) for d > 0 
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max  , also a decreasing function in d. 

This interesting result means that for constant unit costs (d=0) the maximum 
relative welfare level that can be reached equals 112.5%. And if the parameter d 
decreases to − 0.1 this maximum relative welfare level rises somewhat to 114.3%. 
However - as the previous analysis reveals - the weight amax for which this maximum 
possible level can be reached, depends on the nature of the non-profit part of the 
firms’ objective functions and the efficiency of the production technology controlled 
by the firms.  

We conclude this section with some brief remarks. In the introduction we stated 
that a thorough examination of equilibrium profits and welfare - concerning two 
symmetric firms with respect to the weight a attributed to the non-profit part of the 
maximand - is justified by two main arguments. First a two-stage sequential game 
may lead to a heightening of both weights of the rivals, motivated by strategic 
advantages (examples of such two-stage games are the “delegation” games of 
Fershtman and Judd (1987) and others). This first argument assumes awareness of 
the strategic benefits of heightening the weight (by firms’ owners). Or to put it 
differently, such a game assumes highly rational behaviour. The second argument is 
supported by empirical findings that (the habit of) preference for (growth of) size or 
market share directs the firms’ (top-management) behaviour and may also lead to 
equal and higher values of the weight a. It is obvious that bonus practices that 
attribute significant weight to (growth of) market share or size influence top-
management’s behaviour. The analytical results of this section reveal that firms 
sacrifice profits, due to managerial inertia reflected in the level of preference for 
market share or size (sales). However the social welfare benefits from this behaviour 
and under the restriction that the weight a is not too large social welfare may reach a 
maximum level. If the managerial inertia becomes too large firms’ profits may be 
sacrificed completely and this implies a collapse of the welfare level in the long run. 

The interesting result that the less efficient the production technology which firms 
control is, the lower the weights corresponding to a complete sacrifice of the profits 
or related to a maximum welfare level are, can also be stated in other words. If unit 
production costs are high, as a result of an old-fashioned or inferior technology, profit 
(and welfare) may be sacrificed at an early stage of managerial inertia (reflected in 
the weight a).  
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If loss-bearing firms stay in the market for some period of time, the analysis of 
the multiple equilibria in this section reveals that strategic actions can still be useful 
to expel the rival from the market. Such an action can be looked upon as an 
advertising stunt with give-away prices with the intention to exhaust the competitor in 
order to achieve a monopoly position on the market. With the prospect to acquire a 
monopoly position, a firm may accept losses for some period of time. 
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6. Implications of asymmetry concerning preference for market share 
 

In this section we examine a second benchmark case of two asymmetrical firms 
concerning their preferences for market share. Firm 1’s preference for market share 
is reflected in the weight 01 >= aa  attributed to the market share in the maximand, 
whereas firm 2 behaves as a classical profit-maximizer, i.e. 02 =a . From the 
viewpoint of managers’ habits and (psychological) preference for market share, the 
two weights 01 >= aa  and 02 =a reflect the culture of both firms (“blueprint”, Hannan 
and Freeman (1984)). Concerning “delegation” games (Vickers (1985), Fershtman 
and Judd (1987), Sklivias (1987) and Basu (1995)) this asymmetrical case would 
correspond with a firm whose owner hires a manager, whereas the other firm’s 
owner doesn’t. Vickers (1985) analyses such an asymmetrical case and Basu (1995) 
also reflects on this specific case to explain Stackelberg leadership (in stage one of a 
three-stage sequential game owners may decide to hire a manager or not). Like in 
Section 5.5, we consider the weight 01 >= aa as a measure of firm 1’s managerial 
inertia and we do not limit our analysis to specific small values of a  (that would 
follow from a “delegation” game).  

In Section 5.5 the symmetry in preference for market share led to a stable (and 
symmetrical) Cournot-Nash equilibrium (Proposition 5.12). However the complete 
asymmetry in “love for market share” leads to an instable equilibrium for larger 
values of the weight a, which firm 1 attibutes to its market share. It appears that the 
equilibrium becomes unstable if the weight a  exceeds a specific value bifa , whereas 
the equilibrium is stable for bifaa < . The more complex dynamics corresponding to 
an instable Cournot-Nash equilibrium will be examined in Chapter 6. 

For bifaa <  the stability of the Cournot-Nash equilibrium - which is now 
asymmetric - also leads to interesting properties concerning both rivals’ profits and 
social welfare as well. The results of Section 5.5 reveal that complete symmetry in 
preference for market share of two firms leads to a sacrifice of profits (Proposition 
5.15 (i)) and possibly leads to a complete collapse of welfare caused by bankruptcy 
of the firms. However, Proposition 5.3 of Section 5.3 states that firm 1’s profit level 
exceeds the profit level of its rival if 21 aa > , for small 1a  and 2a . So the application of 
the general Proposition 5.3 implies that, if firm 2’s behaviour is classical, i.e. profit-
maximizing, firm 1 has an advantage in profits over its rival for small values of a. The 
analysis of this section will show that this advantage of the “market share loving” firm 
still holds for larger values of a and under broad conditions. Under the assumption 
that 02 =a  we will examine the existence of a profit maximizing and an advantage 
maximizing weight a, concerning firm 1. These considerations provide a link between 
this Section and Chapter 3 where the existence of a profit maximizing preference for 
size is studied. In this section the analysis is more general. Under the condition that 
firm 1’s equilibrium output increases with respect to the weight a - implying that the 
rival’s production level decreases - the existence of profit maximizing and advantage 
maximizing weights can be examined in general. Maximum profit and maximum 
advantage appear to occur for specific equilibrium supplies of firm 1 and 
specification of the non-profit part s of the maximand  reveals the corresponding 
levels of preference reflected by the weights. Furthermore we will analyze the 
existence of a welfare maximizing weight related to concave and convex production 
cost functions. Anticipating to the analysis we mention that if s equals the market 
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share and the production cost function is linear or concave, social welfare keeps 
increasing with respect to an increasing weight a for bifaa <<0 . 

Figure 5.9 supports the analysis of benchmark case 2. Because firm 2’s reaction 
function is linear, the co-ordinates of the Cournot-Nash equilibrium can be computed 
by using Cardan’s Method. For the application of this method we refer to Appendix 
5.3 where the functional expression for the equilibrium supply of firm 1, *

1x , is given 
for constant unit costs. These formula’s facilitate simulation experiments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.9  Reaction curves of a “market share loving” and a classical firm. 
 

Because 02 =a  and 01 >= aa  we use the notations )(1 ax∗  and )(2 ax∗  for the 
respective outputs of firm 1 and 2 in equilibrium. Clearly the graphs of the reaction 
curves reveal that - if a increases - )(1 ax∗  and )(2 ax∗  increase and decrease 
respectively. This monotonicity of )(1 ax∗  plays an important role in the forthcoming 
analysis. For small a the application of Proposition 5.1, Section 5.3 gives 
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This expression reveals that, for small a, )(1 ax∗  is a monotonically rising (and 
concave) function of a. The property of monotonicity can also be proved generally. 

Firm 2’s reaction function, )(
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Implicit differentiation with respect to the weight a of the expression 
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leads to: 
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This expression determines the conditions - which have to be imposed on the non-
profit part of the maximand - necessary for the monotonicity of )(*

1 ax  with respect to 
a. If s equals market share then, for 0*

2
*
1 >≥ xx , it holds that 0),( *

2
*
11

>xxsx , 
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2
*
111

<xxs xx  and 0),( *
2

*
121

≥xxs xx  (see Section 5.4). So for all 2
1−>d  it holds that 
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a
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2
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The preceding analysis implies that the function )(*
1 ax  is invertible. Furthermore 

firm 1’s equilibrium production is restricted by c−1  ( cax
a

−=
∞→

1)(*
1  lim ). If the Cournot-

Nash equilibrium is stable ( d
x
x 22

d
d

2

1 +< , where 
2

1

d
d
x
x equals the slope of firm 1’s 

reaction curve in the equilibrium) the following comparative statics concerning  
equilibrium profits, difference in profits and equilibrium welfare makes sense. 

Using the equilibrium relation )(
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expressions for the profits of both competitors and for the advantage )(aΠ∆  of firm 
1 over its rival: 
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Because )(*

1 ax  is a monotonically increasing function with respect to the weight a, 
the profit of the (classical) firm 2 decreases with respect to an increasing a but stays 
positive. 

The fact that these three expressions are quadratic functions of the equilibrium 
output *

1x of firm 1 makes it possible to derive general properties such as the 
existence of a profit-maximizing level of the production *

1x . Note that application of 
the general power series solution of the profits of Section 5.3 allows us to derive 
certain properties as well. If s equals the market share, application of the power 
series expression for the profit of firm 1 leads to 
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This approximation reveals the concave character of the profit function of firm 1 

with respect to the variable a and leads one to suspect that there may exist a profit-
maximizing weight a. However this expression for the profit only holds for small a’s 
and therefore no conclusion concerning a profit-maximizing weight a can be drawn. 
The properties of the profit and the advantage of firm 1 over its rival are summarized 
in Proposition 5.17. 
 
Proposition 5.17 (profit and advantage of firm 1). 
 
Under the assumption that firm 1 attributes a weight a to the non-profit part s of the 
objective function whereas firm 2 only maximizes its profit the following holds for 

bifaa <  (stable equilibrium): 

(i) For 54
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4
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Proof 
The expression for 1 Π  reveals that the profit always rises with respect to an 
increasing *

1x  if 
(a) 0142 2 ≤++ dd , or if 

(b) the profit-maximizing cc
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+= 1)1(
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1  (so it is never reached). 

Combining the conditions (a) and (b) leads to 54
1

4
3

2
1 +−≤<− d . From the 
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expression for Π∆  it follows that Π∆  is maximized if 
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d . This completes the proof of part (i). 
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 [End of proof] 
 

The results of Proposition 5.17 are quite detailed, because several intervals for 
the parameter d of the production cost function have been distinguished. 
Notwithstanding the fact that the expressions of Proposition 5.17 simplify for 
constant unit costs, i.e. 0=d , it is also useful to reflect on the results for other 
values of the parameter d. Part (i) reveals that, for 191.02

1 −≤<− d , both the profit 
1 Π  and the advantage over the rival of the “market-share loving” firm keep 

increasing with a further increasing weight a. Note that this interval of values of the 
parameter d corresponds with a concave production cost function, or in other words, 
it reflects a production technology with increasing returns to scale. So if the rival’s 
objective is to maximize its profit - referred to as “classical” behaviour - the more 
weight firm 1 attributes to the market share the more beneficial this is in two ways. 
Not only does the profit of the “market-share loving” firm increase, but the advantage 
over the competitor increases as well, if a increases. Managerial inertia, reflected in  
preference for market share pays off, whether this managerially inert firm is aware of 
these benefits or not. We also note that, from the standpoint of the “delegation” 
games (rational adaptation perspective in contrast to a firm’s “blueprint”) and in case 
of a concave production cost function, owners would write managers’ incentive 
contracts with an infinite weight attributed to market share. 

Furthermore if the weight a increases, the production of firm 1, )(*
1 ax , increases 

whereas the output level )(*
2 ax  of the rival decreases. By increasing its managerial 

inertia firm 1 becomes big and profitable (the case that firm 1 actually becomes a 
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Stackelberg leader will be part of the analysis of Chapter 6). However, the rival still 
has positive profits in spite of its smallness. The following graphical display with a 
concave production costs function - c=0.4 and d= − 0.2 - illustrates part (i) of 
Proposition 5.17. Both profits are expressed as a percentage of the classical profit 
(which equals (1− c)2(1+d)/(3+2d)2 in general). Clearly the profit of firm 1 keeps 
increasing with respect to an increasing weight a for bifaa < (which equals 2.02 in this 
case) and it reaches a level of about 160% of the classical profit. However rival’s 
profit falls quickly and about 4% of the classical profit is left corresponding to a=2.02.  
 

 
 
Fig. 5.10 (Π 1(a)/Πcl)*100% and (Π 2(a)/Πcl)*100%, c=0.4, d=-0.2 . 
 

For 191.0−>d  - so both concave and convex production cost functions are 
included - firm 1’s profit is maximized at the expense of the competitor for the 
specific weight pa  attributed to the market share. In other words, for a certain level 
of managerial inertia the profit of the “market-share loving” firm is maximized. If firm 
1 were aware of this beneficial outcome, it could choose its level of managerial 
inertia. We have to realize that such behaviour would be highly rational. 

It is very interesting that for a somewhat larger weight  the advantage (difference 
of the profits) of firm 1 over its rival is maximized. Then of course some of the 
(maximum) profit level of firm 1 is sacrificed. Under the assumption of rational 
behaviour, only keeping in mind one’s own profit may not be the most beneficial 
strategy. Note that for 0>d , corresponding with a production technology with 
decreasing returns to scale, a further increase of the weight a (beyond da ) may first 
lead to a negative Π∆  and then to a negative 1 Π , whereas 2 Π  always stays 
positive. 

If we assume the production cost parameter d to be zero, i.e. considering 
constant unit production costs c, the formulas of Proposition 5.17 (parts (ii) and (iii)) 
reveal a clear pattern in equilibrium outputs, profits and difference in profits. Of 
course the stability of the Cournot-Nash equilibrium is crucial concerning this 
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comparative statics. Therefore we also include the expression for the bifurcation 
point bifa , which will be proved in Chapter 6. The value for bifa  always exceeds da  
(and pa ), so comparative statics makes sense. For bifaa >  the equilibrium is no 
longer stable but this case will be analyzed separately in Chapter 6. The following 
table summarizes equilibrium quantities for constant unit costs c. 
 
Table 5.5  The effect of a on equilibrium quantities. 
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Before we present graphs of both competitors’ profits, expressed as a 
percentage of the classical profit (a = 0), for increasing values of a (and constant unit 
costs), we make some notes on the results of Table 5.5. 
 
• For the weight 2

16
9 )1( ca −=  the (maximum) profit of firm 1 equals 112.5% of the 

classical profit. The rival’s profit, however, equals only 56.3% of the classical 
profit. Beside this advantage the profitable firm 1 is twice as large as its rival 
indicated by *

1x  and *
2x  corresponding to paa = . Firm 1 may become a market 

leader. Interesting detail is that firm 1’s maximum profit equals the profit (per firm) 
if both firms were to collude and were to share the monopoly profit of 2

4
1 )1( c− . 

But now, due to the weight paa =  attributed to the market share, firm1’s profit is 
twice as large as the rival’s profit. 

• For the weight 2
12
25 )1( ca −=  the profit of firm 1 again equals the classical profit, 

but the rival’s profit is only 25.0% of the classical profit. By sacrificing some profit 
firm 1’s advantage over its rival has become larger and the market position of 
firm 1 has become stronger, because now *

2
*
1 4xx = . Note that, just before the 

equilibrium becomes unstable, firm 1’s profit is about 59% ( 169
99= ) of the classical 

profit whereas the rival’s profit equals 5% of the classical profit. Now *
2

*
1 11xx = . 

 
The fact that firm 1 maximizes its profit while its maximand consists of a profit and a 
non-profit part as well, seems to be quite paradoxical. Apparently the right level of 
managerial inertia of firm 1 causes the advantages, given the classical, profit 
maximizing, behaviour of firm 2. Without assuming highly rational behaviour of firm 
1, the beneficial position of this firm, due to managerial inertia, increases the 
probability of surviving in the market. 

In their publication “Toward a game theory of organizational ecology” Van 
Witteloostuijn, Boone and Van Lier (2003) state that: 
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“From an Organizational Ecology perspective a may be the result of imprinted 
routines, rules and procedures reflected in an organizational culture that ‘urges’ 
management to seek growth [here market-share; added]... Then population 
dynamics will take care of the selection of firms with fitting a’s. So the profit-
maximization paradox is solved by Darwinian market selection, without the relatively 
flexible or inert firms being able to adapt their imprinted a’s to environmental 
contingencies.” 

From the previous analysis it follows that a firm with preference for market share 
has benefits over its classical rival. The Darwinian market selection mechanism 
benefits firms which possess a certain level of managerial inertia, whether these 
firms display highly rational behaviour or not. 

The following graph displays the rivals’ profits, for constant unit production costs 
c = 0.4 for an increasing weight a ( bifaa < ). To enable a comparison with the 
classical profit ( 2

9
1 )1( c−= for constant unit costs), again both profits are expressed as 

a percentage of this specific profit . 
 

 
 
Fig. 5.11  (Π 1(a)/Πcl)*100% and (Π 2(a)/Πcl)*100%, c=0.4, d=0 . 
 
For 0,4.0 == dc   the profit-maximizing weight of firm 1 equals 2025.0=pa , which is 
nicely illustrated by the graph. Because 2 Π  falls rather strongly with respect to an 
increasing a, Π∆  increases further until the advantage-maximizing weight 

7500.0=pa  is reached (of course this phenomenon cannot be observed easily from 
the graph). Note that just before the bifurcation occurs ( 067.3=bifa ) the profit of firm 
1 is still nearly 60% of the classical profit. 

Proposition 5.17 also reveals information concerning the influence of the 

production cost parameter d on the weights pa  and da  and on the ratios 
cl

pa
Π

Π )(1 
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and 
cl

da
Π

Π )(1 

 (for 191.054
1

4
3 −≈+−>d ). It is clear that - if c decreases, reflecting a 

more efficient production process - the weights pa  and da  increase. The expressions 
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Table 5.6 summarizes some results for 1.0−=d  (a concave production cost 
function), 0=d  (constant unit costs) and 1.0=d  (a convex production cost function). 
 
Table 5.6.   The influence of d on ap, ad and profit-ratios. 
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d = − 0.1 1.29 (1 − c)2 1.25 4.10 4.24 (1 − c)2 1.17 12.57 
d = 0 0.56 (1 − c)2 1.13 2.00 2.08 (1 − c)2 1.00 4.00 
d = 0.1 0.34 (1 − c)2 1.07 1.52 1.38 (1 − c)2 0.94 2.43 
 

Constants are rounded to two decimals. For instance note that the ratio 
cl
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increases if d decreases and corresponding to 1.0−=d  the maximum profit of the 
“market-share loving” firm occurs for 2)1(29.1 cap −=  and is 25% higher than the 
classical profit. In general it holds that 
 
• ap and ad increase if c decreases or d decreases, so for a more efficient 

production technology - reflected in a decreasing c or a more concave cost 
function - these weights both increase. 

• The ratios 
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Π
Π  are independent of c and 

increase if d decreases. 
 

To examine the influence of the weight a on the social welfare we have to reflect 
on both components, total profit of both competitors and consumer surplus. 
Consideration of the results of Table 5.5, concerning the profits, leads one to 
suspect that )()( 21 aa   ΠΠ +  decreases if a increases (for a = 0 total profits equal 

2
9
2 )1( c−  whereas for a = abif  this total profit is 2

169
12 )1( c− ). The expression for 

)()( 21 aa   ΠΠ +  can be written as 
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and total profit clearly decreases for a linear production cost function if the weight a 
increases, because the output *

1x  is a monotonically increasing function of the 
variable a (it can be derived that for 54

1
4
3 +−≥d  the total profit always decreases 

with respect to an increasing weight a, whereas it reaches a minimum for 
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54
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4
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2
1 +−<<− d ). So, generally speaking, the first “component” of the social 

welfare falls, if the weight which firm 1 attributes to its market share rises. Total 
output however increases with respect to an increasing a because 
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Clearly the consumer surplus, 2*
2

*
12

1 )}]({)}([{ axaxCS += , increases because of an 
ever more abundant supply of products at a falling price. A detailed examination of 
the social welfare leads to the following proposition: 
 
Proposition 5.18 (social welfare). 
 
Under the assumption that firm 1 attributes a weight a to its market share whereas 
firm 2 only maximizes its profit the following holds for bifaa <  (stable equilibrium): 

(i) For 0≤d  (so including linear production costs) the welfare increases for all    
weights 0≥a , with respect to the weight a. 

(ii) For 0>d  the welfare is maximized for 
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Proof 

Using the linear relation )(
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quadratic form (in *
1x ) for the welfare: 

])1)(23()()164)(1(2)}(){114208([
)1(8

1)( 2*
1

22*
1

23
2 cdaxddcaxddd

d
aW −++++−++++−

+
=

. 
The coefficient of 2*
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implies an increasing welfare with respect to an increasing a. 
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Chapter 5 Cournot Competition with Non-Profit Maximizing Objectives in General 
    and Preference for Market Share in Particular 

197 

This proves part (i). 
For d > 0 the maximum is reached for the value aw satisfying 

)114208(
)164()1()( 23

2
*
1 +++

++−=
ddd

ddcax w  and this weight can be computed by substituting 

the welfare-maximizing value of *
1x  (and the corresponding *

2x ) into the equation of 
the reaction curve of firm 1. 
 [End of proof] 
 

For linear costs the welfare can be written as 
)]()1)][(()1(3[)( *

1
*
18

1 axcaxcaW +−−−=  and the proof that W rises with respect to a 
simplifies by observing that the maximum value of the welfare would occur for 

cax −= 1)(*
1 .The result of Proposition 5.18 supports the intuition that with a less 

efficient production technology - reflected by    d > 0 (decreasing returns to scale) - 
welfare may decrease for a > aw. For the sake of completeness we mention that       
ap < ad < aw for )207.0(20 2

1
2
1 ≈+−<<  d . 

We conclude this welfare analysis with two graphical illustrations of the welfare 
function with respect to an increasing weight a. The first graph corresponds to 
constant unit production costs - c = 0.4 - and illustrates part (i) of Proposition 5.18: 
welfare always increases if the production cost function is linear or concave. We 
express the welfare as a percentage of the classical welfare (which equals              
(1-c)2(4+2d)/(3+2d)2) to make a comparison possible. 
 

 
 
Fig. 5.12   The welfare for c = 0.4, d = 0 as a function of a 
 

Note that, just before the weight a equals abif = 3.07, welfare has increased to 
about 112% of the classical welfare. For d > 0, as we have seen, the welfare reaches 
a maximum Wmax and it appears that Wmax/Wcl decreases if d increases. The following 
graphical display , with c = 0.4 and d = 0.1, illustrates both phenomena. Again welfare 
is expressed as a percentage of the classical welfare. Maximum welfare is reached 
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for aw = 0.75 (in two decimals) and Wmax equals 106.6% of the classical welfare. For a 
> aw welfare decreases slowly but still equals 104.3% of Wcl for a = 3 (abif = 3.66).  
 

 
 
Fig. 5.13   The welfare for c = 0.4, d = 0.1 as a function of a 
 

The analysis of this section reveals the existence of a profit-maximizing weight ap 
and an advantage-maximizing weight ad for firm 1 and also shows the existence of a 
welfare-maximizing weight aw for d > 0. These phenomena occur before the 
bifurcation takes place. More complex dynamics will be the subject of Chapter 6. 
Benchmark case 2, with one classical profit-maximizer, may lead to interesting 
dynamical phenomena if the weight a exceeds abif. 
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7. Appraisal 
 

One of the  main conclusions of this Chapter is that a managerially inert firm - 
reflected by its weight attributed to market share - is more profitable than its flexible 
rival. The general analysis of Section 5.3 reveals that this result even holds for a 
broad class of “status functions” for small values of both competitors’ levels of 
preference (for the non-profit part of their objective function). If one of the firms is a 
classical profit-maximizer, there exists a level of preference for the “market share 
loving” competitor which maximizes the profit of this incumbent firm. We may look 
upon this paradoxical result - the firm that maximizes a (weighted) combination of 
profit and market share actually maximizes its profit in a competitive setting - from 
two poins of view. From the Organizational Ecology perspective the level of 
managerial inertia may be the result of imprinted routines, rules en procedures in an 
organizational culture and apparently selection favors firms with a specific level of 
preference for market share in a Darwinian selection process. Thus our analytical 
results support Hannan and Freeman’s (1984) inertia hypothesis. However from the 
standpoint of firms’ stategic consciousness - the perspective of Industrial 
Organization - a firm may use its managerial inertia as a strategic weapon in direct 
competition. By manipulating its weight attributed to market share a firm may 
outcompete its rival. 

An a-setting game of the incumbent competitors may result in symmetry of both 
rivals with respect to their level of preference for market share and the analysis of 
Section 5.5 shows that this symmetry leads to a sacrifice of profits. Management’s 
behaviour may even lead to losses and firms’ bancruptcy in this symmetrical case. If 
the weight attributed to market share is not to heigh - then, both rivals are still 
profitable - social welfare benefits from managerial inertia. A heigher level of inertia 
may lead to give away prices of both rivals’ products thus implying a “war of 
attrition”. Naturally social welfare partially collapses if one of the firms is forced to 
exit, whereas the other firm becomes a monopolist. 

Of course our present Cournot competition model, including preference for 
market share, doesn’t take into account differences in the efficiency of both firms’ 
production technologies. Therefore the question whether managerial inertia may 
compensate the rival’s lower production costs (like in Chapter 3) is an important 
issue for future research. Also the effect of a business cycle on both firms’ profits 
and on social welfare - an important part of Chapter 4’s examinations - is yet 
unanswered. Furthermore our model includes only two competitors, so an extension 
to 3 or more rivals will be a logical next step, including stability issues. Empirical 
research reveals that firms may use product differentiation (heterogeneity) to 
alleviate direct competition (Swaminathan and Delacroix (1991)); the influence of 
product heterogeneity is yet another refinement of the basic model.  

Our basic game theoretical model, including preference for market share, may 
be considered as an promising first stepping stone to model a more complex market 
structure. Extensions of these mathematical models may contribute to the insights of 
Organizational Ecology and Industrial Organization. Furthermore we realize that 
empirical research concerning the impact of management compensation schemes 
and incentive systems on the behaviour of (top) management are also of significant 
importance. 
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Appendix 5.1 
Conditions for the concavity of the welfare function. 
 
In order to make a general statement on the concavity of the welfare function in a 
neighbourhood of (a1,a2)=(0,0) we have to rewrite the second order power series 
approximation of Proposition 5.4 in a matrix-vector notation. 
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The first order part reveals that, if 0
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a
W  in a1=a2=0 (as we already used in 

Section 5.3) which indicates that the welfare increases if a1 or a2 increases. And the 
second order part (with the symmetric matrix) reveals that - under the assumption of 
convergence of the power series - the second order partial derivatives of the welfare 
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∂  and  at (a1,a2)=(0,0)  equal 2M11, 2M12 and 2M22 

respectively. Concavity in a neighbourhood of (a1,a2)=(0,0) is guaranteed if and only 
if the following two conditions hold 
 

M11 < 0  and  M11.M22 − {M12}2 > 0 (A2)  
 
Because M11=M22 the second condition equals {M11+M12}.{M11 − M12} > 0. 
Substitution of the expressions for M11 and M12 leads to the following proposition. 
 
Proposition. 
 
The welfare function W(a1,a2) is concave in a neighbourhood of (a1,a2)=(0,0) if and 
only if the following two conditions hold (both arguments of all partial derivatives 
equal (1− c)/(3+2d): 
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 (A3) 
 
These conditions are satisfied if s equals market share and unit costs are constant.
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Appendix 5.2 
Derivation of the formula for x1,t = G(x2,t-1|a1). 
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leads to the equation z3 + pz + q = 0, from which the variable z has to be solved. This 
latter equation can be solved using Cardan’s Method (see Teller (1965)). If the 
discriminant D defined as D = (q/2)2 + (p/3)3 is nonnegative the equation                   

z3 + pz + q = 0 possesses the real solution 33
22 DqDqz −−++−= . 

Using the tranformation formulas (ii) and (iii) we obtain the following expression for 
the discriminant D: 
 

[ ]











+

+
++−

+
= −

−−
1212

3
12

2
121

)1(27
)21(1

)44( ,t
,t,t xa

d
xdc

d
xa

D  (A5) 

 
It clearly holds that D > 0 for x2,t-1 > 0, a1 > 0 and c < 1, d > − 1/2. The condition for the 
real solution is satisfied and the expression for z can be used. Finally using the 
transformation formulas (i), (ii) and (iii) the expression x1,t = G(x2,t-1|a1) equals 
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Appendix 5.3 
Equilibrium outputs concerning benchmark case 2, i.e. a1=a, a2=0. 
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Using Cardan’s Method (Teller (1965)) the equilibrium output *
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(this procedure can be easily implemented in a spread sheet programme) 
For linear costs (d=0) the solution *
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CHAPTER 6 
 
PREFERENCE FOR MARKET SHARE AND COMPLICATED DYNAMICS 
SOME REFLECTIONS ON MODEL MODIFICATIONS AND STABILITY 
 
 
1. Introduction 
 

Besides the examination of the properties of the reaction curves related to the 
weight attributed to market share, the analysis of Chapter 5 focuses on two 
benchmark cases. Benchmark case 1 (Section 5.5) - concerning complete symmetry 
with respect to preference for market share - always leads to a stable Cournot-Nash 
equilibrium, whereas benchmark case 2 (Section 5.6) - one of the incumbent firms is 
a (classical) profit maximizer and the other is a “market share loving” firm - results in 
a stable equilibrium for bifaa < . The stability of the Cournot-Nash equilibrium is of 
course crucial in the examination of the implications for profits and social welfare. 
The comparative statica of Chapter 5 leads to interesting results concerning these 
two benchmark cases. Yet the analysis of benchmark case 2 is not complete, 
because the equilibrium is no longer stable for bifaa >  under the assumption of naïve 
(myopic) expectations of both rivals (i.e. 2,1,1,, == − ixx ti

e
ti  ). In the first place this 

chapter deals with unstable equilibria and the resulting more complicated dynamics. 
Clearly an asymmetry of the two competing firms, concerning the weight attributed to 
the market share is needed to obtain unstable equilibria. We will show that 
benchmark case 2 displays a richness of dynamical phenomena provided that the 
“market share loving” firm’s preference for market share is large enough. Such large 
levels of preference for market share may be part of a firm’s “blueprint” and cannot 
be changed quickly enough in comparison to environmental turbulence. Even if a firm 
(the owner) would act highly rational (“delegation” games), the analysis of Section 5.6 
(p. 191) reveals that, in case of a strongly concave production cost function, the 
weight a attributed to market share in managers’ incentive contracts may be large. 
After all, in that specific case, the profits of the “market share loving” firm always 
increase w.r.t. an increasing weight a. 

Computer simulations reveal that under naïve expectations, for bifaa >  (see the 
expression of Table 5.5, which anticipates the analysis of this chapter) cycles with 
period two occur in the supply of both firms. However for small linear production 
costs - corresponding with a more efficient production technology - it appears that 
periodic output cycles with all sorts of periods are also possible These periodic 
supply paths are related to the Theorem of Sarkovskii (1964), which is not widely 
known (see also Devaney (1989)). In spite of the analytical complexity of the 
functional form of the reaction curve (Appendix 5.2) an attempt will be made to clarify 
these dynamical phenomena. Yet the richness of dynamical phenomena, concerning 
benchmark case 2, is still not exhausted. Under the assumption of alternately 
reacting competitors (and myopic expectations) chaotic supply patterns are also 
possible. Chaotic supply regimes can be defined loosely as completely irregular and 
aperiodic outputs of both rivals in consecutive time periods. Li and Yorke (1975) 
provide a theorem to prove the existence of a chaotic set which can be applied to 
unimodal functions. Because we have the analytical description of the reaction curve 
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at our disposal, the analysis can be supported by simulation experiments to 
demonstrate some salient features of chaotic regimes. 

In this chapter we will also reflect on modifications of the model of alternately 
reacting rivals. First we will examine the dynamics of the model concerning 
simultaneously reacting firms (under myopic expectations) and we will demonstrate 
that this slight modification has a significant influence on supply paths and average 
profits of both incumbent rivals. Fudenberg and Tirole (1991) note that the condition 
for stability is the same for two firms, whether they react alternately or simultaneously 
to their rival’s most recent outputs (so-called naïve expectations). However, as we 
will illustrate, the periodicity of an output path resulting from instability does depend 
on the assumption of either an alternate or a simultaneous reaction pattern of the 
competing firms. Even the number of stable cycles changes and simulations reveal 
that the cycle to which an initial output pair is attracted displays a sensitive 
dependence on these initial supplies. Second we will reflect on the adjustment 
process in the supply, because in the case of instability ( bifaa > ) production displays 
a strongly fluctuating pattern. Here we note that, under the assumption that a change 
in supply may bring extra adjustment costs (see also Chapter 4), these extra costs 
may have a stabilizing influence on the equilibrium, because of the existence of an 
inertia interval in both reaction curves. In this Chapter we will not study these inertia 
intervals, but leave this issue for future research. 

We will examine the stability of the Cournot-Nash equilibrium in case both firms 
build a weighted average between their previous output 1, −tix  and their output 
resulting from the reaction on the rival )( 1, −tj

i xR  and prove that stability conditions are 
broader in comparison with the condition bifaa > . Bischi and Kopel (2001) examine 
the complex dynamical structures in the case of two quadratic reaction functions and 
also use the assumption of such adaptive expectations (this thorough study focuses 
on equilibrium selection by examining the basins of attraction of two stable equilibria). 

Finally we will examine a model concerning Stackelberg leadership of the “market 
share loving” firm. This leading firm, then, maximizes its utility function using the 
knowledge that its rival (the follower) reacts classically. The reason that we also 
examine this model is the fact that the analysis of Chapter 5, Section 5.6 reveals that 
the size of the firm with preference for market share is much larger than the rival’s 
size. 

The main message of this chapter, dedicated to the description and analysis of 
more complicated dynamical phenomena, is that a relatively simple assumption - 
namely the “love for market share” - may imply complicated dynamics. Even if one 
firm still behaves classically and maximizes its profit, the presence of a rival with 
preference for market share leads to complicated dynamical phenomena which at the 
very least can be considered thought-provoking. 
 

How is this chapter organized? 
Section 6.2 deals with benchmark case 2 concerning alternate reactions of both 
competitors. First an expression for the specific weight bifa , for which the transition 
from a (local) stable into an unstable equilibrium takes place, is derived for constant 
unit costs (and under myopic expectations). Then, using the analytical description of 
the compound reaction curve - which corresponds with alternately reacting firms - the 
dynamical behaviour for bifaa >  is characterized and clarified. Simulation 
experiments support the analysis. Section 6.3 deals with small unit costs. Then,  
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periodic output cycles with a higher periodicity are related to Sarkovskii’s Theorem 
(1964) and the Theorem of Li and Yorke (1975).  

In Section 6.4 the dynamical behaviour will be examined considering 
simultaneously reacting firms (and myopic expectations). This section focuses on the 
differences between simultaneously and alternately reacting competitors including 
some properties of average profits. Furthermore we examine the stability of a model 
in which both firms build a weighted average between their previous output quantity 

1, −tix  and their ‘Best Reply’ output quantity )( 1, −tj
i xR . We also provide the results of 

some computer experiments, which illustrates complicated dynamical phenomena. 
Section 6.5 deals with Stackelberg leadership of the “market share loving” firm. 

We reflect on the differences between this model and the Cournot model of Section 
5.6, concerning supplies and profits of both competitors. One of the results is that the 
Stackelberg leader may force its rival to exit and thus acquires a monopolistic market 
position. Section 6.6 concludes with a short appraisal. 
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2. Benchmark case 2: dynamical behaviour in case of instability 
 

It is plausible that the Cournot-Nash equilibrium ),( *
2

*
1 xx (under the assumption of 

naïve expectations i.e.   , 2,11,, == − ixx ti
e

ti ) loses its stability which is determined by the 
eigenvalues of the linearized system of the following system of non-linear first-order 
difference equations in the neighbourhood of ),( *

2
*
1 xx  
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x  are the slopes of the reaction curves in the equilibrium of firm 1 and 

firm 2 respectively. Local stability is guaranteed if and only if the absolute value of 
both eigenvalues (of the linearized system) is smaller than 1 (see the proof of 

Proposition 5.2 of Section 5.3). For larger values of the weight a, 
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x  is positive and 

it can be made arbitrarily large by increasing the preference for market share. 
Loosely speaking the slope of the reaction curve of firm 1 in equilibrium lies between 
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made arbitrarily large by increasing the weight a.  

From the expression for both eigenvalues (which are complex if 0
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x
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d
d ) it follows 

that the equilibrium is unstable (a so-called negative attractor) for bifaa >  
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x
x  at the equilibrium (for d
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d
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If the firms react alternately on the rival’s most recent output we obtain (for linear 
costs) 
 

)|)1(( 1,12
1

2
1

1,1 axcGx tt −+ −−= . (6.2) 
 
If the slope of this compound curve is smaller than −1 at the fixed point 
(=equilibrium’s first co-ordinate *

1x ), this fixed point is unstable (repelling), which 

again leads to the condition 2
d
d

2

1 >
x
x  by using the chain rule (see also Fudenberg and 

Tirole (1991), p. 25). We mention that, corresponding to simultaneously reactions of 
both firms, both eigenvalues of the linearized system are complex. The stable or 
unstable equilibrium is a so-called focal point. In case of instability each (small) 
disturbance of the equilibrium is (in absolute value) enlarged in each subsequent 
time period and the output path of both rivals follows an outward spiral movement. 
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We now examine the case of alternately reacting firms (although the size of the 
firm with preference for market share may be much larger than its competitor’s size, 
we consider Cournot competition and reserve the case of Stackelberg leadership to 
Section 6.5). Before we derive an expression for bifa  (for linear costs) we display a 
graph of the outputs of both firms corresponding with an unstable equilbrium. Unit 
production costs equal c = 0.4 and the weight a equals 4.0  ( 07.3=> bifaa , Table 5.5). 
This simulation experiment covers 50 periods (t = 0, 1, ..., 49) in which firm 1 and its 
rival react consecutively. Firm 1 (in period 0) starts with an output value of 0.52 close 
to the (first co-ordinate of the) equilibrium 523.0*

1 =x  (in 3 decimals). (The reactions of 
firm 1 are computed using the expression of the reaction function )( 1,2,1 −= tt xGx  of 
Appendix 5.2 for c = 0.4, d=0 and a = 4.0). 
 

 
 
Fig. 6.1  The occurrence of cycles with period 2, c=0.4, a=4.0 
 

We observe that the instability of the equilibrium (=(0.523, 0.038)) leads, after 
some periods, to a new sort of “steady state”, which consists of cycles in the output of 
both firms of period 2. In period 20 the respective outputs of firm 1 and firm 2 equal 
0.3 and 0.15. In fact in all even-numbered periods the supply of firm 1 (market leader) 
equals the monopoly production, whereas firm 2 reacts on this rival’s output. 
However in the odd-numbered periods firm 1’s supply equals 0.671 (in three 
decimals) - which equals )40.0|15.0( =aG  - and because this supply exceeds 0.6 firm 
2 reacts with output zero. Note that the total output per period displays a cycle as 
well; in even- and odd-numbered periods total supply equals 0.45 and 0.671 
respectively. In other words, caused by the more extreme preference for market 
share of one firm, this system generates a fluctuating output pattern on the market, 
i.e. an endogenous business cycle. These interesting dynamical phenomena, which 
are nicely illustrated by Fig. 6.1 appear to hold in general for 2.0≥>    and caa bif . To 
clarify the occurrence of period-2-cycles the first step is to derive an expression for 
the so-called bifurcation value bifa  of the weight a, corresponding to the transition 
from a stable into an unstable equilibrium. 



Chapter 6 Preference for Market Share and Complicated Dynamics 
                 Some Reflections on Model Modifications and Stability 

208 

Proposition 6.1 (the bifurcation point bifa  for linear costs). 
 
Consider benchmark case 2, i.e. 021 == aaa   and  . For linear costs and under 
myopic expectations the transition from a stable into an unstable equilibrium occurs 
for 2

169
1440 )1( cabif −= . 

 
Proof 
 
If we express *

1x  as a fraction of )1( c− , i.e. )1(*
1 cfx −⋅=  with 13

1 <≤ f , it follows that 
(by the equation of the reaction curve of firm 2) )1)(1(2

1*
2 cfx −−=  and total 

production equals )1)(1(2
1*

2
*
1 cfxx −+=+ . The corresponding weight a -  which is one-

to-one related to *
1x  - follows from the equation of the reaction curve of firm 1, 

0
)(

21 2*
2

*
1

*
2*

2
*
1 =

+
+−−−

xx
xaxxc , 

and equals 2
2

)1(
)1(4

)1)(13( c
f

ffa −
−

+−= . 

The slope 
2

1

d
d
x
x  at the equilibrium equals (see Proposition 5.10, Section 5.4) 

)1(4
)35(

2)(2
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d
d
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*
1

*
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),(2
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*
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*
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x

xx −
−=
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Note that this slope is independent of the parameter c and increases with respect to 
an increasing f. Because f determines *

1x  uniquely and a is one-to-one related to *
1x  

the f-value of 13
11  which satisfies 2

d
d

),(2

1

*
2

*
1

=






xx
x
x  leads to 

))1()1( 13
11*

1
2

169
1440 cxcabif −=−=   (and  

[End of proof] 
 

Note that bifa  increases with respect to a decreasing c, corresponding with a more 
efficient production technology. Using the same method of proof it can be derived 
that bifa  is also proportional to 2)1( c−  for 0≠d , only the factor (which equals about 
8.52 for linear production costs) changes. In Table 6.1 some of these factors related 
to d are presented, rounded to two decimals. 
 
Table 6.1    abif = f(d)⋅(1-c)2 for several values of d 
 

d -0.2 -0.1 0 0.1 0.2 
f(d) 5.61 7.00 8.52 10.17 11.95 

 
The simulation experiment illustrated by Figure 6.1 deals with alternately reacting 
firms. The explanation of the existence of an attracting orbit with period 2 has to be 
found in the functional form of the compound reaction curve Rc defined by (with a1=a 
and a2=0) 
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)|)0|((:)0,|( 1
21

1 axRRaxRc =  . (6.3) 
 
We used this notation also in Section 5.4 (Proposition 5.9), but for the sake of clarity 
we now leave out the time subscripts. The definition of Rc reveals its composition: 
firm 2 reacts on the supply of firm 1 by )0|( 1

2
2 xRx =  and firm 1 reacts on the output 

2x  by )|( 2
1

1 axRx = . Because firm 2 is a classical profit-maximizer (a2=0) its reaction 
function is simplified by }0;)1(max{)( 12

1
2
1

1
2 xcxR −−=  (for linear costs). Therefore it 

suffices to examine the compound curve 
 

)|}0);1((max{:)0,|( 12
11

1 axcRaxRc −−=  (6.4) 
 
Two graphs illustrate the development of the curve Rc corresponding to an increasing 
weight a for constant unit costs c=0.4. 
 

          
 
Fig. 6.2a Rc for c=0.4, a=2.5                    Fig. 6.2b Rc for c=0.4, a=4.0 
 

Computation shows that the fixed point (equilibrium) shifts from 494.0*
1 =x  to 

523.0*
1 =x  for a = 2.5 and 4.0 respectively. The slopes in the fixed points shift from 

−0.794 to −1.335 indicating the stability and the instability of the fixed point for a = 2.5 
and 4.0 respectively (note that now the instability of the fixed point corresponds with a 
slope smaller than −1). Furthermore we observe that, for a = 4.0, the compound 
reaction curve consists of three qualitatively differing parts. We now describe the 
functional form of cR  analytically and support the analysis using Figure 6.3 for linear 
production costs. The intersection point of the reaction curve with the restriction (see 
Proposition 5.9, Section 5.4) plays an important role. 
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Fig. 6.3  The two reaction curves for (c+1)/(a+1) < ½(1-c) . 
 
Proposition 6.2 (description of cR  for linear costs). 
 

For 
c
ca

−
+>

1
31  the compound reaction curve cR , corresponding with alternate 

reactions of both firms for a1 = a, a2 = 0, equals 















≤≤−−
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+
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1
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a
ccaxxci
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  ,                  
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 (6.5) 

If 
c
ca

−
+≤

1
31  the part described in (i) does not exist. 

 
Proof 

If )1(
1
1

2
1 c

a
c −<

+
+  then )|)1(()0,|( 12

11
1 axcRaxRc −−=   is a linear function for 

1
31)1(0 1 +

−−−<≤
a

ccax  (see Figure 6.3) with slope 2
1  whereas 

)1()1(1)0,|0( 2
1

2
1 ccaRc +=−−= . 

For cx
a

cca −<≤
+

−−− 1
1

31)1(
1 , )|)1(( 12

11 axcR −−  equals the non-linear expression 

)|)1(( 12
1 axcG −−  (see Appendix 5.2), whereas for 11 1 ≤≤− xc , firm 2 reacts with 

output zero whereupon firm 1 reacts with its monopoly output )1(2
1 c− . 

[End of proof] 
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We refer to the Appendix 6.1 for a description of the compound reaction curve for 
non-linear production cost functions ( 0≠d ). Note that the first part of the compound 
reaction function is linear with a slope equal to ½ and the third part is a constant 
function equal to the monopoly output of firm 1.  
The derivation of the special weight bifa , corresponding to the transition from a stable 
into an unstable equilibrium and the description of the compound reaction function   

)0,|( 1 axRc  allow us to clarify the occurrence of a (stable) cycle with period two under 
certain conditions for the unit production costs. Using Figure 6.2b it is obvious that, 
starting with a small disturbance from the (unstable) repelling fixed point, after a few 
iterations (determined by ,...2,1,0),0,|( ,11,1 ==+ taxRx t

c
t  for ) the value tx ,1  becomes  

½(1-c), the monopoly output of firm 1. Clearly firm 2’s reaction on this monopoly 
output equals )1()]1(1[ 4

1
2
1

2
1 ccc −=−−− . The next reaction of firm 1 then equals 

)|)1(( 4
11 acR − and if it holds that cacR −≥− 1)|)1(( 4

11 firm 2’s next reaction will be a 
zero output whereupon firm 1 reacts again with its monopoly output. The whole 
(stable) cycle starts again and again consisting of the consecutive supplies 

)1(),1( 4
1

22
1

1 cxcx −=−=  in “period t” and 0),|)1(( 24
11

1 =−= xacRx in the next period. 
Such a cycle of period 2 can be observed in Figure 6.1, where after an initial period a 
stable cycle in outputs occurs. However the condition cacR −≥− 1)|)1(( 4

11 is not 
always satisfied for 10 <<> caa bif  and so this condition has to be examined 
thoroughly. Before we present Proposition 6.2, concerning the existence of a cycle of 
period 2 under certain (cost) conditions, we prepare the proof of this proposition by 
making some notes on the examination of the condition, illustrated by Figure 6.4 
(which corresponds to the first note). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.4  Cycle for abif < a < (5c+3)/(1-c). 
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• If the second co-ordinate of the intersection point of firm 1’s reaction curve 

with the restriction - which equals 
)1(
)1("

2 +
+=

a
cx  - exceeds )1(4

1 c− , the reaction 

of firm 1 on firm 2’s supply of )1(4
1 c− equals )|)1(( 4

1 acG − (see Appendix 5.2). 

The corresponding restriction for the weight a is 
)1(
)35(

c
ca
−
+< . Obviously this 

case is only of importance if 
)1(
)35()1( 2

169
1440

c
ccabif −

+<−=  which is equivalent to 

1217.0 << c . 
• If the second co-ordinate of the intersection point doesn’t exceed )1(4

1 c−  firm 
1’s reaction will be perfect accommodation i.e. 

4
3

4
1

4
1

4
11 )1(1)|)1(( +=−−=− ccacR .The condition for the parameter a equals 

)1(
)35(

c
ca
−
+≥ . For 217.00 ≤< c it holds that 

)1(
)35(

c
cabif −

+≥  so for this (smaller) unit 

costs we only deal with the described (perfect) accommodation of firm 1 if the 
equilibrium is unstable. 

 
Proposition 6.3 (dynamical phenomena for 12.0 <≤> caa bif  and ) 
 
Consider benchmark case 2 for linear production costs, i.e. aad == 1,0  and 02 =a , 
with alternately reacting firms. Under the assumption of an unstable equilibrium 
- 2

169
1440 )1( caa bif −=> - and concerning unit production costs with 12.0 <≤ c  the 

following  holds: 
 
There exists a stable (and globally attracting) output cycle with period 2. In two 
consecutive periods the supplies of both firms equal )1(),1( 4

1
22

1
1 cxcx −=−=  and 

0),|)1(( 24
11

1 =−= xacRx   respectively. For 
)1(
)35(

c
ca
−
+<   )|)1(()|)1(( 4

1
4
11 acGacR −=−  

(Appendix 5.2) and otherwise 4
3

4
1

4
11 )|)1(( +=− cacR . 

 
For 2.00 << c there doesn’t exists a stable cycle with period 2 but there exist cycles 
with all sorts of periods. 

 
Proof 
The instability of the fixed point leads - after some iterations )|( ,11,1 axRx t

c
t =+ (see 

Figure 6.2b) - to the reaction path )|)1(()1(),1( 4
11

14
1

22
1

1 acRxcxcx −=−=−=  and . 
A stable cycle of period 2 only occurs if cacR −≥− 1)|)1(( 4

11 . Under the assumption 
1217.0 << c  we have to distinguish two cases: 

 

(a) For 
)1(
)35(

c
caabif −

+<<  the function )|)1(( 4
11 acR −  equals )|)1(( 4

1 acG − . Using the 

expression of Appendix 5.2 for G we can compute )1(028.1)|)1(( 4
1 cacG bif −=− . 

This implies that )1()1(028.1)|)1(( 4
1 ccacG −>−>−  for bifaa >  
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(b) For 
)1(
)35(

c
ca
−
+≥  it holds that 2.01)|)1(( 4

3
4
1

4
11 ≥−≥+=− cccacR  for  

From (a) and (b) it follows that, for 1217.0 << c , there exists a stable cycle with period 
2. 

For 217.00 ≤< c it holds that 
)1(
)35(

c
cabif −

+≥  and so the condition for a stable cycle with 

period 2, i.e. cacR −≥− 1)|)1(( 4
11 , only holds for 217.02.0 ≤≤ c . 

Obviously for 2.00 << c  the condition ccacR −≥+=− 1)|)1(( 4
3

4
1

4
11 is not satisfied and 

starting with )1(2
1

1 cx −=  the output pattern becomes more complicated. The stable 
output cycle with period 2 doesn’t occur anymore. 
 [End of proof] 
 

Figure 6.1 provides an illustration of Proposition 6.3 with 3
18

)1(
)35(0.4 =

−
+<=
c

ca  for 

4.0=c . The supplies of both firms equal 15.0)1(,3.0)1( 4
1

22
1

1 =−==−= cxcx   and 
0,671.0)0.4|15.0()|)1(( 24

1
1 ===−= xGacGx   in two consecutive periods. 

Note that if 3
18≥a the outputs in the first period equal 15.0,3.0 21 == xx whereas the 

outputs in the next period equal 0,85.0 21 == xx due to the perfect accommodation of 
firm 1. 

Although the analysis of dynamical phenomena plays the leading part in this 
chapter, we conclude this section with an analysis of the average profits (per period) 
over a cycle with period 2 of both competitors. Table 5.5 shows that, just before 
bifurcation takes place and the Cournot-Nash equilibrium is still stable, the profit of 
firm 1 equals 11 times the profit of its rival and is about 60% of the classical profit 
( 2

9
1 )1( c− ). However, if firm 1’s preference for market share increases further 

( bifaa > ), this profitable situation may change completely.  Proposition 6.3 states that 
for bifaa >  and 12.0 <≤ c  all initial values are attracted to a stable cycle with period 2; 
the supplies of both firms can be described precisely. Lets return to Figure 6.1 where 
the cyclic output is displayed for 07.30.4,4.0 =>== bifaac . In one period the 
respective supplies of firm 1 and 2 are 3.01 =x  and 15.02 =x  and the profits of both 
firms equal 0450.01 =Π  and 0225.02 =Π  (rounded to 4 decimals). In the next period 
however, due to the aggressive play of firm 1, firm 1’s supply, 0.6706, exceeds 

6.01 =− c  whereupon the rival’s reaction is zero output. But in this period the unit 
production costs of 0.4 exceed the market price 0.3294 and firm 1 faces losses 
whereas firm 2’ profit is zero, i.e. 0,0473.0 21 =−= ΠΠ . The average profits per 
period of both competitors over the cycle equal 0012.01 −=Π   and 0113.02 =Π . 
Apparently firm 1’s love for market share (and under myopic expectations) now 
causes its bankruptcy. We are interested under which conditions the average profit 
(per period) of firm 1 lies at a lower level than the rival’s average profit and also 
whether there exist conditions for which 01 ≤Π  holds. 

The general analysis deals with this two questions and uses the fact that in the 
first period - with )1(),1( 4

1
22

1
1 cxcx −=−= - the respective profits of both competitors 

equal 2
8
11 )1( c−=Π and 2

16
12 )1( c−=Π . Clearly this first period is advantageous for 
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firm 1, but in the next period it holds that - with supplies 0),|)1(( 24
11

1 =−= xacRx - the 
profits equal 0,0)1( 21 =≤−−= ΠΠ RcR  (with the brief notation R for )|)1(( 4

11 acR − ). 
The following proposition summarizes the analytical results: 
 
Proposition 6.4 (profits in case of a cyclic supply with period 2) 
 
Consider benchmark case 2 for linear production costs, i.e. 0,,0 21 === aaad , with 
alternately reacting firms. For bifaa >  and 12.0 <≤ c  the (stable) output cycle with 

period 2 leads to the following properties of the average profits (per period) 1Π  and 
2Π of both firms: 

(i) If 1236.0 <≤ c  there exists a weight la  (
)1(
)35(

c
caa lbif −

+≤< ) with the 

property that for all weights laa ≥   21 ΠΠ ≤ , i.e. the average profit level of 
the “market share loving” firm is lower than the rival’s average profit level. 
The weight la  is determined by )1)(5()|)1(( 4

1
2
1

4
1 cacG l −+=− (see 

Appendix 5.2 for the expression for G). 

(ii) If 1266.0 <≤ c  there exists a weight na  (
)1(
)35(

c
caa nbif −

+≤< ) with the 

property that for all weights naa ≥   01 ≤Π , i.e. the average profit level of 
the “market share loving” firm is nonpositive.The weight na  is determined 
by )1)(6()|)1(( 4

1
2
1

4
1 cacG n −+=− . 

 
The average profit level (per period) of firm 2 is independent of a and equals 

2
32
12 )1( c−=Π  

 
Proof 
Using the supplies of both competitors in two consecutive periods, the average profit 
per period of firm 2 clearly is constant and equals 

2
32
12

16
1

2
12 )1(]0)1([ cc −=+−=Π .The average profit per period of firm 1 is a 

decreasing function of the supply R defined by )|)1(( 4
11 acRR −=  (and therefore 

depends on the weight a before perfect accommodation occurs). For 
)1(
)35(

c
ca
−
+≥  firm 

1’s reaction on )1(4
1 c−  equals 4

3
4
1 += cR  because of perfect accommodation and the 

average profit then equals )]51)(3()1([ 16
12

8
1

2
11 ccc −++−=Π . Therefore a necessary 

and sufficient condition for the existence of the weight la  is 
2

32
1

32
12

16
1 )1()51)(3()1( cccc −≤−++− which leads to 125 <≤− c . 

Equating the average profits per period of both firms, before perfect accomodation 
occurs leads to the following condition concerning the supply R : 

)1)(5()1()]1()1([ 4
1

2
12

32
12

8
1

2
1 cRcRcRc −+=↔−=−−+− . Part (i) is proved by 
realizing that )|)1(( 4

1
lacGR −= . The proof of part (ii) is similar. 

 [End of proof] 
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We apply the analysis of Proposition 6.4 to the case of two competitors with 
constant unit production costs 4.0=c  and we emphasize that these results hold in 
general (for 1266.0 <≤ c . Just before bifurcation occurs ( 067.3=bifa  in three 
decimals) the respective profits of firm 1 and 2 expressed as a percentage of the 
classical profit (for 0=a ) equal 59% and 5%, clearly indicating the advantage of the 
“market share loving” firm. For a weight slightly higher than bifa  the instability of the 
equilibrium leads to a cyclic supply pattern with period 2 and also implies a sudden 
change in profit levels of both rivals. The average profit level (per period) of firm 2 
increases and equals 2

32
1 )1( c−  in general which is 28% of classical profit and - using 

the expression )|)1(( 4
1

bifacG −  (see proof of Proposition 6.3) - one can derive that the 
average profit of firm 1 (just after bifurcation) equals in general 
 

222
8
1

2
11 )1(048.0])1(029.0)1([ ccc −=−−−=Π  

 
which is 43% of the classical profit. This sudden change of both profit levels, due to 
the bifurcation, immediately leads to a more beneficial situation for firm 2. However, 
caused by a very small behavioural change, firm 1 faces a little catastrophe, 
indicated by a sudden change of 27% of its profit level (namely from 59% to 43% of 

clΠ ). A further increase of firm 1’s preference for market share leads to a quick fall of 
its average profit over the cycle. Application of part (i) of Proposition 6.4 reveals that 
for 376.3=> laa (rounded to 3 decimals) the average profit level of firm 1 lies below 
the rival’s average profit. Part (ii) of the proposition shows that for 942.3=> naa  the 
average profit of firm 1 is even negative and leads to bankruptcy. The larger the 
preference for market share is the more negative 1Π  becomes, whereas the rival’s 
average profit stays constant. 

Proposition 6.4 shows that for higher levels of managerial inertia - indicated by the 
weight a attributed to market share - the beneficial situation for the “market share 
loving” firm changes into a catastophe and may even lead to exit. 
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3. More complicated dynamics and chaos 
 
Proposition 6.3 announces more complicated dynamical phenomena for smaller 

unit production costs ( 2.00 << c ). The fact that a stable orbit with period 2 doesn’t 
occur anymore, doesn’t imply that cycles with higher periodicity can’t occur. If, during 
a cycle starting with )1(2

1
1 cx −= , at some point firm 1’s output exceeds 1-c the 

reaction of firm 2 is a zero output, whereupon the whole (stable) cycle starts again.  
The next graphical display corresponds with constant unit production costs 

15.0=c and weight 16.63.7 =>= bifaa whereas the initial output of firm 1 equals 
7.01 =x  (the first co-ordinate of the equilibrium is 734.0*

1 =x  and the slope of the 
compound reaction curve Rc equals –1.205 indicating the instability of the fixed point). 
 

 
 
Fig. 6.5  The occurrence of a stable cycles with period 14, c=0.15, a=7.3 
 

After some initial phenomena firm 1’s supply equals its monopoly output and the 
subsequent cycle appears to possess period 14. Although the output pattern is far 
from chaotic the supply of boths firms is quite irregular; total output fluctuates 
between 0.64 and 0.85. The (prime) period of the stable output cycle also depends on 
the value of a; 0.7=a leads to period 24 whereas 5.7=a corresponds with a period of 
6. Apparently the (prime) period displays a sensitive dependence concerning the 
weight a which firm 1 attributes to its market share. Simulation experiments show that 
for higher values of a stable cycles with an odd period occur, whereas for lower 
values of a (like in our examples) the periodicity appears to be even. 

The occurrence of stable cycles with even or odd periodicity can be explained by 
observing the consecutive outputs of firm 1. Starting with its monopoly output of 

)1(2
1

1 cx −=  the next (“second”) reaction of firm 1 is determined by perfect 
accommodation and equals 4

3
4
1

1 += cx . Because *
1x (the value of the unstable fixed 

point) increases with respect to an increasing a, for smaller values of a  it holds 
*
14

3
4
1 xc >+ .  The next outputs of firm 1 are alternately smaller and larger than *

1x , so 
the periodicity must be even, because the cycle is completed with an output 
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satisfying *
11 1 xcx >−≥ . However, if the weight a increases further, it holds 

*
14

3
4
1 xc <+  and the next outputs of firm 1 are alternately larger and smaller than *

1x  
implying that the stable orbit must possess an odd periodicity. The specific weight  
which marks the transition from even to odd periodicities depends on c and can be 
solved using *

14
3

4
1 xc =+ . Application of this condition to 15.0=c leads to stable cycles 

with even and odd periodicities for a < 16.22 and a > 16.22 respectively. We note that 
for values of a near 16.22, because 4

3
4
1 +c  almost equals *

1x , the cycle seems to 
stabilize around the fixed point value, but this is merely appearance. 

These periods of stable supply cycles are related to the remarkable and strong 
Theorem of Sarkovskii (1964), which holds under the minimal assumption of 
continuity of a map of the real line in itself. A proof of this amazing theorem can be 
found in Devaney (1989) and to formulate this theorem we first need the following so-
called Sarkovskii-ordering of the natural numbers: 
 

1222...
...5.23.2...5.23.2...7.25.23.2...753

23

3322

>>>>

>>>>>>>>>>>>  (6.6) 

 
First all odd numbers except 1 are listed, followed by 2 times the odds, 22 times the 
odds, 23 times the odds, etc.. Then all powers of 2 follow with a decreasing exponent. 
Note that corresponding with this peculiar ordering (not for mathematicians) 3 is the 
largest Sarkovskii number whereas 1 is the smallest number. Sarkovskii’s Theorem 
states that 
 

Assume that RRf →:  is continuous and the map f possesses a periodic point of 
prime period k. If lk > in the Sarkovskii ordering, then f has also a periodic point of 
period l. 

 
Clearly our map Rc is continuous and maps the interval [0,1] into itself. Due to the 

Theorem of Sarkovskii period 14 implies the existence of periodic points with all sorts 
of periods, for instance all powers of 2. However all these periodic orbits are non-
stable and non-attracting, because (almost) each initial value is, after a few iterations, 
mapped onto )1(2

1
1 cx −= the starting point of a stable cycle with period 14. 

Note that the existence of period 3, because 3 is the largest number in the Sarkovskii 
ordering, implies the occurrence of all other periods. Furthermore, due to the famous 
Theorem of Li and Yorke (1975), the existence of a periodic point with period 3 
implies the existence of a so-called chaotic set ℵ , defined as an uncountable set of 
initial conditions that give rise to completely a-periodic, irregular output paths (the 
whole output path lies in the chaotic set ℵ ). The fact that such a chaotic set exists 
doesn’t mean that a member of this special set ℵcan be found. In spite of its 
uncountability the (Lebesque) measure of the chaotic set can be zero, which in 
popular terms means that ℵcontains no intervals. If ℵpossesses measure zero the 
probability to identify a member of this set by a computer is zero. In Proposition 6.5 
we apply Li and Yorke’s Theorem, using the description of the compound reaction 
function Rc of Proposition 6.2. Part (i) of Proposition 6.5 deals with the case that the 
condition of Li and Yorke (period 3) is satisfied implying the existence of a chaotic 
set. However, if this condition is satisfied, it can be proved that there exists a stable 
output path with period 3. Part (ii) of Proposition 6.5 deals with very small unit 
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production costs ( 13
10 << c ) and the formulation of Li and Yorke’s condition is more 

complicated (using the function G in the description of Rc of Proposition 6.2). But now 
simulations reveal that the attracting orbit with period 3 apparently has vanished and 
the chaotic set ℵseems to have a positive measure, which makes the illustration of 
the properties of the chaotic set possible. To support the proofs we need a graphical 
display of the compound reaction curve Rc. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.6  The compound reaction curve for larger values of a. 
 

Like in Chapter 2, Section 2.3, Li and Yorke’s Theorem can be expressed as 
 

mcm
c xxxxR <<≤ *)(  (6.7) 

 
with *)( xxR c

c =  the location of the maximum of Rc and m
c xxR =)( *  the value of the 

maximum of Rc. Figure 6.6 shows a case for which these conditions are satisfied. 
Because we have the description of the compound reaction function at our disposal 
(Proposition 6.2) the values of )(,, *

m
c

mc xRxxx  and can be computed which enables 
us to formulate the Li and Yorke conditions for “period 3”. 
 
Proposition 6.5 (dynamical phenomena for 2.00 <<> caa bif  and ) 
 
Consider benchmark case 2 for linear production costs, i.e. aad == 1,0  and 02 =a , 
with alternately reacting firms. Under the assumption of an unstable equilibrium - 

2
169
1440 )1( caa bif −=> - and concerning unit production costs with 2.00 << c  the 

following cases can be distinguished: 
 

)1(2
1 c+

cR  

cx )(*
c

c xRx = )( *xRx c
m =)( m

c xR

)1(2
1 c−
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(i) For 2.013
1 <≤ c  the Li and Yorke conditions for the existence of a chaotic 

set  ℵare satisfied if 
)51(
)713(

c
caa chaos −

+=≥ . However in this case there exists 

a stable orbit of period 3 which attracts almost all initial values in [0,1]. 
(ii) For 13

10 << c  the Li and Yorke conditions are satisfied if 

)1(
73)31(]|)

)1(
)(1([ 2

1

+
−−−≤

+
−−−

a
ccaa

a
cacG  (see Appendix 5.2 for G). Typically 

chaotic output patterns occur and there exists a sensitive dependency on 
initial conditions. 

Proof 

From Proposition 6.2 it follows that 
)1(

31)1(,
)1(

73)31( *

+
−−−=

+
−−−=

a
ccax

a
ccaxc   and 

)1(
)(

+
−=

a
caxm  with m

c
c

c xxRxxR == )(,)( ** . It clearly holds that mc xxx << *  and to satisfy 

the condition of Li and Yorke we have to impose the condition cm
c xxR ≤)( on the 

parameters a and c. For 
c

a 1≥  cxm −≥1  so then )1()( 2
1 cxR m

c −=  and cm
c xxR ≤)( is 

equivalent with 
)51(
)713(

c
ca
−

+≥ . Because it holds that 
cc

c 1
)51(
)713( ≥

−
+ for 2.013

1 <≤ c the Li 

and Yorke conditions for the existence of a chaotic set are satisfied for 

2.0,
)51(
)713(

13
1 <≤

−
+=≥ c
c

caa chaos   . 

But then there exists a stable orbit of period 3 namely (the reactions of firm 2 in each 
period between brackets): )]1([)1( 4

1
22

1
1 cxcx −=−=    in period 1, 

)]51([ 8
1

24
3

4
1

1 cxcx −=+=    in period 2. In the third period, if chaosaa ≥ , firm 1 
accommodates perfectly and its reaction equals )1()57(8

1
1 ccx −≥+=  for 

2.013
1 <≤ c whereupon firm 2’s reaction is zero output. 

This proves part (i). 

For 13
10 << c  the Li and Yorke conditions are certainly satisfied for 

c
a 1≥  but this 

condition can be refined by using the fact that for 
c

a 1<  it holds that cxm −<1  so 

]|)
)1(
)(1([)( 2

1 a
a

cacGxR m
c

+
−−−=  (see Proposition 6.2). The Li and Yorke conditions are 

equivalent with 
)1(

73)31(]|
)1(
)(1([ 2

1

+
−−−≤

+
−−−

a
ccaa

a
cacG . 

 [End of proof] 
 

In the proof we already mentioned that, for 13
10 << c  and 

c
a 1≥  the Li and Yorke 

conditions are also satisfied, but – as computations will show – the condition can be 
refined. To demonstrate the important properties of a chaotic trajectory, we choose 
the unit production costs equal to 13

105.0 <=c and using part (ii) of Proposition 6.4 we 
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find that Li and Yorke’s condition is satisfied for 92.15=≥ chaosaa (in two decimals). 
Figure 6.7 corresponds with chaosaac >== 18,05.0   and an initial value of 81.01 =x ; the 
supplies of both competitors are displayed. This very irregular path seems to stabilize 
in periods 22-25 (indicated by arrows), to an output equilibrium for firm 1 of about 
0.87. However this “equilibrium” is temporary and could be called a “fake equilibrium”. 
 

 
 
Fig. 6.7  A chaotic output path, c=0.05, a=18, initial value 0.81. 
 
If we change this initial value slightly to 0.82, the chaotic trajectory is quite different: 
 

 
 
Fig. 6.8  A chaotic output path, c=0.05, a=18, initial value 0.82. 
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Clearly the “fake equilibrium” now occurs  in periods 34-37 and in the periods 2-20 
the output shows a temporary cycle wich seems to have period 3. Both the Figures 
6.7 and 6.8 clearly demonstrate the first implication of the non-linear reaction curve of 
the “market-share loving” firm under the assumption that firm 1’s preference for 
market share is large enough. The output pattern of both rivals mimics a random walk 
and history never repeats albeit that firm 1’s supply always lies at a much higher 
level. The second property of  complex (chaotic) dynamics is the extreme sensitivity 
of the supply path to minor changes of the initial production level, clearly illustrated by 
both figures. Baumol and Benhabib (1989) state that deterministic chaos poses 
serious problems to econometric estimation, because an output path which is 
extremely sensitive to initial conditions, cannot be predicted properly in the long run 
(like the weather). And it is also difficult to distinguish deterministic chaos from 
stochastic irregularity. However research focuses on new econometric techniques to 
test whether deterministic chaos or stochastic randomness (or a combination) 
underlies such an irregular output path. 

Total market supply, determined by both firms’ output, is also chaotic. In our 
example the fact that both individual firms can offer a chaotic series of output levels 
implies a market supply which is dictated by chaos as well. Figure 6.9, corresponding 
with constant unit production costs of 05.0=c , weight 18=a  and an initial total output 
level of 81.021 =+ xx demonstrates this property. 
 

 
 
Fig. 6.9 Chaotic market supply, c=0.05, a=18, initial value 0.81. 
 

Total market supply displays a completely irregular pattern and lies between 0.76 
and 0.95, which also implies a chaotic pattern of the market price (between 0.05 and 
0.24). Note that, due to the fact that the fluctuating market price always exceeds the 
unit production costs (positive profit margin), the average profit of both firms per 
period is certainly positive. Clearly the average profit per period of firm 1 is higher 
than the rival’s average profit. Computer simulations reveal that the chaotic output 
path (for 18,05.0 == ac ) leads to positive average profits (per period) of 047.01 =Π  
and 007.02 =Π independent of the initial output of firm 1. 
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Note that the previous analysis and reflection on more complicated dynamics hold 

under the assumption 2.00 ≤< c  for (constant) unit production costs. Clearly the 
average profits of both rivals depend on the specific character of the supply cycle, 
determined by its periodicity or chaotic pattern. However a cycle with a higher 
periodicity implies that firm 1’s output level only in one output period exceeds c−1  
(whereupon the cycle restarts) and therefore we may state that firm 1’s average profit 
stays positive. To illustrate this statement we used computer simulations to compute 
the average profits of both firms in case of a period-14-cycle (Fig. 6.5), a period-6-
cycle and a chaotic supply pattern (Fig. 6.9). We conclude this section with Table 6.2 
containing some parameter constellations and the corresponding average profits. 
 
Table 6.2  Average profits concerning cycles with a high period or chaotic 
patterns (between brackets the percentage of classical profit) 
 
 c = 0.15,   a =7.3 c = 0.15,   a =7.5 c = 0.05,   a =18 
Phenomenon Period 14 Period 6 Chaos 
Average profit firm 1 0.045 (56%) 0.044 (55%) 0.047 (47%) 
Average profit firm 2 0.013 (16%) 0.012 (15%) 0.007 (7%) 
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4. Simultaneously reacting firms and processes of adaptation 
 

The previous section deals with the examination of the dynamical behaviour of 
alternately reacting firms (under the assumption of myopic expectations and for a 
weight bifaa > ).  In this section we will first examine the dynamics concerning 
simultaneously reacting competitors, also assuming naïve expectations 
(i.e. 21  1 ,j,xx t,j

e
t,j == − ). As already mentioned in the previous section the condition for 

(local) asymptotic stability of the Cournot-Nash equilibrium under myopic 
expectations is the same for alternately and simultaneously reacting firms (note that 
this statement doesn’t hold for three or more competing firms, see Theocharis 
(1960)). However, as we will demonstrate, simultaneously reacting firms imply output 
paths with a periodicity that differs from the periodicity resulting from alternately 
reacting competitors. 

Note that the stability of the equilibrium also depends on the assumptions 
concerning the adjustment processes; the necessary and sufficient conditions for 
local stability of the equilibrium may be quite different if we deal with other models of 
adjustment processes. Here we suffice by mentioning briefly two of these models. A 
model that can be found in Dixit (1986), Varian (1992) and Dastidar (2000) deals with 
an adjustment of the output of each firm ‘in the direction of increasing utility (or pay-
off) ’: 
 

21  
d
d

,i,
x
Us

t
x

i

i

i
i =

∂
∂=  (6.8) 

 
Here Ui equals the utility function of firm i and is  is a positive parameter that   
determines the speed of adjustment. In fact we consider a system of first-order, 
nonlinear, differential equations. By linearizing this system around the equilibrium, we 
can derive sufficient conditions for stability. In Appendix 6.2 we provide a proof that in 
the general case that both competitors possess preference for their market share 
( 0,0 21 ≥≥ aa  ) the Cournot-Nash equilibrium is always stable. 

Another model describes a more sophisticated kind of learning rule with respect to 
naïve expectations. Firms do not instantaneously offer their ‘Best Reply’ quantity 
(which equals their reaction function of the expected rival’s supply), but build a 
weighted average between the previous quantity 1−t,ix  and the ‘new’ quantity t,ix  
(with 21  )( e ,i,xRx t,j

i
t,i ==  and ij ≠ ). Kopel (1996) notes that “this tendency is a well-

known property of human decision-making behaviour and can be found in the 
literature on cognitive psychology under terms like ‘status quo bias’ or ‘anchoring and 
adjustment’ ’’. After examining the consequences of naïve expectations 
corresponding to simultaneously reacting firms – both firms offer their ‘Best Replies’ - 
we will focus on the model where firms build a weighted average between their 
previous output and their ‘Best Reply’. 
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Simultaneously reacting firms with naïve expectations. 
The model is (see also Section 6.2 for stability conditions) 
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 (6.9) 

 
Proposition 6.3 reveals that, for 120 <≤ c.  and alternately reacting firms, each 

initial output leads to a stable and cyclic supply with period 2. We now reflect on the 
implications of simultaneously reacting firms (and 120 <≤ c. ). 
Let the consecutive output vectors corresponding with simultaneously reacting firms 
be represented by (the first index indicates the firm, whereas the second index 
indicates the time period) 
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 (6.10) 

 
The output paths ...      312211 ,x,x,x ,,,  and ...      322112 ,x,x,x ,,,  precisely correspond with the 
consecutive supplies of alternately reacting firms, so these both paths stabilize to a 
cycle with period 2. Let the path ...      312211 ,x,x,x ,,,  stabilize to 

)1(  )1(  0  4
1

2
1 c,c,,R −− , et cetera (where we define R as ))1(( 4

11 a|cR − , see Proposition 
6.3) then, starting from an arbitrary output vector, simultaneous reactions inevitably 
lead to the supply path 
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Arrows indicate the consecutive reactions of alternately reacting firms. For the output 
path indicated by the “dots” there exist of course two possibilities: the second co-
ordinate of the first output vector (the one with first co-ordinate R) can take the values 
0 and )1(4

1 c−  but these values both lead to the same supply path with a periodicity of 
4 concerning simultaneously reacting competitors (time periods indicated by I, II, III 
and IV): 
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Clearly market supply displays a cycle with a periodicity of 4 and equals 

)1(    )1( 2
1

4
1 c,R,cR −−+  and )1(4

3 c−  in the respective periods I, II, III and IV. In 
comparison with alternately reacting firms the period of the cycle for 120 <≤ c.  has 
doubled. Note that, because both firms take into account the restriction 

21  11 ,i,xx t,jt,i =≤+ −  and ji ≠ , it may occur that initially the supply in the actual 
period exceeds 1, which of course implies a zero market price. However after 
stabilization in the time period with the largest market supply (=I) the market price is 
still nonnegative, because even if firm 1’s reaction R is perfect accommodation, the 

I II III IV
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market price equals precisely zero. In the periods I and II the profit margin for both 
firms is nonpositive because cR −≥ 1  whereas in the periods III and IV the market 
price exceeds c and equals c2

1
2
1 +  and c4

3
4
1 +  respectively. We summarize these 

results in a proposition: 
 
Proposition 6.6 (simultaneous reactions for 12.0 <≤> caa bif  and ) 
 
Consider benchmark case 2 for linear production costs, i.e. aad == 1,0  and 02 =a , 
with simultaneously reacting firms. Under the assumption of an unstable equilibrium 
(naïve expectations) - 2

169
1440 )1( caa bif −=> - and concerning unit production costs with 

12.0 <≤ c  the following holds: 
 
There exists one stable (and globally attracting) output cycle with period 4. In four 
consecutive periods the supply vectors, where the first co-ordinate equals firm 1’s 
output, are 
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For 
)1(
)35(

c
ca
−
+<  ))1(( 4

1 a|cGR −=  (Appendix 5.2) and otherwise 4
3

4
1 += cR . 

 
Under the assumption of simultaneously reacting firms not only the periodicity of  

the output cycle has doubled, in comparison to alternately reacting rivals, but as we 
will see the average profits of both competitors over the whole cycle undergo a 
significant change as well. Apparently a slight change in model selection does matter. 
We now reflect on these average profits of the rivals and summarize some properties 
in a proposition. 
 
Proposition 6.7 (profits corresponding to simultaneously reactions) 
 
Consider benchmark case 2 for linear production costs ( 00 21 === a,aa,d ), with 
simultaneously reacting firms. For bifaa >  and 120 <≤ c.  the stable output cycle with 

periodicity 4 leads to the following properties of the average profits (per period) 1Π  
and 2Π  of both firms: 
 

(i) For 
)1(
)35(

c
caabif −

+<<  the average profits of both firms decrease with 

respect to an increasing weight a; for larger weights both average profits 
stay constant. The average profit of firm 2 is negative as soon as bifaa >  
and may lead to exit. 
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(ii) If 12330 <≤ c.  there exists a weight na  (
)1(
)35(

c
caa nbif −

+≤< ) with the 

property that for all weights naa ≥  the average profit of firm 1, 1Π , is 
negative. The weight na  can be solved from the following equation: 

)1)(97())1(( 16
1

16
7

4
1 ca|cG n −+=− . 

(iii) If 12360 <≤ c.  there exists a weight la  (
)1(
)35(

c
caa ln −

+≤< ) with the property 

that for all weights laa ≥  it holds that 021 <Π≤Π . The weight la  is 
determined by )1)(5())1(( 4

1
2
1

4
1 ca|cG l −+=−  

Proof 
Using the supplies of both competitors in four consecutive periods, the average profit 
per period of firm 2 clearly depends on R, is decreasing with respect to R, and equals 

0)1()1( 16
12

16
12 <−−−=Π Rcc , because )1( cR −>  (with )|)1(( 4

11 acRR −= ). Average 
profit over a whole cycle of firm 1 is also a decreasing function of R and therefore 
depends on the weight a before perfect accommodation occurs: 

2
32
3

4
7

4
11 )1(]2)1([ cRcR −+−−=Π . This proves part (i). For 

)1(
)35(

c
ca
−
+≥  it holds 

that 4
3

4
1 += cR  (perfect accommodation) and the average profit then equals 

)938(-3 2
64
11 += c-cΠ . The necessary and sufficient condition for the existence of the 

weight na  is 01 ≤Π  which leads to 11552 3
19

6
1 <≤− c . 

Setting the average profits per period of firm 1 equal to zero, before perfect 
accommodation occurs, now leads to a condition for R : 

)1)(97(0)1(]2)1([ 16
1

16
72

32
3

4
7

4
1 cRcRcR −+=↔=−+−− . Part (ii) is proved by realizing 
that ))1(( 4

1
na|cGR −= . The proof of part (iii) is similar. 

 [End of proof] 
 

To clarify this abstract proposition we apply this analysis to the case of two 
simultaneously reacting rivals with constant unit production costs 40.c = . Bifurcation 
occurs for 067.3== bifaa  (in three decimals) similar to the bifurcation weight 
corresponding to alternately reacting firms. For a weight slightly above bifurcation 
level now the instability of the equilibrium leads to a stable supply cycle with a 
periodicity of 4. Part (i) of Proposition 6.7 indicates that, roughly speaking, the model 
assumption of simultaneously reactions leads to a more disadvantageous market 
position of both incumbent competitors. The fact that the average profit of the 
classical firm 2 is always negative for bifaa >  leads one to suspect that this firm is 
forced to exit as soon as the preference for market share of its rival, indicated by a, 
exceeds bifa . Right after bifurcation both competitors face an even worse catastrophe 
in comparison to alternately reacting firms. Using )c.a|cGR bif −≈−= 1(0281))1(( 4

1  

leads to 21 )1(0150 c. −=Π , which equals only 23% of the profit just before bifurcation. 
However part (ii) of Proposition 6.7 reveals that firm 1 also faces losses for 

3163.aa n =>  (rounded to 3 decimals) and even possesses more average losses 
than its (classical behaving) rival for 3763.aa l => . 
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These two specific weights na  and la  lie very close to the bifurcation weight 

implying that the market position of the “market share loving firm” is very sensitive to 
the weight a if bifaa > . Thus the assumption of simultaneously reacting competitors 
may even lead to exit of both rivals if the preference for market share of one 
incumbent firm is large enough. Table 6.3 compares the (general) results concerning 
alternately and simultaneously reacting firms. 
 
Table 6.3 Comparison of alternately and simultaneously reacting firms 
 
 a slightly above  abif 

The “catastrophe” 
a rises, a > abif 01 =Π , which a? 

Alternate 
reactions 

1Π falls by 26% 
02 >Π  

1Π decreases 
2Π is constant 

an corr. 
to R = 1.112(1-c) 

Simultaneous 
reactions 

1Π falls by 77% 
02 <Π  

1Π decreases 
2Π decreases 

an corr. 
to R = 1.053(1-c) 

 
The table illustrates that model assumptions can make a lot of difference, both 
qualitatively and quantitatively. 
 
Dynamics corresponding with smaller unit production costs. 

Concerning alternately reacting firms more complex dynamics result from a more 
efficient production technology, i.e. 200 .c << . The supply cycles display, dependent 
on the weight a, all sorts of even or odd periodicities and even visible chaotic patterns 
(for 13

10 << c ,see Proposition 6.5). This dynamical phenomena lead one to suspect 
that even more complex patterns arise under the assumption of simultaneous 
reactions. To unravel these patterns we use an example with constant unit costs 

150.c =  and a weight 57.a =  which leads to a stable output cycle with periodicity 6 if 
competitors react alternately. Note that reflections in Section 6.3 show that the case 
with *xc 14

3
4
1 >+  where *x1  is the value of the unstable equilibrium leads to supply 

patterns with an even periodicity,so the following considerations hold in general for 
even periodicities. 

Using a notation where the first index indicates the firm, whereas the second 
index indicates the time period and realizing that the supply path of alternately 
reacting competitors stabilizes (after some initial phenomena) we obtain (for 150.c =  
and 57.a = ) the following path corresponding with simultaneous reactions: 
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 (6.14) 

 
The path A: 12211110242312211     ,  ...         ,,,,,,, x,x,x,x,x,x,x  corresponds with the stable supply 
path of consecutive reactions of both firms and so does the path 
B: 12111210141322112     ,  ...         ,,,,,,, x,x,x,x,x,x,x . In fact these both paths contain the same 
values, only shifted. 
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Clearly now simultaneous reactions lead to an supply cycle with a doubled periodicity 
of 12. Next question is: how many of these cycles (with periodicity 12) are there? We 
argue that there exist 3 different supply cycles. 

Because both paths A and B, corresponding with alternately reacting firms, 
contain the same values, the monopoly output of firm 1 ( )1(2

1 c−= ) appears twice as 
a first co-ordinate in each supply cycle of simultaneously reacting competitors but 
with different second co-ordinates. Like for the first co-ordinates there exist 6 different 
second co-ordinates, thus implying that there exist exactly 3 different supply cycles 
with a periodicity of 12. Clearly the previous arguments hold for all cases where the 
supply path of alternately reacting firms possesses a stable cycle with even 
periodicity and similar arguments can be given concerning odd periodicities. 
Proposition 6.8 summarizes these general results together with a statement on 
sensitive dependence on initial values: 
 
Proposition 6.8 (simultaneously reactions for bifaa >  and 200 .c << ) 
 
Consider benchmark case 2 for linear production costs ( 00 21 === a,aa,d ), with 
simultaneously reacting firms. For bifaa >  and 200 .c <<  the following properties 
hold: 

(i) If the supply path of alternately reacting firms is cyclic with an even 
periodicity n, there exist n2

1  supply paths of simultaneously reacting rivals, 
each with periodicity n2 . 

(ii) If the supply path of alternately reacting firms is cyclic with an odd 
periodicity 3≥n , there exist )1(2

1 −n  supply paths, each with periodicity n2  
and one supply cycle with period n corresponding with simultaneous 
reactions. 

We note that computer experiments confirm that the cycle to which an initial 
output vector is attracted depends extremely sensitively on these initial supplies. 

 
Note that we reflected on supply paths with even and odd periodicities, 

concerning alternately reacting competitors. For the parameter constellation 
57  150 .a,.c ==  we refer to Appendix 6.3 for the numerical presentation of the 3 

cycles (indicated with I, II and III), each with periodicity 12. This numerical example 
illustrates that in each cycle firm 1’s monopoly output (0.425) appears with two 
different supplies of the rival. The Figures 6.10a and b display the difference between 
the supply cycles I and III graphically. Note also that total output in one period may 
exceed 1, because both firms take into account the rival’s supply in the previous 
period (with the corresponding nonnegativity condition for the price). Such case 
clearly implies a zero market price. 
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Fig. 6.10a Cycle I, c=0.15, a=7.5.          Fig. 6.10b Cycle III, c=0.15, a=7.5. 
 

The note of the proposition deals with the so-called basins of attraction (the set of 
points that is finally attracted to an equilibrium, a cycle or another specified set) of the 
three different (but locally stable) supply cycles. Simulation experiments reveal that 
selection of a cycle depends sensitively on the initial outputs of both players. This 
issue of the topologic structure of these 3 basins of attraction is strongly related to a 
recent mathematical study of equilibrium selection in a nonlinear duopoly game of 
Kopel and Bischi (2001), where players build a weighted average between their ‘Best 
Replies’ and their previous output. They examine a duopoly game with quadratic 
reaction functions, adaptive expectations and two locally stable equilibria. The 
topological structure of the basins of attraction of these two equilibria appears to be 
highly complex and also leads to an equilibrium selection that depends sensitively on 
initial supplies. In essence this sensitivity concerning equilibrium selection is caused 
by the fact that the map under consideration is noninvertible i.e. a point may possess 
more than one preimage. In the mathematical work of Bischi, Mammana and Gardini 
(2000) a general technique is developed to unravel the structure of basins of 
attraction. We will not apply these techniques in this chapter but we suffice with the 
presentation of the results of computer experiments. Table 6.4 consists of a rather 
fine-grained set of initial supplies of both rivals and presents the number of the 
(stable) cycle - indicated by I,II and III - to which these initial values are attracted in 
the long run. 
 
Table 6.4  Sensitive dependence of cycle selection on initial outputs 
 
 x1,0 =0.35 x1,0 =0.36 x1,0 =0.37 x1,0 =0.38 x1,0 =0.39 x1,0 =0.40 
x2,0 =0.35 II II I I III III 
x2,0 =0.36 II II I I III III 
x2,0 =0.37 III III II II I I 
x2,0 =0.38 I I III III II II 
x2,0 =0.39 III III II II I I 
x2,0 =0.40 III III II II I I 
 
A glance at this table reveals that the selection of a cycle (in this example with 
periodicity 12) highly depends on the initial output of both rivals in the Cournot game. 



Chapter 6 Preference for Market Share and Complicated Dynamics 
                 Some Reflections on Model Modifications and Stability 

230 

Finally we briefly consider the average profits of both competitors with respect to 
the three different cycles I,II and III also in comparison with the profits corresponding 
to alternately reacting rivals. Computer simulations show that for cycle I 03701 .=Π  
and 00102 .=Π , for cycle II 03401 .=Π  and 00202 .=Π  and corresponding to cycle III 

03401 .=Π  and 00102 .=Π  (the average profits are rounded to 3 decimals). Clearly 
average profits are not significantly different for the three cycles, but they differ 
somewhat more in comparison to alternately reacting firms (see Table 6.2). For 
instance the average profit of firm 1 equals 55% and about 43% of the classical profit, 
concerning alternately and simultaneously reacting rivals. 
 

Do there exist also chaotic patterns? The answer is definitely “yes”. Proposition 
6.5 provides the sufficient conditions for chaotic output patterns - using the Theorem 
of Li and Yorke (1975) - corresponding to alternately reacting firms, thus implying that 
chaotic patterns also exist in the case of simultaneously reacting rivals under the 
same conditions. For 18 050 == a,.c  Figure 6.11 displays the supply pattern for 
simultaneously reacting firms with initial outputs 35.0,35.0 0,20,1 == xx  . 

 
 
Fig. 6.11 Simultaneous reactions and chaos, c=0.05,a=18, x1,0=x2,0=0.35. 
 

The repetition of the rectangle suggests a fractal structure of this “strange 
attractor”. Before focusing on a model in which firms’ adaptive reactions equal a 
weighted average between their previous output and their ‘Best Reply’ we emphasize 
that the main purpose of the analysis of the case of simultaneous reactions is to 
show that model selection may influence the quantitative and qualitative results 
significantly. 
 
Dynamics corresponding to a more sophisticated learning rule. 

This model takes into account that both firms build a weighted average between 
their previous supply and their supply corresponding to their ‘Best Reply’, i.e. 

21  ),( ,ixR e
t,j

i =  and ij ≠ . Because we assume that both firms use 1−= t,j
e

t,j xx  and we 
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have to take into account the (nonnegative price) conditions for both competitors, 
1,1 1,1,21,2,1 ≤+≤+ −− tttt xxxx   , the model is specified by 

 







⋅+⋅−−=

⋅+⋅−−=

−−−

−−−

)}()1(;1min{

 )}|()1(;1min{

1,1
2

1,21,1,2

1,2
1

1,11,2,1

tttt

tttt

xRxxx

axRxxx

µµ

µµ
 (6.15) 

 
Note that the ‘Best Reply’ of firm 2 equals }0;)1(max{)( 1,12

1
2
1

1,1
2

−− −−= tt xcxR . For the 
so-called adjustment coefficient µ  it holds that 10 ≤< µ , and we assume that these 
coefficients are equal for both rivals. The case 0=µ  corresponds with the (not very 
exiting) case that both competitors stick to their previous supply, whereas 1=µ  
corresponds with full adaptation (both outputs equal ‘Best Reply’). We already 
examined the case of full adaptation and derived that the Cournot-Nash equilibrium is 
(locally) unstable for 2

169
1440 )1( caa bif −=>  (for constant marginal costs). If adaptability 

is not maximal, so 1<µ , one would expect that stability of the equilibrium is 
maintained longer with respect to a rising weight a (the extreme case with 0=µ leads 
to stability for all weights a). To be more precise, the following proposition reveals 
that the bifurcarion weight µ,bifa , corresponding to a certain µ , is increasing if µ  is 
decreasing. Clearly the equilibrium ( ** x,x 21 )  of this model with 10 << µ  is unique and 
equals the equilibrium corresponding with full adaptation (determined by 

)1(  )( 12
1

221
**** xcx,a|xGx −−== , see Appendix 5.3 for the expression). 

 
Proposition 6.9 (bifurcation corresponding with an adaptation process). 
 
Consider the model 
 







≤<−−⋅+⋅−−=

⋅+⋅−−=

−−−

−−−

10,};0)1(max{)1(;1min{
 })|()1(;1min{

1,12
1

2
1

1,21,1,2

1,2
1

1,11,2,1

µµµ
µµ

      tttt

tttt

xcxxx
axRxxx

 (6.16) 

 
The transition from a (locally) stable into an unstable equilibrium ( ** x,x 21 ) occurs for 
 

2
2

2
2 )1(

)316(
)4)(38(32)1()( ccHa ,bif −⋅

−
−−=−⋅=

µµ
µµµµ  (6.17) 

 

0<
∂

∂
µ

µ,bifa
, i.e. if µ  increases µ,bifa  decreases. 

 
Proof 
First we note that, in the neighbourhood of the fixed point ),( *

2
*
1 xx , the model is 
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Linearizing this system of nonlinear first-order difference equations around the fixed 
point ( ** x,x 21 ) leads to the system 
 









−
−

⋅=







−
−

−

−
*

t,

*
t,

*
t,

*
t,

xx
xx

A
xx
xx

212

111

22

11  with  
















−−







⋅−

= −

µµ

µµ

1

1

2
1

*
2

1,2 xtx
G

A d
d

. 

 

For the sake of brevity we define 
*
2

1,2 xtx
GS 





=

−d
d . The eigenvalues of A 

(for S >0) are iS, ⋅±−= µµλ 2)1( 2
1

21  and the Cournot-Nash equilibrium is locally 
stable (unstable) if 121 <,λ  ( 121 >,λ ). If we express the value *x1  as a fraction of (1-c), 
i.e. )1(1 cfx* −= with 13

1 <≤ f  we obtain a one-to-one relation between the slope S 

and the fraction f: 
)1(4
)35(

f
fS
−
−=  (see also the proof of Proposition 6.1). The stability 

condition of the equilibrium leads to the following condition for the fraction f (the 
fraction f decreases if µ  increases): 
 

µ
µ

316
516

−
−<f  

 
The proof is completed by using the one-to-one relation between the weight a and f;   
 

2
2

)1(
)1(4

)1)(13( c
f

ffa −⋅
−

+−= . 

 [End of proof] 
 

Note that for 1=µ  (firms offer their ‘Best Replies’) 2
169

1440
1 )1( ca ,bif −=  which perfectly 

fits in with the results of Proposition 6.1. The following graphical presentation 
illustrates the decreasing (increasing) behaviour of the bifurcation weight with respect 
to an increasing (decreasing) parameter µ  for constant unit costs 40.c = . Note that 
for 1=µ  and 40.c =  the bifurcation weight equals 067360)1( 2

1 ..Ha ,bif =⋅=  (rounded 
to 3 decimals), whereas for 50.=µ  this weight equals 726860)50( 2

50 ...Ha .,bif =⋅= . 
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Fig. 6.12 The bifurcation weight abif,µ for c=0.4 and 0.5 < µ < 1. 
 

The less firms adapt to their ‘Best Replies’ the longer stability of the equilibrium is 
maintained with respect to an increasing preference for market share of one 
incumbent competitor. The stability of the Cournot-Nash equilibrium clearly depends 
on assumptions concerning the adjustment process and this latter model - where 
firms adapt to their ‘Best Replies’ - provides, together with the model 

2,1, =
∂
∂= i

x
Us

t
x

i

i

i
i   

d
d  mentioned in the introduction of this section, examples of this 

phenomenon. 
We conclude this section with three examples of complicated dynamics. However 

we will not provide detailed explanations of the observed phenomena, corresponding 
with an adjustment coefficient µ smaller than 1, but leave this issue for future 
research. The first computer experiment corresponds with constant unit production 
costs 4.0=c and an adjustment coefficient of 9.0=µ  whereas the weight 69.3=a  
lies slightly above the bifurcation weight 686.39.0, =bifa (rounded to 3 decimals). The 
co-ordinates of the instable equilibrium equal 041.0,519.0 *

2
*
1 == xx   . Initial supplies of 

040.0,522.0 0,20,1 == xx    in this computer experiment lie very close to this equilibrium. 
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Fig. 6.13 Supply path, c=0.4 (d=0), µ=0.9, a=3.69 and x1,0=0.522, x2,0=0.040. 
 

Clearly one can observe that, by repeated mappings, the initial supply vector 
moves in an outward spiral towards an attractor, which looks like a deformed 
nonagon. The both eigenvalues in this example are so-called complex conjugates 
and they equal i996.01.02,1 ±=λ . The lengths of these two eigenvalues equal 

001.12,1 =λ  (rounded to 3 decimals) indicating the instability of the equilibrium. 
The second computer simulation corresponds also with constant unit production 

costs 4.0=c and an adjustment coefficient of 9.0=µ  whereas the weight increases 
till 5=a . The co-ordinates of the instable equilibrium equal 032.0,535.0 *

2
*
1 == xx   . 

Experiments show that, independent of initial supplies, the supply path of both firms 
is attracted by a cycle with periodicity 17. Apparently the form of the attractor 
depends on the value of the weight a. 
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Fig. 6.14 Attractor for c=0.4 (d=0), µ=0.9, a=5.00 and arbitrary initial supplies. 
 

The third computer simulation reveals a “strange attractor”, corresponding with 
constant unit production costs of 05.0=c  and an adjustment coefficient of 85.0=µ . 
The weight a in this example equals 18.0 and initial supplies are 25.00,20,1 == xx . 
 

 
 
Fig. 6.15 Strange attractor, c=0.05 (d=0), µ=0.85, a=18.0 and x1,0=x2,0=0.250. 
 

We note that in the general case of two competitors, both with preference for 
market share, periodic supply cycles and chaotic regimes also occur. However all 
sorts of interesting dynamical phenomena already occur concerning benchmark case 
2. Upon request computer simulations are available for the general case. 
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5. Stackelberg equilibria 
 

This section deals with Stackelberg leadership and is strongly related to Section 
5.6. There we examined the (benchmark) case of completely asymmetrical firms 
concerning their preference for market share; firm 1 possesses preference for its 
market share, reflected by the weight a > 0, whereas its rival behaves as a classical 
profit-maximizer. The analysis of Section 5.6 for instance reveals that there exists a 
profit maximizing weight pa for firm 1 and also shows that the size of the “market 
share loving” firm - reflected by its production level - exceeds the competitor’s size 
(see also Table 5.5, if paa =  then *

2
*
1 2xx =  and if bifaa =  *

2
*
1 11xx = ) and this size ratio 

*
2

*
1 / xx  increases with respect to an increasing preference for market share of 

competitor 1. The main subject of this section, Stackelberg equilibria, obviously 
requires a leader and a follower in the duopoly game under consideration. The leader 
maximizes its utility function 1U  (which in our study consists of a “profit” part and a 
weighted “market share” part) under the assumption that the rival’s reply 
corresponding with an output 1x  will equal )( 1

2 xR . In the words of Fudenberg and 
Tirole (1991): “Thus, if player 1 knows player 2’s payoffs, the argument goes, she 
should not believe that player 2 would play cx2  (the Cournot output) no matter what 
player 1’s output. Rather, player 1 should predict that player 2 will play an optimal 
response to whatever 1x  player 1 actually chooses, so that player 1 should predict 
that whatever level 1x  she chooses, player 2 will choose the optimal response 

)( 1
2 xR . This argument picks out the “Stackelberg equilibrium” as the unique credible 

outcome”. 
Note that this model of quantity leadership is in essence a two-stage game in 

which one firm gets to move first. But why firm 1 would be the Stackelberg leader? 
Varian (1992) notes that “Which firm actually is the leader would presumably depend 
on historical factors, e.g., which firm entered the market first, etc.” We argue that the 
organizational “blueprint” of firm 1 reflected by its preference for market share leads 
to an advantageous size ratio *

2
*
1 / xx  in the Cournot-Nash equilibrium and therefore 

this history may lead to the Stackelberg leadership of this firm. 
Therefore in our opinion it makes sense to analyse the case of Stackelberg 

leadership. The two-stage game corresponding to Stackelberg leadership can be 
solved by backward reasoning: firm 1 maximizes its utility function under the 
assumption that the output of the rival equals )( 1

2
2 xRx = . We will analyse this game 

in case that both firms possess an equal production cost function 2,1,)( 2 =+ ixdcx ii    
with our usual assumption that 2

1,10 −><< dc  . The consideration of the general 
quadratic production cost function allows us to compare the outcomes with the 
general results of Section 5.6. First Proposition 6.10 deals with the exit of firm 2 if firm 
1 is the Stackelberg leader. Note that the analysis of Section 5.6 reveals that, despite 
the fact that the Cournot-Nash equilibrium implies that fim 1’s size and profit grossly 
exceed the rival’s size and profit , firm 2’s supply and profit stay positive 
corresponding with all levels of preference for market share of the largest firm. So in 
the case of the Cournot-Nash equilibrium firm 2 is not forced to exit by a nonpositive 
production level, which can be considered as a sufficient condition for exit. Because 

firm 2’s reaction function equals }0;
22

1
max{)( 1

1
2

d
xc

xR
+

−−
= the sufficient exit condition 
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for firm 2 is determined by the condition that the marginal utility of firm 1 is still 
nonnegative for cx −= 11 . 
 
Proposition 6.10 (sufficient conditions for firm 2’s exit, the Stackelberg output). 
 
Under the assumption that (i) firm 1 is a Stackelberg leader and (ii) firm 1 attributes a 
weight a  to its market share whereas firm 2 only maximizes its profit the following 
holds: 

(i) For 54
1

4
3

2
1 +−≤<− d  firm 2 is forced to exit for all weights 0≥a . 

(ii) For 54
1

4
3 +−>d  firm 1 forces its rival to exit if firm 1’s preference for 

market share exceeds a certain level, i.e. 22 )1()164( cddaa f −⋅++=≥ . 

(iii) For 54
1

4
3 +−>d  and faa <≤0 there exists an unique solution ( SS xx 21 , ) for 

the Stackelberg equilibrium. The output Sx1  (and Sx2 ) can be solved 
analytically and Sx1  increases w.r.t. an increasing weight a . 

 
Proof 
Firm 1 maximizes its utility function under the assumption )( 1

2
2 xRx =  so it 

maximizes 
 

))((
)())(1())(,(
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2

1

12
111

2
111

2
1

1
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x

axdcxxRxxxRxU
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Substitution of firm 2’s reaction function 11
2

)22(
1

)22(
)1()( x

dd
cxR

+
−

+
−=  (for 

cx −≤≤ 10 1 ) leads to the following expression for firm 1’s marginal utility: 
 

2
1

1

2

1

1

)]1()21[(
)1)(22(

)1(
)142()1(

)22(
)21(
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cdax

d
ddc
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d
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For 210142 2

1
2
12 +−≤<−↔≤++ ddd  this marginal utility is always positive, even 

for cx −= 11 and clearly the exit condition for firm 2 is satisfied. For 21 2
1+−>d  the 

marginal utility decreases monotonously with respect to the variable 1x  and is clearly 
positive for 01 =x . Now firm 2 is forced to exit if 
 

0
)22)(1(

1)1(
)22(

)164(1
2

1
1

1

≥
+−

+−
+

++−=−=





dc

ac
d
ddcx

x
U )(at 

d
d . 

 
For 50164 4

1
4
32 +−≤↔≤++ ddd  this latter marginal utility at cx −= 11 is 

nonnegative for all weights 0≥a  and again leads to exit of firm 2. This proves part (i). 
Part (ii) is proved by realizing that for 54

1
4
3 +−>d  and for all weights a  satisfying 

22 )1()164( cddaa f −⋅++=≥ the marginal utility at cx −= 11 is nonnegative. 
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For faad <≤+−> 0,54
1

4
3  the monotonous character of the marginal utility w.r.t. 1x  

and the fact that the marginal utility at 01 =x and cx −= 11 is respectively positive and 
negative implies that there exists an unique solution Sx1  in the interval )1,0( c−  of the 

equation 0
1

1

=
x
U

d
d . The output for firm 1 can be solved from this latter equation using 

Cardan’s Method; for this derivation we refer to Appendix 6.4. By implicit 

differentiation of the equation 0)( 1
1

1

=Sx
x
U

d
d  with respect to a  we obtain 

 

0
]1)21[(

)1(
)142()1)(21)(44(

]1)21)[(1)(22(
3

1

2
11 >

−++
+

+++−++

−++−+
=

cxd
d
ddcdda

cxdcd
a

x
S

SS

d
d  

 [End of proof] 
 

Part (i) of Proposition 6.10 reveals that the Stackelberg leader acquires a 
monopoly position independent of its level of preference for market share if 

191.02
1 −≤<− d . So if the production technology of the leading firm is efficient 

enough, reflected by the concave character of the production cost function, this firm 
forces the (equally efficient) competitor to exit. This result is classical, because 
preference for market share is not required. Part (ii) of the proposition deals with less 
efficient production technologies and is much more interesting. This part states that a 
Stackelberg leader with a certain (reasonable) level of managerial inertia, faa ≥ , 
also expels its rival from the market. For instance, corresponding with constant unit 
production costs of 4.0=c , the required level of inertia equals 36.0)1( 2 =−= ca f , 
which means that the leading firm attributes a weight of about 3

1  to its market share. 
Note that the specific weight fa  is an increasing function of the parameter d  

whereas this weight decreases with respect to an increasing c . We also note that 
from the rational adaptation perspective, which contradicts the “blueprint” of the firm 
reflected in managerial inertia, the owner of the leading firm may manipulate the 
weight a in managers’ incentive contracts (compare the “delegation” games of 
Vickers (1985), Fershtman and Judd (1987), Sklivias (1987) and Basu (1995)). Then, 
by influencing managers’ objective functions, the owner acquires strategic benefits (in 
our case a monopoly position).  

Part (iii) of Proposition 6.10 deals with the unique solution ( SS xx 21 , ) and the 
increasing character of the supply of the leading firm if a  increases for faa < . 
Because it holds that )22()](1[)( 12 daxcax SS +−−=  total market supply - which is 
equal to )22(]1)()21[()()( 121 dcaxdaxax SSS +−++=+ - is also increasing if a increases 
(note that we also used this relation between the supplies of both competitors in 
Section 5.6 to obtain expressions for both profits, the difference in profits and the 
social welfare). Computer simulations reveal that the total “Stackelberg” supply 

SS xx 21 +  exceeds the total market supply corresponding with the Cournot equilibrium 
( *

2
*
1 xx + , see Section 5.6) if it holds that faa < . However if a  exceeds fa  total 

market supply collapses because then the supply equals firm 1’s monopoly output 
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)22(
)1(

1 d
cxm

+
−= . The following graph displays these market supplies, concerning 

Cournot and Stackelberg equilibria for constant unit production costs 4.0=c as a 
percentage of the “classical” market supply (Cournot supply for 0=a which equals in 
general )23()1(2 dc +− ). The weight a increases from 0=a  till 5.0=a . 

 

 
 
Fig. 6.16 Total “Cournot” and “Stackelberg” supply, c=0.4, d=0. 
 

We observe that, for 0=a , the “Stackelberg” supply equals 112.5% of the 
“classical Cournot” (reference) supply which illustrates this classical property for 
linear costs (then “Stackelberg” and “Cournot” supply equal respectively )1(4

3 c−  and 
)1(3

2 c− ). However the difference between both supplies increases if the weight a  
increases and for 36.0== faa  the “Stackelberg” supply equals 150% of the 
reference supply. For faa ≥  exit of the follower leads to a halving of market supply 
which also influences social welfare strongly. 

We now continue with the analysis of the “Stackelberg” profits of both firms, which 
is strongly related to Proposition 5.17 of Section 5.6. Because 54

1
4
3

2
1 +−≤<− d  

implies exit of firm 2 and a monopoly position of firm 1, we impose the condition 
54

1
4
3 +−>d  on the parameter of the production cost function.The main question 

here is whether there exist specific weights S
pa  and S

da  which respectively maximize 
firm 1’s profit and the difference between both rival’s profits. Clearly a straightforward 
answer is that the condition 22 )1()164( cddaa f −⋅++=≥  leads to a monopoly 
position of firm 1 and naturally maximizes both firm 1’s profit and the difference in 
profits. However for smaller levels of managerial inertia of the leading firm, i.e. 

faa < , both rivals are still in the market and Proposition 6.11 provides a more 
precise answer to the main question for this case. 
 

fa  
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Proposition 6.11 (profit and advantage of the leading firm). 
 
Under the assumption that (i) firm 1 is a Stackelberg leader, (ii) the production cost 
parameter 54

1
4
3 +−>d  and (iii) firm 1 attributes a weight faa <  to its market share 

whereas firm 2 only maximizes its profit the following holds: 
 

(i) The profit of firm 1, 1Π , decreases if the weight a increases. Therefore this 
profit is maximized for the weight 0=S

pa . 
(ii) The difference in profits, 21∆ ΠΠΠ −= , is maximized if firm 1’s 

“Stackelberg” supply equals 
)23)(21(

)22()1(1 dd
dcxS

++
+−=  (see also 

Proposition 5.17). This corresponds with the specific weight 

32

22
2

)23()22)(21(
)164()45()1(

ddd
dddca S

d +++
+++−=  

Proof 

Using the equilibrium relation )](1[
)22(

1)( 12 axc
d

ax SS −−
+

=  we obtain expressions for 

the profit of firm 1, 1Π , and the difference in profits, 21∆ ΠΠΠ −= : 
 

)](
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)142()1[()(
)22(
)21()( 1

2

1
1 ax

d
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d
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+
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+
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+
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The profit of firm 1 is maximized if the “Stackelberg” output equals 

)1(
)142(2

)21(
21 c

dd
dx S −

++
+= . For this special supply firm 1’s marginal utility equals 

 

22

22

1
1

1

)3128)(1(
)142)(22(4)(
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+++=

ddc
dddax

x
U S

d
d . 

 
For 0=a this marginal utility is zero indicating that the “Stackelberg” output of firm 1 
exactly equals the profit maximizing amount. However if the weight a  increases, firm 
1’s supply also increases, exceeds the profit maximizing supply, and the expression 
for 1Π  reveals that the profit decreases. This proves part (i). 
Part (ii) is proved by realizing that the quadratic expression for Π∆ is maximized if 

firm 1’s supply equals )1(
)23)(21(

)22(
1 c

dd
dxS −
++

+=  and subsituting this latter value in 

the marginal utility of firm 1 we may conclude that this marginal utility equals zero for 
the specific weight 
 

32

22
2

)23()22)(21(
)164()45()1(

ddd
dddca S

d +++
+++−= . 

 [End of proof] 
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Figure 6.17 illustrates the “Stackelberg” profits of both firms as a percentage of 
the classical Cournot profit for 0=a  (which in general equals (1-c)2(1+d)/(3+2d)2 for 
both firms), corresponding with constant marginal costs 4.0=c  and for weights 

5.00 ≤≤ a . The leader’s profit is printed in bold. 
 

 
 
Fig. 6.17 “Stackelberg” profits (Πi(a)/Πcl)*100%, for c=0.4, d=0. 
 

We observe that the profit of the leader is maximal for 0=S
pa  and equals 112.5% 

of the classical Cournot profit (which equals 040.0)1( 2
9
1 =−= cclΠ ), whereas the 

follower’s profit is only 56.25% of the classical profit. Both profits for 0=a are of 
course well known results of “Stackelberg analysis”. The difference in profits, 

21 ΠΠ − , is maximized for 083.0== S
daa  which is much smaller than the difference-

maximizing weight 750.0== daa corresponding with the Cournot case (see Table 
5.5, Section 5.6). Using the expressions for da  and S

da  this latter property can be 
proved in general. For 083.0=a  the profit of the leader equals four times the 
follower’s profit. For 36.0=≥ faa  the follower is expelled from the market and the 
profit of the monopolist now rises to 225% of the (reference) classical profit. Note that 
for weights slightly smaller than fa , and concerning constant marginal costs, profits 
of both leader and follower are nearly zero. However the leading firm dominates 
strongly in size. 

Table 6.5 summarizes the “Stackelberg” equilibrium quantities and combines the 
main results of Propositions 6.10 and 6.11 for constant unit production costs. This 
table also makes a comparison with the Cournot equilibria possible (see Table 5.5, 
Section 5.6). Clearly the main differences are 
 

• The profit maximizing weight of the leader, for faa < , equals zero and 
therefore is smaller than the profit maximizing weight concerning the Cournot 
equilibrium. 

Maximal 
difference 
if a<af  

Exit firm 2 



Chapter 6 Preference for Market Share and Complicated Dynamics 
                 Some Reflections on Model Modifications and Stability 

242 

• The difference maximizing weight of the leader, for faa < , is much smaller 
than the difference maximizing weight concerning the Cournot equilibrium. 

• For faa ≥  the follower is expelled from the market and the leader acquires a 
monopoly market position. 

 
Table 6.5  The effect of a on “Stackelberg” equilibrium quantities. 
 
 0== S

paa  2
108
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d −==
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For 0>a , and with respect to an increasing weight a , firm 1’s profit decreases 
under the assumption of Stackelberg leadership, whereas firm 1’s profit would rise 
somewhat (till 2

16
9 )1( caa p −==  for constant marginal costs) in the Cournot case. 

This leads one to suspect that the “Stackelberg” profit of the leading firm only 
exceeds the profit corresponding with the “Cournot” case for small weights a . For 
instance, if unit production costs are constant and equal 4.0=c , simulation 
experiments reveal that this condition for the level of preference for market share is 

050.00 <≤ a  (rounded to 3 decimals). For larger weights however (i.e. 
360.0050.0 =<< faa ) the “Stackelberg” profit is much lower in comparison to the 

“Cournot” profit. The following small table illustrates this property by expressing firm 
1’s “Stackelberg” profit as a percentage of the “Cournot” profit  for some weights 

faa < . 
 
Table 6.6  Leader’s relative “Stackelberg” profits in comparison to “Cournot” 
profits  c=0.4, d=0 . 
 a = 0.00 a = 0.05 a = 0.10 a = 0.15 a = 0.20 
(Π1S/Π1c)*100% 112.5 % 100.1 % 86.5 % 71.8 % 56.1 % 
 

This result (which qualitatively holds in general) justifies a reflection on the 
question whether firm 1 prefers to be a Stackelberg leader. After all, even for small 
weights a , firm 1 would be better off in the “Cournot” case. 
The history of a larger preference for market share may lead to firm 1’s leadership, as 
a possible implication of its size dominance. However if firm 1 actually acquires the 
desired leading market position, this larger weight lowers its profit substantially. It 
seems unlikely that this newborn leader can lower its preference for market share in 
the short run, because from an Organizational Ecology perspective the weight a  
results from an organizational “blueprint”, which is rather fixed. For instance Hannan 
and Freeman (1984) argue that “The level of structural inertia increases with size for 
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each class of organization (Assumption 5)”. And it is precisely the size of firm 1 that 
may enhance the possibility to acquire the leading market position. However we have 
to realize that, if the preference for market share of the leading firm is large enough 
i.e. faa ≥ , Proposition 6.10 reveals that the rival is expelled from the market and, 
then, firm 1 acquires the advantageous position of a monopolist. 

We conclude this analysis with some brief notes on social welfare, which is 
defined as the sum of the profits of both competitors and the consumer surplus. 

Using the equilibrium relation )](1[
)22(

1)( 12 axc
d

ax SS −−
+

= , like in the proof of 

Proposition 5.18, Section 5.6, we obtain the following expression for the social 
welfare: 
 

])1)(23()()164)(1(2)}(){114208([
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d
aW SS −++++−++++−
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 (6.18) 
Using the same techniques as in the proof of Proposition 5.18 we may conclude that 
for 02

1 ≤<− d  welfare always rises with respect to an increasing weight a , but the 
“Stackelberg” case is more complicated, due to the fact that for 54

1
4
3

2
1 +−≤<− d  

and for faad ≥+−>   ,54
1

4
3  the leader acquires a monopoly position (Proposition 

6.10). We distinguish the following cases: 
 

• Concave production cost function, 191.054
1

4
3

2
1 −≈+−≤<− d . Then the 

leading firm becomes a monopolist and market supply becomes 
)22(

)1(
1 d

cxm

+
−= . 

Social welfare is independent of firm 1’s preference for market share and 
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2
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d
dcW
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+−= . 

• Less concave production cost function and constant unit production costs, 
054

1
4
3 ≤<+− d . For faa <  the welfare rises with respect to an increasing 

weight a  till the maximum level of 2
2
1 )1)(()( cdaW f −−=  is reached. For 

faa ≥ welfare drops till monopoly level. Note that for constant marginal costs 
welfare first rises, reaches a maximum for 2)1( ca f −=  of 2

2
1 )1( cW −= and 

then drops for larger weights till 2
8
3 )1( cW −= . 

• Convex production cost functions, 0>d . First welfare rises till it reaches a 
maximum value for the weight 

2
3232

22323
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dddd
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++++++= . Then welfare decreases 

somewhat with respect to an increasing weight a , whereas for faa ≥ welfare 
drops till monopoly level. 
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6. Appraisal 
 

First this chapter deals with the occurrence of complex dynamical phenomena 
concerning alternately reacting competitors, where one firm attributes a weight a  to 
its market share and its rival is a classical profit-maximizer. This benchmark case 
leads to various dynamical phenomena, including periodic supply cycles and 
completely “random walk” supply paths (Li-Yorke chaos). One may conclude that this 
model of behavioral Cournot competition, which includes preference for market share 
of one incumbent firm, can result in a diversity of dynamical phenomena. For less 
efficient production technologies ( 12.0 <≤ c ) instability of the Cournot-Nash 
equilibrium leads to supply cycles with a periodicity of 2, thus causing an endogenous 
business cycle. Concerning very efficient production technologies ( 2.00 << c ), 
supply cycles with a higher periodicity may occur and even chaotic market supply is 
possible if the level of preference for market share of one incumbent competitor is 
high enough. 

Second this chapter reflects on model selection and its implications for stability of 
the equilibrium and supply cycles in case of instability. The assumption of 
simultaneously reacting rivals leads to a change of the periodicity of supply cycles in 
comparison to alternately reacting competitors. This slight model modification results 
in significant differences concerning the dynamics. Furthermore the introduction of an 
“adaptive learning rule”, i.e. the simultaneously reacting firms build a weighted 
average between their previous outputs and their “Best Reply”, is examined. Then, 
the Cournot-Nash equilibrium is stabilized for a larger set of weights a  attributed to 
the market share of one incumbent firm. Computer experiments reveal that the 
dynamical phenomena become even more complicated and this is one of the issues 
left for future research. This chapter concludes with another model modification, 
namely the assumption of Stackelberg leadership. An intriguing contradiction is that, 
if the leader’s level of preference for market share is somewhat higher, this firm faces 
losses of profit in comparison to the Cournot case. 

Of course one of the limitations of the research presented in this chapter is that  
we only examined dynamical phenomena and model modifications under the 
assumption of equally efficient production technologies of both rivals. Obviously scale 
advantages of the largest “market share loving” firm lead to differences in the 
efficiency of the production technology. This asymmetry in production costs and its 
implications for the dynamics provide an interesting issue for future research. The 
question what happens if we deal with 3 competitors remains yet unanswered. 
Therefore an extension to 3-player models, together with differences in efficiency, 
capacity, and heterogeneous products of the competitors, also has a high priority on 
our list of future research issues. 
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Appendix 6.1 
Description of the compound reaction curve Rc(x1| a,0) for quadratic production cost 
functions. 
 

For 
)1(

)221)(21(
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dcdca
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++++>  the compound reaction curve Rc ,corresponding with 

alternatively reactions of both firms for a1 = a and a2 = 0, equals Rc(x1| a,0) = 
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(iii) 
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If 
)1(

)221)(21(
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dcdca
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++++≤  then the part described in (i) doesn’t exist. 

 
For the functional form of the expression G we refer to Appendix 5.2. Note that, for 

)1(
)221)(21(

c
dcdca

−
++++>  , part (i) and (iii) of the compound reaction curve Rc are 

linear functions. 
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Appendix 6.2 
General stability of the Cournot-Nash equilibrium concerning another adjustment 
process. 
 
Consider the following adjustment process 
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where Ui equals the utility function of firm i and is  is a positive parameter that   
determines the speed of adjustment. Linearizing this nonlinear system of first-order 
differential equations around the equilibrium ( ** x,x 21 ) leads to 
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Substituting the utility (objective) functions of both firms, which equal 
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Sufficient conditions for the (local) stability of the nonlinear system of differential 
equations are (i) Tr(A) < 0 and (ii) Det(A) > 0. Clearly the first condition is satisfied for 
all 0,0,0,0, 21212

1 >>≥≥−> ssaad       . The second condition can be written as 
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which is positive for all 0,0,0,0, 21212

1 >>≥≥−> ssaad       . 
Therefore this adjustment process obviously leads to a (locally) stable equilibrium. 
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Appendix 6.3 
The 3 supply cycles with periodicity 12, for 57  150 .a,.c ==  and concerning 
simultaneously reacting rivals. 
 
Cycle I (all values rounded to three decimals): 
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Cycle II: 
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Cycle III: 
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Note that in some cases total output exceeds 1, because each competitor - while 
taking into account the nonnegativity condition of the market price - uses the previous 
output of its rival. 
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Appendix 6.4 
The “Stackelberg output” x1

S for 0 < a < (4d2+6d+1).(1-c)2. 
 
Rewriting the equation 
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we obtain the equation 0]1)21[(]1)21[( 2
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Using the transformation Θ3
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the equation in the variable z is 03 =++ qpzz . The so-called discriminant of this 

latter equation 
32

32





+





= pqD is nonnegative, because it equals 

 

0
)142(108

)3128)(21()1()1(
)142(
)21()1()1( 42

322
4

22

24
22 ≥

++
++++−+

++
++−=

dd
ddddca

dd
ddcaD  (A14) 

 
Now Cardan’s Method leads to the real solution 33 2/2/ DqDqz −−++−= and 
therefore the “Stackelberg” output of firm 1 equals 
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in which the expressions for q  and D  can be substituted. For linear costs ( 0=d ) we 
then obtain 
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CHAPTER 7 
 
SUMMARY OF THE MAIN RESULTS AND CONCLUSION 
 
Reflection concerning two main points of view. 

As already announced in the introduction of this thesis, we may view the models’ 
analytical consequences in the light of two economical disciplines, namely OE 
(Organizational Ecology) and IO (Industrial Organization). From the OE perspective, 
roughly speaking, the inertia hypothesis of Hannan and Freeman (1984) is supported 
by most of the models’ outcomes. Hannan and Freeman (1984) define inertia as 
follows: “In particular, structures of organizations have high inertia when the speed of 
reorganization is much lower than the rate at which environmental conditions 
change”. From the viewpoint of OE, managers’ behaviour is part of the inert structure 
of an organization, so for instance managerial preference for size or market share 
can not be changed quickly enough in response to environmental turbulence. We 
note that we emphasize the standpoint of OE in this thesis, because we analyse the 
implications of all sorts of levels of managerial preferences. This standpoint of OE 
contradicts the standpoint of IO which states that firms may adapt rationally to 
optimize their benefits and may use their production adjustment costs or weights 
attributed to their preferences for size or market share as strategic instruments in 
direct competition. The “delegation” games (there exists an owner-manager relation) 
are examples of such rational behaviour. If a firm’s owner hires a manager he/she 
may influence manager’s objective function for strategic reasons by writing an 
incentive contract. Fershtman and Judd (1987), Vickers (1985) and Sklivias (1987) 
show that competing firms’ owners will often distort their managers’ objectives away 
from strict profit maximization for strategic reasons. We note that these principal-
agent models lead to fixed levels of managerial preferences for size (or market 
share) and ignores the fact that managers’ levels of preferences may represent the 
“blueprint” of the firm and may differ largely between firms. Nevertheless these 
principal-agent models - with incentive contracts including market share - will be part 
of our research in the near future. 

In this conclusion we will discuss the main results of each chapter, emphasizing 
“natural language” instead of formulas and expressions. Besides the OE and IO 
perspective the consequences for social welfare will be part of our reflections as well. 
Because Chapters 2 and 6 reveal that even rational decision rules of competing firms 
may result in turbulent movements of both firms’ supplies, we will also pay attention 
to complicated dynamical phenomena as a result of human behaviour. 
 
Chapter 3.  

In this model a form of managerial inertia is introduced, i.e. firms maximize a 
combination of profits and size (production volume, sales), whereas both competitors 
use naïve expectations concerning the rival’s supply level. The level of preference for 
size is determined by a parameter αi  for firm i. From the viewpoint of Organizational 
Ecology, the level of managers’ preferences for size is part of the “blueprint” of the 
firm and we analyse the consequences of all sorts of weight combinations ),( ji αα of 
two rivals in Cournot competition. Concerning Chapter 3’s model, the concept of habit 
formation - habit is determined by the actual size and (geometrically decreasing) 
weighted previous size - is included. In the examination, concerning multiple 
equilibria, the assumption is made that firms may accumulate losses before they 
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decide to exit. This assumption is supported by the literature on Accounting and 
Finance, where results of empirical studies indicate that bankrupt firms are 
associated with financial ratios that started to deteriorate several years before the 
year of bankruptcy. 

Eigenvalue analysis reveals that habit formation has no influence on both 
equilibrium’s stability and the level of the stationary-state equilibrium supply 
(Propositions 3.1, 3.5). However, the level of habit in equilibrium does depend on the 
“depreciation” factor gamma in the model. Concerning equilibrium supplies and 
profits, in Chapter 3’s model, habit formation could also be replaced by size only 
(albeit that this “habit formation” concept may be interesting in future research). 
Furthermore we note that including growth of size (instead of size) would leave the 
mathematics unaffected. Concerning equally efficient competitors, with respect to 
their production technology, we mention some main results: 

 
• If firm i’s preference for size exceeds the rival’s preference level (αi > αj),  firm 

i dominates in sales volume, whether this firm makes losses or not (see 
Figures 3.1-3.4). A size-motivated firm may survive at the detriment of the 
(smaller) profit-motivated rival. 

• If firm i’s preference for size is large enough (αi >> αj), the rival (j) may be 
expelled from the market (see for instance the areas B1,B2 in Figures 3.2 and 
3.3). 

 
These model outcomes indicate that a firm’s survival chance, subject to demand 

turbulence, is enhanced by managerial inertia and therefore support Hannan and 
Freeman’s inertia hypothesis (1984): “Selection within populations of organizations in 
modern societies favors organizations whose structures have high inertia”. 
From the (strategical) standpoint of IO we note that there exists a profit-maximizing 
level of a firm’s preference for size (Proposition 3.4) implying that a competitor may 
use its preference for size as a strategic weapon. So if a firm is able to adapt its level 
of preference for size, which contradicts the assumption of managerial inertia, this 
may consolidate its strategic market position and the rival even may be forced to exit 
(note that a firm’s strategic target may be a monopoly position instead of profit-
maximizing; this latter target is the usual target in the “delegation” games). In Chapter 
3 also the case of asymmetric production costs is examined. A detailed summary of 
possible equilibrium outcomes is presented in Table 3.1, supported by Figures 3.10-
3.12. One of the most intriguing results is that  
 

• (Van Witteloostuijn, Boone and van Lier (2003)) “A cost-efficient (i.e., low-cost) 
and managerially flexible (i.e., profit-maximizing) firm may well be 
outcompeted by a cost-inefficient (i.e., high-cost) and managerially inert 
(nonprofit-maximizing) rival. In the extreme, the latter may even survive at the 
expense of the former”. 

  
Chapter 4. 

This model deals with organizational inertia by modeling (linear) asymmetric 
adjustment costs around a fixed production level, concerning a production decrease 
and increase as well (rivals also use naïve expectations in determining their actual 
supply levels). One part of Chapter 4’s analysis focuses on the effects of a (partial) 
business cycle on supply levels and profits of both competitors.  
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Due to both firms’ adjustment costs, three behavioral phases can be distinguished 
concerning a declining demand. During the first (“complete inertia”) phase, both rivals 
maintain their original supply levels, whereas during the second (“inertia outcompetes 
flexibility”) phase the firm with the largest adjustment costs maintains its output level 
and its (less inert) competitor reduces its supply. Similar phases can be distinguished 
in a booming market. In the declining market the flexible rival takes all the burden of 
environmental decline, by a reduction of output, whereas the inert competitor avoids 
(during the second behavioral phase) the profit reducing effect of downsizing. 
Therefore phase 2 is very advantageous for the most inert rival. One of the main 
results deals with exit and survival conditions of the less inert firm in a declining 
market: 
 

• If the difference between both competitors’ adjustment costs is large enough, 
and demand declines enough, the more flexible firm faces losses during phase 
2,  whereas the inert rival still is profitable (Proposition 4.5). 

• If the flexible firm survives phase 2, it has fallen behind in profits. However 
during the next phase 3, this flexible competitor may also face losses (the “exit 
region” is provided in Proposition 4.7).  

 
If we compare both rivals’ total profits during a whole period of decreased 

economic activity (using integral calculus), Chapter 4’s analysis reveals that the most 
inert rival has relative advantages, even if the flexible rival survives phases 2 and 3. 
Clearly these outcomes support the inertia hypothesis; selection in a Darwinian 
selection process favors firms with the highest level of (organizational) inertia. 
However in a booming market the opposite holds true: flexibility pays off, 
contradicting the inertia hypothesis. From a strategic point of view (IO perspective), a 
firm may manipulate its adjustment costs - increasing them in a declining market and 
decreasing them in a booming market - to outcompete the rival or even force the rival 
to exit. There exists an optimal level of organizational inertia; Proposition 4.12 deals 
with the minimization of the rival’s relative total profit due to a period of recession. If 
both competitors adapt strategically, this may result in a two-stage sequential game 
(in the first stage firms choose their adjustment costs, whereas in the second stage 
the Cournot game is played). Such game would eventually lead to a higher level of 
inertia during a period of recession, whereas a period of increased economic activity 
would be characterized by both rivals’ flexibility (we note that rational adaptation of 
adjustment costs contradicts the OE viewpoint of organizational inertia). 

What about social welfare? Social welfare benefits the most from high levels of 
inertia concerning a declining market. Due to adjustment costs, firms uphold their 
supply levels for a longer period in a declining market and clearly consumer surplus 
and social welfare benefit from this phenomenon. In the booming market, however, 
welfare and consumer surplus both benefit from (total) flexibility. Strategical 
adaptation of both competitors would be most beneficial for welfare, because such an 
adjustment cost-setting game would result in high inertia and high flexibility in a 
respectively declining and booming market (Proposition 4.17 deals with symmetric 
rivals, concerning adjustment costs). Furthermore, the influence of country’s laws and 
trade union negotiations on human resource management practices may be 
significant. If country’s laws or agreements with trade unions result in beneficial labor 
contracts for employees, naturally resulting in higher adjustment costs in a declining 
market, our model predicts that this advantageous situation for employees also 
stimulates social welfare.  
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Chapter 5. 

In this chapter another form of managerial inertia is modeled; firms maximize a 
combination of profits and market share (using also naïve expectations). The level of 
preference for market share is tuned by a parameter ai for firm i. Clearly this 
chapter’s model is strongly related to Chapter 3’s model. Again we study the 
implications of all sorts of combinations of managerial levels of preference for market 
share between the two competitors. Firms control equally efficient production 
technologies (like in Chapter 4). First, preference for market share has important 
behavioral implications, indicated by properties of firm’s reaction curve. 
  

• If the level of preference for market share is large enough, the reaction curve 
is hill-shaped and firm’s behaviour can be characterized as “dualistic”. If the 
rival’s supply is below a certain level, an increase of the rival’s output level 
leads to an aggressive response of the firm i.e., an increase of its supply level. 
However, if the rival’s output exceeds a certain level and increases, firm’s 
response is output reduction (even perfect accommodation). Detailed typology 
of the reaction curve is provided by Proposition 5.11. 

 
Preference for market share provides a microeconomic foundation for hill-shaped 

reaction curves and implies the possibility of complex dynamics, which is the main 
subject of Chapter 6. In Chapter 5 two benchmark cases, concerning the weights ai 
attributed to market share, are examined thoroughly. Benchmark case 1 deals with 
complete symmetry of both competitors (a1=a2) and has important implications for 
both rivals’ profit levels. Apparently, the positive utility from market share (growth) 
increases management’s willingness to expand, even if this implies that profit is 
sacrificed: 
 

• The equilibrium profit of two firms with equal levels of preference for market 
share falls if this level increases, till profit is completely sacrificed. If this 
managerial inertia leads to exit of one or both competitors, social welfare also 
collapses (details can be found in Proposition 5.15). 

  
This (qualitative) conclusion also holds if managerial inertia is determined by 
preference for size, although there exist differences (Tables 5.1 and 5.2) related to 
the efficiency of firms’ production technologies. The following statement summarizes 
the main results and differences. 
 

• Concerning an efficient production technology, total sacrifice of both rivals’ 
profits occurs at a lower level of preference for size (weighted by the 
parameter α) in comparison to the level of preference for market share            
(parameter a). The opposite holds true for an inefficient production technology.  

 
Furthermore, for both forms of managerial inertia, it holds that the larger 

production unit costs are, the lower the level of preference is corresponding with a 
complete sacrifice of profits. For social welfare a certain level of managerial inertia is 
beneficial. However, too high levels of inertia may lead to nonpositive profits of both 
incumbent competitors, implying exit and a collapse of welfare. 
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• Consider two competitors with equal levels of preference for market share. If 
this level rises, welfare rises too till it reaches its maximum. For higher levels, 
however, welfare falls. Concerning constant marginal production costs the 
maximum welfare is reached corresponding with zero profits of both rivals 
(details in Proposition 5.16). 

 
Benchmark case 2 deals with  total asymmetry, concerning preference for market 

share (a1>0, a2=0). Firm 1 prefers its market share, whereas its rival behaves 
classical and maximizes its profit. From the viewpoint of OE these asymmetric levels 
of preferences reflect the differences between the cultures (“blueprints”) of both 
rivals. Concerning the principal-agent models (rational adaptation perspective), the 
strict profit-maximizing behaviour of firm 2 corresponds with an owner who hires no 
manager, whereas firm 1’s owner writes an incentive contract for its manager. One of 
the results of the analysis is that both firms stay in the market, whatever firm 1’s level 
of preference for market share may be, albeit that the “market share loving” firm’s 
size and profits amply exceed its rival’s size and profits. Two results are worth 
mentioning here (details can be found in Propositions 5.17 and 5.18): 
 

• Concerning a  (rather) concave production cost function (-1/2 < d < -0.191), 
both the profit and the advantage of the inert competitor over its rival keep 
increasing with a further increasing level of preference for market share. For 
constant marginal production costs there exists a level of managerial inertia 
which maximizes the inert firm’s profit. 

• Concerning linear production costs, social welfare keeps rising with respect to 
an increasing level of preference for market share of one incumbent 
competitor. 

 
From the OE perspective, selection favors firms with certain (higher) levels of 

inertia (organizational “blueprints”) and from the IO standpoint a firm may use its 
preference for market share as a strategic instrument in direct competition (then 
production levels and profits of both competitors would be equal to the Stackelberg 
outcome, see Basu (1995)) . These results are qualitatively similar to the conclusions 
of Chapters 3 and 4. Interesting is also that, concerning the completely asymmetrical 
benchmark case and constant marginal production costs, social welfare doesn’t 
collapse if the level of preference increases further, but keeps rising. This implies that 
the presence of one “market share loving” competitor, whereas the rival’s behaviour 
is pure profit-maximizing, is very beneficial for social welfare. We leave the intriguing 
question, whether this property also holds for more firms, for future research.  

We conclude the reflection on Chapter 5’s results with a note on the power-series 
approach, used in Section 5.3. This section deals with the derivation of rather 
complicated expressions for firms’ outputs, profits and social welfare, for general non-
profit parts of the objective functions. This abstract section reveals that, for small 
levels of preference and certain plausible properties of the non-profit part s, the 
welfare function is rising and concave with respect to increasing levels of preference. 
Therefore qualitative results, concerning managerial inertia, are not limited to 
preference for size or market share, but may be generalized for other (mixed) forms 
of managerial inertia as well. 
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Chapters 2 and 6. 
Both chapters are strongly related, because the examinations focus on dynamical 

phenomena. Chapter 2 describes the implications of hill-shaped reaction curves with 
“tunable steepness” and a (plausible) positive monopoly output. A microeconomic 
foundation for such a reaction curve is provided in Chapter 5; a certain level of 
preference for market share leads to the desired (tunable) hill-shape and a positive 
monopoly output and overcomes the shortcomings of the models of Puu (1991, 
1998) and Kopel (1996). In Chapter 2 computer experiments are used to illustrate 
three properties of chaotic trajectories, namely (i) completely irregular and aperiodic 
time paths, (ii) sensitive dependencies on initial values and parameter values and (iii) 
qualitative breaks in the pattern. In Chapter 6, concerning benchmark case 2, the 
existence of chaotic regimes is proved by using the Theorem of Li and Yorke (1975). 
The analysis reveals that these chaotic regimes are associated with low marginal 
production costs. 
 

• If one incumbent firm possesses a high level of preference for market share 
(a1 > achaos), whereas its rival only maximizes its profit, and both rivals’ unit 
production costs are low (0 < c < 0.2 on a scale from 0 to 1) the Cournot game 
may result in (visible) chaotic supply paths (see Proposition 6.5). 

 
The simple and plausible assumption of a firm’s preference for market share in a 

direct competitive setting, leads to a fully deterministic decision rule, concerning both 
firms’ supplies. However such a deterministic decision rule may even lead to a totally 
irregular market output of both rivals. Computer simulations, like in Chapter 2, 
illustrate the properties of a chaotic trajectory. Of course future research may reveal 
the influence of the expectation formation on equilibrium’s stability and the 
occurrence of chaos. In the case of chaos there exist significant differences between 
firms’ (naïve) expectations and the actual outcomes. Therefore it is also worthwhile to 
reflect on patterns in firms’ prediction errors (Hommes (1998)). If there exists no 
pattern in the prediction errors, indicated by zero autocorrelation coëfficients at al 
lags, firms have no reason to revise their beliefs.   

Higher marginal production costs may lead to an output cycle with period 2. 
 

• Consider benchmark case 2 in case of an unstable equilibrium (a1 > abif, a2 = 0) 
and somewhat higher constant marginal production costs (0.2 < c < 1). Then, 
there exists a stable (and global attracting) supply cycle with period 2 
(Proposition 6.3). 

 
An first implication of this phenomenon is that firms’ consecutive reactions may 

cause an endogenous business cycle. Yet another consequence is that the “market 
share loving” firm may face a catastrophic decrease of its profits, if its level of 
preference for market share is heightened somewhat and the stability of the Cournot-
Nash equilibrium is disturbed (Proposition 6.4). Besides the richness of dynamical 
phenomena, Chapter 6 contains a section on model reflection. It appears that 
simultaneously reacting rivals or firms’ production adaptation rules influence the 
model’s outcomes significantly. Some computer experiments reveal complex 
dynamical supply paths concerning such adaptation rules and these phenomena 
deserve a future explanation. Finally Chapter 6’s analysis focuses on the Stackelberg 
leadership of the “market share loving” firm. One interesting outcome is that this firm 
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may force its competitor to exit, if its preference for market share exceeds a certain 
level (for details we refer to Proposition 6.10).  
 

• Consider constant marginal production costs. Under the assumption that (i) 
firm 1 is a Stackelberg leader and (ii) firm 1 attributes a weight a to its market 
share, whereas firm 2 is a (classical) profit-maximizer, firm 1 forces its rival to 
exit if a > af = (1-c)2. 

 
Future research. 

The analysis of this thesis’ models reveals that structural inertia may enhance the 
survival chances of incumbent firms (OE), and that organizational inertia (adjustment 
costs) or forms of managerial inertia may be used as a strategic weapon in 
competition (IO). We therefore may state that the game-theoretic models in this 
thesis contribute to the insights of both Organizational Ecology and Industrial 
Organization. Game theoretical models may serve as a (mathematical) bridge 
between IO and OE, because these models allow us to build in environmental 
turbulence (for example a business cycle), cost- and product- heterogeneities 
between firms, and forms of structural inertia as well. This latter statement also 
clearifies the direction of future research, because we realize that the thesis’ 
mathematical models only provide the first stepping-stones in modeling a more 
complex market structure. And if we just glance at the schematic research 
presentation in the introduction, we observe many topics that “cry for attention” 
(indicated by the minus signs). To fill up the holes in this “Emmenthaler cheese” may 
serve as an adequate description of our future research aim.  

In OE research the dual market structure with (larger) generalists and specialists 
receives much attention. Step by step modeling may allow us to describe this market 
structure by game-theoretical models, where mathematical analysis is supported by 
simulation experiments. For instance specialists may enhance their survival chances 
by product differentiation. In their empirical study of California wineries Swaminathan 
and Delacroix (1991) show that “Organizations within a population may escape 
competitive pressures through differentiation”.  Future research may focuss on 
 
Game-theoretic modeling: 

• Product heterogeneity and production cost differences between incumbent 
firms. Does the outcome support empirical findings? 

 
• Differences in capacity between generalists and specialists. 
 
• The implications of demand turbulence, concerning firms with a certain level of 

preference for market share. Does preference for market share enhance a 
firm’s survival chance in case of a business cycle? 

 
• Stability issues if more firms are included in a competitive setting. We suspect 

that structural inertia may have a stabilizing influence if 3 or more rivals are 
involved. 

 
• Principal-agent models where owners influence the behaviour of their 

managers (by manipulating the level of preference for market share) for 
strategic reasons. An owner’s (principal’s) target may be profit-maximization, 
maximization of the difference in profits or acquiring a monopoly position. 
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• Entry deterrence by managerial behaviour, such as preference for market 

share. 
 

Van Witteloostuijn, Boone and van Lier (2003) argue that “However we believe 
that game-theoretic work will produce many interesting insights that can then be put 
to the test in empirical studies”. Propositions following from (mathematical) models 
can be translated into testable hypothesis. Therefore other future research 
extensions are 
 
Empirical research: 

• The relation between failure rates in a population and levels of managerial 
inertia. 

 
• Relations between management compensation schemes and manager’s habit 

formation, concerning preference for size or market share. 
 
In short, there is a good deal of work to do. 
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SAMENVATTING 
 
Het (speltheoretisch) model van Augustin Cournot heeft inmiddels de respectabele 
leeftijd bereikt van 165 jaar en men zou verwachten dat alle varianten en gevolgen van 
dit model uitputtend zijn bestudeerd. Beknopt geformuleerd beschrijft het klassieke 
Cournot-model een markt waarin rivaliserende bedrijven ieder hun productiehoeveelheid 
manipuleren; ieder bedrijf doet dit met het oogmerk van winstmaximalisatie en houdt 
daarbij rekening met de (verwachte) hoeveelheden van het product die door de rivalen 
op de markt gebracht (zullen) worden. Deze strategische acties van de bedrijven kunnen 
leiden tot een evenwicht wat betreft het totale marktaanbod en de marktprijs. Echter: het 
Cournot-model (en natuurlijk het Bertrand-model, waarbij rivalen juist de prijs van hun 
heterogene producten manipuleren uit strategisch oogpunt) geniet nog altijd grote 
belangstelling in het wetenschappelijk onderzoek. Allerlei varianten worden bestudeerd 
en onderwerpen die in het brandpunt van deze belangstelling staan zijn de existentie van 
evenwichten, de stabiliteit van evenwichten, de consequenties van twee-stapsspelen 
(zogenaamde delegatie spelen), leer- en aanpassingsprocessen bij de spelers 
(bedrijven) en spelen met onvolledige informatie. Vanzelfsprekend hebben ook de 
verdere ontwikkeling en verfijning van de speltheorie in de laatste decennia bijgedragen 
tot deze voortdurende belangstelling. 

 De titel van dit proefschrift, “Gedragsmatige Cournot-concurrentie”, reflecteert het feit 
dat dit werk gewijd is aan de implicaties van het gedrag van managers in Cournot-
concurrentiespellen. Naast de gebruikelijke voorkeur van managers voor de winst van 
het bedrijf (het klassieke model) kan ook de (productie)grootte of het marktaandeel van 
de onderneming deel uitmaken van de doelen van managers. Empirisch onderzoek laat 
duidelijk zien dat managers een voorkeur vertonen voor de vergroting van de 
onderneming, die vaak direct is weerspiegeld in de omvang van hun eigen 
departementen. Ook marktaandeelgroei scoort hoog op de lijst van voorkeuren van 
managers. Deze motieven van managers kunnen van psychologische aard zijn, maar ze 
worden vanzelfsprekend ook ingegeven door de salarisopbouw; als marktaandeel of 
productiegrootte zijn opgenomen in het salariscontract van managers (naast winst) en, 
dus deels het salaris of de bonus bepalen, zullen managers hier ook naar handelen. 
Naast deze voorkeuren van het management worden in dit proefschrift ook de 
consequenties van aanpassingskosten van een bedrijf geanalyseerd, die optreden als 
het productieniveau wijzigt in een krimpende of aantrekkende markt. Dergelijke 
aanpassingskosten worden (op korte termijn) onder andere beïnvloed door de aard van 
het personeelsbeleid en de hoogte van salarissen, alsmede eventuele uitkeringen of 
gouden handdrukken (naast de lange-termijnkosten als gevolg van investering of de-
investering). Wanneer bijvoorbeeld vaste aanstellingen voor het personeel behoren tot 
de bedrijfscultuur, zullen de (aanpassings)kosten bij het inkrimpen van de markt in een 
periode van economische recessie hoger uitpakken dan bij een personeelsbeleid dat 
werkt met tijdelijke contracten (uitzendbureaus). Zoals we bij de bespreking van de 
hoofdresultaten van de hoofdstukken zullen zien, kan het gedrag van het management 
ingrijpende gevolgen hebben voor de winstgevendheid en de marktpositie van de 
onderneming enerzijds en de sociale welvaart in ruimere zin anderzijds. De 
overlevingskansen van een bedrijf kunnen cruciaal afhangen van dit gedrag. Tevens 
kan, bij wat extremere voorkeuren van de managers, zelfs in een duopolie-
marktstructuur de stabiliteit van het markevenwicht verstoord worden, hetgeen kan 
leiden tot een zogenaamd chaotisch marktaanbod.  

Alvorens de belangrijkste resultaten per hoofdstuk op een rij te zetten, merken we 
hier reeds op dat de analytische consequenties van de gebruikte modellen gezien 
kunnen worden in het licht van twee subdisciplines, namelijk het perspectief van de 
Organisatieecologie (OE) uit de sociologie en dat van de Industriële Organisatie (IO) uit 
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de economie. OE bestudeert, kort geformuleerd, populaties van organisaties en 
concenteert zich op zogenaamde diffuse of indirecte concurrentie. Vanuit dit standpunt 
concurreren bedrijven (in een populatie) om dezelfde en gelimiteerde bronnen van 
bestaan, zoals de marktvraag naar hun producten. Bepaalde kenmerken van 
organisaties in een populatie zijn van invloed op hun overlevingskansen in de context 
van een Darwiniaans selectieproces. In OE staat het concept inertie centraal; bedrijven 
creëren standaardroutines en -procedures (die in een moderne maatschappij de 
betrouwbaarheid van het bedrijf naar buiten toe bevestigen) en de verandering van deze 
“blauwdruk” stuit op weerstand. Omdat de snelheid waarmee deze “blauwdruk” gewijzigd 
kan worden vaak lager is dan de snelheid waarmee de omgeving (bijvoorbeeld de 
marktvraag) verandert, wordt verondersteld dat organisaties relatief inert zijn. Ook in dit 
proefschrift ligt de nadruk op de inertie van de voorkeuren van managers - dit kan 
voorkeur voor grootte of marktaandeel zijn. Tevens wordt het begrip “inertheid van de 
organisatie”  gehanteerd betreffende de aanpassingskosten. Vanuit het standpunt van 
OE kan een organisatie dus niet zomaar de voorkeurspatronen van zijn managers 
wijzigen of de aanpassingskosten veranderen op korte termijn. Het zijn de bedrijven met 
de gunstigste eigenschappen (bijvoorbeeld voorkeuren voor omvang of 
winstgevendheid) die overblijven of gedijen in een bepaalde omgeving als gevolg van 
een selectieproces. Omdat de nadruk in dit proefschrift ligt op het gezichtspunt van de 
organisatieecologie, worden allerlei combinaties van de voorkeuren van managers of 
aanpassingskosten van (twee) concurrerende bedrijven bestudeerd. Vandaar dat ook 
een extreme voorkeur voor (productie)grootte of marktaandeel onderwerp van analyse 
kan zijn. 

De economische subdiscipline van de industriële organisatie houdt zich bezig met het 
modelleren van verscheidene vormen van concurrentie, waarbij een breed spectrum van 
perfecte (diffuse) concurrentie tot oligopolistische (direkte) concurrentie aan bod komt. In 
tegenstelling tot de inertie die centraal staat in OE, kunnen bedrijven vanuit het 
gezichtspunt van IO flexibel allerlei strategische acties ondernemen om bijvoorbeeld 
toetreding van rivalen te belemmeren of een concurrent uit de markt te drijven. Vanuit dit 
standpunt kunnen (de eigenaren van) ondernemingen de voorkeuren van hun managers 
of de aanpassingskosten manipuleren, teneinde een gunstige strategische marktpositie 
te bewerkstelligen. Deze strategische manipulatie van de voorkeuren van managers 
treffen we bijvoorbeeld aan in de zogenaamde (twee-staps)delegatiespelen, waarbij een 
eigenaar een manager inhuurt en de doelfunctie van die manager bepaalt met behulp 
van een “incentive contract”.  Op verscheidene plaatsen in dit proefschrift worden ook 
mogelijke strategische manipulaties belicht onder de voorwaarden dat (i) de 
onderneming (eigenaar) zich bewust is van de strategische implicaties van een actie, (ii) 
adequate informatie heeft over de relevante parameters (niveau van voorkeur voor 
grootte of marktaandeel of grootte van de aanpassingskosten) van de concurrent en (iii) 
daadwerkelijk in staat is de relevante parameters ten gunste van het bedrijf te wijzigen. 

 
Hoofdstuk 2 neemt (naast hoofdstuk 6) een bijzondere plaats in en is sterk 

gerelateerd aan hoofdstuk 6 omdat in beide hoofdstukken dynamische verschijnselen 
worden bestudeerd, die optreden als gevolg van een “unimodale” reactiecurve. In 
hoofdstuk 2 worden de implicaties van een “beste-antwoord”curve bestudeerd die een 
maximum vertoont en waarvan de helling kan worden bijgesteld met behulp van een 
parameter. Essentieel is tevens dat de reactie op een nulproductie van de rivaal een 
positief productievolume is, de zogenaamde monopolieproductie. Een micro-
economische fundering voor het bestaan van zo’n reactiecurve met een maximumlocatie 
en positieve monopolieproductie wordt in dit hoofdstuk niet gegeven (in hoofdstuk 5 
wordt wel een mogelijke micro-economische fundering voorgesteld). Wel wordt de vorm 
van deze curve in verband gebracht met gedragskenmerken in strategische 
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concurrentie. Startend vanuit een monopolieproductiepositie beschouwt (gezien het 
stijgende karakter van de curve) de onderneming het productieniveau als een 
zogenaamd strategisch complement. Als de rivaal de productie ophoogt, zal het bedrijf 
agressief reageren door eveneens de productie te verhogen. Deze agressieve strategie 
na toetreding van de rivaal wordt ondersteund in de literatuur betreffende ongebruikte 
(over)capaciteit als een instrument voor toetredingsbelemmering. Dit agressieve gedrag 
biedt geen voordelen meer als het productieniveau van de rivaal een zekere hoeveelheid 
overschrijdt; dan gaan de voordelen van (volledige of gedeeltelijke) inkrimping 
domineren over het voordeel van nog verdere uitbreiding van de productie. De productie 
kan nu beschouwd worden als een strategisch substituut. De unimodale reactiecurve 
correspondeert dus in essentie met dualistisch strategisch gedrag; een agressieve 
gedragslijn enerzijds en een inschikkend, aanpassend beleid anderzijds, afhankelijk van 
het productievolume van de concurrent. 

In hoofdstuk 2 worden drie scenario’s in een duopoliemodel geanalyseerd: ten eerste 
een situatie waarbij één der rivalen dualistisch gedrag vertoont (unimodale reactiecurve) 
en de andere concurrent de eerste volledig of gedeeltelijk imiteert, ten tweede een 
scenario met een dualist en een rivaal die zich perfect aanpast en ten derde een 
duopolie-spel met twee dualisten. In deze scenario’s reageren de concurrenten 
beurtelings op elkaar en hebben zij naïeve (myopische) verwachtingen ten aanzien van 
de productie van de rivaal; de bedrijven gaan ervan uit dat hun concurrenten in de 
huidige periode evenveel zullen produceren als in de vorige. Alledrie de scenario’s 
resulteren, voor een specifiek interval van de “hellingparameter” van de dualist(en), in 
een volstrekt onregelmatige, zogenoemde chaotische, productievoluminareeks van beide 
concurrenten. De drie belangrijkste kenmerken van chaos worden in dit hoofdstuk met 
computersimulaties geïllustreerd: (1) het niet-herhalen van de geschiedenis in een 
productiereeks in de tijd (m.a.w.: volstrekte onregelmatigheid), (2) gevoelige 
afhankelijkheid van de waarde van de (helling-)parameter en de startwaarde van de 
productiereeks, waarbij een minieme verschuiving van één van deze waarden leidt tot 
een totaal ander productiepad, en (3) kwalitatieve breuken in het productiepad in de tijd, 
waarbij het bijvoorbeeld lijkt alsof zich een evenwicht of periodiciteit instelt. Het tweede 
kenmerk van chaotische regimes impliceert dat deterministische chaos ernstige 
problemen kan opleveren wat betreft de schatting van modelparameters. Bovendien kan 
het problematisch zijn om chaos die volgt uit een volstrekt deterministisch model te 
onderscheiden van een stochastisch bepaalde reeks. 

 
In hoofdstuk 3 wordt de voorkeur van managers voor productiegrootte 

geïntroduceerd (een vorm van inertie van managers); dit houdt in dat de doelfunctie van 
de managers een combinatie is van de winst - deze heeft in het model een gewicht 1 - en 
de productiegrootte, die een gewicht iα  heeft voor onderneming i. Vanuit het 
gezichtspunt van de organisatie-ecologie maakt dit niveau van voorkeur voor een grotere 
productieomvang van managers deel uit van de “blauwdruk” van het bedrijf. De analyse 
van allerlei combinaties van voorkeuren ( ji αα , ) van de beide rivalen in de context van 
Cournot-concurrentie levert interessante inzichten op. De verzameling van Cournot-
evenwichten, waarbij ieder productie-evenwicht wordt bepaald door een unieke 
combinatie ( ji αα , ) van voorkeuren van beide fbedrijven, kan worden opgedeeld in 
gebieden met specifieke kenmerken. Ondersteund door empirisch onderzoek nemen we 
aan dat bedrijven verliezen kunnen accumuleren gedurende verscheidene jaren 
voorafgaand aan uittreding. Als bedrijven een even efficiënte productietechnologie 
hebben, dan blijkt dat het bedrijf met het hoogste niveau van voorkeur voor 
productiegrootte ook daadwerkelijk de concurrent in grootte overheerst, onafhankelijk 
van winst of verlies. Als het niveau van voorkeur groot genoeg is in vergelijking met de 
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rivaal, dan kan deze concurrent zelfs uit de markt gedreven worden, zodat het bedrijf met 
dit hoge niveau van voorkeur overblijft als een monopolist met verlies of nulwinst. We 
dienen ons te realiseren dat hetzelfde niveau van voorkeur dat leidt tot die 
monopoliepositie, ook verantwoordelijk is voor het winstverlies. Echter: deze voorkeur 
van de managers maakt deel uit van de “blauwdruk” van het bedrijf en kan derhalve niet 
op korte termijn worden gewijzigd.  

Wanneer de marktvraag zich ongunstig ontwikkelt in relatie tot de productiekosten, 
laat de analyse verschillende scenario’s zien. Beide rivalen besluiten de markt te 
verlaten als hun winstmotieven hun voorkeuren voor grootte overheersen. Als de 
voorkeuren voor grote omvang van beide concurrenten de winstmotieven echter 
domineren en onderling niet te veel verschillen, dan zullen beide bedrijven in deze 
ongunstige markt blijven opereren met verlies (de marktprijs is tengevolge van het hoge 
marktaanbod onder de kostprijs gezakt). Ook in een ongunstige markt kan het bedrijf met 
een veel hoger niveau van voorkeur voor grootte de concurrent uit de markt drijven. Als 
de twee rivalen verschillende productiekosten hebben, dan kan een bedrijf met de 
laagste productiekosten en met uitsluitend winstmotieven toch in het nadeel zijn als de 
minder efficiënte concurrent een hoge voorkeur voor grootte vertoont. Men kan stellen 
dat hogere productiekosten (dus lagere efficiëntie) van een ondrneming in 
concurrentietermen gecompenseerd kunnen worden door een hoger niveau van inertie 
van de managers, weerspiegeld in een hoog gewicht α  voor productieomvang in de 
doelfunctie.  De uitkomsten van het model geven aan dat de overlevingskansen van een 
bedrijf verhoogd worden als de managers inertie vertonen voor wat betreft hun voorkeur 
voor grootte. Dit resultaat ondersteunt de “inertiehypothese” van Hannan en Freeman, 
de gronleggers van OE, die stellen dat organisaties met structuren die een hoge mate 
van inertie vertonen, in het voordeel zijn bij het (Darwiniaans) selectieproces in een 
populatie van bedrijven. 

Vanuit het perspectief van industriële organisatie kunnen andere interpretaties 
worden gepropageerd. Gesteld dat (de eigenaren van) bedrijven de voorkeur voor 
grootte in de doelfunctie zouden kunnen manipuleren (dit is de veronderstelling in de 
zogenaamde delegatiespelen, waarbij de eigenaar de doelfunctie van de managers 
manipuleert), bijvoorbeeld via de inrichting van specifieke bonusregelingen, dan zouden 
er verscheidene mogelijkheden zijn. Het gewicht iα  in de doelfunctie kan zodanig 
gemanipuleerd worden dat de betreffende onderneming i de winst maximaliseert, 
gegeven het gewicht van de concurrent jα . Als beide concurrenten hun gewichten 
zodanig aanpassen, leidt dit delegatiespel tot vaste en gelijke voorkeuren voor omvang 
in de beide doelfuncties (bij gelijke productiekosten). De doelstelling van een dergelijke 
strategische actie kan ook het verdrijven van de concurrent van de markt zijn. Dit motief 
zou leiden tot veel hogere voorkeuren voor omvang. 

 
De inertie van een organisatie, weerspiegeld in aanpassingskosten, vormt het 

centrale thema in hoofdstuk 4.  In dit hoofdstuk worden lineaire, asymmetrische 
aanpassingskosten beschouwd rondom een gefixeerd productieniveau, zowel als gevolg 
van een dalend als van een stijgend productievolume. De consequenties van een 
conjunctuurgolf voor de productiehoeveelheden en de winstgevendheid van twee 
concurrenten, alsmede de implicaties voor de sociale welvaart, vormen de hoofdthema’s. 
In een krimpende markt kunnen drie gedragsfasen van de rivalen worden 
onderscheiden, waarbij de eerste fase, als gevolg van de aanpassingskosten, 
gekenmerkt wordt door een handhaving van het oorspronkelijke productieniveau door 
beide bedrijven. De duur van deze eerste fase wordt bepaald door de onderneming met 
de laagste aanpassingskosten (de meest flexibele). In de tweede fase handhaaft het 
bedrijf met de hoogste aanpassingskosten (de meest inerte) het productieniveau, terwijl 
de rivaal reeds inkrimpt. De marktprijs zakt vanzelfsprekend in deze krimpende markt, en 
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de winstgevendheid van beide concurrenten daalt, maar de winst van het bedrijf met de 
laagste aanpassingskosten zakt veel sneller. Het relatief flexibele bedrijf krimpt de 
productie in en draagt daarmee alle lasten van de dalende markt. Het blijkt, dat als het 
verschil in aanpassingskosten tussen de (relatief) inerte onderneming en de flexibele 
concurrent hoog genoeg is, het flexibele bedrijf verliezen tegemoet kan zien in de steeds 
verder krimpende markt (gedurende de tweede fase), terwijl de concurrent nog steeds 
winstgevend is. Dit kan leiden tot een mogelijk faillissement van het bedrijf met de 
kleinste aanpassingskosten. In de derde fase verlagen beide rivalen hun 
productieniveau, maar ook dan kan, als de flexibele onderneming de tweede fase 
overleefd heeft, dit bedrijf verliezen gaan maken in de derde fase terwijl de concurrent 
met de hogere aanpassingskosten nog steeds winst maakt. De voorwaarden (het 
verschil in aanpassingskosten tussen het relatief inerte en flexibele bedrijf) worden in 
hoofdstuk 4 analytisch uitgewerkt; er kunnen gebieden worden aangegeven in het 
aanpassingskosten-continuüm van beide rivalen corresponderende met het uittreden van 
de meest flexibele onderneming in de tweede of derde fase.  

Zelfs als het meest flexibele bedrijf overleeft gedurende de fase van laagconjunctuur, 
dan is de winst van dit bedrijf achtergebleven gedurende een langere periode ten 
opzichte van de inerte concurrent. Met behulp van integraalrekening wordt aangetoond 
dat, indien de aanpassingskosten van de meest inerte onderneming een specifiek niveau 
overschrijden, de relatieve winst van het flexibele bedrijf over de gehele periode met 
laagconjunctuur geminimaliseerd wordt. Als de totale winst van het relatief flexibele 
bedrijf slechts een klein percentage van de totale winst van de inerte concurrent is in de 
periode van economische recessie,  heeft dit bedrijf minder kunnen investeren, met alle 
nadelige gevolgen vandien in een weer aantrekkende markt. De analyse van hoofdstuk 4 
toont aan dat het bedrijf met het hoogste niveau van inertie, weerspiegeld in 
aanpassingskosten, in het voordeel is in een krimpende markt. Ook deze bevinding 
ondersteunt de “inertiehypothese” van de organisatie-ecologen Hannan en Freeman. 

In een periode van hoogconjunctuur kunnen er ook weer drie gedragsfasen van de 
producenten onderscheiden worden. In dit geval is het echter juist het flexibele bedrijf dat 
in het voordeel is; lage aanpassingskosten bevorderen dan de strategische marktpositie 
van een bedrijf, hetgeen juist de inertiehypothese tegenspreekt.  Gesteld dat een bedrijf 
zich bewust zou zijn van de strategische implicaties van aanpassingskosten, de 
aanpassingskosten kan wijzigen en adequate informatie bezit betreffende de 
aanpassingskosten van de concurrent, dan kan deze onderneming het niveau van 
aanpassingskosten trachten te optimaliseren als zich een recessie aandient. De 
manipulatie van aanpassingskosten kan ten minste drie doelen dienen, namelijk het uit 
de markt drijven van de rivaal in een krimpende markt gedurende fase twee of fase drie 
of het minimaliseren van de relatieve winst van de concurrent over de gehele periode 
van laagconjunctuur. In een periode van hoogconjunctuur zouden de aanpassingskosten 
vanuit strategisch oogpunt daarentegen zo laag mogelijk moeten zijn. Al deze 
manipulaties zouden leiden tot hogere aanpassingskosten van bedrijven in een 
krimpende markt en optimale flexibiliteit in een aantrekkende markt. Het manipuleren van 
aanpassingskosten spreekt uiteraard het standpunt van de organisatie-ecologie tegen; 
vanuit dit gezichtspunt maken aanpassingskosten deel uit van de inerte cultuur en 
organisatiestructuur van een bedrijf en is het maar de vraag of deze kosten snel genoeg 
gewijzigd kunnen worden in reactie op bijvoorbeeld een plotseling intredende 
economische neergang. 

De analyse van hoofdstuk 4 laat zien dat de sociale welvaart het meest gebaat is bij 
hoge aanpassingskosten in een krimpende markt en zo laag mogelijke 
aanpassingskosten in een uitbreidende markt. In die zin zou strategische manipulatie 
van aanpassingskosten van beide rivalen juist leiden tot de meest voordelige situatie 
voor de welvaart. Immers: hoge aanpassingskosten in een krimpende markt leiden tot 
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een handhaving van het oorspronkelijke productieniveau, en zodoende tot een voor de 
consument lagere marktprijs van goederen. 

 
In hoofdstuk 5 bestuderen we de implicaties van weer een andere vorm van inertie 

van het management, namelijk voorkeur voor een groot marktaandeel naast het 
traditionele winstmotief. De doelfunctie van de managers, die een lineaire combinatie 
van winst en marktaandeel is, wordt gekenmerkt door de gewichten 1 en a voor 
respectievelijk winst en marktaandeel. De gewichten van de marktaandelen van beide 
bedrijven ( ia  en ja  voor bedrijf i en j) worden in hoofdstuk 5 gevarieerd. De analyse van 
allerlei gewichtscombinaties ( ji aa , ) is wederom gebaseerd op de aanname dat deze 
voorkeuren van het management deel uit maken van de inerte cultuur en “blauwdruk” 
van het bedrijf. Hoofdstuk 5 is daarom nauw gerelateerd aan hoofdstuk 3. Het blijkt dat 
voorkeur voor grote marktaandelen belangrijke consequenties heeft voor de vorm van de 
reactiecurve, die het gedrag in de concurrentiestrijd weerspiegelt. Als het niveau van 
voorkeur voor marktaandeel hoog genoeg is, dan is de reactiecurve unimodaal en kan 
het bijbehorende strategisch gedrag als dualistisch worden gekenschetst (zie de 
bespreking van hoofdstuk 2). De aanwezigheid van de voorkeur voor marktaandeel 
(naast het traditionele winstmotief) in de doelfunctie biedt een micro-economische 
fundering voor het optreden van een “beste-antwoord”curve met een maximum. Het 
unimodale karakter van de reactiecurve opent de mogelijkheid tot complexe dynamische 
verschijnselen in een duopolistische marktstructuur, zoals we bij de bespreking van 
hoofdstuk 6 zullen zien. 

In hoofdstuk 5 worden twee speciale situaties betreffende het niveau van voorkeur 
van beide rivalen onderzocht. Allereerst leidt de casus waarbij de niveau’s van 
voorkeuren van beide concurrenten gelijk zijn ( aaa == 21 ) (naast gelijke productie-
efficiëntie) tot een symmetrisch Cournot-Nash-evenwicht. Omdat het doel van het 
management deels marktaandeel is, bestaat er een neiging de productie uit te breiden, 
terwijl inkrimping weerstand oproept. Vergeleken met de klassieke casus, waarbij pure 
winstmotieven het doel vormen in de concurrentiestrijd, leidt deze symmetrische casus 
tot het opofferen van de winst. De (evenwichts)winst van beide rivalen daalt met 
betrekking tot een toenemend niveau van voorkeur voor het marktaandeel, totdat de 
totale winst opgeofferd is. Omdat, als de voorkeur voor het marktaandeel toeneemt (a 
stijgend), de producten in steeds grotere hoeveelheden beschikbaar zijn tegen een 
steeds lagere marktprijs, neemt de welvaart toe (ondanks de dalende winsten). Voor 
constante marginale productiekosten bereikt de welvaart een maximum voor de 
specifieke voorkeur voor marktaandeel die correspondeert met een nulwinst van beide 
bedrijven. Wanneer echter een nog grotere voorkeur van het management voor 
marktaandeel verliezen tot gevolg heeft, kan dit leiden tot uittreding van beide 
ondernemimgen en een ineenstorting van de welvaart. Hoe hoger de productiekosten 
per eenheid product zijn, des te lager is het niveau van voorkeur (het gewicht a terzake 
marktaandeel) waarbij een totale opoffering van de winst of een maximalisering van de 
welvaart optreedt. Men kan stellen dat de mate van voorkeur van managers voor het 
marktaandeel tot een zeker niveau gunstig is voor de sociale welvaart, maar dat 
extremere voorkeuren kunnen leiden tot faillissementen en verlies van welvaart. 

De tweede casus die in hoofdstuk 5 wordt bestudeerd, betreft een 
duopoliemarktstructuur waarbij de managers van bedrijf 1 naast het winstmotief ook 
marktaandeel als doel hebben ( 01 >= aa ), terwijl de concurrent uitsluitend de 
maximalisering van de winst voor ogen heeft ( 02 =a ; in delegatiespelen correspondeert 
pure winstmaximalisatie met een eigenaar die geen manager inhuurt en dus ook geen 
“incentive”contract met een zeker gewicht voor marktaandeel hoeft op te stellen). Uit de 
analyse blijkt dat, ongeacht het niveau van voorkeur voor marktaandeel van bedrijf 1, 
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beide bedrijven met positieve winsten op de markt kunnen blijven opereren. De winst van 
het bedrijf met voorkeur voor het marktaandeel ligt echter op een veel hoger niveau dan 
de winst van de rivaal. Voor constante marginale productiekosten bestaat er een gewicht 

1a  waarbij bedrijf 1 zijn winst maximaliseert. Opmerkelijk is het analytische resultaat dat 
de welvaart blijft toenemen als het niveau van voorkeur voor marktaandeel van bedrijf 1 
verder stijgt. De asymmetrische situatie van deze tweede casus is dus klaarblijkelijk 
gunstig voor de welvaart. Vanuit het gezichtspunt van OE is een bedrijf met een hoger 
niveau van inertie (een hoger niveau van voorkeur voor marktaandeel) in het voordeel in 
een selectieproces in een populatie van organisaties. Wederom ondersteunt dit 
analytische resultaat de inertiehypothese van Hannan en Freeman. Als, vanuit het 
rationele aanpassingsperspectief van IO, bedrijf 1 zich bewust zou zijn van de 
consequenties en in staat zou zijn het gewicht a  aan te passen, dan zou dit bedrijf het 
niveau van voorkeur voor marktaandeel kunnen gebruiken als een strategisch instrument 
in directe concurrentie. 

 
In hoofdstuk 6 wordt wederom de tweede, asymmetrische, casus beschouwd 

( 0, 21 == aaa ) teneinde complexe dynamische verschijnselen te illustreren, die het 
gevolg kunnen zijn van een extremere voorkeur voor marktaandeel van bedrijf 1. Als de 
beide rivalen beurtelings op elkaar reageren en naïeve verwachtingen hanteren t.a.v. het 
productieniveau van de concurrent, kan aangetoond worden dat het Cournot-Nash-
evenwicht instabiel wordt als het niveau van voorkeur voor marktaandeel van bedrijf 1 
een bepaalde waarde, bifa , overschrijdt. Als de marginale productiekosten c op een 
schaal van 0 tot 1 gelegen zijn in het interval [0,2, 1) en het gewicht 1a  de waarde bifa  
overstijgt, ontstaat er een cyclus in de individuele productievolumina en het totale 
marktaanbod met periode 2. Dit betekent dat de extremere voorkeur voor marktaandeel 
van onderneming 1 tot gevolg kan hebben dat er een endogene conjunctuurgolf 
gegenereerd wordt. Bovendien leidt deze instabiliteit tot een lagere gemiddelde winst 
voor het bedrijf met voorkeur voor marktaandeel, terwijl de winst van de onderneming 
met pure winstmotieven op een gunstiger niveau komt te liggen (dan juist voordat het 
Cournot-Nash-evenwicht destabiliseerde). In het geval van zeer efficiënte 
productietechnologieën – de marginale productiekosten liggen op een schaal van 0 tot 1 
nu onder de waarde 0,2 – treden er nog interessantere dynamische verschijnselen op. 
Productiecycli met allerlei perioden kunnen optreden en analyse (met behulp van de 
Stelling van Li en Yorke) toont aan dat, als het niveau van voorkeur voor marktaandeel 
van bedrijf 1 boven een specifiek niveau, chaosa , gelegen is, chaotische regimes mogelijk 
zijn. De eenvoudige en aannemelijke veronderstelling van voorkeur voor marktaandeel in 
de doelfunctie van een bedrijf leidt tot een deterministische beslissingsregel voor beide 
concurrenten inzake hun productievolumina. De analyse toont aan dat zo’n heldere 
beslissingsregel in een situatie met directe concurrentie zelfs kan leiden tot een volstrekt 
onregelmatige totale marktproductie.  

Hoofdstuk 6 bevat ook reflecties op de modelkeuze. Laten we bijvoorbeeld de 
reacties van beide ondernemingen gelijktijdig plaatvinden, i.p.v. beurtelings zoals in het 
eerste deel van dit hoofdstuk, dan heeft dit duidelijke gevolgen voor de periodiciteiten 
van productiecycli (er vindt een verdubbeling van de periode plaats in vergelijking met de 
periodiciteiten bij beurtelingse reacties) en de gemiddelde winsten van beide rivalen over 
zo’n cyclus. Het hoofdstuk wordt afgesloten met een analyse waarbij we de aanname 
maken dat het bedrijf met voorkeur voor marktaandeel een Stackelberg-leider is (en de 
rivaal pure winstmotieven volgt). De Stackelberg-leider kan in dat geval de rivaal de 
markt uitdrijven als het niveau van voorkeur voor marktaandeel een voldoend hoge 
waarde heeft, maar kleiner is dan het gewicht dat in de doelfunctie aan de winst wordt 
toegekend. 
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De analytische resultaten, die volgen uit de modellen van dit proefschrift, 

ondersteunen in veel gevallen de inertiehypothese van Hannan en Freeman: “in een 
populatie van organisaties zijn bedrijven waarvan de structuren een hoge vorm van 
inertie vertonen in het voordeel in een (Darwiniaans) selectieproces.” In een krimpende 
markt zijn de overlevingskansen van bedrijven met hogere aanpassingskosten (inertie 
van de organisatie genoemd) hoger en ook de voorkeuren van managers voor 
productiegrootte of marktaandeel naast de gebruikelijke winstmotieven (inertie van het 
management genoemd) leveren voordelen op in het selectieproces. De speltheoretische 
modellen dragen dus bij tot de vergroting van inzichten vanuit een organisatie-ecologisch 
perspectief. Ook blijkt dat aanpassingskosten of voorkeuren voor productiegrootte en 
marktaandeel goed gebruikt zouden kunnen worden als strategische wapens in de 
concurrentiestrijd. Hiertoe is het echter wel noodzakelijk dat bedrijven (eigenaars) zich 
bewust zijn van de gevolgen van aanpassingskosten of de doelfuncties van het 
management en deze managementvoorkeuren of aanpassingskosten kunnen 
manipuleren in hun voordeel. Deze twee-stapsspelen waarbij eigenaars de doelfuncties 
van hun managers of aanpassingskosten strategisch manipuleren (principaal-agent- of 
delegatiemodellen) zijn in het proefschrift nog onderbelicht gebleven en vormen een 
aandachtsgebied voor toekomstig onderzoek.  

Bovendien kan het onderzoek uitgebreid worden door het aantal concurrerende 
bedrijven te vergroten in een Cournot- of Bertrand-concurrentiecontext, en door tevens 
de gevolgen van productheterogeniteiten te beschouwen. Speltheoretische modellering 
kan inzicht verschaffen in de invloed van productdifferentiatie op de overlevingskansen 
of de concurrentiepositie van bedrijven. Vanzelfsprekend dient dan ook verder 
gereflecteerd te worden op de existentie van evenwichten en de stabiliteit ervan. 
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