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Abstract-In this paper we prove that for a class of RLC 
circuits with convex energy function and weak electromagnetic 
coupling it is possible to “add a differentiation” to the port ter- 
minals presening passivity-with a new storage function that 
is directly related to the circuit power. The result is of interest 
in circuits theory, but also has applications in control problems 
as it suggests the paradigm of power shaping stabilization as 
an alternative tu the well-known method of energy shaping. 
We show in the paper that, in contrast uith energy shaping 
designs, power shaping is not restricted to systems without 
pervasive dissipation and naturally allows to add “derivative” 
adions in the control. These important features, that stymie the 
applicability of energy shaping control, make power shaping 
very practically appealing, as illustrated with examples in the 
paper. To establish our results we exploit the geometric property 
that roltages and currents in RLC circuits live in orthogonal 
spaces, i.e., Tellegen’s theorem, and heavily rely on the seminal 
paper of Brayton and Moser in 1964. 

Note: This paper is an abridged version of (Ortega et ol., 
2003). 

I. INTRODUCTION 

In this paper we are interested in (possibly nonlinear) RLC 
circuits consisting of arbitrary interconnections of resistors, 
inductors, capacitors and voltage and current sources. It is 
well-known that, if the resistors, inductors and capacitors 
are passive, i.e., if their energy functions are positive, then 
the overall interconnected circuit is also passive with port 
variables the external sources voltages and currents, and stor- 
age function the total stored energy (Desoer and Kuh, 1969). 
This properly was exploited by Youla in 1959 (Youla er 
al., 1959) who proved that terminating the port variables of 
a passive RLC circuit with a passive resistor would ensure 
that “finite energy inputs will be mapped into finite energy 
outputs,” what in modern parlance says that adding damping 
injection to a passive system ensures L-stability. Passivity 
can also be used to stabilize a non-zero equilibrium point, 
hut in this case we must modify the storage function to 
assign a minimum at this point. If the storage function is 
the total energy we refer to this step as energy shaping, 
which combined with damping injection constitute the two 
main stages of passivity-based control (PBC) (Ortega and 
Spong, 1989). As explained in (Ortega et al., 1998) there are 
several ways to achieve energy shaping, the most physically 
appealing being the s-alled energy balancing PBC (or 
control by interconnection) method. With this procedure the 
storage function assigned to the closed-loop passive map 
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is the difference between the total energy of the system 
and the energy supplied by the controller, hence the name 
energy balancing. Unfortunately, energy balancing PBC is 
stymied by the presence of pervasive dissipation, that is, the 
existence of resistive elements whose power does not vanish 
at the desired equilibrium point. Another practical drawback 
of energy-shaping control is the limited ability to “speed 
up” the transient response (preserving, of course, a provable 
stable behavior.) Indeed, as tuning in this kind of controllers 
is essentially restricted to the damping injection gain, the 
transients may turn out to be somehow sluggish, and the 
overall performance level below par. 

Our main contribution in this paper is the establishment 
of a new passivity property for a class of RLC circuits that 
provides the basis for a novel PBC design methodology that 
does not suffer from the two aforementioned drawbacks. To 
define the class, we assume that the energy of the inductors 
and capacitors are not just positive but actually convex func- 
tions, and assume that the electromagnetic coupling between 
the dynamic elements is weak. Indeed, for the case of RC or 
RL circuits this condition is conspicuous by its absence-as 
already reported in (Ortega and Shi, 2002). 

The new passivity property, which is by itself of interest in 
circuits theory, has two key features that makes it attractive 
for control design as well. First, that the storage function 
is not the total energy, but a function directly related with 
the power in the circuit. Second, that the port variables of 
the new passive system include deriwtives of the sources 
voltages and/or currents. The utilization of power (instead of 
energy) storage functions immediately suggests the paradigm 
of power shaping stabilization as an alternative to the well- 
known method of energy shaping. We show in the paper that, 
in contrast with energy shaping designs, power shaping is 
applicable also to systems with pervasive dissipation, the only 
restriction for stabilization being the degree of underactuation 
of the circuit. Further, establishing passivity with respect to 
“differentiated” port variables allows the direct incorporation 
of (approximate) derivative actions, whose predictive nature 
can speedkp the transient response. 

The remaining of the paper is organized as follows. In 
Section II we briefly review the method of energy balancing 
passivity-based control (EB-PBC). Next, in Section 111, a 
simple RL-circuit example is presented to motivate the 
concept of stabilization via power shaping. To generalize 
the ideas to a broad class of RLC we need some prelimi- 
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nary material from the ground breaking paper (Brayton and 
Moser, 1964), that is introduced in Section IV. Finally, we 
present the main result in Section V. 

11. ENERGY BALANCING PASSIVITY-BASED CONTROL 

In (Ortega er al., 2001) a new method is presented to stabi- 
lize the following class of nonlinear systems-that includes 
passive systems. 

Defrnirim 1: We say that the m-port system 

x = f(x)+g(x)u . 
Y = Y(x), 

with state x = c o l ( q  ,..., zn) E R", and power port 
variables U, y E Rm, satisfies the energy balance inequality 
if, along all trajectories compatible with U : [0, t] + Wm, we 
have 

storedknergy --. 
supplied energy 

where & : Wn 3 W is the stored energy function. If &(x) is 
positive semidefinite then we say that the system is passive 
with port variables (u,y). 
The proposition below, established in (Ortega er al., 2001), 
constitutes the basis for energy-balancing PBC. (For simplic- 
ity, we present only the case of static state feedback, the case 
of dynamic controllers may be found in (Ortega et al., 20011.) 

Pmposirion I: Consider m-port systems that satisfy the 
energy balance equation (2). If we can find a vector function 
a(x) : W" + Rm such that the partial differential equation' 

VTE,(x)If(x) + g(x)U(x)] = - Y T ( X ) W ,  (3) 

can be solved for the scalar function &, : W" -3 W, and the 
function &d(x) := &(x) +&a(x) has an isolated minimum at 
x*, then the state-feedback U = u(x) is an energy balancing 
PBC, i.e., x' is a stable equilibrium with the difference 
between the stored and the supplied energies constituting a 
Lyapunov function. 

This result, although quite general, is of limited interest. 
First of all, these kind of state models do not reveal the 
role played by the energy function in the system dynamics. 
Hence it is difficult to incorporate prior information to select 
a U(.) to solve the PDE (3). In (Ortega er al., 2002) energy 
balancing PBC is developed for a more suitable class of 
models, the s-alled port-controlled Hamiltonian systems, 
that explicitly exhibit the existence of dynamic invariants. 
Second, and perhaps more importantly, it is shown in (Ortega 
et al., 1998) that, beyond the realm of mechanical systems, 
the applicability of energy balancing control is severely 
stymied by the system's natural dissipation. Indeed, it is easy 
to see that a necessary condition for the global solvability of 

'we use the natation V= := ajaX3o: := a2jax2.  When clear from 
the context the arpment will be omined. Also. all w". including the 
p d i e n t ,  are column vecton. 

the PDE (3) is that yT(x)u(x) vanishes at all the zeros of 
f(x) + g(x)u(x), that is, the implication 

f (Z)  + g(%)a(Z) = 0 =+ yT(Z)a(n) = 0 (4) 

should hold. Now, f(x) +g(x)a(x) is ohviously zero at the 
equilibrium x', hence the power extracted from the controller 
should also be zero at the equilibrium. This means that energy 
balancing PBC is applicable only if the system does not have 
pervasive damping, i.e., if it can he stabilized extracting a 
finite amount of energy from the controller. This is the case in 
regulation of mechanical systems where the extracted power 
is the product of force and velocity and we want to drive the 
velocity to zero. Unfortunately, it is no longer the case for 
most electrical or electromechanical systems where power 
involves the product of voltages and currents and the latter 
may be nonzero for nonzero equilibria. For instance, a series 
RC circuit is energy-balancing stabilizable (because in steady 
state there is no current drained from the source), but not an 
F X  circuit-see the following section. 

Reinark I :  For linear systems it is, of course, possible to 
overcome the dissipation obstacle by shifting the equilibrium 
of the systems equation to zero. As the terms dependent 
on x*,u+ cancel in the incremental model, the original 
(quadratic) storage function-but expressed now in terms of 
the incremental variables-qualifies as a storage function for 
the shifted model. Unfortunately, this simple solution is not 
applicable for the nonlinear case, as there is no systematic 
procedure to generate, from the knowledge of &(x), a storage 
function for the "input-shifted" system 

. 

x = f(x) + g(x)u' + g(x)w, y = Y(X), 

with w := U - U*, and (w,y) the new port variables. 
As shown in (Maschke et al., 2000) the natural solution 
of adding to &(x) a term - f," wT(t')y[x(t')]dt' is also 
restricted to systems without pervasive damping. 

111. TOWARDS POWER SHAPING CONTROL 
Let us illustrate with an example how the limitations of 

energy balancing PBC can be overcome via power balancing. 
Consider a voltage<ontrolled nonlinear series RL circuit. 
The behavior of the inductor is characterized by a function, 
pr. = p L ( i L ) ,  relating the flux linkages pr. and the current 
Z L ,  and Faraday's law: P L  =  ti^, where DL is the inductor 
voltage. The resistor is a static element described by its 
characteristic function U R  = e ~ ( i ~ ) ,  where Z ) R , ~ R  are the 
resistors voltage and current, respectively. The dynamics of 
the circuit is obtained from Kirchboff's voltage law as 

dir. 
dt  (5 )  

where PIS is the voltage at the port terminal, which is our 
control action. Furthermore, we have that i R = Z L ,  and the 
property L ( ~ L )  := V , L $ ~ ( i ~ ) .  Differentiating the inductor's 
energy & L ( ~ L )  we obtain 

&L(PL)  = V~,&L(PL)PL (= ~ L W )  

V L  = L ( ~ L ) -  = - O R ( ~ L )  +us ,  

= isvs - i . ~ c ~ ( i ~ ) ,  
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where, to obtain the last equation, we used the fact that 
1s. the port current, is equal to i ~ .  If we assume that the 
resistor is passive, that is, that the energy that it dissipates 
is nonnegative, i.e., J,’ iR(t’)<JR[iR(t’)]dt’ 2 0, and integrate 
from 0 to t ,  we recover the energy balance inequality (2). If 
we further assume that the inductor is also passive-that is, 
its stored energy is nonnegative-we verify that the circuit 
defines a passive system with port variables (vs,is) and 
storage function EL(~L). 

We define as control objective the stabilization of an equi- 
librium iE of (3, whose corresponding equilibrium supply 
voltage is given by U ;  = i l ~ ( i ; ) .  If we further assume that 
the function f j ~ ( i ~ )  is zero only at zero, it is clear that, at any 
equilibrium i ;  # 0, the extracted power i;il,(?;) is nonzero, 
hence the circuit is not energy-balancing stahilizable-not 
even in the linear case! 

To overcome this problem let us define the function 

known in the circuits literature (Millar, 1951) as the resistors 
content, which has units of power-in particular, for linear 
resistors it is half the dissipated power. Furthermore, notice 
that for passive resistors the function is nonnegative. Sum- 
marizing, we have the following result. 

Pnpposition 2: Consider a series RL circuit. If the inductor 
is passive and has a twice differentiable coiivex energy 
function, that is, 

V~,EL@L) 2 0, 

then, along the trajectories of the system, we have the power 
balance inequality 

Furthermore, if the resistor is passive, then the circuit defines 
a passive system with port variables ( u s ,  $$) and storage 
function the resistor content. 

The properties of Proposition 2 differ from the classical 
energy balancing and passivity properties in two important 
respects: the presence of the derivative of is and the use 
of a new power-like storage function. These two properties 
suggest, similarly to energy balancing PBC, to shape the 
resistors contint. That is, to look for functions i l s ( i ~ ) ,  F , ( ~ L )  

(8) 

such that di L 

dt  
I+&) -fjs(i&-. 

2‘ - - argmin{F(iL) + F a ( i . ~ ) } ,  
If we furthermore ensure that 

then i ~ +  will be a stable equilibrium with Lyapunov function 
F d ( i ~ )  := F ( ~ ’ L )  + F o ( i ~ ) ,  that is, the system is stabilized 
via power shaping! 

Clearly, for any choice of F a ( i ~ ) ,  (8) is trivially solved 
with the control us = O s ( i ~ ) ,  where 

f j S ( i L )  = -vi’Fa(iL) 

If the resistance characteristic is exactly known we can take 
F , ( ~ L )  = -F(Z’L)+ + ( i ~ - i i ) * ,  with R, > 0 some tuning 
parameter. But clearly, we only need to “dominate” F ( ~ L )  to 
assign the desired minimum, which (together with the fact 
that L ( ~ L )  is completely unknown) exhibits the robustness 
of the design procedure. 

Detailed proofs for general RL and RC circuits can be 
found in (Jeltsema er al., 2003; Ortega and Shi, 2002). An 
important observation, that will be proved for more general 
nonlinear RLC circuits in the following section, is that we 
can express the circuit dynamics (5) in terms of the resistor 
content as 

diL L ( ~ L ) -  = -ViLF(i~) +us. 
dt  

The identification of a gradient-like description of RLC cir- 
cuits is the main contribution of the seminal paper (Brayton 
and Moser, 1964). 

Iv. PASSIVITY OF BRAYTON-MOSER CIRCUITS 

The previous developments show that, using the content 
(resp. co-content in the RC case (Jeltsema et a/., 2003; Ortega 
and Shi, 2002)) as a storage function, we can identify new 
passivity properties of RL (resp. RC) circuits. In this section 
we will establish similar properties for RLC circuits. Towards 
this end, we strongly rely on some fundamental results 
reported in (Brayton and Moser, 1964). Furthermore, we 
assume that the current-controlled resistors are contained in 
C L  and the voltage-controlled resistors are contained in C c .  
The class of RLC considered here is then composed by an 
interconnection of C L  and C c .  For a detailed derivation, see 
(Ortega er ai,, 2003). 

A. Brayton and Maser’s Equations 
In the early sixties Brayton and Moser (Brayton and 

Moser, 1964) have shown that the dynamic behavior of a 
topologically complete circuit (where we restrict, for simplic- 
ity, to circuits having only voltage sources in series with the 
inductors) is governed by the following differential equation 

(9) 

where x = col(iL,vc), B = col(Bs,O) with Bs E 
RnLxns, Q(x) = diag(-L(iL),C(vc)) E W n x n ,  n = 
nL + RC, and P : W” + W is called the mixed-potential 
and is given by 

Q(x)X = V,P(x) - B v ~  

P(x) = izrvc + F( iL )  - G(vc), (10) 

where r E RnLXnc IS ’ a (full rank) matrix that captures 
the interconnection structure between the inductors and ca- 
pacitors. The functions F( iL)  and G(vc)  are the resistors 
content F ( ~ L )  (like in (6)) and co-content G(vc) having the 
form 

” 
G(Vfi) := I Z~(t(q)dvk, (11) 

respectively. 
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B. Generation of New Storage Function Candidates 
Let us next see how the Brayton-Moser equations (9) can 

be used to generate storage functions for RLC circuits. From 
(9) we have that 

(12) 

Compare the latter with the right-hand side of (7) of 
Proposition 2 (notice that XTBvs = izvs). Unfortunately, 
even under the reasonable assumption that the inductor and 
capacitor have convex energy functions, the presence of 
the negative sign in the first main diagonal block of Q(x)  
makes the quadratic form sign-indefinite, and not negative 
(semi-)definite as desired. Hence, we cannot establish a 
power-balance inequality from (12). Moreover, to obtain 
the passivity property an additional difficulty stems from 
the fact that P ( x )  is also not sign-definite. To overcome 
these difficulties we borrow inspiration from (Brayton and 
Moser, 1964) and look for other suitable pairs, say QA(x) 
and Pa(x), which we call admissible, that preserve the form 
of (9). More precisely, we want to find matrix functions 
QA(x) verifying 

P(x) = XTQ(x)X + XTBvs. 

Q ~ ( x )  + Q a ( 4  5 0 ,  (13) 

and scalar functions PA : W" -+ W (if possible, positive semi- 
definite) that describe the same dynamics as (9). If (13) holds, 
it is clear that @A(x) 5 XTBvs, from which we obtain 
a power balance equation with the desired port variables. 
Furthermore, if PA(x) is positive semi-definite we are able 
to establish the required passivity property. 

A complete characterization of the admissible pairs 
(Qa, Pa) has been reported in (Ortega ef al., ZOO?.), but it 
requires the solution of a partial differential equation. A more 
constructive procedure to generate admissible pairs is given 
in the following proposition which, for ease of reference, is 
enunciated in terms of the original RLC circuit data.' For 
ease of notation, we write (9) in the more compact form 

Q(x)X = VxP(x), (14) 

where P ( x )  = P(X) - X ~ B V ~ .  

Pmposifion 3: Consider a complete RLC circuit with reg- 
ulated voltage sources in series with the inductors. Assume 
that the energy functions of the dynamic elements are strictly 
convex, i.e., V:,&c(vc),VfL&L(iL) > 0. Then, 

(i) (Sufficiency) For all X E W, and symmetric matrix 
functions M(iL,vc), with M : W" + Rnxn, the pair 

- I  
2 

FA := XPA + -VT&MvT& (15) 

1 
Qa := ~ ' P A ) M  + -V(MVPA) + X I  Q (16) I [' 2 

is admissible, i.e., is such that the time integrals of 

QA(x)X = V , ~ A ( X )  

?To simplify the notation. in the sequel u'e omit the arguments of the 
functions. writing them explicitly only when the function is first defined. 

coincide with the time integrals of (14). 
(ii) (Paoial converse) Assume the circuit (9) admits only 

isolated equilibrium points. Then, given any admissible 
pair ( Q a , P ~ ) _ t h e r e  exists A, and M such that, almost 
everywhere,' PA takes the form (15). 
Pmof: See (Ortega ef al., 2003). a 

An important observation regarding Proposition 3 is that, 
for suitable choices of X and M, we can now try to generate 
a matrix QA(x) with the required negativity property (13). 

Renlark 2: Some simple calculations show that a change 
of (state) coordinates on the dynamical system (14) acts as 
a similarity transformation on Q .  Therefore, is of no use for 
our purposes where we want to change the sign of Q to 
render the quadratic form signdefinite. 

C. Power Balance Inequnlily 
Before we present our main result we first remark that 

in order to preserve the port variables (VS, t), we must 
ensure that the transformed dynamics can be expressed in 
the form (9), which is equivalent to requiring that Pa(x) = 
PA(x) - xTBvs. This naturally restricts the freedom in the 
choices for X and M in Proposition 3. 

nieorem 1: Consider a (possibly nonlinear) RLC circuit 
described by (9). Assume: 
A.l The inductors and capacitors are passive and have 

strictly convex energy functions. 
A.2 The voltage-controlled resistors in Cc are passive, lin- 

ear and time-invariant. Also, det(Rc) # 0, and thus 
C(VC) = ~v:RC'VC 2 0. 

A.3 Uniformly in x we have 

]IC* (vc)RcrTL-+(iL)lI < 1, 

where 11 11  denotes the spectral norm of a matrix. 

balance inequality 
Under these conditions, we have the following power 

where the transformed mixed-potential function is defined as 

PA(x) = F(iL) + $iLrRCrTiL + 
Z ( r T i L  1 - RC'vC)TRC(rTiL - Rc'vc) 

If, furthermore 
A.4 The current-controlled resistors are passive, 
then, the circuit defines a passive system with port vari- 
ables (vs. 8) and storage function the transformed mixed- 
potential PA(.). 

Pmof: The proof consists in first defining the parame- 
ters X and M of Proposition 3 so that, under the conditions 
A.l-A.4 of the theorem, the resulting QA(x) satisfies (13) 
and Pa(x) is a positive semi-definite function. First, notice 

3.4s shown in the proof, the qualifier @e.) stands for the existence 
of possible singular points. These points can be avoided with standard 
regularization procedure<. but is omitted here for brevity. 
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that under assumption A.2 the co-content is linear and 
quadratic. To ensure that P ( x )  is linear in us, as is required 
to preserve the desired port variables, we may select X = 1 
and M = diag(0,ZRc). Now, using (16) we obtain after 
some straight forward calculations 

Assumption A.1 ensures that L(iL) and C(vc)  are positive 
definite. Hence, a Schur complement analysis proves that, 
under Assumption A.3, (17) holds. This proves the power 
balance inequality. Passivity follows from the fact that, under 
Assumption A.2 and A.4, the mixed-potential function Pa (x) 

Remark 3: Assumption A.3 is satisfied if the voltage- 
controlled resistances in Rc are 'small'. Recalling that these 
resistors are contained in Cc ,  this means that the coupling 
between C L  and Cc, that is, the coupling between the 
inductors and capacitors, is weak. 

is positive semi-definite for all x. 

v. STABILIZATION VIA POWER SHAPING 

The theorem below proves that complete RLC circuits with 
strictly convex energy function and linear voltage controlled 
resistors are stahilizahle via power-shaping-without requir- 
ing Assumptions A.3 or A.&-hut only provided that the 
number of control signals is "sufficiently large" to shape the 
mixed potential function and add the damping. 

Theorem 2 (Stabilization via power shaping): Consider a 
complete RLC circuit satisfying Assumptions A.l and A.2 
of Theorem 1, and a desired (admissible) equilibrium 
(i;,v;) E R". Assume there exists a function P, : RnL + 
R verifying: 
A S  (Realizability) BiVP, = 0, where B i B s  = 0. 
A.6 (Equilibrium assignntertf) VP,, ( i t )  + Vi,F(ii) + 
A.7 (Damping injection) Uniformly in iL, V2P, + V?'F 2 

Under these conditions, the circuit is stahilizable via power- 
shaping. More precisely, the control law 

(18) 

rRCrTii = 0. 

R,I, for some sufficiently large R, > 0. 

vs = - (B;B~)-' B;VP, 

ensures that all bounded trajectories satisfy 

lim (iL(t),vc(t)) = (ifL,vE) 

Furthermore, if the characteristic functions of the dynamic 
elements are such that ( p ~ , q c )  = ( p L ( i L ) , q c ( v c ) )  is a 
global diffeomorphism then all trajectories are hounded and 
the equilibrium is g/obal/y attractive. 

Proof: The circuit dynamics are described by (9) and 
(IO). Now, under Assumption AS, the control law (18) 
satisfies Bsvs = -VI',. This leads to the closed-loop 
dvnamics 

t-m 

where Pd(iL.vc) := P+P,. From Assumption A.1 we have 
that Q is full rank and consequently the equilibria are the 
extrema of p d .  Furthermore, from (IO) and Assumption A.2 
we have that 

Since all admissible equilibria satisfy vi: = RcrTi t .  we 
clearly have that VvcPd(i;,v;) = 0. On the other hand, 
Assumption A.2 and A.7 ensure that the function P o ( i L )  + 
F(iL) + i i tr&rTiL is stmngly convex, and consequently 
that it has a unique global minimum at the point where its 
gradient is zero. This, together with Assumption A.6, ensures 
( i t ,  vi.) is the unique equilibrium of the closed-loop system. 

Once we have achieved the power shaping we will now 
apply Proposition 3 to generate another admissible pair 
(Qa, Pd) with Qa + Q i  < 0-notice the strict inequality. 
We make at this point the important observation that, since 
VPd 7 QAQ-'VPd. the extrema of all new mixed poten- 
tials pd will coincide with the extrema of pd. We apply the 
transformations of Proposition 3 to the closed-loop system 
above with the parameters X = -1, M = diag(ZI/R,,O) 
that yields 

whose symmetric pan is negative definite for sufficiently 
large R,. Consequently, along the closed-loop dynamics, 
which can also he described by 

d 
dt vc 

Q.4- [ iL  ] = VPd, 

we have 

for some a > 0, where I . I is the euclidian norm. Conver- 
gence of all hounded trajectories follows immediate!y from 
LaSalle's invariance principle and the fact that IVPdl = 0 
only at the desired eq~ilibrium.~ 

To prove houndedness of trajectories we apply the change 
of coordinates ( p ~ , q c )  = (pL(iL),qc(vc)) to the closed- 
loop system to obtain 

ViLF(iL(pL)) + v ~ ~ ( ~ L ( P L ) )  
0 

where we have denoted the inverse function of p~ = p L ( i L )  
by iL := IL(PL) and &L : R"L i R, &C : RnC + R 
denote the total energy stored in the inductors and capacitors, 
respectively. (Notice that iL = VEL and vc = V&.) From 

'The explicit expression of p d  is of no interest for our derivations, 
LaSalle's invariance principle imposes no particular pasitivity constraint on 
this function. 
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Assumption A.l we have that the total energy, E = Ec + E L ,  
is a positive radially unbuunded function. Evaluating its time 
derivative we get 

& = -VT&cRElV&c - 
V E : [ V i r . F ( i ~ ( ~ ~ ) )  + V ~ ~ ( ; L ( P L ) ) ]  ( 1 %  

Assumption A.7 states that the function F ( i L )  + P a ( i L )  is 
strongly cuinvx. The latter ensures that the lower term in 
(19) is positive outside some ball l iL /  = b, and consequently 
& is negative outside a compact set. This proves global 
boundedness of the solutions and completes the proof. W 

Remark 4: Clearly, all assumptions of Theorem 2 are 
constraints related with the “degree of under-actuation” of 
the circuit. All conditions are obviated in the extreme case 
where Bs = I when we can add an arbitrary power function 
Pa. Also, the rather restrictive Assumption A.3 of Theorem 
1 is conspicuous by its absence-this means that we do not 
assume that the circuit to be controlled is already passive. 

VI. CONCLUSION 
Our main motivation in this paper was to propose an 

alternative to the well-known method of energy shaping 
stabilization of physical systems-which as pointed out in 
(Ortega et al., 2002; Ortega et al., 2001: Schaft, 2000) is 
severely stymied by the existence of pervasive damping. In 
this paper we have, for nonlinear RLC circuits, put forth the 
paradigm of power shaping and shown that it is not restricted 
to systems without pervasive dissipation. The starting point 
for the formulation of the power shaping idea are some new 
power balancing and passivity properties established for a 
class of nonlinear RLC circuits with convex energy function 
and weak electromagnetic coupling. To enlarge the class of 
circuits that enjoy these properties we have made extensive 
use of Proposition 3 which provides a procedure to generate 
alternative circuit topologies that reveal, through the new 
admissible pairs (Qa,Pa), properties of the original circuit 
that we can exploit in our controller design. Future research 
includes the extension of our results beyond the realm 
of RLC circuits, e.g., to mechanical or electromechanical 
systems. A related question is whether we can find Brayton- 
Moser like models for this class of systems. 
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