
 

 

 University of Groningen

Combinatorial optimization tolerances calculated in linear time
Goldengorin, Boris; Sierksma, Gerard

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2003

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Goldengorin, B., & Sierksma, G. (2003). Combinatorial optimization tolerances calculated in linear time. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 06-06-2022

https://research.rug.nl/en/publications/82635056-794c-4ad6-b0d5-28979545d61b


Combinatorial Optimization Tolerances
Calculated in Linear Time

Boris Goldengorin and Gerard Sierksma
Faculty of Economic Sciences, University of Groningen,

P.O. Box 800, 9700 AV Groningen, Netherlands
b.goldengorin,g.sierksma@eco.rug.nl

July 23, 2003

Abstract

For a given optimal solution to a combinatorial optimization prob-
lem, we show, under very natural conditions, the equality of the min-
imal values of upper and lower tolerances, where the upper tolerances
are calculated for the given optimal solution and the lower tolerances
outside the optimal solution. As a consequence, the calculation of such
tolerances can now be done in linear time, while all current methods
use quadratic time.

1 Introduction; Libura’s Theorem Generalized

A combinatorial optimization problem COP(E , C,S, fC) is the problem of find-
ing

S∗ ∈ arg OPT{fC(S) | S ∈ S},

where C : E → < is the given instance of the problem with a ground set E sat-
isfying |E| = m (m ≥ 1), S ⊆ 2E is the set of feasible solutions, and fC : 2E →
< is the objective function of the problem. By S∗ = arg OPT{fC(S) | S ∈ S}
the set of optimal solutions is denoted. It is assumed that S∗ 6= ∅, and that
S 6= ∅ for some S ∈ S. Let g ∈ E , and α ≥ 0. By Cα,g : E → < we denote the
instance defined as Cα,g(e) = C(e) for each e ∈ E\{g}, and Cα,g(g) = C(g)+α.
Take any S∗ ∈ S∗. The upper tolerance, uS∗(e), of e with respect to S∗ is de-
fined as

uS∗(e) = max{α ≥ 0 : S∗ ∈ arg min{fCα,e(S) : S ∈ S}},

1



and the lower tolerance, lS∗(e), with respect to S∗ as

lS∗(e) = max{α ≥ 0 : S∗ ∈ arg min{fC−α,e(S) : S ∈ S}}.

I.e. uS∗(e) is the maximal increase of C(e) under which S∗ stays optimal,
and lS∗(e) is the maximal decrease of C(e) under which S∗ stays optimal. In
Section 2 it will be shown that under very natural conditions, it holds that
min{uS∗(e) : e ∈ S∗} = min{lS∗(e) : e ∈ E \S∗}. For an extensive account on
properties of upper and lower tolerances in the context of sensitivity analysis,
see among others, Gal [1] and Greenberg [2].

The following theorem can be seen as a generalization of Libura’s well known
theorem on tolerances (see, Libura [3], and Ramasvamy&Chakravarti [4]). We
will use the following extra notations. Let e ∈ E . Then S+(e) = {S ∈ S :
e ∈ S}, and S−(e) = {S ∈ S : e /∈ S}. Clearly, S = S−(e) ∪ S+(e) and
S−(e) ∩ S+(e) = ∅ for all e ∈ E . Similarly, S∗+(e) and S∗−(e) are the sets of
optimal solutions containing e, and not containing e, respectively.

Theorem 1 Consider a COP (E , C,S, fC). For each S∗ ∈ S∗ the following
holds:

1. e ∈ ∩S∗ iff uS∗(e) = fC(S)− fC(S∗) > 0 for each S ∈ S∗−(e),
lS∗(e) = ∞;

2. e ∈ E \ ∪S∗ iff uS∗(e) = ∞, lS∗(e) = fC(S)− fC(S∗) > 0
for each S ∈ S∗−(e);

3. e ∈ S∗ \ ∩S∗ iff uS∗(e) = 0, lS∗(e) = ∞;
4. e ∈ ∪S∗ \ S∗ iff uS∗(e) = ∞, lS∗(e) = 0.

The proof of Theorem 1 is left to the reader. Note that if |S∗| = 1, then
this theorem boils down to Libura’s theorem on tolerances. Also note that if
S−(e) = ∅ for some e ∈ E , then uS∗(e) = min{fC(T ) : T ∈ S−(e)}− fC(S∗) =
min{∅} = ∞ (by definition). Similarly, for S+(e) = ∅ we take lS∗(e) = ∞.

2 Minimal Upper and Lower Tolerances

We call S∗ nested w.r.t. S∗ for S∗ ∈ S∗ if and only if either ∪S∗ = S∗ or
∩S∗ = S∗; otherwise – nonnested w.r.t. S∗. We start with the rather trivial
case of multi-optimal solutions.

Theorem 2 Consider a COP(E , C,S, fC) with |S∗| ≥ 2. Then for any S∗ ∈
S∗ the following holds.

1. For S∗ nested w.r.t. S∗:

2



a. S∗ = ∩S∗ implies that min{lS∗(e) : e ∈ E \ S∗} = 0,
min{uS∗(e) : e ∈ S∗} > 0, and < ∞ iff S−(e) 6= ∅ for some e ∈ S∗;

b. S∗ = ∪S∗ implies that min{uS∗(e) : e ∈ S∗} = 0,
min{lS∗(e) : e ∈ E\S∗} > 0, and < ∞ iff S+(e) 6= ∅ for some e ∈ E\S∗;

2. For S∗ nonnested w.r.t. S∗:
min{uS∗(e) : e ∈ S∗} = 0 = min{lS∗(e) : e ∈ E \ S∗}.

Proof. 1a. Since |S∗| ≥ 2, it follows that ∪S∗ \ S∗ 6= ∅. Hence, lS∗(e) = 0 for
each e ∈ ∪S∗\S∗ (see Theorem 1(4)). Therefore, min{lS∗(e) : e ∈ E\S∗} = 0.
Moreover, since S∗ ⊆ T for all T ∈ S∗, it follows that uS∗(e) > 0 for each
e ∈ S∗, while uS∗(e) < ∞ iff S−(e) 6= ∅ for some e ∈ S∗ (see Theorem 1(1)).
1b. The proof is similar to the proof of 1a. Note that now ∪(S∗ \ {S∗}) 6= ∅.
2. S∗ \ ∩S∗ 6= ∅ implies that min{uS∗(e) : e ∈ S∗} = min{uS∗(e) : e ∈
S∗ \ ∩S∗} = 0, and ∪S∗ \ S∗ 6= ∅ implies that min{lS∗(e) : e ∈ E \ S∗} =
min{lS∗(e) : e ∈ ∪S∗ \ S∗} = 0.

Since the situation for |S∗| = 1 is somehow different from the situation with
|S∗| ≥ 2, we have devoted a special theorem for the case with a unique optimal
solution. Below we write uS∗ = u and lS∗ = l. Moreover, we use the set

S2 = {S ∈ S : S ∈ arg min{fC(S) : S ∈ S \ S∗}},

i.e., the set of second-best solutions of COP(E , C,S, fC) with S∗ = {S∗} (see
e.g. Van der Poort et al. [6]). We also assume that fC is monotone, meaning
that for each S1, S2 ∈ 2E , it holds that

if S1 ⊆ S2 then fC(S1) ≤ fC(S2).

Sum functions with fC(S) =
∑

e∈S C(e), bottleneck functions with fC(S) =
maxe∈S C(e), and product functions with fC(S) =

∏
e∈S C(e) and C(e) ≥ 1 for

each e ∈ E are all monotone functions.

Theorem 3 Consider COP(E , C,S, fC) with monotone fC, and unique opti-
mal solution S∗. Then the following holds.

1. min{u(e) : e ∈ S∗} = min{l(e) : e ∈ E \ S∗} = ∞ iff S−(e) = ∅ for all
e ∈ S∗ and S+(e) = ∅ for all e ∈ E \ S∗;

2. 0 < min{u(e) : e ∈ S∗} < min{l(e) : e ∈ E \ S∗} = ∞ iff S−(e) 6= ∅ for
all e ∈ S∗ and S+(e) = ∅ for all e ∈ E \ S∗;

3. 0 < min{l(e) : e ∈ E \ S∗} < min{u(e) : e ∈ S∗} = ∞ iff S−(e) = ∅ for
all e ∈ S∗ and S+(e) 6= ∅ for all e ∈ E \ S∗;
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4. 0 < min{l(e) : e ∈ E \ S∗} ≤ min{u(e) : e ∈ S∗} < ∞ iff S−(e) 6= ∅ for
all e ∈ S∗ and S+(e) 6= ∅ for all e ∈ E \ S∗;
moreover, S2 is nonnested w.r.t. S∗ iff 0 < min{u(e) : e ∈ S∗} =
min{l(e) : e ∈ E \ S∗} < ∞.

Proof. 1. This is by definition.
2. If S−(e) 6= ∅ for some e ∈ S∗, then there is a set S ∈ S−(e) with fC(S) −
fC(S∗) > 0. Hence, min{u(e) : e ∈ S∗} = min{min{fC(S) : S ∈ S−(e)} :
e ∈ S∗} − fC(S∗) > 0.
3. The proof of this part is similar to the proof of (2).
Since S−(e) 6= ∅ for some e ∈ S∗, there exists an element e0 ∈ S∗ and a set
S0 ∈ S−(e) such that u(e0) = min{u(e) : e ∈ S∗} = fC(S0)− fC(S∗). Clearly
S0 \ S∗ 6= ∅, because otherwise S0 ⊆ S∗ and the fact that fC is monotone
would imply that fC(S0) = fC(S∗), contradicting the fact that S∗ is unique.
Now let t ∈ S0 \ S∗ ⊆ E \ S∗. Then S0 ∈ S+(t). Hence,

min{l(e) : e ∈ E \ S∗} ≤ l(t) = min{fC(S) : S ∈ S+(t)} − fC(S∗) = u(e0).

The “moreover” part can be seen as follows. Since S2 is nonnested w.r.t.
S∗, there is a set S0 ∈ S2 such that S0 \ S∗ 6= ∅ 6= S∗ \ S0. Then for each
e0 ∈ S0 \ S∗ and each e ∈ S∗ \ S0, it follows that:

min{u(e) : e ∈ S∗} ≤ u(e) = min{fC(T ) : T ∈ S−(e)} − fC(S∗) =
fC(S0)− fC(S∗) = min{fC(T ) : T ∈ S+(e0)} − fC(S∗) =
min{l(e) : e ∈ E \ S∗}.

If S2 is nested w.r.t. S∗, then min{l(e) : e ∈ E \S∗} = l(e) for each e ∈ S \S∗

with S ∈ S2, while min{u(e) : e ∈ S∗} = fC(T ) − fC(S∗) for some T with
fC(T ) > fC(S) for S ∈ S2. This completes the “iff” of the “moreover” part of
4.

Theorem 4 Consider COP(E , C,S, fC) with monotone fC. If for each S1, S2 ∈
S with S1 6= S2, it holds that neither S1 ⊂ S2 nor S2 ⊂ S1, then

min{uS∗(e) : e ∈ S∗} = min{lS∗(e) : e ∈ E \ S∗},

for each S∗ ∈ S∗.

Proof. If |S∗| ≥ 2, then the assertion of this theorem follows from Theo-
rem 2(2). If |S∗| = 1 the assertion follows from Theorem 3(4), because both
S∗ and S2 are nonnested w.r.t. S∗ for each S∗ ∈ S∗.
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Note that the conditions from Theorem 4 hold for “regular” COPs, such as the
traveling salesman, quadratic assignment, linear ordering, assignment, max-
flow, shortest path, minimum spanning tree, and matching problems. The
more irregular situation of Theorem 3(4) with “ > ”, occurs in plant location
problems. The following example shows such a situation with sum function
fC .

Let E = {e1, e2, e3} with C(e1) = 1, C(e2) = 2, C(e3) = 4, S1 = {e1},
S2 = {e1, e2}, and S3 = {e3}. Then S∗ = {S1}, S2 = {S2} with u(e1) =
fC(S3) − fC(S1) = 3 > l(e2) = fC(S2) − fC(S1) = 2. Note that l(e3) =
fC(S3)− fC(S1) = 3.

The above example may suggest that there exist “easy” conditions for which

max{uS∗(e) : e ∈ S∗} = max{lS∗(e) : e ∈ E \ S∗} for S∗ ∈ S∗.

However, the following example points in the opposite direction. Let

C =

 0 1 3
1 0 2
3 2 0


be the cost matrix of an assignment problem with three jobs and three ma-
chines. One can easily check that S∗ = {(1, 1), (2, 2), (3, 3)}, and that max{u(e) :
e ∈ S∗} = u(3, 3) = 4 6= 6 = l(3, 1) = max{l(e) : e ∈ E \ S∗}.

Finally, note that Theorem 3, and more specifically Theorem 4, allow us
to compute the minimal upper and lower tolerances w.r.t. a given opti-
mal solution S∗, within S∗ and outside S∗ respectively, by solving at most
min{O(|S∗|), O(|E \ S∗|)} (sub)COPs. This can be seen as a considerable im-
provement, in comparison to the situation where only Theorem 1 (including
Libura’s theorem) is available. In the latter case, O(|E|) (sub)COPs need to be
solved; see also Van Hoesel&Wagelmans [5], and Ramasvamy&Chakravarti [4].
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