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Abstract

For a given optimal solution to a combinatorial optimization prob-
lem, we show, under very natural conditions, the equality of the min-
imal values of upper and lower tolerances, where the upper tolerances
are calculated for the given optimal solution and the lower tolerances
outside the optimal solution. As a consequence, the calculation of such
tolerances can now be done in linear time, while all current methods
use quadratic time.

1 Introduction; Libura’s Theorem Generalized

A combinatorial optimization problem COP(E , C,S, fC) is the problem of find-
ing

S∗ ∈ arg OPT{fC(S) | S ∈ S},

where C : E → < is the given instance of the problem with a ground set E sat-
isfying |E| = m (m ≥ 1), S ⊆ 2E is the set of feasible solutions, and fC : 2E →
< is the objective function of the problem. By S∗ = arg OPT{fC(S) | S ∈ S}
the set of optimal solutions is denoted. It is assumed that S∗ 6= ∅, and that
S 6= ∅ for some S ∈ S. Let g ∈ E , and α ≥ 0. By Cα,g : E → < we denote the
instance defined as Cα,g(e) = C(e) for each e ∈ E\{g}, and Cα,g(g) = C(g)+α.
Take any S∗ ∈ S∗. The upper tolerance, uS∗(e), of e with respect to S∗ is de-
fined as

uS∗(e) = max{α ≥ 0 : S∗ ∈ arg min{fCα,e(S) : S ∈ S}},
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and the lower tolerance, lS∗(e), with respect to S∗ as

lS∗(e) = max{α ≥ 0 : S∗ ∈ arg min{fC−α,e(S) : S ∈ S}}.

I.e. uS∗(e) is the maximal increase of C(e) under which S∗ stays optimal,
and lS∗(e) is the maximal decrease of C(e) under which S∗ stays optimal. In
Section 2 it will be shown that under very natural conditions, it holds that
min{uS∗(e) : e ∈ S∗} = min{lS∗(e) : e ∈ E \S∗}. For an extensive account on
properties of upper and lower tolerances in the context of sensitivity analysis,
see among others, Gal [1] and Greenberg [2].

The following theorem can be seen as a generalization of Libura’s well known
theorem on tolerances (see, Libura [3], and Ramasvamy&Chakravarti [4]). We
will use the following extra notations. Let e ∈ E . Then S+(e) = {S ∈ S :
e ∈ S}, and S−(e) = {S ∈ S : e /∈ S}. Clearly, S = S−(e) ∪ S+(e) and
S−(e) ∩ S+(e) = ∅ for all e ∈ E . Similarly, S∗+(e) and S∗−(e) are the sets of
optimal solutions containing e, and not containing e, respectively.

Theorem 1 Consider a COP (E , C,S, fC). For each S∗ ∈ S∗ the following
holds:

1. e ∈ ∩S∗ iff uS∗(e) = fC(S)− fC(S∗) > 0 for each S ∈ S∗−(e),
lS∗(e) = ∞;

2. e ∈ E \ ∪S∗ iff uS∗(e) = ∞, lS∗(e) = fC(S)− fC(S∗) > 0
for each S ∈ S∗−(e);

3. e ∈ S∗ \ ∩S∗ iff uS∗(e) = 0, lS∗(e) = ∞;
4. e ∈ ∪S∗ \ S∗ iff uS∗(e) = ∞, lS∗(e) = 0.

The proof of Theorem 1 is left to the reader. Note that if |S∗| = 1, then
this theorem boils down to Libura’s theorem on tolerances. Also note that if
S−(e) = ∅ for some e ∈ E , then uS∗(e) = min{fC(T ) : T ∈ S−(e)}− fC(S∗) =
min{∅} = ∞ (by definition). Similarly, for S+(e) = ∅ we take lS∗(e) = ∞.

2 Minimal Upper and Lower Tolerances

We call S∗ nested w.r.t. S∗ for S∗ ∈ S∗ if and only if either ∪S∗ = S∗ or
∩S∗ = S∗; otherwise – nonnested w.r.t. S∗. We start with the rather trivial
case of multi-optimal solutions.

Theorem 2 Consider a COP(E , C,S, fC) with |S∗| ≥ 2. Then for any S∗ ∈
S∗ the following holds.

1. For S∗ nested w.r.t. S∗:
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a. S∗ = ∩S∗ implies that min{lS∗(e) : e ∈ E \ S∗} = 0,
min{uS∗(e) : e ∈ S∗} > 0, and < ∞ iff S−(e) 6= ∅ for some e ∈ S∗;

b. S∗ = ∪S∗ implies that min{uS∗(e) : e ∈ S∗} = 0,
min{lS∗(e) : e ∈ E\S∗} > 0, and < ∞ iff S+(e) 6= ∅ for some e ∈ E\S∗;

2. For S∗ nonnested w.r.t. S∗:
min{uS∗(e) : e ∈ S∗} = 0 = min{lS∗(e) : e ∈ E \ S∗}.

Proof. 1a. Since |S∗| ≥ 2, it follows that ∪S∗ \ S∗ 6= ∅. Hence, lS∗(e) = 0 for
each e ∈ ∪S∗\S∗ (see Theorem 1(4)). Therefore, min{lS∗(e) : e ∈ E\S∗} = 0.
Moreover, since S∗ ⊆ T for all T ∈ S∗, it follows that uS∗(e) > 0 for each
e ∈ S∗, while uS∗(e) < ∞ iff S−(e) 6= ∅ for some e ∈ S∗ (see Theorem 1(1)).
1b. The proof is similar to the proof of 1a. Note that now ∪(S∗ \ {S∗}) 6= ∅.
2. S∗ \ ∩S∗ 6= ∅ implies that min{uS∗(e) : e ∈ S∗} = min{uS∗(e) : e ∈
S∗ \ ∩S∗} = 0, and ∪S∗ \ S∗ 6= ∅ implies that min{lS∗(e) : e ∈ E \ S∗} =
min{lS∗(e) : e ∈ ∪S∗ \ S∗} = 0.

Since the situation for |S∗| = 1 is somehow different from the situation with
|S∗| ≥ 2, we have devoted a special theorem for the case with a unique optimal
solution. Below we write uS∗ = u and lS∗ = l. Moreover, we use the set

S2 = {S ∈ S : S ∈ arg min{fC(S) : S ∈ S \ S∗}},

i.e., the set of second-best solutions of COP(E , C,S, fC) with S∗ = {S∗} (see
e.g. Van der Poort et al. [6]). We also assume that fC is monotone, meaning
that for each S1, S2 ∈ 2E , it holds that

if S1 ⊆ S2 then fC(S1) ≤ fC(S2).

Sum functions with fC(S) =
∑

e∈S C(e), bottleneck functions with fC(S) =
maxe∈S C(e), and product functions with fC(S) =

∏
e∈S C(e) and C(e) ≥ 1 for

each e ∈ E are all monotone functions.

Theorem 3 Consider COP(E , C,S, fC) with monotone fC, and unique opti-
mal solution S∗. Then the following holds.

1. min{u(e) : e ∈ S∗} = min{l(e) : e ∈ E \ S∗} = ∞ iff S−(e) = ∅ for all
e ∈ S∗ and S+(e) = ∅ for all e ∈ E \ S∗;

2. 0 < min{u(e) : e ∈ S∗} < min{l(e) : e ∈ E \ S∗} = ∞ iff S−(e) 6= ∅ for
all e ∈ S∗ and S+(e) = ∅ for all e ∈ E \ S∗;

3. 0 < min{l(e) : e ∈ E \ S∗} < min{u(e) : e ∈ S∗} = ∞ iff S−(e) = ∅ for
all e ∈ S∗ and S+(e) 6= ∅ for all e ∈ E \ S∗;
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4. 0 < min{l(e) : e ∈ E \ S∗} ≤ min{u(e) : e ∈ S∗} < ∞ iff S−(e) 6= ∅ for
all e ∈ S∗ and S+(e) 6= ∅ for all e ∈ E \ S∗;
moreover, S2 is nonnested w.r.t. S∗ iff 0 < min{u(e) : e ∈ S∗} =
min{l(e) : e ∈ E \ S∗} < ∞.

Proof. 1. This is by definition.
2. If S−(e) 6= ∅ for some e ∈ S∗, then there is a set S ∈ S−(e) with fC(S) −
fC(S∗) > 0. Hence, min{u(e) : e ∈ S∗} = min{min{fC(S) : S ∈ S−(e)} :
e ∈ S∗} − fC(S∗) > 0.
3. The proof of this part is similar to the proof of (2).
Since S−(e) 6= ∅ for some e ∈ S∗, there exists an element e0 ∈ S∗ and a set
S0 ∈ S−(e) such that u(e0) = min{u(e) : e ∈ S∗} = fC(S0)− fC(S∗). Clearly
S0 \ S∗ 6= ∅, because otherwise S0 ⊆ S∗ and the fact that fC is monotone
would imply that fC(S0) = fC(S∗), contradicting the fact that S∗ is unique.
Now let t ∈ S0 \ S∗ ⊆ E \ S∗. Then S0 ∈ S+(t). Hence,

min{l(e) : e ∈ E \ S∗} ≤ l(t) = min{fC(S) : S ∈ S+(t)} − fC(S∗) = u(e0).

The “moreover” part can be seen as follows. Since S2 is nonnested w.r.t.
S∗, there is a set S0 ∈ S2 such that S0 \ S∗ 6= ∅ 6= S∗ \ S0. Then for each
e0 ∈ S0 \ S∗ and each e ∈ S∗ \ S0, it follows that:

min{u(e) : e ∈ S∗} ≤ u(e) = min{fC(T ) : T ∈ S−(e)} − fC(S∗) =
fC(S0)− fC(S∗) = min{fC(T ) : T ∈ S+(e0)} − fC(S∗) =
min{l(e) : e ∈ E \ S∗}.

If S2 is nested w.r.t. S∗, then min{l(e) : e ∈ E \S∗} = l(e) for each e ∈ S \S∗

with S ∈ S2, while min{u(e) : e ∈ S∗} = fC(T ) − fC(S∗) for some T with
fC(T ) > fC(S) for S ∈ S2. This completes the “iff” of the “moreover” part of
4.

Theorem 4 Consider COP(E , C,S, fC) with monotone fC. If for each S1, S2 ∈
S with S1 6= S2, it holds that neither S1 ⊂ S2 nor S2 ⊂ S1, then

min{uS∗(e) : e ∈ S∗} = min{lS∗(e) : e ∈ E \ S∗},

for each S∗ ∈ S∗.

Proof. If |S∗| ≥ 2, then the assertion of this theorem follows from Theo-
rem 2(2). If |S∗| = 1 the assertion follows from Theorem 3(4), because both
S∗ and S2 are nonnested w.r.t. S∗ for each S∗ ∈ S∗.

4



Note that the conditions from Theorem 4 hold for “regular” COPs, such as the
traveling salesman, quadratic assignment, linear ordering, assignment, max-
flow, shortest path, minimum spanning tree, and matching problems. The
more irregular situation of Theorem 3(4) with “ > ”, occurs in plant location
problems. The following example shows such a situation with sum function
fC .

Let E = {e1, e2, e3} with C(e1) = 1, C(e2) = 2, C(e3) = 4, S1 = {e1},
S2 = {e1, e2}, and S3 = {e3}. Then S∗ = {S1}, S2 = {S2} with u(e1) =
fC(S3) − fC(S1) = 3 > l(e2) = fC(S2) − fC(S1) = 2. Note that l(e3) =
fC(S3)− fC(S1) = 3.

The above example may suggest that there exist “easy” conditions for which

max{uS∗(e) : e ∈ S∗} = max{lS∗(e) : e ∈ E \ S∗} for S∗ ∈ S∗.

However, the following example points in the opposite direction. Let

C =

 0 1 3
1 0 2
3 2 0


be the cost matrix of an assignment problem with three jobs and three ma-
chines. One can easily check that S∗ = {(1, 1), (2, 2), (3, 3)}, and that max{u(e) :
e ∈ S∗} = u(3, 3) = 4 6= 6 = l(3, 1) = max{l(e) : e ∈ E \ S∗}.

Finally, note that Theorem 3, and more specifically Theorem 4, allow us
to compute the minimal upper and lower tolerances w.r.t. a given opti-
mal solution S∗, within S∗ and outside S∗ respectively, by solving at most
min{O(|S∗|), O(|E \ S∗|)} (sub)COPs. This can be seen as a considerable im-
provement, in comparison to the situation where only Theorem 1 (including
Libura’s theorem) is available. In the latter case, O(|E|) (sub)COPs need to be
solved; see also Van Hoesel&Wagelmans [5], and Ramasvamy&Chakravarti [4].
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