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Iterative differential equations and the
Abhyankar conjecture

By B. Heinrich Matzat at Heidelberg and Marius van der Put at Groningen

1. Introduction

Higher derivations, here called iterative derivations, were introduced by H. Hasse
and F. K. Schmidt, [H-S]. The basic example is the iterative derivation {0}, =0, defined

on the field C(z), and given by the formulas 8z = <m>z’””. If the field C has char-
n
L . 1 ! . .
acteristic 0, then a§"> is just the operator pr (d_> on C(z). We are interested in the case
. Z

where C is an algebraically closed field of characteristic p > 0. More generally, we consider
a field K with an iterative derivation {8;?)},@0 such that its field of constants C, i.e., the
set of elements a € K with 62’) (a) =0 for all n = 1, is algebraically closed, has characteris-
tic p > 0 and is different from K. A (linear, iterative) differential equation over the iterative
differential field K (or ID-field for short) can be given as a vector space M over K of finite
dimension, equipped with a sequence of additive maps 63?: M — M, n = 0 satisfying the
rules:

(a) 8\ is the identity.

) oW (fm)= 3 a8 (m) foralln=0, feK, me M.

a,b=0,a+b=n
b
(©) 09 0a) = (anr )a};“’).

As early as 1963, these (linear, iterative) differential equations have been studied by
H. Okugawa, [O]. He proposed a Picard-Vessiot theory along the lines of R. E. Kolchin’s
work. His theory remained incomplete since the existence and uniqueness of a Picard-
Vessiot extension for a given (linear, iterative) differential equation could not be established
at the time. The paper does not contain explicit examples and there seems to be no sequel
to this work. In the present paper we give a full presentation of the Picard-Vessiot theory
and relate this to the Tannakian approach. The main part of the paper is concerned with
the inverse problem, i.e., with the question:
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2 Matzat and van der Put, Iterative differential equations

Which (reduced) linear algebraic group 4 over C can be realized as the differential
Galois group of some linear, iterative differential equation over K?

For the field K =C ((z)), with C algebraically closed and provided with the
standard iterative differentiation, a complete answer is given in theorem 6.6. The case
where K is the function field of an irreducible, smooth, projective curve X over an alge-
braically closed field C of characteristic p > 0 seems the most interesting one. For the
iterative differential modules one prescribes a finite, non-empty, singular locus S < X. Our
results and conjecture for this situation are closely related to Abhyankar’s conjecture. The
latter concerns Galois covers of curves in characteristic p > 0 with prescribed ramification.
Abhyankar’s conjecture has been proved by M. Raynaud [R] and D. Harbater [H1], [H2].
This “conjecture” turns out to be a special case of our conjecture concerning the inverse
problem for linear iterative differential equations over function fields.

In this paper we solve the inverse problem for connected linear algebraic groups.
The final section explores the strong relation between linear iterative differential equa-
tions over a field of characteristic p and linear p-adic differential equations. Finally a link
between Grothendieck’s conjecture on p-curvatures and linear iterative differential modules
is described.

2. Iterative derivations and differential equations

2.1. Iterative derivations. For any ring R (commutative and with a unit element) an
iterative derivation is a sequence of additive maps 8™: R — R, n = 0 satisfying:

1. 09 is the identity.
2. 0" (fg) = X 0“9 g).

a,b=0,a+b=n

3. omptm _ (” + m)a(ner)'
n

1 . . .
For the case @ = R, one observes that 8" = —|(6<1))n and thus the iterative deri-
n!

vation is determined by the ordinary derivation o In the sequel we will suppose that the
ring R has characteristic p > 0.

Some observations and examples of iterative derivations. (1) A nice reformulation of
an iterative derivation on R is the following:

Consider for a sequence of maps 6: R — R the map ¢ R — R][T]], given by

¢r(a) = S 0" (a)T". Then properties 1. and 2. are equivalent to ¢, is a homomorphism
n=0
of rings such that the composition with the augmentation map, i.e., R — R[[T]] — R, is

the identity. We extend ¢, to a map R[[T]] — R][[T’]] (with the same name) by putting

¢T< > anT”) = > "(a,)T"T"

n=0 n=0,m=0

and this is equal to ) < > 6(k>(a/)) T". Again ¢4 is also a homomorphism of rings.
n=0 \ k+l=n
Condition 3. is now equivalent to ¢z, 7, = ¢, © ¢, say as maps from R to R[[T1, T5]].
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Matzat and van der Put, Iterative differential equations 3

(2) One has a<n1>...a(”~v>:(”1+"'+"S>a<’“+'“+’“) with <n1—|—---—|—ns>

(4 - +ny)! . o Tl nl,...],cns.
equal to B B Write any positive integer n as ap+a1p + - -+ agp” with
T
a;€{0,1,...,p—1}. Then (3M)*... (0)% = ¢. "™ where ¢ is some non-zero ele-

ment of F,. Thus any iterative derivative is determined by the o") for all k = 0. The ring
of constants is defined as the intersection of the kernels of all 8" with n > 1.

(3) Let C be any field of characteristic p and K = C((z)). Define the iterative

1 n

derivation {0} by the formula 0" ( > amz’”) = Z(?)amzm” (derived from p <%>
in characteristic 0). Then the field of constants is equal to C.

(4) The field C(z) can be seen as a subfield of C((z)). The field C(z) is
invariant under the maps 6_5”) of (3). This induces an iterative derivation on C(z), again
denoted by {3}. In the terminology of (1), the iterative differential {0{")} is given by the
¢r: C(z) — C(2)[[T]] with the formula ¢, (z) =z+T.

(5) Let a separable algebraic field extension K < L and an iterative derivation on K
be given. Then this iterative derivation extends in a unique way to one of L. This result is
due to F. K. Schmidt and the proof can be given as follows:

The iterative derivation on K is equivalent to a ¢;: K — K[[T']] with the additional
property ¢z, r, = ¢z, o ¢r,. The image ¢ (K) is a coeflicient field for K[[T]]. The map ¢,
considered as a homomorphism K — L[[T]], extends in a unique way to a homomorphism
Y L — L[[T]] which is modulo (7") the identity. Indeed, the statement translates into the
well known fact that the field ¢, (K) = L[[T]] extends in a unique way to a coefficient field
for L[[T]]. The unicity of Y, implies the rule Y1, , 7, = Y7, 0 Y7,. For any separable exten-
sion K < L one can show that any iterative derivation on K extends to one on L. This
extension is in general not unique.

Let K/k be a separable field extension of transcendence degree 1. A complete
description of all iterative derivations of K /k, i.e., the iterative derivations which are trivial
on k, has been given by F. K. Schmidt. The next proposition generalizes this result.

Proposition 2.2. (1) Let {6,(?} be an iterative derivation on the field K such
that 0k = 82) + 0. Define for s 2 1 the subfield K, of K by K; :={ae€ K| ﬁkp/)a =0 for
0 <j < s— 1}. There exists an element z € K (depending on s) such that {z/ |0 < j < p*} is

a basis of K over K, and 6};’)%’ = <z>zb_“ for all b and all a < p*.

(2) Let K be a field of characteristic p >0 and let a sequence of subfields
K o> Ky oKy o be given such that, for each s =1, the extension K > K is purely
inseparable of degree p* and is generated by one element. Then:

(a) There exists an iterative derivation {0"} on K such that, for each s = 1, one has
Ki={aeK|0¥a=0for0<j<s—1}.
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4 Matzat and van der Put, Iterative differential equations

(b) The collection of all iterative derivations on K having the property of (a) above is,
in a natural way, isomorphic to the set S consisting of the elements in the projective limit
lim K /K which map to a non-zero element of K/K;.

(3) Let K/k be a separable extension such that [K : kK?| = p. The set of all iterative

derivatives of K /k with oW =% 0 is, in a natural way, isomorphic to the set S of elements in the
projective limit lim K/ kK?", which map to a non-zero element of K /kK?.

Proof. (1) The statement is proved by induction on s. It is given that dx % 0 and
0F = 0. Choose an element a with dga # 0 and let m > 1 be minimal such that d7'a = 0.
Then b := 6,’}’_1a eK; and z = b’lam_za satisfies dxz = 1. By induction on n one shows
that for 1 < n < p the kernel of dg is a vector space over K w1th basis 1, z, z"=1 This
proves the case s = 1. We remark further that the kernel of 5‘” comc1des w1th the image
of 6K

The case s = 2. Slnce Jx commutes w1th GK one has that 6 maps K, into itself.
Using the formulas ('3 (f”) (0kf)? and (0¢ ))p = 0 one finds that z” € K|, a}g”)zp =1
and that 1,z7,z% . z<1’ Ur is a basis of K; over K>. Now we try to find an x € K| such
that o) (z — x) = O. This amounts to showing that 8"z lies in the image of 8% on Kj.
As before, this image is equal to the kernel of (62”))” ~! on K;. The element 81(57)2 lies in
this kernel since (8%’))” = (. After replacing z by z — x we have proved the case s = 2. The
induction step is proved in the same way.

(2) part (a) An easy calculation shows that the condition on the sequence of fields
K o K| o --- implies that any field L with K > L > K is equal to either K or some K; with
l1<j<s. Take any z € K\Kj. Then K = K,(z) holds for every s = 1. One defines now an

iterative derivation, called {0}, by the formulas:

For any s > | the 0", with n < p*, are K,-linear and 0"z = (m>z”’” for all m
and all n < p*. "

It is easily verified that the {0 } are well defined, form an iterative derivation of K
and that K, = 6<p a=0for0=<j<s— 1} holds for every s = 1. This proves part

(a) of (2).

(2) part (b) For any x € K\K, the iterative derivation {3} has been defined in the
proof of (2) part (a). One observes further that for elements x, y € K\K; the following
statements are equivalent:

(i) x—yeK,.
(ii) 0 = o\ for all n < p*.

Let now & be an element of S, represented by a sequence of elements xi, x5, x3,. ..
in K such that x; ¢ K; and x; — x,,1 € K, for all s = 1. One defines an iterative derivation
{6 } on K by the formula:
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Matzat and van der Put, Iterative differential equations 5

For every s = 1 and every n < p* the map 6?) is equal to a§"> From (1) it follows that
every iterative derivation {3} on K such that K, = {ae K |0 )a=0for0 <j <s—1}
holds for all s = 1, is equal to some {6§">}. The unicity of ¢ follows from the equivalence of
the above properties (i) and (ii). )

(3) is the special case of (2) part (b) corresponding to the choice Ky = kK?" for all
s=>1. O

The structure of the iterative derivations for a given field is rather complicated.
In particular, there seems no possibility to construct a universal iterative derivation.
For a field like K = k((x)) with k = k”, one can give a more or less explicit descrip-
tion of the projective limit lim K/K;. Consider the collection 2 of all formal expressions
0
n= > a,x" satisfying the conditions:

(i) All a, € k and ag = 0.
(i) For every s = 1 the collection {n € Z|a, * 0, p* ¥ n} has a minimal element.

Every # as above, induces for every s = 1 an element of K/Kj, obtained by deleting
the terms a,x" with p*|n. In this way, 7 maps to an element of the above projective limit.
This leads to a bijection 2 — lim K/Kj.

2.2. Iterative differential modules. In the sequel we will work with a fixed field K
with a non trivial iterative derivation, denoted by f — ) for all n >0 (or sometimes
f— 8,(?) 'f). We will assume that the ordinary derivation f +— f1) is not the zero map. The
field of constants of K will be denoted by C. An iterative differential module (or ID-module
for short) M is a finite dimensional vector space over K equipped with a set of additive

maps oYM — M satisfying the rules:
(1) 89 is the identity.

2) o (fim)y= > @98 (m).

a,b=0,a+b=n

(3) oMot = <”+m>a<"+m).

n

After a choice of a basis of M over K one translates this into a set of matrix
equations. The solution space of an iterative differential module can be defined as the
set {me M |3" (m) =0 for all n > 0}. One can show that the solution space is a vector
space over C of dimension less than or equal to the dimension of M over K. In case these
dimensions are equal, the iterative module is said to be rivial. Thus the iterative differ-
ential module is trivial if and only if there is a basis ej,...,e;, of M over K such that
0"We; = 0 for all n > 0 and all i.
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6 Matzat and van der Put, Iterative differential equations

One can define iterative differential modules in another way. Consider the skew ring
of operators 2 := K [6(”), n = 0] defined by the relations:

00 =1,
omglm — (TN Aprm)
n
and
o= S @l with f e K.
a,b=0,a+b=n

Then a left 2-module of finite dimension over K is the same thing as an iterative differen-
tial module over K.

The category of all iterative differential modules over K. By IDg one denotes
the category whose objects are the iterative differential modules over K. A morphism f'
in this category is a K-linear map f: M| — M, between two ID-modules such that

o o f=fo 0" for all n. One sees that Hom(M,, M) is a vector space over C. Kernels,
cokernels, direct sums are present and IDg is an abelian category. Further constructions
of linear algebra are:

Internal Hom, Hom(M;, M;) which consists of all K-linear maps / : M; — M,. The
ID-module structure on Hom(M;, M>) is given by the formula

M= (=D99olod®.

a,b=0,a+b=n

(The opposite sign can also be chosen.)

Tensor product, M| ® M, defined as M| ®g M, with the ID-module structure given
by the formula 8™ (m; @ my) = 2 (8“9m) @ (8m,).

a,b=0,a+b=n

Symmetric powers, exterior powers et cetera are defined as usual.

The category is a C-linear tensor category in the terminology of [D-M]. For the
case that the field of constants C is algebraically closed, it can be derived from Deligne’s
work (see [D]) on Tannakian categories that IDk is a neutral Tannakian category. In other
words, IDg is as C-linear tensor category isomorphic to the category Repr,; of the finite
dimensional representations of a certain affine group scheme over C. In particular, fix
an ID-module M and consider the full subcategory {{M}} of IDk generated by all tensor
products of M and its dual M*. Then {{M}} is also a neutral Tannakian category and
isomorphic to Repr, for a certain linear algebraic group G over C. This group will be
called the Galois group of the module M. In the sequel we will treat ID-modules with the
more down to earth method of Picard-Vessiot rings.
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Matzat and van der Put, Iterative differential equations 7
3. Picard-Vessiot theory

In the sequel we will suppose that the field K of characteristic p > 0 is equipped with an
iterative derivation such that its field of constants C is algebraically closed and different from
K. We will follow the presentation of the classical Picard-Vessiot theory given in [P2] and
provide the few adaptions which are needed in the present situation.

Definitions 3.1. An iterative differential ring R (or ID-ring for short) over K is a
(commutative) K-algebra with 1, having a set of additive maps 8": R — R, extending the
iterative derivation on K, such that:

(1) 89 is the identity.

@ "= X 3d9N09).

a,b=0,a+b=n

(3) aWalm — (T pnem)
n

An iterative differential ideal (or ID-ideal for short) / — R is an ideal invariant under
all 8" . R is called simple if the only iterative differential ideal (£R) is 0.

Lemma 3.2. (1) A simple iterative differential ring R has no zero divisors.

(2) Let R be a simple iterative differential ring which is finitely generated over K. Then
its field of fractions (equipped with the unique extension of the iterative derivation) has C as
field of constants.

Proof. (1) Define ¢ : R — R[[T]] by ¢(a) = 3 8" (a)T". Then ¢ is a homomor-

n=0
phism of rings. Let ¢ be any prime ideal of R. The map  : R 2, R[[T]] — (R/q)[[T]] is
again a homomorphism of rings. Let / denote the kernel of . It suffices to show that 7/ = 0
since (R/q)[[T’]] has no zero divisors. An element a belongs to 7 if and only if all 0" (a) e q.

For a € I one also has 8" (a) e I since 0" 0" (a) = <n * m)a('”m) (a) € g. Thus [ is an
iterative differential ideal and is by assumption O. n

(2) Let @+ 0 be an element of the field of fractions of R such that d™a =0
for all n=1. Let I:={beR|bae R}. Then for any hel (and n=1) one has
3" (ba) = 8" (b)a e R. Thus I is a non-zero iterative differential ideal and is therefore
equal to R. Consequently « € R. For any constant ¢ one has that ¢ — c is either invertible
or equal to 0. As in the paper [P2] it follows that « lies in the field of constants of K. []

Definition 3.3. Let M be an iterative differential module over K. Let ey,..., e
be a basis of M over K. Let A, = (4,(i,/)) denote the matrix of the map 61(‘;) with
respect to this basis. Thus 6§Z>e,~ =Y Au(j,i)e; for all i, j,n. One considers the vector

j
yier + -+ yses € M. Let 8§Z>(y1e1 + -+ yse) = wiep + -+ - + weeg and write y,w e K*
for the column vectors with entries y; and w;. Then

w=0"y+ 40" Vy ... 4 4,.,0Vy+4,y,
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8 Matzat and van der Put, Iterative differential equations

where each 0 operates coordinatewise on column vectors. The set of equations
6](‘3)( yiei + -+ yses) =0, n = 1 translates into a set of equations for the column vector y
which can be rewritten as a sequence of matrix equations 0"y = B,y, n > 1 for certain
matrices B,,.

A fundamental matrix F (with coefficients is some iterative differential ring over K)
is an invertible matrix satisfying 0" F = B,F for all n = 0. A Picard-Vessiot ring for the
above iterative differential module M is an iterative differential ring over K such that:

(1) Ris simple.

(2) Over R there exists a fundamental matrix for M.

(3) R is generated over K by the coefficients of a fundamental matrix for M.

A Picard-Vessiot field for M is the field of fractions of a Picard-Vessiot ring for M.

Lemma 3.4. For any iterative differential module there exists a Picard-Vessiot ring.
This ring is unique up to a (non canonical) isomorphism of K-algebras respecting the iterative
derivations.

Proof.  After choosing a basis, the iterative differential module translates into a set
of matrix equations om y = B,y, n = 0. The matrices B, have coefficients in K and satisfy
a set of relations, namely the translations of the defining properties of ID-module. One
introduces a matrix of indeterminates (X; ;) with determinant 4 and defines the iterative

differential ring R := K {{Xl j},d]. The iterative derivation on R, extends the one of K

and is given by (6(”)X,-7j) =B, - (X;;) foralln = 0. Let I = Ry be an ideal which is maxi-
mal among the set of all iterative ideals of Ry. Then R := R(/I is clearly a Picard-Vessiot
ring for the given ID-module. For the remaining part of the proof one can copy the proofs
of [P2]. [

The differential Galois group 4 of an iterative differential module M is the group
of the differential automorphisms of R/K, where R is a Picard-Vessiot ring for M. Let
V = R® M denote the solution space of the ID-module M, i.e., V consists of the elements
ve R® M with 8o = 0 for all n > 1. Then ¥ acts faithfully on ¥ and % can be identified
with a reduced algebraic subgroup of GL(V).

Along the lines of [P2], one can show that Z = Spec(R) is a %-torsor over the field
K. The usual Galois correspondence for Picard-Vessiot fields is a consequence of this
fact. Especially one has the following results (compare [P2], proposition 3.6 and 3.7 for the
classical case):

Theorem 3.5. Let M be an iterative differential module over K. Let L/K be the cor-
responding Picard-Vessiot field and 9 its differential Galois group. There is a Galois corre-
spondence, given by A — L” between the reduced algebraic subgroups of % and the
intermediate iterative differential fields of L/K.
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Matzat and van der Put, Iterative differential equations 9

4. Examples

4.1. Finite Galois extensions of K. Let L o K be a finite Galois extension of K
of degree m > 1. The 1terat1ve derivation of K extends in a unique way to one on L
which will be denoted by {0 } View now M := L as a vector space over K equipped
with the {8 } This is an ID-module. The field of constants of L with respect to the
1terat1ve differentiation is also C. Indeed, take x € L with 6 x=0 for all n = 1. Let
x4+ ag_1x¥ '+ ...+ ayx+ ay = 0 be its minimal equation over K. This equation is sep-
arable. Let K denote the splitting field of the above polynomial over K. Then, since the
Galois action of K/K commutes with the iterative derivation on K we have that all the
roots of the polynomial are constants. Therefore all the a; are constants. Since C is alge-
braically closed, one has that x € C. We conclude that M is not a trivial module since
the solution space of M has dimension 1 over C. The ID-module L ® M is trivial, since
L ®g L is isomorphic with the direct sum of m copies of L. Thus it contains as set of
constants the direct sum of m copies of C. It follows that L contains a Picard-Vessiot ring
(actually a field). The Galois group Gal(L/K) acts faithfully on the solution space of
L ® M. We conclude that L is the Picard-Vessiot field of the ID-module M and that
Gal(L/K) is its differential Galois group.

4.2. Iterative differential modules of dimension one. The one-dimensional ID-
module M = Key is equipped with a set of maps 0. We first note that ((’3(1))” isOon M.
Thus M, as ordinary differential module over K, has p-curvature 0. This implies that
M has a basis e; such that a(l)el = 0. The kernel of 0" on M is clearly Kje; where
Ki = {ae K|3"V(a) = 0}. The operator 0'” commutes with o'V, Tt follows that Ke; is
invariant under 0'”). The restriction of the {6(”")} to Kje; defines an ID-module over the
field K; with as iterative derivation the one induced by K (and a shift of the indices if one
wants to be precise). The same argument shows that Kje; = Kje; for a certain element
e> such that 9”)e, = 0. One can continue this process and produce a sequence of ele-
ments e, e, e,e3,... such that Key = K€17K161 = Klez,Kzez Kyes, ... The fields K,
are defined by: Ko = K, K is the kernel of 8" on K, . ={aeK|3"™a=0 for all
0<m<p” } We note that K, is also equal to {aeK|6 g =0 for all 0=<j<n}.
Moreover 0" e,, =0 for all 0 < m < p”". In other words M is a trivial iterative differential
module for every ‘“truncation”. If one could find a “limit” f for the sequence e, then
Ke = Kf and 8" =0 for all n> 0. The existence of a limit can be formulated with
projective limits. Namely the above sequence {e,} produces w.r.t. a fixed basis e = ¢y of
the 1-dimensional module an element of the projective limit lim K*/K;;. The set of equi-
valence classes of 1-dimensional ID-modules is then seen to be the cokernel Isomg ; of
the canonical map K* — lim K*/(K,)". This cokernel has a group structure. The group
structure coincides with the tensor product of (isomorphy classes of ) the 1-dimensional ID-
modules.

Lemma 4.1. For the field K := C((z)) (with the standard iterative derivation) the
group Isomg | is isomorphic to 7,/ 7.

Proof. The group K* can be decomposed as C* x zZ x U with U := 1 + zC[[]].
The field K, is equal to C((xpn)) and thus K = C* x zP"Z x UP". The projective limit
of K*/K, is thus isomorphic to Z, x lim U/U P" Tt is easily seen that the canonical map
U —lim U/ U?" is an isomorphism. This proves the statement. []
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10 Matzat and van der Put, Iterative differential equations

Explicit examples for lemma 4.1. For any p-adic integer o, i.e., a € Z,, the ele-

1) (o — 1
ment (2) ::_a (a—1)-(x=n+l) belongs to Z,. Its reduction modulo p in [, will be

n!
denoted by (:) One defines the ID-module Ke by the formulas oWe = (:)z”e. Itis

easily verified that this is indeed an ID-module. The image of this module in the group
Isomg ; can be identified with the image of o in Isomg ;. There are two cases:

In the first case « is a rational number with denominator » (not divisible by p). Then
the field extension C((z!/")) > K is the Picard-Vessiot field and the Galois group is cyclic
of order n.

In the second case o is not rational. Then the Picard-Vessiot field is the transcen-

dental extension K (y) with extension of the iterative derivation given by y") = < )z‘” V.
Its differential Galois group is G,, ¢ (i.e., the multiplicative group over C). n

In general, a one-dimensional ID-module M over any K translates, after a choice
of a basis of M, into a set of equations 6(”))/ = a,y. The differential Galois group is a
reduced subgroup of G,, ¢. This group is cyclic of order m (and p t m) if and only if m = 1
is minimal such that the set of equations 0(”>f = ma,f has a non-zero solution g in K.
Its Picard-Vessiot field is then K({/g). In the opposite case, the Picard-Vessiot field is the
transcendental extension K(y) with iterative differentiation given by 8™y = a,y for all

n=0.

Proposition 4.2.  C denotes an algebraically closed field of characteristic p > 0. Let X
denote a connected, smooth, projective curve over X. The Jacobian variety of X is denoted by
J. Let K denote its function field and provide K with a non-trivial iterative derivation. There is
a natural exact sequence

0 — T,(J) — lim K*/(K”")" — Div’(X, Z,) — 0,

where T,(J) is the p-adic Tate-module of J and DiVO(X ,Z,) denotes the group of functions
[+ X — Z, having the two properties:

(a) For every integer n = 1, the support of f modulo (p") is finite.

(b) > f(x)=0.

xeX

Let Isomg | denote the group of the isomorphy classes of the 1-dimensional 1D-modules over
K. There is a natural exact sequence

0 — T,(J) — Isomg ; — Div’(X,Z,)/Prin(X) — 0,
where Prin(X) is the group of the principal divisors on X.

Proof. For X =P! we have an obvious isomorphism K*/C* — Div’(X)
(i.e., the group of the ordinary divisors on X with degree 0) and isomorphisms
K*/(KP")* — Div®(X)/p" Div’(X). The projective limit of the right hand factors is easily
seen to be the group Div’(X, Z,) as defined above. Thus the proposition is correct in this
special case.
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Matzat and van der Put, Iterative differential equations 11

Suppose now that the genus of X is =1. Then there is an exact sequence
0— K*/C* — DivO(X ) — J — 0, where we have identified J with its group of points
J(C). The multiplication by p”" between two copies of the above sequence and the exact-

ness of 0 — J[p"] — J " J = 0 induce the exact sequence
0— J[p"] — K*/(K”")" — Div’(X)/p" Div’(X) — 0.

Since the projective system {J[p"]} is a system of finite groups, the Mittag-Leffler condi-
tion is satisfied and we conclude that the projective limit of the above sequences is again
exact. This implies the first part of the proposition. For the second part we observe that
the canonical map of K*/C* to the projective limit of the K*/(K?")", combined with the
map from this projective limit to DiVO(X ,Zp) is injective. This implies the exactness of the
second sequence. []

Let C, X, K be as in the proposition 4.2. For any point x € X we denote the comple-
tion of K with respect to the valuation corresponding to x by K. The field K, is isomorphic
to C ((t)), where ¢ is some local parameter at x. The field K, inherites an iterative deriva-
tion from K. The natural map Isomg | — Isomg, 1, derived from M — K, ® M, has the
form

Isomg | — Div’(X,Z,)/Prin(X) — Z,/Z = Isomg, 1,
where the last arrow is induced by f € Div’(X,Z,) — f(x) € Z,.

We note that for any X, even for P!, there are non trivial elements ¢ € Isomg | such
that the image of £ in Isomg 1 is zero for every x € X. An explicit example of this phe-
nomenon is the following:

X=P! and s, is a sequence of distinct points in Al. The “divisor”
D=3 (p—1)p"[s,] + [c0] lies in Div’(X,Z,). No positive multiple of D is in Prin(X)

n=0
and its image in Isomg ; is O for all x. A calculation shows that the iterative differential
equation corresponding to D is o y=(z—s,)" ’ y for all n = 0. The differential Galois
group of this ID-module is G,, ¢. For every x € [P’Cl there is a non trivial solution in K.
An explicit way to see this is to consider a “symbolic” solution F = [] (z — s,)” and to
give this expression a meaning in every K,. nz0

This is in contrast with the situation of complex linear differential equations on IP’CI. In
order to stay closer to the complex analytic theory of ordinary differential equations we
will in section 7 introduce an adequate notion of “regular at a point x € X~ for ID-modules
over K.

4.3. Inhomogeneous iterative equations of order ome. We consider here ID-
modules M of dimension two, which admit a submodule N of dimension 1 such that both
N and M/N are trivial. In other words we consider inhomogeneous equations of the form
o y = a, with all a, € K. (The sequence of elements a, satisfies certain relations corre-
sponding to the definition of ID-module.) The differential Galois group is clearly an alge-
braic subgroup of the additive group G, ¢ over C. As in the last subsection one finds that
these equations are classified by the cokernel of the natural map K — lim K/ K?". For the
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12 Matzat and van der Put, Iterative differential equations

field K = C ((z)) one can make this projective limit somewhat explicit. The elements of

the projective limit can be described as the formal series /' = > ¢,z" having the prop-
neZ

erty that for all k = 0 there is an integer N, such that the support of f is contained in

pkZ7 U {neZ|n= N;}. A typical example is f = arzP". The corresponding iterative
n k=0
equation is 07 ") y=>. —apz""P" for all n = 0. The differential Galois group 4 < Gy, ¢
k=0
of this iterative equation depends on the coefficients a; (see lemma 5.2).

Let C be an algebraically closed field of characteristic p > 0, X an irreducible
smooth, projective curve over C with function field K. The field K is provided with an
iterative derivation with field of constants C. In this situation, too, one can make the pro-
jective limit lim K/ K?" somewhat explicit. Let O, M and H denote the sheaves of the reg-
ular functions, the rational functions and the principal parts on X. The exact sequence

0—K/C— HX)— H(X,0)—0
induces exact sequences

0 — ker(Frob”, H'(X, 0)) — K/K""

— H(X)/H(X)"" — coker(Frob”, H'(X, 0)) — 0.

Let H!(X, O), denote the generalized eigenspace for the eigenvalue 0 and the Frobenius
action Frob on H'(X, O). Then one finds an exact sequence

0 — H'(X,0), — lim K/K?" — lim H(X)/H(X)" — H'(X, 0), — 0.

As in the last subsection, there are ID-equations (of the type considered here) which
are trivial at each point x € X and are “globally” non trivial. A typical example is given

by X =P/, a sequence s, of distinct points in AL and > (z —s,)”" " seen as element
n=0

of lim H(X)/H(X)" " The corresponding iterative differential equation is given by the
formulas:

oy =3 —(z - sk)fpkfpn foralln = 0.
k=0

The differential Galois group over K is G, ¢ and the equation has a solution in K, for every
xeX.

5. Iterative differential modules and projective systems

As before K denotes a field equipped with an iterative derivation and its field
of constants C is supposed to be algebraically closed of characteristic p > 0. We will
use again the notation Ky = K and for n>1 one defines K, = {a e K|3'a =0 for
all 0 <j < p"}. Let M be an ID-module over K. The structure of M is determined by

the maps 61(‘5”): M — M for n = 0. The p™ power of a]ﬁ}) is the zero map. Consider the
ordinary differential module (M, dy) over the differential field K with derivation 0", given
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Matzat and van der Put, Iterative differential equations 13

by dg = 6(1) Define the K; vector space M| by M; = {me M |dym = 0}. Since the p-
curvature is 0, the canonical map K ®g, M| — M is an isomorphism. Now consider the
ordinary differential module (M 1,01) with 0; =0 Aj’ restricted to M, over the differential
field K; with derivation 8”7 Agaln the p-curvature of this differential module is zero.
Put My :={me M,|0m = O} Then, as before, the canonical map K ®g, M2 — Ml is
an isomorphism. More generally, define for n = 1 the space M, = {me M |0, 0 =0
for all / < n} and M, := M. Then M, is a vector space over K, and the canomcal map
K, ®k,,, M1 — M, is an 1somorphlsm We will call { M.}, as above, the projective system
of the iterative differential module.

Conversely, let a finite dimensional K-vector space M be given and a collection of
subsets M = My > M|, > M, > M3 o --- such that:

(a) Each M, is a vector space over K,,.

(b) The natural maps K, ®g

1 M1 — M, are isomorphisms.

Then this defines a unique ID-module structure {6 ) } on M by requiring that 6‘5‘? is
the zero map on M, if / < p". Indeed, one defines 0 by considering some n with / < p"

and a basis ey, ..., e; of M, over K Any element m € M can uniquely be written as Z fiei
i=1
with all f; € K. One defines 6 Z fiei = Z(a )f)ei. A straightforward verification shows

that the definition of 8 does not depend on the choices made and that {(’3 } is an iterative
differential on M.

In general, we define a projective system {N.,¢,} over K to be a sequence of spaces
and maps

No 2N &Ny &Ny e
having the properties:
(a) Each N, is a vector space over K, of finite dimension and

(b) the maps ¢, are K,j-linear and the canonical K,-linear maps
K, ®k,., Nnt1 — N, are isomorphisms for n = 0.

One associates to a projective system over K, the iterative differential module M
given by M = N, and the sequence of subsets M), :== ¢,0---0¢,_;(N,) of M. Clearly M,
is a vector space over K, and the canonical maps K, ®, , M1 — M, are isomorphisms.
As above, this defines a unique structure of iterative differential module on M.

A morphism o : {N,, ¢,} — {M,, ).} between two projective systems over K is a
sequence of K,-linear maps o,,: N, — M,, n = 0 such that o, 0 ¢, =V, 0 o, foralln = 0.
The collection of all homomorphisms between two projective systems forms a vector space
over C. Further one sees that one can perform on projective systems “‘all operations of
linear algebra”, including tensor products. One concludes the following.
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14 Matzat and van der Put, Iterative differential equations

Proposition 5.1. The Tannakian categories of the iterative differential modules over K
and the projective systems over K are equivalent.

We omit the obvious proof of this proposition. In order to make a projective system
{N.,¢.} over K more concrete we choose a C-vector space V' of dimension ¢ and identify
each N, w1th K, ®c V. The maps ¢, are now elements in GL(K, ® V). The iterative dif-
ferential {aM} on M = Ny = K ® V can explicitly be derived from the data {¢,}.

The K, i-linear map ¢yo---0¢,: N,y — No = M is extended to a K-linear 1so-
morphism K ® N, — M, Wthh we will give temporarely the name . By definition 6
is zero on Y/(N,;) for m < p". One prov1des K ® N,11 = K®c V with the trivial struc-
ture of ID-module {6 } given by 6,,)1; =0 for all ve V and m = 1. Then by con-
struction (3M Y= lpaV’" holds for all m < p". Thus 6/‘7 = lﬁﬁ,ﬂ" Y~ ! holds for m < p™.
Now we fix a basis ej,...,e; of V' over C. Then this is also a basis of M = K ®c V
over K. As in the definition 3.3, 4, for n = 0 denotes the matrix of 6[(5) with respect
to this basis. On all of the spaces N,, = K,, ® V' we have then also fixed a basis, namely
I®ej,...,1 ®e;. For any linear map t between Vector spaces with fixed bases, we
write [z] for the corresponding matrlx Moreover 0 )B for a matrix B, will mean the
matrix obtained by applying "™ to all its entrles In this way one obtains the for-
mula 4,, = [w]ég") W]~ ! for m < p". The extension of any ¢, to a K-linear isomorphism
K® N,;1 — K® N, will also be denoted by ¢,. The formula for the matrix 4,, can now
be written as A, = [¢] - - [¢n] ([gbo] [#,)) " if m < p". We note that the above for-
mulas show that 4,, =0 for all m = 1 if all ¢, € GL(V).

Example. Take K = C(z) and 8) = 8") for all / > 0 and consider a two dimen-
sional space V' with basis vy, v;. All maps are given as matrices with respect to this basis.

. 1 a,z!" . . . 0 by .
Let ¢, have the matrix <0 4 f > with a,, € C. The matrix 4,, is equal to < 0 0 > with
b, = —a(m)(aoz + -+ +a,zP") if m £ p". This iterative differential equation can also be

written as a set of inhomogeneous scalar equations 0" y = a,. The Picard-Vessiot ring
R for this equation can be written as K[Y]/I, where K[Y] is given an iterative deriva-
tion, which extends the given one on K, by putting """ Y = a,.. Further I is a maximal
iterative ideal in K[Y]. The corresponding differential Galois group consists of the auto-
morphism Y — Y + ¢, with ¢ € C, of R such that the ideal / is invariant. In case I = 0,
this group is the additive group G, ¢ = C. If I & 0, then the differential Galois group is
a finite (reduced) subgroup of G, ¢. We continue with this situation. The Picard-Vessiot
field of the equation is then R. Consider the completion C((z —a)) of K = C(z) with
respect to the point a € C = P!. In this field the set of equations has a solution, namely
f =3 a,(z—a)’ . This 1mphes that the field extension K = R is only ramified above

n=0

the point oo € P2, Furthermore f € C((¢ — a)) must be algebraic over C(z).

It can be seen that f cannot be algebraic over C(z) if the sequence {a,} has arbitrary
large “gaps’, which means that there are intervals J in N of arbitrary length with @, = 0
for n € J. A more precise statement about the algebraicity of f is the following.

Lemma 5.2. =Y a,z"" €[,[[z] is algebraic over C(z) if and only if the power
n=0
series Y a,T" represents a rational function.
n=0
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Matzat and van der Put, Iterative differential equations 15

Proof.  Suppose that f is algebraic over C(z). Then there is a non trivial relation
h:=bo(z)f +b1(2)fP + -+ by(2) P € Clz], where by(2),...,bs(z) € C[z]. For n > 0 one
has

0=20"h=bo(2)a, +bi(2)an-1 + -+ bs(2)a,_s.
We choose ¢ € C such that not all b;(¢) are 0. Then we obtain the recurrence relation
0=bo(c)ay, + bi(c)an—1 + -+ bs(c)ay,—sy forn>0.

This proves that " a,T" is a rational function. The converse can be proved as follows.

n=0 P(T
Let the symbol 7 stand for the Frobenius operation a — a”. Assume »_ a,T" = % with
P=>p,T",Q=> q,T" € F,[T]. Then Q(z) > a,t" = P(r). Apply this formula to the
element z € F,[[z]]. The resultis Y ¢,/”" = > p,z”". This shows that f is algebraic. []J

Proposition 5.3. Let V be a finite dimensional vector space over C and
9 < GL(V) a reduced algebraic subgroup. Consider a projective system {K, ® V,¢,} such
that ¢, € 9(K,) =« GL(K, ® V) for all n = 0. Let M be the iterative differential module
associated to the projective system. Then the differential Galois group of M is contained in %.

Proof. The proof that we will give here follows closely 9.2 of [P1]. For any
linear algebraic group # over C, one writes Repr, for the Tannakian category of
the finite dimensional representations of # (over the base field C). Further, Vectc
denotes the category of the finite dimensional vector spaces over C. The forgetful functor
o : Repr,, — Vectc is the functor which associates to a representation of # on W the
vector space W.

Let M denote the iterative differential module defined by the data of the
proposition. One writes M* for the dual of M and M®"? for the tensor product
MR- QMROM*®---® M* with a factors M and b factors M*. Define {{M}} to
be the full subcategory of the category of all iterative differential modules over K, whose
objects are the finite direct sums of subquotients of various M“?. Then {{M}} is a neu-
tral Tannakian category, which means that there is an equivalence {{M}} — Repr, of
Tannakian categories for some affine group scheme # over C. In fact J# is the differential
Galois group of M.

Suppose that we can produce a functor of Tanakian categories Repr, — {{M}}
such that the composition Repr, — {{M}} — Repr,, — Vectc is the forgetful functor
of Repry. Then it follows that & is an algebraic subgroup of .

Letp: % — GL(W) be a representation. Then for any commutative C-algebra F one
has an induced homomorphism p : 4(F) — GL(F ® W). One associates to p the projective
system {K,, ® W,p(¢,)} and the corresponding iterative differential module M (p) over K.
In this way one obtains a functor % from the Tannakian category Repry to the category
of all iterative differential modules over K. Let V' denote the given representation of ¥, i.c.,
9 is given as an algebraic subgroup of GL(V). One writes V* for the dual representa-
tion and V% for the tensor product V® --- @ V® V* ® --- ® V* with a factors V and
b factors V*. Clearly Z V%> = M*b e {{M}}. Let {{V}} denote the full subcategory of
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16 Matzat and van der Put, Iterative differential equations

Repr, whose objects are the finite direct sums of subquotients of various V“?. Then Z#
maps {{V'}} into the category {{M}}. It is well known that {{V'}} is actually equal to
Repry, (see [W]). Thus we have constructed the required functor Repr, — {{M}}. O

5.1. Frobenius operators and finite groups. Proposition 5.3 will be used to construct
iterative differential modules with ¢ as prescribed differential Galois group. We note that
for a finite group ¥, the condition ¢, € 4(K,) implies ¢, € %(C). This has as consequence
that the iterative differential module is trivial and the differential Galois group is {1}
(compare with the calculation following proposition 5.1). We will briefly discuss a natural
way to produce iterative differential modules with finite groups as differential Galois group.
In the sequel we will suppose that the field K is provided with an iterative derivation such
that the field of constants C is algebraically closed and K, := {a € K| oWa =0 for all
0 <j < p"} coincides with the field K",

Let M be a finite dimensional vector space over K. A map F : M — M will be called a
Frobenius operator if F is additive, F(fm) = fPF(m) for all f € K and m € M and more-
over the determinant of the matrix of F with respect to some basis of M over K is non-zero.

Let a Frobenius operator F on M be given. Then one defines M; = F(M). This
is a vector space over Kj. Since the determinant of F' (w.r.t. some basis) is non-zero,
the natural map K ®g, M| — M is an isomorphism. Define M, = F"(M), then again
K, 1 ® M, — M,_; is an isomorphism. Thus the system {M,} (with inclusion maps)
forms a projective system and defines an ID-module structure on M.

Proposition 5.4. F denotes a Frobenius operator on a vector space M over K of
dimension d.

(1) The Fy-vector space {m € M | F(m) = m} has dimension <d.

(2) The smallest  field extension L > K such that the F,-vector space
{me L® M |F(m)=m} has dimension d is a Galois extension. Let G denote its Galois

group.

(3) Let 9 = GLyy, be a linear algebraic group and suppose that the matrix of F with
respect to some basis of M lies in 9(K). Then G is a subgroup of 4(F,).

(4) The Picard-Vessiot field and the differential Galois group of the iterative differential
module M are equal to the field L and the group G of (2).

Proof. (1) Let ey, ...,e; € M be [,-linear independent elements with F(e;) = e; for
all i. By induction on s we will show that the elements are also K-linearly independent.
Suppose that there is some relation between the e¢;. Then we may assume that this relation
has the form aje; + - -+ + aye; = 0 with ay,...,a,€ K and a; = 1. By induction we may
suppose that ey, ..., e,_; are linearly independent and therefore the given relation is unique.
Applying F to the identity yields afe; + - - - + a’e; = 0, which is either a new relation or a
relation with coefficients in [F,.

(2) Letey,...,eq be a basis of M over K. The set of d additive polynomial equations
xier + -+ xqeq = x'F(e1) + - - - + x/F(eq) in the d variables xi,. .., xy has the identity
as Jacobian matrix and defines therefore a finite Galois extension L of K.
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Matzat and van der Put, Iterative differential equations 17

(3) Let 4 € 9(K) denote the matrix of F with respect to some basis of M over K.
One considers Lang’s isogeny =% — 4, given by (x; ;) — (x/;)(x; ;). There is an ele-
ment (b; ;) € 4(K*P) with f((b; ;)) = A~". In fact, the field extension of K defined by this
matrix is L. Indeed, the identity A(b/;) = (b; ;) is a solution of the set of equations of (2).
For any ¢ € G, the element (ob; ;) lies in %(L) and also satisfies ' ((ab;;)) = A~". It fol-
lows that (ab; ;) = C(0) "' (b;,;) with C(a) € %(F,). Thus G = %(F,).

(4) L denotes the field defined in (2). Let ej,...,e; be a basis of L ® M satisfying
F(e;) = e; for all i. Then clearly L ® M is a trivial ID-module and so the Picard-Vessiot
field of the ID-module M is contained in L. On the other hand, let L denote a Picard-
Vessiot field for the ID-module M. Let e,...,e; € N := L ® M be a basis of elements
with 8™e; = 0 for all i and all n = 1. Then F™(N) = Lyer+ -+ Lyeg for allm = 0. The
intersection of all F”'(N) is the F-invariant space Ce; + - - - + Ce,. Since C is algebraically
closed, the space Ce; + - - - + Ce, has a basis éy, .. ., é; with F(e;) = ¢; for all i. This implies
that Lc L. [

A specialization of proposition 5.4 to the case K = C(z) (with the standard iter-
ative differentiation) produces ID-modules over K which have only one singular point,
namely z = oo, and have differential Galois group %(F,) where 4 is a semi-simple, sim-
ply connected linear algebraic group over F,. The corresponding Picard-Vessiot extension
L > K = C(z) is only ramified above z = co. A small variation on proposition 5.4 pro-
duces also differential Galois groups %([F,) with 4 as above. We refer to [S3] and [Gi] for
more details on Nori’s examples.

Corollary 5.5 (Nori). Let % be a linear algebraic group defined over F,, which is semi-
simple and simply connected. The field K = C(z) is provided with the standard iterative dif-
ferentiation. There exists an A € 9(K) such that the differential Galois group of the iterative
differential module corresponding to A is equal to 4(F,).

Examples. (1) 4 = G,, (the multiplicative group) and 4 = (z) produce the (p — 1)-
cyclic group G, (F,) and the equation x = zx?.

1

(2) 9 = G, (the additive group) and 4 = ( 0

i) produce the p-cyclic group
G(F,) and an Artin Schreier equation x” — x = —z.

Zfl

0
tion x?° — (zP 4+ z~')x? 4+ x = 0 with group %(F,). Indeed, division of this polynomial by
x(xP~! — z) produces an irreducible factor of degree p(p — 1), which is the order of the
group #(F,).

(3) 9 = %, the Borel subgroup of SL(2) and 4 = ( 1> leads to the equa-
z

0 1
(4) 4 =SL(2) and 4 = ( ! ) produce the group SL(2,F,) and the equation is
-1 =z

f(x) =0 where f(x) = xP" — zx? + x. By corollary 5.5, the Galois group G is a subgroup
of SL(2,F,). Since the equation f(x) =0 is irreducible over F,(z), the order of G is a
multiple of p? — 1. By specializing z to 2 one finds an element of order p (using Dedekind’s
criterion, see [M-M], I, corollary 9.3). Hence the order of G is a multiple of p(p> — 1) and
G must be SL(2, F,). See also [A2], Thm. 1.2 for this example.

Bereitgestellt von | Bibliotheek der Rijksuniversiteit (Bibliotheek der Rijksuniversiteit)
Angemeldet | 172.16.1.226
Heruntergeladen am | 09.02.12 16:00



18 Matzat and van der Put, Iterative differential equations
6. Local iterative differential modules

In this section the field K is C ((z)), where C algebraically closed of characteristic p
and provided with the standard iterative differential {0{")}. Our aim is to classify the iter-
ative differential modules over K and to determine all possible differential Galois groups.

We define the operators 6" := 23" as element of the skew ring Z = K[0",n = 0].
This skew ring acts faithfully as a ring of operators on K. Using this action one easily
verifies the following relation:

k!
smsim — 5
n+m;k§nax(n,m) (k - l’l)'(k - I’I’Z)'(}’l +m— k)'

In particular the 6" commute. In the same way one can verify that (6®)7 =¢®
holds for all n. The commutative algebra R := C [(5(”),11 > 0] is rather special. Suppose
that R acts on a finite dimensional vector space ¥ over C. Then each 6" acts semi-simple
because (6)” = 8" holds. Moreover the 6" commute and one concludes that there are
unique distinct p-adic numbers «y,...,% and a decomposition V=1V @ --- @ V; such

that the action of R on each vector space V; is given by oWy = (aj ) v for all v e V;. The
a1, .., € Z, will be called the eigenvalues for R on V. n

Proposition 6.1. For o€ Z, one defines the one dimensional iterative differential

module E(o)) = Ke by the formulas 8™ e = (Z)z”efor alln = 0.

(1) Suppose that the iterative differential module M contains a lattice A over C|z]],
which is invariant under all " Then M is isomorphic to a direct sum E(oy) @ - - - @ E(og).

(2) The differential Galois group 4 of E(x1) @ --- @ E(oy) is the subgroup of G:fyll’c
consisting of the elements t = (i, ..., tq) satisfying ;" --- )" =1 for all (my,...,my) € z¢
such that myo + -+ +myoy € 7.

Proof. (1) We consider the action of the R = C[6" n > 0] on the vector space
A/zA. The distinct eigenvalues are, say, a,...,%, and the direct sum decomposition is
P A/zA(a;). One can lift this direct sum decomposition of A/zA to a direct sum decom-

i

position @ A; of the C[[z]]-module A. The submodule A" :=zA; @A, @ --- is again a
lattice, invariant under all 5", The action of C[0",n > 0] on the vector space A*/zA*
gives rise to new eigenvalues. They are o) + 1,0, ..., a,. Of course it is now possible that
a1 + 1 coincides with some o;. This process of changing the invariant lattice can be con-
tinued until one arrives at a situation where the distinct o1, . . ., o, do not differ by an integer.
In the sequel we will assume that the «; have this property.

Now the vector space A/z’A has a similar direct sum decomposition. The
corresponding p-adic eigenvalues are the o; and the 1 + ¢;. Indeed, if e is a simultaneous
eigenvector corresponding to the p-adic integer o then ze corresponds to 1+ «. From
our assumption it follows that the canonical map A/z>A(a;) — A/zA(x;) is bijective. A
similar statement holds for any A/z¢A. Using that C[[z]] and the lattice A are complete
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Matzat and van der Put, Iterative differential equations 19

with respect to the (z)-topology one finds that A has subspaces (linear over C) A(«;) which
map bijectively to the A/zA(x;). It follows from this that A is a direct sum of modules

A; = Cl[z]] ®c A(x;). The action of 6™ on A; is given by 6™e = (il)e for all n and
ee A(a;).

(2) The Picard-Vessiot ring for the module E(o;) @ --- @ E(ag) is

K[X, X7 X, X1 with5<")Xj—<°‘-">X,- foralln>0,1<;<d,
0 )X

and where [ is a maximal iterative differential ideal. The ideal J generated by the elements
{x™ - X" — 2" | for mj € Z with myoy + - - - +mgoag =me 7}

is easily seen to be an iterative differential ideal. A longer, however straightforward
calculation shows that J is in fact already maximal among the iterative differential ideals.
Thus we may take / = J. The differential Galois group consists of the K-algebra auto-
morphisms ¢ of K[X1, X[!,..., X4, X;!] having the form ¢X; = ¢;X; with all ¢; e C* and
such that the ideal / = J is invariant. []

An iterative differential module M over K will be called regular singular if M con-
tains a lattice which is invariant under all 6. We will call M regular or trivial if M has
a basis e, ..., e, over K such that 6(")6/- =0 for all j and n = 1. We note that M is trivial
if and only if the differential Galois group of M is {1}.

Corollary 6.2. (1) M is regular singular if and only if its differential Galois group is a
diagonizable group.

(2) The 1D-module M is regular if and only if M contains a lattice A over C[[z]] which
is invariant under all 8™

(3) For a regular M the lattice, invariant under all 0", is unique.

Proof. (1) If M is regular singular then, according to proposition 6.2, M is a direct
sum of one-dimensional submodules. Thus its differential Galois group is diagonizable. On
the other hand, suppose that the differential Galois group % of M is diagonizable. Then the
action of ¢ on the solution space of M has a diagonal form and therefore M is the direct
sum of one-dimensional submodules. The classification of the one-dimensional ID-modules
(see lemma 4.1) yields that M is regular singular.

(2) Suppose that M is regular ID-module of dimension d. Then
Vi={meM|0"m=0}

is a vector space over C of dimension d, which contains a basis of M. The lattice
C[[z]] ®c V = M is clearly invariant under all 0", Now suppose that a lattice A = M
is invariant under all ™. This lattice is also invariant under all 5", Then M is regular
singular and all the attached p-adic numbers (eigenvalues) are 0. The proof of proposition
6.2 implies that A contains a subspace V" of dimension d over C such that all the oM. n>1
are 0 on V and CJ[[z]] ® V' — A is an isomorphism. This proves that M is regular.

(3) According to the proof of (2), any lattice A, which is invariant under all 0™, has
necessarilly the form A = C[[z]] ® V', where ¥V = {me M |0"m = 0 for all n > 1}. This
proves the unicity. []
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20 Matzat and van der Put, Iterative differential equations

Proposition 6.3. Every ID-module M over K = C ((z)) of dimension strictly greater
than 1 has a non trivial submodule.

Proof. We fix a lattice Ay for M. For any n=1 we define the subset
A, = {me Ag|6Vm e Ag for all j < p"t1}. It is easily seen that A, is itself a lattice. Take
a basis ey,...,eq of M over K such that d¥¢; = 0 for all i and all j < p"™'. The lattice
L, := C[[z]le + - - - + C[[z]Jeq is clearly invariant under 0! for all j < p"*!. The lattice
zL, is then seen to be invariant under 6 for all j < p"!'. One chooses s such that
2L, = Ay and z°L,, is not contained in zA. Take an element m € z*L, which does not
lie in zA. From the invariance of z*L, under all 6 with j < p"*! it follows that m € A,,.
We conclude that A, is not contained in zA,. By standard local algebra we conclude
that A, := () A, is not zero. By definition, A, consists of the elements ¢ € A such that

nx1

oUE e Ay for all j. Using the formula for 5™ one concludes that for any e Ay,
and any m =1 also 5('”)5 € A,. Therefore K ® A, = M is a regular singular submodule
of M. By proposition 6.2, this submodule and also M contains a one-dimensional sub-

module. []

For any group G one denotes by p(G) the subgroup generated by all elements
which have order a power of the prime number p. Clearly p(G) is a normal subgroup of
G. Moreover G/p(G) is the largest factor group of G which has no elements of order p. We
refer to section 7, for more details on p(%) and the structure of 4/p(%) for reduced linear
algebraic groups 9.

Corollary 6.4. (1) Every iterative differential module over K = C((z)) is a multiple
extension of one-dimensional iterative differential modules.

(2) The differential Galois group 4 of an iterative differential module over K = C((z))
has the properties:

(a) 9 is a solvable group.

(b) 9/p(%) is commutative.

(c) 9/%° is an extension of a cyclic group of order prime to p by a p-group.
Proof. (1) is an immediate consequence of proposition 6.4.

(2) Let an iterative differential module M of dimension d over K be given. Let V'
denote its solution space and ¥ <= GL(V) its differential Galois group. There exists a
sequence M| <« M, < --- < My; = M of ID-submodules such that the dimension of each
M; is j. The solution space V' has therefore a sequence Vi < Vo< ---c Vy=V of 4-
invariant subspaces such that each V; has dimension j. Therefore % is a subgroup of a
Borel subgroup # < GL(V') and ¥ is solvable. Let % < % denote the unipotent radical of
2. Then one easily sees that ¥ n % is equal to p(%). Hence % /p(%) < #/% is commuta-
tive. Finally, /% is the (ordinary) Galois group of a finite Galois extension of K. More-
over any Galois group of a finite Galois extension of K is the differential Galois group of
an iterative differential module over K, according to 4.1. It is well known that a finite group
G is the Galois group of a finite Galois extensions of K if and only if G is an extension of a
cyclic group (of order prime to p) by a p-group. []
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Matzat and van der Put, Iterative differential equations 21

The second part of the corollary suggests that a linear algebraic group satisfying (a),
(b) and (c) can be realized as differential Galois group over K. This will indeed be proved
in theorem 6.6. We start with some useful results on Galois cohomology and cohomology
for linear algebraic groups.

Observations 6.5. The %-torsor Z = Spec(R) and the groups H'(9, R).

(1) Let M be an iterative differential module over K with Picard-Vessiot ring R and
differential Galois group 4.

As remarked at the end of section 3, Z = Spec(R) is a %-torsor over K and
determines an element of H'(Gal(K*P/K), %(K*P)) with K*P the separable algebraic
closure of K. It is well known that for the groups ¥ = G,,, G, the cohomology set
H'(Gal(K*P/K),%(K*P)) is trivial, i.e., equal to {1}. According to corollary 6.4, the
group %° is solvable. In particular, 4° is a multiple extension of groups isomorphic to
Gy, or G,. Consequently H'(Gal(K*P/K),%°(K*P)) = {1}. We conclude that for a con-
nected differential Galois group % the Picard-Vessiot ring R is K-isomorphic to K ®¢ C[¥],
where C[¥] denotes the coordinate ring of ¢. This isomorphism is ¥-equivariant.

In the general case, let ¥° denote the component of the identity of %. The ring of
invariants K := R?’ is a field, and moreover a finite Galois extension of K with Galois
group %/%°. The iterative differential module K ® M has again R as Picard-Vessiot ring
and %° as differential Galois group. Thus R is K-isomorphic to K ®. C[%°]. This iso-
morphism is %°-equivariant. It is possible to make the %-action on K ® C[%°] explicit.

(2) Let ¢ be any linear algebraic group over C. A finite dimensional ¥-module is
a finite dimensional vector space V' over C on which ¢ acts via a homomorphism of alge-
braic groups 4 — GL(V). A general 4-module is a vector space V' over C with a %-action
such that V' is the union of finite dimensional subspaces which are 4-modules. An example
of a general 4-module is C[¥], the ring of the regular functions on .

For any %-module V' one defines V¥ to be the subspace of the elements invari-
ant under 4. The functor V +— V7, from %-modules to C-vector spaces, is left-exact. The
derived functors are denoted by V +— H(%4, V).

Let, as in (1) above, M denote an iterative differential module over K, ¥ its differen-
tial Galois group and R its Picard-Vessiot ring. From the description R =~ K ® C[%°] and
the well known %°-structure of C[%°], it follows that R is a 4°-module. It is also a ¥-
module since %/%° is a finite group. We will prove a result which will be used for the
construction of iterative differential modules over K with prescribed differential Galois
group (see theorem 6.6).

Let E be any one-dimensional %-module over C, then the cohomology groups
H (9, RQ@cE) are 0 for i = 1. The same holds if one replaces R by Ry = {a € R|0"")a =0
Sor all m < s}.

Proof It is known that for any linear algebraic group # over C and
any #-module F, the cohomology groups H'(#,F ®c C[#]) are 0 for i =1 (see
[J], lemma 4.7 on page 59). This implies that H(%°,R® E) =0 for i > 1. Then
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22 Matzat and van der Put, Iterative differential equations

H(%,R®E)=H!(%/9°,(R®cE)”"). One observes that (R ®¢ E)”" is a 1-dimensional
vector space over K = R?” and has therefore the form Ke. The action of o € %/%° satisfies
the formula o( fe) = o(f)a(e). Then the map ¢ — a(c) € K*, defined by o(e) = a(o)e, is
a 1-cocycle. By Hilbert 90, this 1-cocycle is trivial and we may suppose that a(e) = e for
all ¢ € ¥/%°. The additive form of Hilbert 90 implies that the H'(%/%°, Ke) = 0 for i > 1.
Finally, consider M, := {me M |0?)m =0 for all i < s} as an iterative differential mod-
ule over Kj. It is easily seen that its Picard-Vessiot ring is R, and that its differential Galois
group is 9.

The next theorem refines corollary 6.4. The result can be seen as an analogue
of Turritin’s classification of the (ordinary) differential modules over the differential field

o).
Theorem 6.6. Let the reduced linear algebraic group 4 satisfy:
(a) ¥ is solvable.
(b) 9/p(%) is commutative.
(c) 9/%° is an extension of a cyclic group of order prime to p by a p-group.

Then there exists an iterative differential module over K = C ((z)) with differential
Galois group isomorphic to 9.

Remarks. One may ask a more precise question namely, given a linear algebraic
group ¥ satisfying the above properties (a), (b) and (c) and a representation V" of ¥, i.e., a
finite dimensional vector space V" over C and a morphism of algebraic groups ¥ — GL(V),
does there exist an iterative differential module M over K such that the action of the dif-
ferential Galois group on the solution space is isomorphic to the representation V' of 4?

Suppose that this question has a positive answer for a single faithful
representation W of ¥ (ie., ¥ — GL(W) is injective). Let M be the correspond-
ing iterative differential module. It is known (see [W], section 3.5) that any represen-
tation V of ¥ can be obtained as a direct sum of subquotients of representations
W - QW W*®---® W*. Then the Tannakian approach produces an iterative
differential module N, which is a similar direct sum of subquotients of the iterative dif-
ferential modules M ® --- @ M ® M* ® --- ® M*, such that the action of ¥ on its solu-
tion space is isomorphic to the given representation V. Thus the more precise question
has a positive answer if the original question has a positive answer. Now we start the
proof of theorem 6.6.

Proof. (1) Consider a reduced linear algebraic group %, satisfying (a), (b) and (c). If
%° happens to be {1}, then % is a finite group, occurs as a Galois group of a finite Galois
extension of K and is, according to subsection 4.1, also a differential Galois group.

Suppose now that %’ is a torus. The p-group p(%) is a normal subgroup which
maps bijectively to p(9/%°). By assumption (b) one has that 4/p(%) is commutative and
is, according to (c), equal to ¥’ x C,, where C,, denotes a cyclic group of order m (not
divisible by p). The group C,, is the image of a cyclic group of order m in 4. Thus ¥ is the
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Matzat and van der Put, Iterative differential equations 23

semi-direct product of the finite normal p-group p(%) and 4° x C,,. The action (by con-
jugation) of 4° on p(%) is trivial since any ¥’-orbit (for the conjugation) is connected.
Thus @ is isomorphic to the product of ¥° and the finite group %/%°. Both groups are
differential Galois groups (see proposition 6.1). Then this product is also a differential
Galois group.

Suppose now that %° is not a torus. Define a sequence of connected normal sub-
groups ) o #, o --- of % by A is the unipotent radical of ¥° and for i > 1 the group
iy = [A#1, A}, ie., the group generated by {ghg 'h~'|ge #1,he #;}. Let s=1 be
such that s + 1 and #;; = 1. Then J# is a connected commutative unipotent group and
thus isomorphic to fo for some d = 1. The group ¥ acts on J#; by conjugation. This action
is trivial for #; and we have to study the action of the group ¥, := %/#, on #,. As
we have seen above the group ¥ is a product E x .7, where E is the finite group ¥/%° and
7 is the torus 4°/#. Let #; have the coordinate ring C[x,...,x;] and the comultipli-
cation given by x; — x; ® 1 + 1 ® x; for all i. The action of E on C[x, ..., x,] respects the
comultiplication and therefore the ring of invariants C[x, ... ,xd]E is the coordinate ring
of a connected commutative unipotent group. Therefore the quotient #;/E exists and is
isomorphic to the algebraic group Gj . The torus 7 acts on #;/E = G:ff and it can be seen
that there exists a subgroup ./ < #;/E, isomorphic to G, and invariant under the action
of 7. We will give an explicit proof of this.

Let 4 :=C[yy,...,yq] denote the coordinate ring of #;/E and let the comul-
tiplication m be given by y;— y;® 1 +1® y;. The character group of 7 is denoted
by X (7). The action of .7 on #;/F translates into a direct sum decomposition 4 = P 4,,

x
taken over all y € X(7). The action of 7 respects the comultiplication. This yields
that m maps A4, into the direct sum & 4, ® 4,,. Write each y; as the finite sum

X +0=x
yi=>»i(x) with y;(x) € A,. One finds that m(yi(x)) =»i(x) ® 1 +1 @ yi(x). Let S

x
denote a finite set of characters such that all y;(y) are 0 for y ¢ S. Consider the free
polynomial ring B = C[{Zi(y)}i=1...4;yes| and define the comultiplication B — B® B
by Zi(x) — Zi(y) ® 1 + 1 ® Zi(y) for all Z;(x). Then Spec(B) is the direct sum of the
d - #S additive groups .#; , := Spec(C[Z;(x)]). The action of 7 on Spec(B) is induced
by an action of 7 (C) on the C-algebra B. The latter is defined by - Z;(x) = x(1)Zi(x)
for all e 7 (C) and all i,y. In particular Spec(B) is the direct sum of the Z -invariant
subgroups .#; ,. Consider now the surjective C-algebra homomorphism B — A4 which
sends each Z;(y) to yi(x). This morphism respects the comultiplication and the .7 -action.
There results a closed, 7 -equivariant immersion #;/E < @ .#;,. One considers a min-
imal subset T of {(i,x)|i=1,...,d;x € S} such that N{ := (H/E)n @ .M;, is an
i) eT
infinite group. Clearly .4 has dimension 1 and is 7 -invariant. Then Jifl =N 1s iso-
morphic to G, and is 7 -invariant.

The preimage ./, < #; of ./ has dimension 1 and is invariant under the action of ¥
on ;. The same holds for /" := ./7’. The latter group is clearly isomorphic to G,. Thus
we have proved that ¢ contains a normal subgroup ./" isomorphic to G,. In the remaining
part of the proof we will show that ¢ is a differential Galois group over K if the group
4 /. is a differential Galois group over K. By induction (on the dimension of the group %)
the theorem follows.
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24 Matzat and van der Put, Iterative differential equations

(2) Let a linear algebraic group % and a one dimensional 4-module E be given. One
identifies £ with the linear algebraic group G, ¢ and considers exact sequences of linear
algebraic groups 1 — E — % — % — 1 such that the action by conjugation of ¢ on E is
the given ¥-module structure on E. There is a regular function on ¢ which restricts to the
identity on E. Thus the exact sequence has a section which is a morphism of algebraic
varieties over C. Using this section, the group law on ¢ can be expressed by a 2-cocycle. In
fact, the isomorphy classes of these exact sequences are classified by the cohomology group
H?*(%,E). Suppose that % can be realized as the differential Galois group of some iterative
differential module over K. Then we want to show that any ¢ as above can also be realized.

Let M be an iterative differential module over K which realizes % and let R denote its
Picard-Vessiot ring and L the field of fractions of R. Consider an inhomogeneous iterative
differential equation 8(1’"))1 =a,, n =20 over L with differential Galois group G, ¢. The
inhomogeneous equation is given by some element ¢ € & := lim L/L; which is unique up

to an element in L. The group ¢ acts on L, # and Z/L. Let & denote the image of & in
& /L. We require that the % action on C¢ is isomorphic to the ¥-module E*, the dual of E.

First we observe that (under this hypothesis) any ¢ € 4 extends to a K hnear differ-
ential automorphism & of L(x). It sufﬁces to define / := 6x. By construction 0”")x = g, for
all n = 0. The element / should satisfy o = a(a,) for all n = 0. It is given that o = ¢
for some ¢ € C* depending on . Thus (&) = ¢& + f for certain f € L and h = cx + f has
the required property. For the special £’s that will be considered, we will show that L(x) is
the Picard-Vessiot field of some iterative differential equation over K. Let %: be the group
of all the K-linear differential automorphisms of L(x). By construction there is an exact
sequence 1 — E — %: — % — 1 and so ¢ determines a 2-cocycle and its class ¢;(¢) in the
cohomology group H?(%,E). In the sequel we will make ¢,(¢) more or less explicit and
prove that any element in this cohomology group is a ¢;(&).

The field L with its natural %-action is not a ¥-module because for a general « € L the
C-vector space generated by the {g(«a)|g € 4} is not finite dimensional. The Picard-Vessiot
ring R = L is a ¥-module and has trivial ¥-cohomology according to 6.5. The same holds
for Ry={ae R|3"")a=0 for n < s}. The projective limit lim R/R; has a natural %-
action. It is not a 4-module since the %-orbit of an element need not be contained in a
finite dimensional C-vector space. We will replace lim R/R; by a subspace %, which is
actually a %-module. For this purpose we consider finite dimensional K-linear subspaces
W < R which are invariant under the action of % and under all 3", From the form of
the Picard-Vessiot ring one sees that R is a filtered countable union of such spaces W. To W
one associates ¥/~ = lim W /W;. This is a 9-invariant subspace of lim R/R; and also a %-
module. Then # will denote the union of all %". Our aim is to show that H’ (G RARE)=0
for all i = 1 and every 1-dimensional ¥-module E.

First we consider the %°-structure of #. The %°-modules R and K ®c C[¥4”)
are isomorphic. One deduces from this that # is isomorphic to a %°-module of the
form T ®c C[%°], where T is some vector space over C. The conclusion 1s that

H(%° #Q® E) =0 forall i > 1 and therefore H (%, 2QE)=~H(Y9/%9°, (% ® E)? ) for
all i > 0. Now we have to study (Z ® E)?  in some detail.

By construction lim K/K,c % < lim R/R;. Using observation 6.5, one finds that
the set of the %°-invariants of the last ¥°-module is lim K /K. Therefore A?" = lim K/K.
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Using that for all 0 < s < ¢ the 4/%°-module K,/K, has trivial cohomology, one finds
that also lim K /K has trivial cohomology and consequently H' (G, #)=0foriz=1 A
slight variation of the above reasoning shows that also H (4, 2® E) = 0 for i > 1.

Consider an element ¢ € %, with image & in # /R, such that:

(i) The elements {Z” |n = 0} are linearly independent over C (in order to obtain a
transcendental extension).

(i) C¢ is invariant under the action of %.

We claim that the corresponding extension L(x) > K is a Picard-Vessiot
extension. The collection ¢(¢) — ¢&, with ¢ €  and ¢ € C* such that (&) = ¢¢, lies in a
ﬁnite dimens1onal C-vector subspace of R/C. The inhomogeneous equation attached to ¢
is 0"y = a,, n = 0 with all a, € R. For any g € % one considers the transformed equation
6(”">y = a(an), n = 0. The set of all these equations forms a finite dimensional C-vector
space of equations. Let N be the corresponding iterative differential module over L. Then
% acts on N. This action commutes with all 3”") and moreover o( fin) = a(f)a(n) for all
feL and ne N. The K-vector space N is an iterative differential module over K such
that L ®x N¥ is isomorphic to N. Let M denote, as before, the iterative differential module
over K with Picard-Vessiot field L. Then one finds that the Picard-Vessiot field of M ® N*
is L(x).

One considers the exact sequence of %-modules 0 — R/C — # — 2 — 0, which
defines the ¥-module 2. The exact sequence

0—-R/CRE—-RRE —2QRE—0

induces a surjective map H%(9,2Q® E) — H'(%9,R/C ® E). The exact sequence of
4-modules 0 - F — R® E — R/C ® E — 0 induces a surjective map

H'(% R/C®E) — H*(Y,E).

In total we have found a surjective map H%(%,2® E) — H?*(9,E). An element on
the left hand side can be interpreted as an element & € #Z < ¥ such that the ¥-module
C& = /L is isomorphic to E*. The kernel of the map H*(¥9,2 ® E) — H*(%,E) is very
large. After adding to & a suitable element in this kernel, one obtains a ¢ such that the ele-
ments & E” E” ... are linearly independent over C. Using the explicit interpretation of
the cohomology groups and the maps between them, one finds that its image in H?(%, E)
coincides with the 2-cocycle ¢,(&). This ends the proof of part (2) and completes the proof
of the theorem. [

7. Global iterative differential modules

In this section X is an irreducible projective smooth curve over C and K denotes the
function field of X. The field K is provided with an iterative derivation such that oW is not
trivial. The theme of this section is the study of the iterative differential modules over K and
their differential Galois groups.
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26 Matzat and van der Put, Iterative differential equations

We start with the following observations. A linear differential equation of order d on
the curve X and with poles in the points x1, ..., x, with order ny, ..., n, can be described by
a connection

Vil — Qx(mxi]+ -+ ngxy)) ® A,

where .# is a vector bundle on X of rank d, Qy is the sheaf of holomorphic differential
forms on X and Qy (n[x1] + - - - + n,[x,]) is the sheaf of the differential forms on X with
divisor greater than or equal to —(n;[x;] + - - - 4+ ny[x;]). Further V is required to satisfy the
usual rules. In particular the connection is regular outside the set {xi,...,x,}. This natural
definition of “‘regular” for a differential equation at a point or on some open affine subset
of X does not carry over to iterative differential modules over K. Indeed, there is no uni-
versal iterative differential available and thus no equivalent for the sheaf Qy. We will use
another method to give a reasonable definition of the regularity at a point x € X for an
iterative differential module over K.

An iterative differential module M over K is, according to proposition 5.1, equivalent
to a projective system of subspaces {M,}. Each M, is a vector space over K, and the
canonical maps K,,_1 ® M, — M,_, are isomorphisms. In our special situation the field K,
is equal to K?" and in particular does not depend on the chosen iterative derivation on K
provided that 8V % 0. For any other iterative derivation {0} on K with 0" + 0 we can
use the above projective system {M,,} to define a structure of ID-module on M with respect
to new iterative derivation {0"} on K. This change does not effect solution spaces and the
differential Galois group of M.

For any point x € X we can consider a local parameter ¢ at x. The field exten-
sion C(¢) = K is finite and separable and the unique iterative derivation on K with

oWm = <m>t’”” for all n,m = 0 is denoted by {65’1)}. We note that the local ring O,
n

at x is invariant under all 85"). The same holds for the coordinate ring O(U) of a suitable
affine neighbourhood U of the point x. We can now give the following definition:

Let M be an ID-module over K and let x be a point of X. One considers a
local parameter t at x, the iterative derivation {6 } on K and the corresponding struc-
ture {GM .} on M. Then x is called a regular point of M if there is an open affine subset
U containing x and an O(U)-lattice N = M (i.e., O(U) is the coordmate ring of U and
K ®o) N — M is an isomorphism) which is 1nvar1ant under all aM -

It can be seen that this definition is independent of the choice of £. We note further
that this property is stronger than the statement that K, ® M is a regular ID-module over
K, (where K, denotes the completion of the function field K at the place x). Indeed, in
section 4.2 we have given examples concerning this statement.

Let M be an iterative differential module over C(z) which is regular outside
S ={a,...,a,, 0} Since z is everywhere on Y := P!\ S a local parameter, there are open
affine sets Uy, ..., U; with union Y and invariant O(U;)-lattices A; for i=1,...,s and
w.r.t. the 1terat1ve derivation {0} on C(z). Above the intersection U; N U; we ﬁnd by
localization two invariant O(U; n Uj)-lattices. From the unicity of corollary 6 2, part (3),
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Matzat and van der Put, Iterative differential equations 27

we conclude that those two lattices coincide. Thus the lattices A; glue to an invariant O(Y)-
lattice A for M.

The following theorem extends proposition 4.2.

Theorem 7.1. Let X be an irreducible smooth projective curve over C with
function field K and J its Jacobian variety. S < X will be a finite set with cardinality
r+12=0. Let Isomy g 1 denote the subgroup of Isomg | consisting of the (isomorphy classes
of ) one dimensional iterative differential modules over K which are regular outside S. Let
Div’(X, S, Z,) denote the subgroup of Div’(X, Z,) consisting of the elements D which have
Sfinite support and such that D(x) € Z for all x € X\S.

(1) There exists an exact sequence
0 — T,(J) — Isomy 51 — Div’(X, S, Z,)/Prin(X) — 0.
(2) For any integer n > 0, not divisible by p, the elements of Isomy s 1 with order

divisible by n form a group isomorphic to (Z/nZ)¢ with ¢ =2g+r if r 20 and ¢ = 2g for
r=-—1.

(3) The group Isomy s 1 has no elements of infinite order precisely in the following
cases:

(@) g>0,r<0, T,(J) =0 and C is the algebraic closure of F,.
(b) g=0andr <0.

(4) Suppose that Isomy s | contains an element of infinite order, then the dimension of
the Q-vector space Q @z Isomy s | is infinite.

Proof. (1) Let M be a one-dimensional ID-module over K, given by the projective
system {M,}. Choose a point x € X'\ S, a local parameter 7 at x, a small enough open U
containing x and a basis {e} for M over K. The iterative derivation on K is taken to be

{65")}. We will abbreviate 65")( f) for f € K by £, The corresponding ID-structure on M
is denoted {0"}. We want to investigate the invariance of O(U)e under all 0. Write

(1)
M, = K, f,e for certain elements f,, € K*. From 6(1)(f1e) —0 it follows that Ve = — fTe'
M
The coefficient _fT belongs to O(U) if and only if the restr(igtion of the divisor of f to
U is a multiple of p. More generally, —0""e= % I d®e. One concludes that

a+b=p",a>0 Jn
O(U)e is invariant under all %) if and only if for every n = 1 the restriction of the divi-

sor of f, to U is a multiple of p". Let D, € DiVO(X ,Z,) denote the projective limit of the
divisors of the f, modulo p”. Then the invariance of the lattice O(U)e by all 8™ is equi-
valent to the support of D, lies in X\ U.

A change of the basis element of M, changes D, by a principal divisor. The above
and the proposition 4.2 prove now (1).
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28 Matzat and van der Put, Iterative differential equations

(2) The p-adic Tate module 7,(J) is isomorphic to Z, with 0 <s<g and has
no elements of finite order. The other component Div’(X, S, Z,)/Prin(X) of Isomy s ; is
equal to the Jacobian variety J of X for r = —1,0. For r > 0 the considered there is an
exact sequence

0 —J — Div)(X,S,Z,)/Prin(X) — (Z,)" — 0.
Part (2) of the theorem now follows.

(3) and (4) follow from the following observation: If the field C is the algebraic
closure of [F,, then all the elements of J (or better of J(C)) have finite order. For an alge-
braically closed field C > F, which contains transcendental elements over [, the group
J(C) is large and in particular @ ® J(C) has an infinite dimension over Q. []

In order to state our conjecture we will use the following notion. For any group G, let
p(G) denote the subgroup generated by all elements which have as order a power of the
prime p. Clearly p(G) is a normal subgroup and G/p(G) is the largest factor group which
does no have elements with order p. Consider a linear algebraic group ¥.

We claim that p(9) is an algebraic subgroup of 9 and that the quotient # = % /p(%)
satisfies: A° is either 1 or a torus and A | A ° is a finite group whose order is not divisible

by p.

Every unipotent element of % has order a power of p. In particular, p(¥) contains
the unipotent radical R,(%) of 4. After dividing by the unipotent radical we may suppose
that % is reductive. Further it suffices to consider the case where ¢ is connected. By [Sp],
corollary 8.1.6, ¥ = R(¥Y) - [%4,%] where R(%) is a central torus and the commutator sub-
group (¥4, %] of ¥ is a semi-simple algebraic group. By [Sp], theorem 8.1.5, the latter group
is generated by unipotent elements and lies therefore in p(%). The central torus R(%) has
no elements of order p and we conclude p(¥%) = [9,9] and ¥/p(%) is an image of the
central torus, hence either 1 or a torus.

Conjecture. Let g denote the genus of X and let S < X be a finite subset with cardi-
nality r+ 1 = 1. A linear algebraic group 4 can be realized for the pair (X, S), i.e., is the
differential Galois group of an iterative differential module over K which is regular outside S,
if and only if the group H = G [p(%) can be realized for the pair (X, S).

Remarks. (1) The implication = in the conjecture follows from the Tannakian
approach to iterative differential modules. Indeed, this point of view shows that if a group
% occurs as a differential Galois group for an iterative differential module which is regular
outside S, then the same holds for any image of 4.

(2) If one specializes the conjecture to the case of finite groups, then one obtains the
well known conjectures of Abhyankar, proved by M. Raynaud and D. Harbater (see [A],
[R], [H1], [H2]).

(3) The complex analogue of the above conjecture, is a theorem of J.-P. Ramis. In
this analogue the expression p(%) is replaced by L(%), which is the subgroup generated by
all subtori of 4. See for an exposition of this work [Ral], [Ra2], [P1].
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(4) In the sequel we will investigate when a linear algebraic group #, which has
no elements of order p, can be realized as a differential Galois group for the pair (X,.S5).
Further we will give a complete answer to the question which connected linear algebraic
group ¥ can be realized as a differential Galois group for a pair (X, S) with non-empty S.

Theorem 7.2. The pair (X,S) represents a smooth, irreducible, projective algebraic
curve over C of genus g and a finite subset of cardinality r +1 = 1. Let S be a linear alge-
braic group which has no elements of order p.

(1) If A is finite then A is realizable if and only if # can be generated by <2g +r
elements.

(2) If A is connected then A is realizable if and only if Isomy s | contains an element
of infinite order.

(3) Suppose 1 &= H° = H and H commutative. Then H is realizable if and only if
Isomy g1 contains an element of infinite order and # | #° can be generated by <2g +r
elements.

(4) Suppose that 1 = H#° £+ A and that H is not commutative. Let a denote the mini-
mum number of generators of H | H°. If A is realizable then a < 2g + r. If A is realizable
and a =1 (i.e., H | H° is cyclic), then 2 < 2g + r.

Proof. We start with some observations.

(i) The finite group #/#° is again the differential Galois group of some iterative
differential modules M over K which is regular outside S. The Picard-Vessiot extension
L o K for M is a finite Galois extension with group #°/#° and is unramified outside S.
According to Grothendieck’s work on étale coverings (see [G]), the groups #/#° are
characterized as the groups having no elements of order p and generated by at most 2g + r
elements.

(i) Consider the case 2g +r =1, i.e., g =0 and r =1 and an ID-module M such
that its differential Galois group s# has no elements of order p. We may suppose that the
affine curve X\S is AL\{0}. By assumption the ID-module M admits a lattice A over
Clz,z7'], which is invariant under all ", We claim that the point 0 is a regular singular
point. Indeed, the differential Galois group # of the ID-module C((z)) ® M over C((z))
is a subgroup of s# and has therefore no elements of order p. According to corollary 6.4,
A is also a solvable group. Since it has no elements of order p, the group # contains no
unipotent elements & 1 and the group # is diagonalizable. By corollary 6.2, C ((z)) QM
is regular singular and there are lattices in C((z)) ® M over C[[z]], invariant under all 6 (),
The same holds for the point co. For both z = 0 and z = oo one has some freedom in the
choice of the lattices, invariant under all 8. Using this freedom one concludes that there
exists a free vector bundle .# on P} such that .#(P}\{0,0}) = A and the completions
Moy, M, are lattices, invariant under all 6", Let ¥ denote the vector space of the global
sections of .#. Then clearly M = C(z) ® V and V is invariant under all 8. The algebra
R= C[é(”), n = 0], introduced in section 6, acts on V. There correspond eigenspaces
Vi,..., V. and eigenvalues oy, ..., . € Z, for this action of R on V. The differential Galois
group # of M can be identified with the group of the automorphisms of V' consisting of
the elements £ such that:
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30 Matzat and van der Put, Iterative differential equations

(a) The restriction of 4 to each V; is multiplication by some #; € C*.
(b) For every tuple (ny,...,n,) € 2" with njoy + - -- + n,0. € Z one has ¢} - - -t = 1.

We conclude that # can be any commutative group such that #° is a torus and
H | A° is cyclic with order not divisible by p.

(ii1) We consider the case g = » = 0 and an ID-module M with a differential Galois
group 2 which has no elements of order p. This is a special case of (ii) where now the
point z = 0 is regular. It follows that all the «; are in Z and therefore J# = {1}.

Now we have all the ingredients for the proof, namely:

(1) follows from observation (i). (2) follows from part (4) of theorem 7.1. (3) fol-

lows from part (2) and part (4) of theorem 7.1. (4) follows from observations (i), (ii) and
(ii)). O

Now we start the proof of the other implication of the conjectures for connected
groups % and g = 0. Define U(%) to be the subgroup of ¢ generated by all its connected
unipotent subgroups. The group U(%) is a connected normal algebraic subgroup of % and
the factor group /U (%) is either trivial or a torus. (See [Sp].) Clearly U(¥9) < p(%) and
since the factor group has no elements of order p we have U(¥%) = p(%).

Theorem 7.3. Every connected linear algebraic group 4 — GL(V'), with V a finite
dimensional vector space over C, can be realised as a differential Galois group of an iterative
differential module M over C(z) such that the action of 9 on its solution space is isomorphic
to the given representation of 4 on V. Moreover:

(1) If the group 9 is generated by its connected unipotent subgroups (or equivalently
G /p(9) = {1}), then M can be chosen with only one singular point.

(2) In the other case (i.e., 4/p(9) is a non-trivial torus and hence as algebraic group
generated by one element) M can be chosen with two singular points.

The following example illustrates the rather involved proof. We take 4 = SL(2, C)
and we use proposition 5.3 in order to produce an iterative differential module M over C(z)
which is regular outside z = oo and has differential Galois group SL(2, C). This module is
given by a sequence of matrices ¢, € SL(2, C[z”"]) which are supposed to satisfy:

o 1z 1 0
(a) ¢, is either 1 or <0 1)or (zf’" 1).

(b) The sequence n; < n, < n3 < --- of elements with ¢, & 1 has “arbitrary large
gaps”, say defined by lim(n;; — n;) = oo.

(c) For every integer N = 0, there are infinitely many n = N with ¢, + 1 and ¢,
upper triangular and also infinitely many n = N such that ¢, + 1 is lower triangular.

Bereitgestellt von | Bibliotheek der Rijksuniversiteit (Bibliotheek der Rijksuniversiteit)
Angemeldet | 172.16.1.226
Heruntergeladen am | 09.02.12 16:00



Matzat and van der Put, Iterative differential equations 31

We claim that the differential Galois group of M is SL(2, C). We will write V' = C?
and describe a canonical way to identify the solution space of M with V. The C|z]-lattice
Clz]®@ V=M is embedded into the C[[z]]-lattice My := C[z]]® V = C((2)) ®cy M.
The ID-module C((z)) ® M is regular and has a solution space ¥ = M,. The map
V — My — My/zMy = V produces this canonical identification. Here the expression
“canonical” means that the construction respects “‘all constructions of linear algebra”.

According to proposition 5.3, the differential Galois group is a subgroup # of
SL(2, C). Let us first assume that # leaves a line in the solution space of M invariant.
This implies that M contains an ID-submodule N = M of dimension 1. Write {N,,} for the
projective system induced by N. Each N, = K, ® V = M, is a vector of dimension 1 over
K, = C(zP") and is given a basis element ¢, = (a,,b,) € (C[z”"])? such that the g.c.d. of
the two polynomials a, and b, is 1. The element ¢, is unique up to a constant. Since
¢,Nn+1 = Ny, one has ¢,q,+1 = uq, for some u € K. The two coordinates of ¢,g,.1 have
again g.c.d. 1 and we conclude that u € C*.

The degree of ¢, is defined as the maximum of the degrees of a, and b, w.r.t. the
variable z. Thus the degree of ¢, is d,p" for some integer d, = 0. From ¢,q,+1 = ug,
and the form of the ¢,’s one concludes that d,p" = d,,1p"*'. This is only possible if all
d, are 0 for all » = N and some integer N. Therefore ¢, € V' for n = N. Suppose that ¢,,

1 0
with n > N, has the form < »” 1) then ¢, = ¢(0,1) with ¢ e C* and ¢, = gy+1. If one
z

1 .
supposes that ¢, has the form <0 Zl ) then ¢, = ¢(1,0) with ce C* and ¢, = ¢y+1-

Condition (c) yields a contradiction.

Now we suppose that the differential Galois group # is some proper subgroup
of SL(2, C). There is a symmetric power W :=sym“(}V) and a line L = W such that L
is invariant under # and not invariant under SL(2, C). With this symmetric power one
associates ID-module sym? (M), which is the d™ symmetric power of M and the projec-
tive system {i, } with , := sym?(¢,) € GL(C[z”"] ® W). We note that the degree of the
coefficients of the matrix i, is bounded by dp”. The #-invariant line L in sym? (V") implies
the existence of a one-dimensional ID-submodule D of sym?(M). This D is given by a
projective system {D,} and each D, is given a generator ¢, € C[z""] ® W such that the
g.c.d. of its coordinates with respect to some basis of W is 1. The degree of ¢, is the max-
imum of the degrees of those coordinates of g, with respect to the variable z. Thus the
degree of g, is d,p” for some integer d,, = 0. As before, one has V,g,+1 = ug, with u e C*.
Further d,q, = d,.1¢,+1 holds for sufficiently large n, since the condition on the gaps does
not allow for cancellation of the terms with highest degrees. One concludes that d, = 0 and
thus ¢, € W for large enough n. Moreover g, must be an eigenvector for the eigenvalue 1
for , and n large. We draw the conclusion that ¢, =we W and D, = K,w for n = N.
Clearly L = Cw. The algebraic subgroup of SL(2, C) generated by ¢,(1) with n = N is
equal to SL(2, C). From v, (w) = w for n = N it follows that L is also invariant under the
action of SL(2, C) on W. This contradicts the hypothesis concerning L.

The idea for the construction of M (in the general case) is again proposition 5.3, i.e.,
M is given by a projective system {K, ® V,¢,}. The ¢,’s have to be chosen carefully in
order to assure that the differential Galois group of M is not a proper subgroup of 4. In
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32 Matzat and van der Put, Iterative differential equations

case ¥ is generated by its connected unipotent subgroups we define the ring R as C[z] and
in the other case we take for R the ring C[z,z7!]. Put R, = R"".

Lemma 7.4. Let the connected 4 = GL(V) be given and let R be either C|z] or
Clz,z7']. Suppose that the elements ¢, € 4(R,,) satisfy:

(@) 9,(1) =1€9.

(b) For any integer N =0 the group 9 is generated as an algebraic group by the
images of the maps ¢,: AL or AN\{0} — & withn = N.

(c) The “degrees” of all ¢, € GL(R, ® V) in the variable z"" are bounded by some
integer B.

(d) Let no <mnjy <ny<--- denote the ne N such that ¢, + 1. We require that
lim(n;1 — n;) = 0.

Then the differential Galois group of the corresponding modular differential module
M =K ® V is equal to 9 and its action on the solution space of M coincides with the given
action of G on V.

First we explain the notion of ‘“degree” used in part (c) of the lemma. Any
feClz]®V can be written as ). f,z" with the f, € V. The degree of f will be

max{n|f, #0}. Any f e Clz,z7']® V, f # 0 can be written as Zl: Juz" with f, € V and

n=no
Juo £ 0 =% f,,. The degree of f is defined as n; — ny. Further ¢, induces a map of V' into
R,®V.

The degree of ¢, (w.r.t. z”") is defined as the maximum of the degrees of the ¢,(v)
with ve V (w.r.t. z7").

Proof. (1) We consider the case R = C[z] and start by proving that any one
dimensional ID-submodule N = M has the form K ® L, where L = V' is an %-invariant
one dimensional subspace.

The ID-submodule N gives rise to a sequence of subspaces N, = K, ® V' of dimen-
sion 1 over K, such that ¢, N, = N, for all n = 0. The space N, is given a generator
gn € C[z”"] ® V such that the g.c.d. of the coordinates of g, with respect to a basis of V' is
1. This generator is unique up to multiplication by an element in C*. Then ¢,¢,+1 = ug,
for some element u € K. Since ¢, € GL(C[z?"] ® V) we have that ¢,(gni1) € C[zP'] @ V
and the g.c.d. of the coefficients of ¢,(g,1) w.r.t. a basis of V" is again 1. We conclude that
ue C*.

Now we consider the positive integers no < n; < ny < --- of condition (d). Assume

d
that g, has the form Y vt/ with 1=z?", d >0 and vy 0. Then g¢,, ,+1 = ¢, and

i

d - Jj=0
Gny =€ ¢, (v))t/ with ¢ce C*. The degrees of ¢, (v;) in z are bounded by Bp"-!
j=0
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and the degree of ¢, (vg)t? is = dp™. For i with p" " > B we find that g,, , has
degree = dp™. This implies that also ¢o has degree = dp”™. We conclude that for large
enough 7 the element ¢,, has degree 0. As a consequence, there is an integer N such that
gn €V for n = N. The equality ¢,(z”")¢q,:1 = cq, for n = N can be specialized at z = 1
and yields ¢,,1 = g, and ¢ = 1. Further the substitution z”" = s € C yields that g, is also
an eigenvector for ¢,(s) for any s e C. Write ¢, =v e V for n = N. Property (b) implies
that the line L := Cv < V is invariant under 4. We conclude that N is the one-dimensional
submodule associated with this %-invariant line.

(2) In order to show that the differential Galois group # of M is not a proper sub-
group of ¥, one has to prove that for any representation p : 4 — GL(W), any # -invariant
line L < W is also %-invariant. One associates with this representation the projective sys-
tem {K, ® W,y,}, where i, = p(¢,). Let M denote the corresponding iterative differential
module. The #-invariant line L provides a one dimensional iterative submodule N of M.
The conditions (a)—(d) are again satisfied in this new situation and according to part (1) of
the proof we conclude that N is associated with a %-invariant line L; < V. Clearly L = L,
and thus L is invariant under 4. We conclude that # = 9.

(3) The case R = C[z,z!] can be treated in a similar way. We will omit the details.

(4) The module M has R® V as R-lattice, invariant under all ¢, and all 3. The
solution space for M can be realized as a C-vector space W < C[[z — 1]] ® V. The evalu-
ation map C[[z—1]]® V' — V (i.e., dividing by (z — 1)) induces an isomorphism W — V.
The last statement of the lemma follows from the canonical (i.e., compatible with all con-
structions of linear algebra) identification of the solution space for M with V. []

Continuation of the proof of theorem 7.3. We consider the case where 9 is generated
as an algebraic group by its connected unipotent subgroups. We will need the following
lemma.

Lemma 7.5. Let % be a connected unipotent group over the field C. There exists a
morphism o : Alc — U of C-varieties with a(1) = 1 € % and such that U is generated as an
algebraic group by the image of o.

Proof. We will prove this by induction on the dimenson of %. If the dimension
of % is 1, then % is isomorphic to the additive group G, and the statement is trivial.
If the dimension of % is greater than 1, then the centralizer of % contains a subgroup %
isomorphic to G,. By induction there is a morphism «;: AL — %/% with the required
properties. It is known that the morphism % = % /% admits a section r: % /% — . This
means that r is a morphism of C-varieties such that 7 o r is the identity on % /%. The map
Oy :=roay: AIC — 9 has the property that the Zariski closure % of the group generated
by o»(C) maps surjectively to % /%. If %4, happens to be %, then o, has (after a shift in
order to assure a,(1) = 1) the required properties. If %; + % then we may consider instead
of % the direct product € x %;. Indeed, this group maps surjectively to % and has the same
dimension as %. We propose here a map a3: A — € x % of the form a3(c) = (B(c), a2 (c))
for a suitable f. Let %, denote the Zariski closure of the group generated by a3(C). It suf-
fices to choose S such that the map %3 — € x % /[%, %] is surjective. Indeed, it will fol-
low that the kernel of the projection map %, — % is not finite and thus %, = € x ;.
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Write # := /|, %) and o for the induced map Alc — . The group A is
isomorphic to a product G.'. The image of « does not lie in a proper algebraic
subgroup of # and we have to produce a f: A' — & ~ G, such that the image of
(B,a) Alc — € x A does not lie in a proper algebraic subgroup. One knows that any
proper algebraic subgroup of G;”“ is contained in the zero set of some additive poly-

nomial f := > (ag x} +~-~+am7nx{,’:), where xg,...,Xx, denote the standard coor-
n=0

dinates for G, One easily sees that § given by fi(c) = ¢? with suitable d > 1 and p .t d,
has the required property. []

Corollary 7.6. Suppose that G is generated by its connected unipotent subgroups.
Then there are finitely many morphisms of C-varieties o : AIC — 9, j=1,...,s with
wi(1) =1 €9 such that 4 is generated as an algebraic group by the union of the images of
the o;.

Proof. Let % be a maximal connected unipotent subgroup of 4. Then every maxi-
mal connected unipotent subgroup of ¥ is conjugated to %. The group ¥ is already gen-
erated by finitely many conjugates of %. Let o : NC — U satisfy the properties of lemma
7.5. Then for finitely many g1, ..., g, € %, the maps o; = gjocgj’1 have the properties of the
lemma. []

We apply lemma 7.4 with the following data:

(i) Any sequence ng < ny < ny < --- with lim(n;4; — n;) = 0.
(i) ¢, = 1 if n is not equal to some n;.

(iii) ¢, = ;(z”") such that every a; occurs infinitely often.

The conditions (a)—(d) are obviously satisfied and the first part of the theorem is
proved.

We suppose now that G is a connected linear algebraic group. Fix a maximal connected
unipotent subgroup % and a maximal torus 7. It is well known that ¥ is generated as
an algebraic group by finitely many conjugates of % and of 7. The morphism o« : AIC — U
of lemma 7.5 has also the property that the Zariski closure of the group generated by o(C*)
is equal to %. Indeed, «(0) lies in the Zariski closure of o(C*). There is a morphism of
B: AN\{0} — 7 such that #(1) = 1 and the group generated by f(C*) is Zariski-dense in
7 . Indeed, it suffices to produce a map f§ such that y o f is not the constant map with image
{1} for any non trivial character of 7. Let I" be a suitable finite set of conjugates of o and
f. Then one applies lemma 7.4 with the following data:

(i) and (ii) as before and (iii) ¢, = y(z”") with y € I and such that every y € T occurs
infinitely often. The second part of the theorem now follows.

Corollary 7.7. Let X be a (smooth, irreducible, projective) curve over C with function
field K and let S = X be a non-empty finite set.
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Matzat and van der Put, Iterative differential equations 35

(1) Then any connected algebraic group % such that G /p(%) = {1} can be realized as a
differential Galois group of an iterative differential module over K, which is regular outside S.

(2) Suppose moreover that there exists a non constant regular function on X \S without
zeros. Then any connected linear algebraic group % can be realized as a differential Galois
group of an iterative differential module over K which is regular outside S.

(3) Any connected linear algebraic group can be realized for the pair (X, S) if and only
if Isomy s | contains an element of infinite order.

Proof. (1) The coordinate ring O(X\S) of X\S is a finite extension of some ring
C[z]. The corresponding morphism y : X — P! has the property that Yy (0)=S. Let N
be an ID-module over C(z) which is regular outside oo and has the required differential
Galois group % and representation. Since % is connected, the ID-module M = K ®c(.) N
has the same differential Galois group and representation.

The proof of (2) is deduced from the existence of a non constant morphism
f:X = Rlwith S < f~10)uf (o).

(3) According to theorem 7.1, the condition that Isomy g ; contains an element of
infinite order is necessary since G,, is supposed to be realizable. Suppose that this condition
is satisfied and let 4 be a connected linear algebraic group.  denotes a maximal torus of
¢ and U(%) is the normal algebraic subgroup generated by all the connected unipotent
subgroups of %. The assumption on (X, S) implies that 7 can be realized as differential
Galois group. The same holds for U(%). An interlacing of the two projective systems for
7 and U(%9) with “gaps” as in lemma 7.4, provides a projective system with differential
Galois group 4. We will omit the details. []

8. p-adic differential equations

Let C, denote the completion of the algebraic closure of Q,. On the field C,(z)
one considers a valuation which is called the Gauss norm. The Gauss norm ||P||gauss Of
a polynomial P =Y ¢;z' € Cy[z] is defined as the maximum of the absolute value of its

. . . T
coefficients. The Gauss norm ' — of a rational function is defined as Hnﬂ. The

gauss %ausg
completion of the field C,(z) with respect to this Gauss norm is denoted by C,(2),,- The

. .od . . .
differentiation — on C,(z) is continuous with respect to the Gauss norm and extends to a

d —_—
continuous derivation of C,(z) The field of constants of both differential fields C,(z)

gauss”®
and C ( )gauss 18 the algebraically closed field C,. The valuation rings of both C,(z) and
— 1 /d\' .
C,(z) eauss AT€ Invariant under the operations — <d—> . The residue field of both fields
y4
1

is F,(z). This field 1nher1tes an iterative dlfferentlatlon induced by the — 4 , which
nl \dz
comc1des with the {0 }.

A p-adic -adic differential equation is a differential equation over either the differential field

Cy(z)or C ( ) The aim of this section is to investigate the relation between differential

gauss”
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36 Matzat and van der Put, Iterative differential equations

——

equations over C,(z)g,, and iterative differential equations over F,(2). In our setup we will
be slightly more general and allow other residue fields than F,(z) and slightly less general in
the sense that we will avoid non-discrete valuation rings like the ring of integers of C,.

The setup and some notations. R is a complete discrete valuation ring. Its field of
fractions F has characteristic 0 and is equipped with a differentiation Jdr, which induces

. . o : OF . .
the iterative derivation {6%")} with (’3?) = —f The residue field K of R has characteristic p.
n!
Further 7 € R denotes a generator of the maximal ideal of R. The absolute ramification
index e of R is given by 7°R = pR. Then we assume the following:
(a) R isinvariant under all 6;7).

(b) dpm = 0.

(c) The iterative derivation on K, induced by the {85;1)} is denoted by {61(?)}. We
require that 62) + 0.

Example. Let L be any complete discretely valued field of characteristic 0 and with
a residue field of characteristic p > 0. One considers the Gauss norm on L(z) and the

. . . L d)
completion F of L(z) with respect to the Gauss norm. The differentiation f — 4 on L(z)
z

d
is continuous with respect to the Gauss norm and extends to a differentiation on F. Now F
satisfies all conditions above. Thus the usual p-adic differential equations are present in our
setup.

Let (M, 0) be a differential module over F. We investigate R-lattices of M, i.e., the
R-submodules of M generated by a basis of M over F.

Proposition 8.1. Let a differential module (M, 0) over F of dimension d be given. Let
k = 0 be an integer. The following properties of an R-lattice A of M are equivalent.

(1) There exists an R-basis {e;} of A such that all de; € p*A.

n

0
(2) A is invariant under the 0" = mfor all n < p*+1.

Proof. (1) = (2) will be proved by induction on k. Take kK = 0. Then 0 ) re;, with

j
all r; € R, belongs to A since de; € A and dr(r;) € R. Thus A is invariant under ¢ and also

n

0
under 0" = — forn <p.
n.

Suppose that (1) = (2) holds for k — 1 and that (1) holds for k. Then A is invariant
under 0" for n < p* and we only have to show that A is also invariant under 8 9.

From de; € p*A one concludes that 8(P)ej e p*'A. Indeed, p!(’?(p)ej = 0’¢; e p*A.
The same reasoning implies that 87")e; € pt—2A, 87)e; € p*=3A and finally 0""e; € A.
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Matzat and van der Put, Iterative differential equations 37

Any element of A has the form Z rie; with r; € R. Now o' ") rej= > 05;1)7']’6(}7)6’/ shows
that A is invariant under 8 a+b=p*

(2) = (1) is also proved by induction on k. The induction step contains again
other induction steps. We will indicate the procedure. The case &k = 0 is trivial. Consider
k=1.Put W:=A/nA and let 0y on W be induced by 0 on A. Then (W,dy ) is an ordi-
nary differential module over the field K. Its p-curvature is 0 since A is invariant under
0P). There exists a basis Wi, ...,wq of W over K such that all dyw; = 0. Choose repre-
sentatives ey, ...,eq € A of wy,...,wy. They form a free basis of A over R and de; € A
for all j. If the absolute ramification index e is 1, then we are finished. Suppose now
e > 1. Then one considers a new basis e; + nay, ..., e; + mag with all a; € A and require
that d(e; + ma;) € n*A. This amounts to relations da; = — % modulo 7A. One can see this
as equations Owda; = b; in W where b; denotes the image of —% in W. Since the differ-

ential module (W, dy ) is trivial, one concludes from property (c) that the 1rnage of dy

on W is equal to the kernel of 07, ' In particular, there is a solution a; if 1, b =0.
0 ! : :

The latter condition is satisfied since 07 <ﬁ> :’ia@)ej en*"'A . This procedure is
T Y

repeated until a basis ey, ..., e, is found with de; € pA for all j.

Consider the case k=2. Let W = A/nA. On this K-vector space we have a

“truncated” 1terat1ve differential module structure. By this we mean that the 6W are

defined for n < p* and satisfy the usual rules. There is a basis wy,...,wy; of W such that
Owwj = o )wj =0.

The first step is to produce elements ey, ..., e; € A with images wy, ..., w, such that
6(”>ej € pA.

If the ram1ﬁcat10n index e is 1, then any choice for the ¢; has this property. If e > 1,
then we have that 07 ej = nn"a; for some m = 1 and elements aj € A. For m < e, one tries
to find elements {e; — n”by,...,eq — b} such that o (e] —nbj) € 7™ A. For this one
has to solve the equations 0" b = aj in the space W. As before, K; denote the subfield
{f € K|0xf = 0}. The pair (W o\ ) is now considered as a differential module over the
field K. This is again a trivial dlfferential module since (0(”))’;V = 0. Therefore a solution
b; exists if (0'”))2'a@; = 0. Since A is invariant under 27" one has that (@) 1oWe; e pA
and thus (0'”)?'a; e n° A,

We conclude that there are elements e; with & = w; such that o(P) ej € pA. The next
step concerns Oe;. One has de; = n”a with ae A and m = 1. For m < 2e one wants to
change ¢; into ¢; — n™b with b € A such that d(e; — n™b) € 7" 1A and 07 )(e; — n"b) € pA.
If m = e, then the second condition is automatically satisfied and one can proceed as
before. Suppose now that 1 < m < e. Then a satisfies two properties namely:

(i) @7~'a e 72 A. This follows from 8”)e; € pA.

(ii) 'Pa e n™A. This follows from 7”0\")a = 00'Pe; e pA.
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38 Matzat and van der Put, Iterative differential equations

Thus 0/ 'a=0 and 0\a=0. We recall that K, ={feK;|0{"f =0} and
that for a good choice of z the field K has basis {z/|0 <j < p?} over K, and that

6};’)2’” = < m)z’"" holds for all n < p? (see proposition 2.2). Then & can be written
n

as > a(i, j)z/w; with all a(i,j) € K,. From a4 'a=0 and 6%)&:0 one
i=l1,....d;0 < j<p? _ _
deduces that a(i,j) =0 for j = p—1. Thus a solution b of dwb =a has the form

a.(z,]) z7*w;. Therefore d(e; — n"b) € m"*'A and 87 (e; — n”b) € pA, as
i1, .d0<jep-1J+1
required. This ends the proof of the case k = 2.

We sketch the case & = 3. One takes a basis wy, ..., w; of W with
ow; = (7(1’)11/] = ﬁ(pz)wj =0 forallj.

The elements wy, ..., w, are first lifted to elements ¢y, ..., e; € A such that o z)ej e pA. The
next step is to modify the ¢; such that the additional property o )ej € p>A holds. The final
step modifies the ¢; again in order to obtain de; € p>A. Each of the steps involves smaller
steps, where a congruence modulo 7 A is refined to a congruence modulo 7”*!. The same
pattern can be followed to give a proof for general k. []

Let M be a finite dimensional vector space over the valued field F. A norm on M is
amap || [[: M — Rx¢ such that:

(i) |lm|| = 0 if and only if m = 0.
(i) [lrmy +mo|| < max(|[m ], [[mal]).
(iii) ||fm|| = |f| - ||m]|| for f € Fand me M.

All norms on M are equivalent since F is complete and the dimension of M is
finite. This means that for any two norms || || and || ||* there are positive constants d, D
such that d|m|" < ||m| < D|jm|" holds for all m € M. In the sequel we will only consider
norms such that the values ||m|| are contained in |F|. One associates with a norm | ||
the R-lattice {m e M | ||m|| = 1}. This produces a bijection between norms and R-lattices.
An orthonormal basis {m;,...,m,} for M with respect to a given norm is defined by the
property that || fim; + - - - + famy|| = max(|fj|) holds for all f,..., f; € F. In other words
{my,...,my} is an orthonormal basis if and only if it is a free basis of the R-lattice
{me M||m] <1}.

For an additive map 4: M — M and a given norm || || on M, one defines
A _r .
l4]] :== sup{% |me M,m + 0}. A priori, ||A4|| can be oo. For two additive maps

A, B with ||4]],||B|| < oo one has ||4AB]|| = ||4|| - ||B||. With this terminology we can now
formulate a limit case of proposition 8.1.

Theorem 8.2. Let (M, 0) be a differential module of dimension d over F. One writes
n
o for the operator —on M. The following conditions on M are equivalent.
n!
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Matzat and van der Put, Iterative differential equations 39

(1) There exists an R-lattice invariant under all 0"
(2) There exists a norm || || on M such that ||0"™| < 1 for all n = 0.

(3) There exists a norm || || on M such that sup ||0"|| < oo.
n=0

(4) Fix a norm || || on M. There exists a constant ¢ > 1 and for every ¢ > 0 a basis
{my,...,my} (depending on &) such that:

(@) C'max(|f]) < [[fimi 4 -+ fama|| £ Cmax(|fj]) for all fi,..., fa€F.
(b) ||om;|| < e for all j.

(5) There exists a norm || || and for every ¢ >0 an orthonormal basis {my, ... ,my}
such that ||0m;|| < ¢ for all j.

Proof-  We note that conditions (3) and (4) are independent of the chosen norm since
all norms are equivalent.

(1) = (5). Let || || denote the norm with A = {m € M |||m| < 1} invariant under all
o, Apply now proposition 8.1.

(5) = (4) is obvious.

(4) = (3). We will show by induction that [|0”m| < c2||m|| holds for all
n=0 and all me M. Suppose this formula holds for n < N. Take ¢ > 0 such that

()¢ <1 and let my,...,my be the corresponding basis of M. Write m = > fimj.
J
Then o™ fim; =3 S 09f0Pm;. One has [0“)f| <|fi|. For b>0 one has
J j a+b=N

10®m;|| < (¢?)"'e <1 and ||mj|| < c. From this the inequality ||0™)m|| < ¢2|jm| follows.

(3) = (2). One defines the function || ||* on M by the formula ||m||* = max(]|d™m])).
It is easily verified that || ||* is a norm on M and takes its values in |F|. Now

109m|* = max(|0"o@m]) and this is <|m||" since 0o = <”+">a<"+“> and

n
n

(2) = (1). The lattice A = {m e M | ||m| < 1} is invariant under all 0", [J
Another limit form of proposition 8.1 is the following.

Theorem 8.3. Let (M, 0) be a differential module over F of dimension d. The following
statements are equivalent.

(1) For every integer k = 0 there is an R-lattice which is invariant under all 0" with

n < pkl,

(2) For every integer k=0 there is a basis my,...,mq of M such that
om; € p*(Rmy + - - - + Rmy).
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40 Matzat and van der Put, Iterative differential equations

(3) Let || ||" be any norm on M. For every r > 1 there exists a positive constant C(r)
such that |0"||* < C(r)r" holds for all n 2 0.

Proof. The equivalence between (1) and (2) is just proposition 8.1.

(1) = (3). Let || || be the norm corresponding to the lattice A. Then ||0"|| <1 for
all n < p**!. We will give an estimate for ||0"]| for all m > 0.

(ps!)p 0P e

implies |07 = p||(2"?")”|| and thus w(s+ 1) < 1 + pw(s). It is given that w(j) < 0 for

Define the real number w(s) by ||0'?"|| = p*®). The equality ' " =

s—k __ 1

0 <j < k. One deduces from this that w(s) < pil for s > k. In order to give an esti-
p J—

mate for o] we write m as mo +mp+---+mep® with all m; € {0,1,..., p—1}. One

has [|[0™)] < |8t ||’"° 87| Then

mi < | .
Plogllo™ | < ~— (muni(p = 1) +---my(p*™ ~ 1)

1
and the latter is g%. Thus Ha(’”)H < #" with r = p-7F holds for all m =0
p—=1)p
and the special norm we started with. For the given norm on M, which is equivalent to
this special norm, we find ||6("’> |* < Cir}! for all m = 0 and a constant C; which depends
on the comparison between || || and || ||*. Further klim re = 1.
— 00

(3) = (1). We fix an integer k = 0 and consider the collection of additive maps S on
M given by

S = {(@P" Ny (@ Dy @ N g0 g €401, p— 1}, ar = 0}

We claim that ling Is|* = 0. It suffices to prove that lim [|(37")"|| =0. We write
S€e n— oo
n=ng+mp+---+np* withalln; € {0,1,..., p—1}. Then

1@ < (1”7 - (1@P ) )1 7) ™.

As in the proof of (1) = (3) one derives the equality [|(2%")?"||* = ||p%6

()1, We

LIS

are given the inequalities [6||* < C(r)r™, in which we make the choice r = pr™ (1.

This yields |8¢ kﬂ)H < C(r)p?" for every s = 0. One derives that for n (as above) that
k

log|| (8P N"||* £ —n+s- plog C(r) and moreover s < ?logn. Thus lim 16@)"||*

and we have proved our claim.

Now we introduce a new norm || || on M by the formula:
lml| = sup{||s(m)||" | s € S}.
This expression is finite since lirn |ls||* = 0. It is easily verified that || || is actually

a norm. Now we observe that for s e S and any j with 0 < < k there is an integer N
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Matzat and van der Put, Iterative differential equations 41

and an element s’ € S such that 0”")s = Ni'. This implies that Hé(”j)mH < |m|if0<j < k.
Let A be the R-lattice {m e M |||m|| < 1}. Then clearly A is invariant under 8" for all
n <pk+1. |:|

We now describe a tool of Dwork’s theory of p-adic differential equations, namely
the “generic disk” (see for instance [D-G-S], p. 92 and [C]). For this we specialize F to be
the completion of L(z) with respect to the Gauss norm, where L is a complete, discretely
valued, subfield of C,. The norm ||4|| of a matrix 4 = (4; ;) with coefficients in F is defined
by ||A4|| = max(||4; ||). Consider a matrix differential equation y’ = Ay over F of size d.

1 n
The iterated equations have the form = (d_> y = A,y. One introduces a larger complete
n! \dz

valued field Q > L which contains an element ¢ of absolute value 1 such that its image in
the residue field is transcendental over the residue field of L. The field F is mapped into Q
by sending z to ¢. The open disk {a € Q’ la —1] < 1} is called the generic disk. The differ-
ential equation y’ = Ay has a formal fundamental solution U at the point ¢ with U(z) = 1.
This is the expression U = 1 + > A4,(t)(z — 1)", where 4,(¢) denotes the image of 4,, under
nz1

the map F = L(z) — Q. The verification of this formula is straightforward. The conver-
gence of U on (part of) the generic disk and the behaviour of the absolute values of the
coefficients, i.e., the ||4,(?)|| = ||4,|| has been studied in detail by B. Dwork, Ph. Robba, G.
Christol, B. Chiarellotto et al. Corollary 4.8.8, p. 142 of [C] states that U converges on the
full generic disk if and only if for every positive ¢ there is an H, € GL(d, F) such that upon
posing y = H.,f, the transformed equation f' = Af with 4 := H,'AH, — H,'H satisfies
||| < &. The convergence on the full generic disk means that for every r > 1 there is some
constant C(r) with ||4,|| = C(r)r" for all n = 0. The other condition in the cited Corollary
4.8.8 translates into statement (2) of theorem 8.3. Thus theorem 8.3 implies this result of
[C].

A special case of the other limit situation, namely the equivalence of (3) and (4)
in theorem 8.2, can be translated into proposition 4.8.9 of [C] (see also [Ro]) which states
that the boundedness of the fundamental solution U on the generic disk is equivalent to the
assertion:

There exists a positive 6 and for every ¢ > 0 an H, € GL(d, L(z)) such that | H,| <1,
\det H,| = 6 and |H!H ' — 4| < e.

It seems that, apart from the above criterion by Robba, p-adic differential equations
of this type have not been studied extensively.

For the next theorem we make the following assumptions on F, K and the derivation 0
on F:

Let Ry be a complete discrete valuation ring with maximal ideal pR,, residue field
k = Ro/pRy and field of fractions L. The field L(z) is provided with the Gauss norm and

... d . : . . . d
the derivation 7 Then F is the completion of L(z) and dF is the continuous extension of 7
to F. : :

The valuation ring of F will be denoted as before by R. We observe that the residue
field R/pR of F is equal to K = k(z) and that the induced iterative derivation {02”)} on K
coincides with {3{"}.
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42 Matzat and van der Put, Iterative differential equations

Theorem 8.4. Let F,K and Op be as above and let N be an iterative differential
module over K. Then there exists a differential module (M,0.) over F and an R-lattice
A = M invariant under all 5,5") such that the induced iterative differential module A/pA over
K is isomorphic to N.

Proof. Define, as before, the subfields K; of K by K; = {ae€ K|dk(a) =0} and
Ky ={ae K| 8}{ g = 0}. Clearly K; = k(z”"). Let R, be the completion of the valua-
tion ring Ry[z? ‘V]( ) and let F; be the field of fractions of R. Then one has the properties:

(i) Ry/pRs =K.

(i) Foy € FyC F.

(iii) R, is free over Ry | with basis 1,z7°,z%" ... zlr=1p"
(iv) 0rRs € p*R.

Let A denote a free R-module with basis ej,...,e;. Then A/pA is a vector space
over K with basis f,..., fz, the images of ey, ..., e;. We identify A/pA with N and regard
fi,---, f4 as a basis of N over K. Further M will be F ® A. The aim is to produce a
structure of differential module (M, d,) such that A is invariant under all 3" and such that
the induced iterative differential module A/pA is isomorphic to N.

Define Ny = {neN| o'y = 0} and by induction Ny, = {n e N;|8"”n = 0}. Each
Nj is a vector space of dimension d over the field K and K ®g N; — N is an isomorphism.
Let fi(s),..., f4(s) denote a basis of N over K;. Now we will make a sequence of choices:

(1) Elements e;(1),...,eq4(1) e A with images fi(1),...,/fz(1) in N. Put
A1 = Riei(1) + -+ Rieq(1) = A. Then A maps surjectively to Nj.

(2) Choose elements e;(2),...,e4s(2) € Ay with images fi(2),..., fa(2) € N, < N;.
Define Ay = Ryei(2) + -+ - + Raey(2). Then A, maps surjectively to N;.

(3) By induction on s, one defines Ay = Rye;(s) + - - - + Ryeq(s) such that the images
of the ¢;(s) are the fi(s) and Ay = A, for all s = 2.

We want to define d.: A — A by the properties:
(a) 0. is additive and 0, (rm) = 0p(r)m + rd.(m) for allm e A and r € R.
(b) 0.(ei(s)) ep’Afori=1,...,d and all s = 1.

Fix an meA. Write m =) cj(s)ej(s) with ¢;j(s)e R. Then d,m should be
> 0r(cj(s))ei(s) + 3 ¢i(s)0.(e(s)). Thus we want to define 0.m by the sequence of con-
gruence relations: 0.m = Y- 0r(c;(s))e;(s) modulo p*A for s = 1. The only thing to verify
is that these congruence relations are compatible.

Write e;(s) = > r(i, j)e;(s + 1) with all 7(i, j) € R;.

1
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Then one has m=>) (Zc]( (i, ])) ei(s+1) and we have to show that

Z <Z@F(c]( V(i ]))>e,(s+ 1) is congruent to Y- dr(¢;(s))e;(s) modulo p*A. This fol-
J
lows at once from r(i, ) € Ry and 0r (r(i, j)) € p*R.

We conclude that d,.: A — A is well defined and has the properties (a) and (b).
From proposition 8.1 it follows that A is invariant under all 6 ). Let {8 } also denote the
1nduced iterative differential structure on A/pA = N. From the construction it follows that
6£” ") maps A, into pA. Since A, rnaps to Ny, one finds that any n € N; satisfies 6 Th=0
for j=0,...,s— 1. Therefore the {3} coincide with the given {0”} on N. []

Let (M,0) be a differential module over F and A an R-lattice which is invariant
under all 3", Denote by N the induced iterative differential module over K. The module
(M, 0) has a differential Galois group % over the algebraic closure C of the field
of constants C of F. The iterative differential module N has a differential Galois group #
over the algebraic closure of the field of constants of K. These two groups are obviously
related. One suspects that “# is the reduction of ¥ modulo p”. We will make this more
precise.

The field C is a complete valued subfield of F. We assume that the valuation ring of
C maps surjectively to the field of constants of K, i.e., the residue field of F. Let O denote
the valuation ring of C and let m be its maximal ideal. Then Os/m is the algebraic closure
of the field of constants of K.

Conjecture 8.5. After replacing the given differential module (M, 0) over F by some
equivalent differential module there exists an R-lattice A, invariant under all 0", which
determines a linear algebraic group 9o over O := O such that:

(1) C ®o. Yo =Y and
(2) Oz/m ®o. Yo contains A as algebraic subgroup.
Moreover if 9 is a finite group then G and # coincide.

We will indicate the way an R-lattice A, invariant under all 8(”), determines a
linear algebraic group over Os. Choose a basis of A over R. The differential module
(M, 0) is represented by a differential equation in matrix form y’ = Ay. The iterative dif-
ferential equations are om y = A,y for n = 1. The coefficients of the matrices A4, are in R.
Consider a matrix of indeterminates (X; ;) and let D be its determinant. The F-algebra

1
F [{XL j}’B] is made into a differential algebra over F by (0X; ;) = A(X; ;). We note
that (8" X; ;) = 4,(X; ;) holds for any n > 1. Let I = F{{X, it } be a maximal differ-
ential ideal. Then the factor ring F [{Xl it } /1 is “almost” a Picard-Vessiot for (M, 0)

over F. The “almost” comes from the fact that the field of constants C of F is not alge-
braically closed. After replacing F' by the compositum of F and a finite extension of C, we

1 . D . .
may regard F [{X, j}’B /I as a Picard-Vessiot ring. The elements ¢ of the differential
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44 Matzat and van der Put, Iterative differential equations

Galois group % can be represented by the invertible matrices B with coefficients in C such
that the automorphism ¢ of CF [{Xi,j },%} given by (0X; ;) = (X; ;)B~! leaves the ideal
generated by / invariant. The linear algebraic group % over O is the one induced by the o
such that B and B~! have their coefficients in Oz. Now we consider the ring R [{X, it %]
and the ideal / =T N R [{X, j},%]. This ring and its ideal J are stable under all 3" and
under the action of %y. Let = denote a generator of the maximal ideal of the valuation

. 1 1]. . o o
ring of C. Then R {{X,} j},B] /(n) =K [{X, j},B] is an iterative differential ring over K.

The image J; < K [{X, j},%:| of the ideal J is an iterative differential ideal and moreover
stable under the action of 4 := % ® O /m. Let J, = J; be a maximal iterative differential
ideal. Then K [{X, j},%] /J> is “almost™ a Picard-Vessiot ring of the iterative differential
module N = A/nA. The finite extension of C, considered above, can be taken sufficiently
large such that K [{X i j},%] /J> can be seen as a Picard-Vessiot ring. The algebraic group
A consists of the invertible matrices B such that the K-algebra automorphism ¢ of
K [{X, j},%], described by (oX; ;) = (X j)B*I, leaves the ideal J, invariant. It can be

shown that 5 leaves every iterative differential ideal invariant. In particular, the ideal J; is
invariant. Thus J; is invariant by both # and %. Neither inclusion seems evident. The
above conjecture states however that for good choices of a differential module over F
equivalent to the given one and a good choice of an R-lattice invariant under all 0" the
two groups # and % coincide.

Examples 8.6. (1) The following example was analyzed in discussions with B.
Chiarellotto and N. Tsuzuki. One considers the equation dy = Ay with a constant matrix 4
with coefficients, say, in C,. We take F to be the completion of C,(z) with respect to the

. . - A" .
Gauss norm. The residue field of F is K = [F,(z). Then o y=—) Using the Jordan
n!

normal form of 4 one easily verifies that the following conditions are equivalent:

(i) The equation satisfies for every & = 1 condition (1) of proposition 8.1.

.. _ A" . o
(ii) The fundamental solution U =1+ 3 —(z—1)" on the generic disk has
bounded coefficients. nz1

(i) Every eigenvalue o of A satisfies || < p~1/(»=1),

Suppose that 4 has the above equivalent properties. Then the iterative differential
n

module over K is trivial. Indeed, this follows from

pr < 1forall n = 1 and all eigenvalues

o of 4. The determination of the differential Galois group over F is more subtle. The fun-
damental matrix e is convergent and bounded by 1 for |z| < 1. If all the eigenvalues of 4
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have absolute value strictly less than p~!/(?=1) then e“ is convergent for |z| < r for some
r > 1. From this it follows that e has its coefficients in F. If some eigenvalue o of A4 has
absolute value p~!/(?=1 then this is no longer true.

To understand this situation we analyze the expression e™, where 7 is defined by
the equation 77! = —p. In order to see that ¢™ does not belong to F one embeds this field

o0
into a certain algebra B. This algebra consists of the Laurent series ). a,z" having the
properties: n=-®

(a) The set {|a,|} is bounded.

(b) lim |a,| =0.

n—-+0o0

A straightforward calculation shows that the equation y’ = zy has no solution 0 in
B. Thus the equation y’ = my has only the trivial solution 0 in F. The p'" power of ™ is
e?™ and lies in F, since its radius of convergence is strictly larger than 1. Thus the Picard-

Vessiot field F(e™) of the equation y’ = zy is a p-cyclic extension of F. The equations

oMy = P induce an iterative differential module over F,(z) which is trivial since <1

n!
for all n = 1. This unsatisfactory result is due to the fact that the multiplicative group over
[, has no cyclic subgroup of order p. A remedy is to consider the inhomogeneous equation

y' =mny+ 1 or (equivalently) the matrix differential equation v’ = <g O)v. This matrix
differential equation is the direct sum of the trivial 1-dimensional equation with the equa-
7[_” nnfl
tion y’ = my. This leads to equations 8™v = [ n!' ~#n! |v. The induced iterative differ-
0 0
. . = : 0 1 .
ential equation over [,(z) has the form oMy = < 0 O)v for all k£ = 0. This corresponds

to the inhomogeneous iterative differential equation 07 k)y =1 for all k = 0. The solu-

tion x = Y zP" is algebraic over F,(z) and satisfies the equation x — x? = z (compare with
n=0

lemma 5.2). We conclude that this iterative differential equation has a p-cyclic differential

Galois group. The corresponding extension is precisely the residue field extension of the

above Picard-Vessiot extension F < F(e™).

Now we return to the general case y’ = Ay where all the eigenvalues of 4 have
absolute value less than or equal to p*‘/ (r=1_ Let ay, ..., o, denote the distinct eigenvalues
with absolute value p~!/(?=1), The Picard-Vessiot extension for the equation y’ = Ay is the
field F(e™*,...,e*?). Each element e** defines a p-cyclic extension of F. These p-cyclic
equations can be dependent. The differential Galois group G is the quotient of F; with
respect to the F,-subspace {(my, ..., m,)||myoay + - - -+ myo| < p~1/(P=D},

After adding to the equation y’ = Ay a trivial differential equation (i.e., the differen-
tial module M of the equation y’ = Ay is replaced by M @ Fe; @ - - - @ Fe, with de; = 0 for
all i), one can produce a matrix differential equation y’ = By and an induced iterative dif-
ferential equation over [,(z) which has the same differential Galois group as the equation
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46 Matzat and van der Put, Iterative differential equations

y' = Ay over F. Moreover the Picard-Vessiot field of the iterative differential equation is
the residue field extension of the Picard-Vessiot field of y’ = Ay over F. We note that our
ad hoc method is related to the “deformation of Artin-Schreier to Kummer”, or in other
words the deformation of the additive group G, in characteristic p to the multiplicative
group G,, in characteristic 0 (see [S-O-S]).

2) 0y =Az 'y with 4 a constant matrix with coefficients in C,. Then
P
"y =A(A—-1)---(A—n+ 1)z""y for all n. One can verify the following results:

(i) The conditions of proposition 8.1 are satisfied for all £ = 1 if and only if the
eigenvalues of 4 are in Z,,.

(i) There exists an invariant lattice if and only if A4 is semi-simple and all its eigen-
values are in Z,.

Suppose that 4 is a diagonal matrix with diagonal entries oy,...,0s € Z,. The
differential Galois group % over the field F = C,(z) (or over its completion F) is the sub-
group of the torus GZ,C,, consisting of the elements (71, ...,1;) satisfying ;" --- £/ =1 if
and only if myo + - - - + mgoy € Z. The iterative differential module N over K = F,(z) has

a basis wy, ..., wy such that o w; = <ai>z”w,- for every i and n. This example appeared
n

already after lemma 4.1. It is easily seen that the differential Galois group 5# is the sub-
group of the torus G’Z ¢ defined by the same equations as the above group 4.
sy Up
Example 8.7 (p-adic hypergeometric differential equations). The hypergeometric
differential equation HG(a, b, ¢) has the form

Z(z—1)F"+ ((a+ b+ 1)z — ¢)F' + abF = 0.

We consider this equation for a,b,c e Z, and are interested in the behaviour of the
fundamental solution matrix on the “generic disk”. Let y’ = Ay be a matrix equation
n
%) y=A,y. The
fundamental matrix on the generic disk has the form U =1+ Y A4,(¢)(z — 1)". Accord-
nxl1

ing to [D-G-S], proposition 8.1, U converges on the open generic disk {ZHZ -t < 1} if
a,b,ce Z,. For a,b,ce Z, nQ (and some further conditions on a, b, c), theorem 9.2 of
[Dw] produces cases for which the fundamental matrix is also bounded on the generic disk.
This is the inspiration for the next theorem. It seems possible to deduce our result as a limit
case of [Dw], theorem 9.2. However we present here an elementary proof, found in discus-
sions with F. Beukers. We start with a lemma, which is probably known.

. . 1
representing HG(a, b, c¢). Define the matrices A4, by the formula E(

Lemma 8.8. Let v, be the additive p-adic valuation on Q,. Let x € Z, and let n be
a positive integer. Let x =Y x;p" and n = n;p' denote the usual p-adic expansions. A
negative interval of length k for x is a sequence iy, iyp+1,...,i0+k —1 of non-
negative integers such that:

(@) Xjy—1 > njy—1 or x; = n; for all i < iy.
(b) Xiy < Hj,.
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(C) X[0+j§n,‘0+jf0}"j:1,...,k*1.
(d) Xig+k > Mig+k-

(The length k is allowed to be infinite, in which case condition (d) is empty.) Then
Up ((;C)) is the sum of the lengths of the negative intervals.

Proof.  Let Y. y;p’ be the p-adic expansion of y := x — n. Suppose first that y is a
non-negative integer. Then

w((ﬁ))—%uw—%mn—%uw
> (ni+yi—xi)

x-Yx =Y y-Ywn %

p—1 p—1 p—1 p—1

The latter formula is easily seen to be valid in general, i.e., without assuming that x, y are
non-negative integers.

One has that ng + y is equal to xq if no < xo and is equal to x¢ + p if ny > x¢. One
X . . .
concludes that v, (( >> = 0 if there is no negative interval. Let now iy,...,ip +k — 1
n

denote the first negative interval. For notational convenience we suppose iy = 0 and that
k is finite. Then one has that

Xo=no+yo—p, xi=nm-+yi1+1—p,...,
Xkt =M1 + Y1 + 1 —=p, X =n+yi + L.

This gives the contribution k for the formula of v, <<x>> . If k is infinite then clearly x is
an integer and < n. Thus v, ((x)) = 400 as required.
n

After this one can make the same calculation for the next negative interval. By
induction (and since n is a non-negative integer) the lemma follows. []

Theorem 89. Put X =—a, Y =—-b, Z=—c and let the p-adic expansions of
X, Y, Zbed X,p", > Yup", > Z,p". Suppose that for every i one has either X; < Z; < Y;
or Y; < Z; < Xi. Then the fundamental solution of HG(a, b, ¢) is bounded on the generic disk
(or in other terms the matrices A, are uniformly bounded).

Proof. Let y' = Ay be the matrix form of HG(a, b, ¢) and, as above, the matrices 4,

. 1 ! . . .
are given by ol <E> y = Ay. Let Fy, F, denote two independent solutions (to be specified

. Y. .
later) of the scalar equation HG(a, b, ¢), then M := ( Fl’ F2’ > is a fundamental matrix for
()
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1 /4dY ) . .
the equation and — <d_) M = A,M. F, satisfies the scalar equation HG(a, b, c). By dif-
Z

.. . 1 /d\"
ferentiating this equatlon one finds a,,, b,y € Qy(z) such that — (d_> Fi = anFy + by Fy.
m! \dz

The same equations hold for F,. One concludes that A,, has the form

( am b )
(m + 1>am+] (Wl + 1)bm+1

1 /d\"
%(z) Fi

and that

am\ 1 F,  —F/
bnw) FiFy—FF,\-F, F

1 /d\" . .
It suffices to show that the p (d_) F;, for i = 1,2, are uniformly bounded with respect
: Z

to the Gauss norm. We take for Fy, F, standard solutions of HG(a,b,c) given as expan-
sions in z, namely

n_n

F = ngo (C(lzf)’r(li?" 2" and Fy=z"¢(1 - z)c“bngo(1 z2azn(c§n;!b)

The condition on X, Y, Z implies that ¢ is not an integer and the two series are the local
solutions of HG(a,b,c) at the point z = 0. It is easily seen that the Gauss norms of the
am, by, are uniformly bounded if the coefficients of these two series are uniformly bounded.

X Y
()G
VA
()
of this expression corresponds with an index i which lies in a negative interval for Z. The
assumption X; < Z; < Y; or Y; < Z; < X; implies that { lies in a negative interval for X or

X Y
n . n
Z
n
For the second hypergeometric function F; the X, Y, Z are replaced by X, Y, Z with

X+X=-1,Y+Y=—1,Z+Z=-2.1It follows that for every i one has X; < Z; < Y;
or Y; < Z; < X;. This 1mphes that the coefficients of F; are also in Z,. [

The coefficients of F} can be written as . A factor p in the denominator

Y. One concludes that € Z,.

8.1. A link with Grothendieck’s conjecture. One considers a number field F < Q.
Its ring of integers will be denoted by Of. For every non-zero pime ideal p of O we denote
by F(p) the residue field. The field F(z) is provided with the differentiation a — d_a and the
- A
field F(p)(z) is provided with the “standard” iterative derivation with respect to z. Let M
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Matzat and van der Put, Iterative differential equations 49

be a differential module over F(z) such that its differential Galois G is finite. We note that
differential Galois groups are only well defined if the field of constants is algebraically
closed. In particular, the above G is actually defined as the differential Galois group of
Q(z) ®p(;) M over the differential field Q(z).

Proposition 8.10. (1) For almost every non-zero prime ideal p of the ring of integers
of F, the differential module M induces an iterative differential module M (p) over the field
F(p)(z) which has a finite differential Galois group.

(2) Let a finite Galois extension E > F(z) be given such that Q(z) ®p.) E is isomor-
phic to the Picard-Vessiot field of Q(z) ®p(.) M over Q(z). Then for almost every non-zero

prime ideal p the differential Galois group of @(z) ® M(p) over @(z) is equal to G.

Proof. (1) Let R denote the localization of Op|z] with respect to the multipicative
set of all primitive polynomials. The non-zero prime ideals of R have the form pR where p
runs in the set of the non-zero prime ideals of Op. One can show that R is invariant under

1/dY
all 0" = < dz> The same holds for any localization of R. Let E > F(z) denote a Galois

extension, w1th Galois group H, such that the compositum QE is the Picard-Vessiot field
of Q(z ) ®p(zy M and such that £ ®p) M has a basis ey, ...,e; of elements with de; = 0
for all ;. Let R denote the integral closure of Rin E. Let S denote the set of the rational
prime numbers p such that p divides the order of the Galois group of E over F(z) or such
that there exists a prime ideal p of O above p for which pR ramifies in R. We claim that

- -1 . .
Rs =R [ -, PE€ S} is invariant under all 0"
p

Proof of the claim. Let p be a rational prime number with p ¢ S. Consider a
prime ideal p of Of above p and a discrete Valuat1on ring V' of E lying above R,. It
suffices to show that V is invariant under all 0", In proving this we may replace the
discrete valuation rings R, < V' by their cornplet1ons A < B. The ideals p4 and pB are
the maximal ideals of 4 and B. The residue fields are F(p)(z) = L. Since this extension
is separable we may write L = F(p)(z)[T]/Q where Q = T¢ + by T ' 4.4 by is a
separable polynomial and the derivative of Q is invertible. Then also B = A[f] = A[T]/P,
with P =T+ ay;_1T% " + .- + ay such that @; = b holds for all i. The derivative P(r)’
is invertible in B. It sufﬁces now to prove that 0"Wte B for all n = 0. We will prove
this by induction on n. In proving the induction step we apply 0" to the identity
1! +ay 1197V + ... +ay=0. This yields that P(t) 6 )t is equal to a polynomial expres-
sion involving 6 tfori=0,...,n— 1 and some 8" a;. This ends the proof of the claim.

We continue with the above finite set of primes S and allow S to grow in the course of
the construction. Consider a lattice A of M over Rg which is invariant under d on M (here
S has grown somewhat).

Choose a basis ey,...,e; of E® M over E with de; =0 for all j. The lattice A" gen-
erated over Rg by ei,...,eq is invariant under H and all o . Indeed, the action of H
commutes with ¢ and the kernel of d on E ® M, which is (Qej + --- + @ed) N(E® M), is
H-invariant. Further Ry is invariant under all 6"
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50 Matzat and van der Put, Iterative differential equations

The set of H-invariant elements of A’ is an Rg-lattice, invariant under all o™, After
enlarging S, the two lattlces coincide. It follows that for every prime p ¢ S and prime ideal
p above p, the operators 0™ induce a structure of iterative differential module on A /pPA. In
order to see that this iterative differential module has a finite differential Galois group, we
observe that the ring Rg/(p) is isomorphic to L x L x --- x L, where L is a finite Galois
extension of [(p)(z) with Galois group equal to the decomposition subgroup of H for the
prime ideal p. Moreover A/pA @ Rs/ (p) is isomorphic to the module A’'/pA’ as itera-
tive differential modules. Therefore the iterative differential module A/pA ® L is trivial.
In particular the differential Galois group of the iterative module A/pA is a subgroup of
Gal(L/F(p)(z)), the decomposition subgroup of H w.r.t. p. -

(2) We keep the notations of (1) above, but write G for the Galois group of E
over F(z). The asumption that Q(z) ®F E = Q ®p E is the Picard-Vessiot field of
Q(z) @p(;) M over @( ) implies that G is the differential Galois group of M. More-
over, E D F(z) is a “geometric Galois extension”. This has the consequence that for
almost all primes p of O the ideal pR is prime and the residue field R/pR is a geo-
metric Galois extension of R/pR = F(p)(z). The latter means that the extension remains
a Galois extension of fields after tensorization with F(p) over [F(p). See for these state-
ments [M-M], section 10.4, p. 87. We note further that Gal(Q ®y E/F(z)) is isomorphic
to Gal(Q/F) x Gal(E/F(z)).

The solution space V' of M is, as usual, ker(@, (Q®rE) Qi) M ) The group
Gal(Q ®p E/F(z)) acts on (@ ®p E) ®p-) M and this action commutes with 0. Thus
Gal(@ ®rE/F (z)) acts as a group of F-linear automorphisms of V. This is also the case
for the subgroup Gal(@/F). Using Hilbert 90, one finds that the F-vector space W < V,
consisting of the Gal(Q/F)-invariant elements, has the property that the canonical map
Q ®F W — V is an isomorphism. The group G operates faithfullly on W as F-linear
automorphisms. Fix a basis w,...,w,; of W and a basis my,...,my; of M over F(z). Write
wi =Y ;i jm; with 4; ; € Q ® E. Since the w; and the m; are invariant under Gal(Q/F),

J
the same holds for the /; ;. Therefore the /; ; belong to E. Further E = F(z)({4;;}) since
the action of G on W is faithful.

As is part (1) of this proof, we fix an Rg-lattice A = M. After extending S, we
may suppose that A is invariant under 0 and W, := ker(d, Rs ® A) is a free (Of)s-module
in W =ker(d, E® M) such that the natural map F ® ¢,),Wo — W is an isomorphism.
The group G acts clearly on W, and we may suppose (agaln after enlarging S) that for
every prime ideal p of (Or) the action of G on Wy/pWj is faithful. This F( p)-vector space

coincides with {a € ﬁs/gﬁg ®F(p)(z) A/PA| d"a =0 forall n > 1}. Then [F( ) ® Wo/pWo
is the solution space of the iterative differential module A/pA Using that the action of G

on this space is faithful and that the Galois extension Rg /P PRg > F(p)(z) is “geometric”,
one finds that G is the differential Galois group of the iterative differential module

A/pA. O

. . . .. . t
A rather simple illustration of proposition 8.10 is: M = Q(z)e and de =—-z"'e
n

with 7,n € Z having g.c.d. 1 and n > 1. We take A = Rge where S is the set of prime divi-
sors of n. For a prime p not dividing n the iterative differential module A/pA is given by
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t
0Me = ( / n)zme. The Galois group of this iterative differential module is equal to the
m

cyclic group of order n.

Remarks. Grothendieck’s p-curvature conjecture asserts that the differential Galois
group of M is finite if for almost all primes p the p-curvature is zero. In our case, the p-
curvature is the map (8'V)” = 0 on A/pA.

A variation, which might be easier to prove, of this conjecture is:

Let a differential module M over F(z) be given. Suppose that for almost all primes p,
the iterative differential module w.r.t. p exists and has a finite differential Galois group G,
then the differential Galois group of M is isomorphic to G.

References

(Al] S. Abhyankar, Coverings of algebraic curves, Amer. J. Math. 79 (1957), 825-856.
[A2] S. Abhyankar, Nice equations for nice groups, Israel J. Math. 88 (1994), 1-23.

(C] G. Christol, Modules différentiels et Equations différentielles p-adiques, Queen’s papers pure appl. math.
66 (1983).

(D] P. Deligne, Catégories Tannakiennes, in: The Grothendieck Festschrift 2, Progr. Math. 87 (1990),
111-195.

[D-M] P. Deligne and M. Milne, Tannakian categories, Lect. Notes Math. 900 (1982), 101-228.

[Dw] B. Dwork, Lectures on p-adic Differential Equations, Grundl. math. Wiss. 253, Springer Verlag, 1982.

[D-G-S] B. Dwork, G. Gerotto and F. J. Sullivan, An Introduction to G-Functions, Ann. Math. Stud. 133,
Princeton University Press, 1994.

[Gi] Ph. Gilles, Le groupe fondamental sauvage d’une courbe affine en caractéristique p > 0, Courbes semi-
stables et groupe fondamental en géométrie algébrique, J.-B. Bost, F. Loeser, M. Raynaud, éds., Progr.
Math. 187 (1998).

(G] A. Grothendieck, Géométrie formelle et géométrie algébrique, Séminaire Bourbaki, exposé no 182,
volume 1958/1959, Benjamin, 1966.

[H1] D. Harbater, Abhyankar’s conjecture on Galois groups over curves, Invent. Math. 117 (1994), 1-25.

[H2] D. Harbater, Fundamental Groups of Curves in Characteristic p, Proceedings of the International
Congress of Mathematicians, Ziirich 1994, Birkhduser Verlag, Basel (1995), 656-666.

[H-S]  H. Hasse and F. K. Schmidt, Noch eine Begriindung der Theorie der hohere Differentialquotienten in
einem algebraischen Funktionenkdrper einer Unbestimmten, J. reine angew. Math. 177 (1937), 215-237.

[Hu] J. E. Humphreys, Linear Algebraic Groups, Grad. Texts Math. 21, Springer Verlag, 1981.

[J] J. C. Jantzen, Representations of Algebraic Groups, Academic Press, Inc., 1987.

[M-M] G. Malle and B. H. Matzat, Inverse Galois Theory, Springer Verlag, Berlin 1999.

(O] K. Okugawa, Basic properties of differential fields of an arbitrary characteristic and the Picard-Vessiot
theory, J. Math. Kyoto Univ. 2-3 (1963), 295-322.

[P1] M. van der Put, Recent work on differential Galois theory, Séminaire Bourbaki, 50éme année, 1997-98,

no 849, Astérisque 252 (1998).

[P2] M. van der Put, Galois theory of differential equations, Algebraic Groups and Lie Algebras, J. Symb.
Comp. 28 (1999), 441-472.

[Ral]  J.-P. Ramis, About the Inverse Problem in Differential Galois Theory: The Differential Abhyankar
Conjecture, in: The Stokes Phenomenon and Hilbert’s 16th Problem, World Scientific Publ., B. L. J.
Braaksma, G. K. Immink, M. van der Put, eds., Singapore (1996), 261-278.

[Ra2]  J.-P. Ramis, About the Inverse Problem in Differential Galois Theory: The Differential Abhyankar
Conjecture, Astérisque, to appear.

[R] M. Raynaud, Revétements de la droite affine en caractéristique p, Invent. Math. 116 (1994), 425-462.

[Ro] Ph. Robba, Solutions bornées des systémes différentiels linéairs. Application aux fonctions hypergéo-
métriques, Groupe d’étude d’Analyse ultramétrique 5 (1975/76), 16 p.

Bereitgestellt von | Bibliotheek der Rijksuniversiteit (Bibliotheek der Rijksuniversiteit)
Angemeldet | 172.16.1.226
Heruntergeladen am | 09.02.12 16:00



52

Matzat and van der Put, Iterative differential equations

[S-O-S] T. Sekiguchi, F. Oort and N. Suwa, On the deformation of Artin-Schreier to Kummer, Ann. sci. Ec.

[S1]
2]

[S3]

(Sp]
(W]

Norm. Sup. (4) 22 (1989), 345-375.

J.-P. Serre, Cohomologie Galoisienne, Lect. Notes Math. 5, Springer Verlag, 1973.

J.-P. Serre, Construction de revétements étales de la droite affine en caractéristique p, C.R. Acad. Sci.
Paris 331 (I) (1990), 341-346.

J.-P. Serre, Revétements de courbes algébriques, Séminaire Bourbaki, 44¢éme année, 1991/92, no 749,
Astérisque 206 (1992).

T. A. Springer, Linear Algebraic Groups, Second Edition, Progr. Math. 9, Birkhéduser, Boston 1998.

W. C. Waterhouse, Introduction to Affine Group Schemes, Grad. Texts Math. 66, Springer Verlag, 1979.

Mathematischs Institut, Universitdt Heidelberg, 69120 Heidelberg
e-mail: matzat@iwr.uni-heidelberg.de

University of Groningen, Department of Mathematics, P.O. Box 800, 9700 AV Groningen, The Netherlands

e-mail: mvdput@math.rug.ne

Eingegangen 12. Mérz 2001

Bereitgestellt von | Bibliotheek der Rijksuniversiteit (Bibliotheek der Rijksuniversiteit)
Angemeldet | 172.16.1.226
Heruntergeladen am | 09.02.12 16:00



