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7 Computing normalizing transformations

Given a singularity and a versal deformation of it, an arbitrary defor-
mation can be induced from the versal one by a smooth transformation of
coordinates and parameters. Kas and Schlessinger [KS72] developed an
algorithm to compute this transformation, for deformations of functions.
It requires a procedure to solve the infinitesimal stability equation, which
is provided by the normal form map NFΨ related to a standard ideal basis
(see Chap. 6). A similar approach works for the case of deformations of
maps, involving left-right tangent spaces instead of ideals.

7.1 Introduction

In Chap. 5 we quoted a result from Mather that may be summarized as follows:

A deformation is versal if it is transversal.

The condition of transversality is an infinitesimal condition. It is expressed in
terms of the tangent space to the orbit of the undeformed singularity, under the
group of transformations considered. If this tangent space has finite codimension
(in the appropriate function space), and moreover the deformation directions
span the quotient space, the deformation is called transversal. In contrast, ver-
sality is a local condition. A deformation is versal if it can be connected to an
arbitrary deformation of the same singularity through smooth reparametriza-
tions and coordinate transformations, on a full neighborhood in parameter- and
phase-space. This local property immediately implies the infinitesimal condition.
Mather’s reverse implication however is a deep result.

The algorithm of Kas and Schlessinger may be viewed as a first step in the
direction of Mather’s result. From the infinitesimal or linearized condition, it
gives a method of computing the formal power series solution of the required
reparametrization and coordinate transformation. Mather’s result implies exis-
tence of such a formal solution, but gives no algorithm to compute it. On the
other hand, the existence of a formal solution does not imply existence of a
smooth solution in any neighborhood, the existence proof of which involves the
Mather-Malgrange preparation theorem.
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134 7.2. Deformations of functions

The main ingredient in Kas and Schlessinger’s algorithm is a procedure to
express any (truncated) formal power series into a ‘tangent’ part, and a ‘transver-
sal’ part in some fixed finite-dimensional vector space with a dimension equal
to the codimension of the singularity’s tangent space. For deformations of func-
tions under right-equivalences, this tangent space is an ideal. Given a standard
basis of the ideal, the division algorithm is precisely such a procedure. It splits a
truncated formal power series in an element of the ideal, the tangent part, plus
a unique rest-term playing the role of the ‘transversal’ part.

In the case of maps, and left-right transformations, the tangent space has
a different structure, but essentially the same ideas apply. The structure of the
tangent space (for both cases) is described in Chap. 5. The machinery for com-
puting standard bases for ideals and left-right tangent spaces is described in
Chap. 6. The current chapter puts these results together and describes in de-
tail how these are used to compute formal reparametrizations and coordinate
transformations, up to any desired order.

Section 7.2 deals with the relatively easy case of functions orbiting under
the group of right-transformations. Section 7.3 deals with maps under left-right
transformations.

Base ring and formal power series Some of the results in this chapter are
formulated in terms of the ring En of germs of functions Rn → R. Later we also
use rings of formal power series R[[x]]. Both are abstractions of the ring used for
actual computations, namely truncated formal power series (over a computable
field; see also the remarks in Chap. 6). To avoid excessive notation, we shall
in this chapter not explicitly use this truncated ring. As long as a graded term
ordering is used, all statement for the full power series ring continue to hold in
the truncated setting. See also Sect. 6.5.3.

7.2 Deformations of functions

The problem dealt with in Sect. 2.2.6 can be stated as follows. Suppose a de-
formation G(x, v) of a function f(x) = G(x, 0) is given. Here x ∈ Rn can be
thought of as phase space variables, and v ∈ Rc as (small) parameters. Now
consider the following two problems:

1. Produce a universal deformation F (x, u) : Rn+d → R of f(x), and
2. Compute a reparametrization h : Rq → Rd and coordinate transformation
φ : Rn+q → Rn inducing G from F .

(See Sect. 5.3 for definitions.) One could say that (1) gives a catalog of possible
bifurcations, and (2) gives an index into this catalog for the given family G. The
first problem amounts to computing a basis for the vector space En/J(f), where
En is the ring of germs of functions on Rn, and J(f) is the Jacobian ideal,

J(f) =
〈
∂f

∂x1
, . . . ,

∂f

∂xn

〉
En
.
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The hypothesis that such a (finite) basis for En/J(f) exists is equivalent to
requiring that J(f) has finite codimension. Under this hypothesis, the basis
elements can be computed by reducing to truncated formal power series. Chapter
6 describes algorithms to compute an analogue of Gröbner bases for ideals in
truncated formal power series rings. Using these bases, called standard bases,
generators of En/J(f) are easily found.

Suppose t1(x), . . . , td(x) ∈ En are such generators. Another way of putting
this is to say that the equation

(7.1) g(x) = α1(x)
∂f

∂x1
+ · · ·+ αn(x)

∂f

∂xn
+ µ1t1(x) + · · ·+ µdtd(x)

has a solution in αi ∈ En and µi ∈ R, for arbitrary g ∈ En. Equation (7.1) is
called the infinitesimal stability equation. Problem 2 is reduced, by an algorithm
of Kas and Schlessinger [KS72], to solving (7.1) a number of times, in the ring
of truncated formal power series. The standard basis of J(f) is again used to
compute the αi and µi efficiently.

We now go into a bit more detail.

7.2.1 Finding a universal deformation

We start by recalling a few results and definitions from Chap. 5, in particular
Sect. 5.3.1. A deformation F (of f) is called versal if any other deformation
G (of f) can be induced from it, and universal if it has the minimum possible
number of deformation parameters. It is called transversal if the ‘initial speeds’
(see [Mar82]) or ‘deformation directions’ { ∂F∂u1

|u=0, . . . ,
∂F
∂ud

|u=0} complement the
tangent space Tf = J(f). By theorem 5.5, a deformation F is versal if and only
if it is transversal, reducing the problem of finding a universal deformation of f
to finding complements of the ideal J(f) as a vector subspace of En.
Proposition 7.1. Let f ∈ En be a germ of some function, and suppose that
J(f) ⊇ mp, where m is the maximal ideal of En. Let < be a term order with
respect to which mp is a truncation ideal. Let {h1, . . . , hk} be a standard basis
w.r.t. < of the projection of J(f) in the ring of truncated formal power series.
Then the following monomials forms a basis for En/J(f):

{m : m /∈ 〈LMh1, . . . , LMhk〉}.

Suppose the monomials are labeled t1, . . . , td, then a universal deformation of f
is given by

(7.2) F (x, u) = f(x) + u1t1(x) + . . .+ udtd(x).

Proof: Because {h1, . . . , hk} is a standard basis, the ti complement LM(J(f)+
mp). Since En/mp is finite dimensional, this implies that R{t1, . . . , td} + J(f) +
mp = En, and using J(f) ⊇ mp also R{t1, . . . , td} + J(f) = En, proving the first
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statement. Versality of F follows from theorem 5.5. If one from {t1, . . . , td} is
removed, the remaining ones do not complement J(f), so F cannot be versal.
This proves universality.

In practice the truncation-order pmay not be known beforehand. One chooses
a large p and checks afterwards whether mp−1 ⊆ J(f).

7.2.2 The algorithm of Kas and Schlessinger

We now address the question of computing the transformations that induce
arbitrary deformations from a universal one. Suppose F (x, u) : Rn+d → R and
G(x, v) : Rn+c → R are deformations of f , and suppose F is (uni)versal. The
goal is to find a parameter-dependent coordinate transformation φ : Rn+q → Rn,
and a reparametrization h : Rq → Rd, satisfying

φ(x, 0) = x,

h(0) = 0,
G(x, v) = F ( φ(x, v), h(v) ).(7.3)

Kas and Schlessinger’s algorithm [KS72] accomplishes this, in the ring of trun-
cated formal power series. The idea is to expand φ and h with respect to the
total degree of the parameters v, and solve iteratively for increasing order in v.
The details are as follows. Define

φ(x, v) :=
∑
i≥0

φi(x, v), h(v) :=
∑
i≥0

hi(v),

where φi and hi(v) are homogeneous of degree i in v, and denote the partial
sums up to total order p in v by superscripting with the degree:

φp(x, v) :=
p∑
i=0

φi(x, v), hp(v) :=
p∑
i=0

hi(v).

Now assume that (7.3) has been solved up to order p, that is,

(7.4) G(x, v) = F (φp(x, v), hp(v)) +O(vp+1) +O(xm)

(where it is supposed that we truncate at order m in x). This equation holds for
p = 0 if we define φ0(x, v) = x and h0(v) = 0, since by assumption F (x, 0) =
G(x, 0) = f(x). To solve (7.3) up to order p+ 1 we add (p+ 1)st order terms in
v:

F (φp+1, hp+1) =
F (φp + φp+1, h

p + hp+1) =
F (φp, hp) +DxF (φp, hp) · φp+1 +DuF (φp, hp) · hp+1 +O

(
(φp+1 + hp+1)2

)
=

F (φp, hp) +Dxf(φp, hp) · φp+1 +DvF (φp, hp)|v=0 · hp+1 +O(vp+2).
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To obtain the last equality we used the estimates φp(x, v) = x+O(v), φp+1(x, v) =
O(vp+1), hp(v) = O(v) and G(x, v) = f(x) +O(v). Now we plug in the explicit
form (7.2) for F . Writing hp+1,k and φp+1,k for the k-th components of the p+1-
st order terms of h and φ, the equation to be solved for (7.3) to hold up to order
p+ 1 is

(7.5) G(x, v) − F ( φp(x, v), hp(v) ) =
n∑
k=1

φp+1,k(x, v)
∂f

∂xk
+

d∑
k=1

hp+1,k(v)tk(x) + O(vp+2).

By (7.4), the left-hand-side does not contain terms of order less than p + 1.
Equation (7.5) can be solved by equating coefficients of terms vσ left and right,
where |σ| = σ1 + · · · + σd = p + 1. For each term vσ we obtain an equation of
the form (7.1), the infinitesimal stability equation. Since F (x, v) is supposed to
be a universal deformation, these equations can be solved. This proves existence
of a formal power series for φ and h (or a solution up to any desired order in x
and v) solving (7.3).

The algorithm of Kas and Schlessinger is a recipe for computing φ and h,
given a procedure for solving (7.1). In practice it is important to be able to
solve (7.1) efficiently, as for every term vσ one such equation is encountered. A
procedure that meets this criterion is described in the next section.

Remark 7.2. (Parameters vs. phase variables) It is important to note that
the transformations obtained converge as power series in the parameters v, and
not necessarily in the phase variables x. Even if a power series solution in x exists
(i.e., no zeroth-order terms are needed), then Kas and Schlessinger’s algorithm
may not find it, because of the non-uniqueness of the solutions αi(x) in (7.1).

7.2.3 Solving the infinitesimal stability equation

The problem of computing the transformations inducing a given deformation
from a versal one is now reduced to solving (7.5), i.e., (7.1), a number of times.
We re-state the problem slightly using the notation of Chap. 6. Write hi :=
∂f
∂xi

, suppose 〈h1, . . . , hn〉 has finite codimension, and let t1, . . . , td denote the
monomials not in LM 〈h1, . . . , hn〉. Then 〈hi〉 + R{t1, . . . , td} = En, in other
words, for any g ∈ En it is possible to solve

(7.6) g =
n∑
i=1

αihi +
d∑
i=1

µiti

for αi ∈ En and µi ∈ R.
The procedure is as follows. First add new elements hi ∈ 〈h1, . . . , hn〉 (i >

n) to the ideal basis, using Buchberger’s algorithm (see Sect. 6.2.4), until the
basis {h1, . . . , hn, hn+1, . . . , hk} is a standard basis. The output r of the reduced
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normal form algorithm 6.14 of Sect. 6.3.7 is an element of R{t1, . . . , td}, that is,
can be written as r =

∑d
i=1 µiti. Then, the following equation holds:

g =
k∑
i=1

αihi +
d∑
i=1

µiti,

where αi are also output of the reduced normal form algorithm. This equation
is, apart from the upper limit in the first sum, of the form (7.6). So if only the
numbers µi are required, this solves our problem.

If it is also required to express the ideal member g − r in terms of the
h1, . . . , hn, we can use the extended Buchberger algorithm. To write down this
algorithm, we need some notation:

Definition 7.3.
a) Mk :=

⊕k
i=1 Enei, the free k-dimensional En-module,

b) Ψk : Mk → En : fei �→ fhi (i = 1, . . . , k), an En-module homomorphism,
c) Θk : Mk →Mn, an En-module homomorphism.

Here the ei are just symbols, and the hi are elements of En. The algorithm below
also uses the notation sij for the element of Mk (with k ≥ i, j) whose Ψ -image
is the S-polynomial of hi and hj . Note that NFΨk

α maps En into Mk. With these
notations, the algorithm is the following:

Algorithm 7.4. (Extended Buchberger algorithm)
Input: h1, . . . , hn ∈ En
Output: h1, . . . , hk ∈ En and an En-module homomorphism Θ : Mk →Mn, with
the properties:

1. {h1, . . . , hk} is a standard basis for 〈h1, . . . , hn〉.
2. Ψkα = ΨnΘα, for any α ∈Mk.

Algorithm:

k ← n
Θk ← identity map
While NFΨk

r (Ψksij) �= 0 for any 1 ≤ i < j ≤ k, do:
hk+1 ← NFΨk

r (Ψksij)
Θk+1|Mk

← Θk, and
Θk+1ek+1 := Θk

(
sij − NFΨk

α (Ψksij)
)

k ← k + 1
EndWhile
Θ ← Θk

In an implementation, the map Θ is easily represented by an n × k matrix of
elements of En.
Proof: For the proof of termination, and of the fact that {h1, . . . , hk} forms
a standard basis, see the proof of algorithm 6.17 in Sect. 6.4.1. To prove that
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Ψkα = ΨnΘkα for all k, we proceed by induction. The assertion is trivial for
k = n, so assume it holds for some k. The definition of Θk+1 assures that it
maps into Mn. By hypothesis, Ψk+1|Mk

= ΨnΘk+1|Mk
, so it remains to show

that ΨnΘk+1ek+1 = Ψk+1ek+1:

(7.7) ΨnΘk+1ek+1 = ΨnΘk
(
sij − NFΨk

α (Ψksij)
)

=

Ψk
(
sij − NFΨk

α (Ψksij)
)

=

Ψksij − Ψk NFΨk
α (Ψksij) =

NFΨk
r (Ψksij) = hk+1 = Ψk+1ek+1,

where in the first step the definition of Θk+1, and in the second step the induction
hypothesis was used.

With the map Θ, solving the infinitesimal stability equation (7.6) becomes
trivial: Given g ∈ En, compute α := ΘNFΨα(g) and µ := NFΨr (g), then write
them in the form

α = α1e1 + · · ·+ αnen, µ = µ1t1 + · · ·+ µdtd,

with αi ∈ En and µi ∈ R. Now α1, . . . , αn, µ1, . . . , µd solve (7.6).

7.2.4 Application: The hyperbolic umbilic

Here we apply the method of the previous section to the singular germ x(x2 +
y2). This singularity is commonly known as the hyperbolic umbilic, or D+

4 in
Arnol’d’s classification [Arn81]. For this singularity, the general method above
is like using a mirror to look at your bangles.1 However, the underlying idea is
the same as in the case of left-right tangent spaces, dealt with in Sect. 7.3, but
without the technical complications, so it also serves as an introduction to the
next section.

Let f = x(x2 + y2), then the generators of J(f) are h1 := ∂f
∂x = 3x2 + y2 and

h2 := ∂f
∂y = 2xy. Take a graded term order with y < x, then the only syzygy is

s12 = 2ye1− 3xe2, with Ψs12 = 2y3, which is a monomial not in 〈LMh1, LMh2〉.
Therefore NFΨ2

α (Ψs12) = 0 and Θ3 becomes

Θ3ei = ei (i = 1, 2) and Θ3e3 = 2ye1 − 3xe2.

New syzygies are s13 = 2y3e1−3x2e2 and s23 = y2e2−xe3, and these are reduced
to zero, proving that

{3x2 + y2, 2xy, 2y3}
is a standard ideal basis for J(f). Using algorithm 6.3.7 and the map Θ the
infinitesimal stability equation can be solved efficiently.
1 Hindi proverb



140 7.3. Deformations of maps

7.3 Deformations of maps

This section is the analogue of Sect. 7.2 for the case of deformations of
the energy–momentum map, instead of the planar Hamiltonian function. Let
F (x, u) : Rn+d → R2 be a deformation of E(x) := F (x, 0). Universality of these
deformations is defined with respect to the class of left-right transformations

(A,B) : E �→ B ◦E ◦A,

where A : Rn → Rn and B : R2 → R2. Suppose that G(x, v) : Rn+c → R2 is any
deformation of E. Again there are the two basic problems: Finding a universal
deformation F of E, and computing a coordinate transformation connecting it
to G. Their solution is also similar in spirit to the function-case. For functions,
the tangent space was the Jacobian ideal J(f). For maps, the algebraic struc-
ture of the tangent space is much more involved, and this results in technical
complications. The machinery of Chap. 6 helps us out, however.

The energy–momentum map E : x �→ (H,H2) which we are interested in, is
of a special form. The first component is the Hamiltonian function, the second
component is its quadratic part. Exploiting this, we arrived in Sect. 3.2.3 at the
reduced tangent space:

T rE = J + {1, f1, f2}R[[H,H2]].

Here the fi are functions related to H and H2, and J is an ideal whose generators
are given by equation (3.9). The ability to write any (truncated) formal power
series as an element of T rE plus a rest-term in some finite dimensional vector
space, is crucial to computing the coordinate transformation.

7.3.1 Adaptation of Kas and Schlessinger’s algorithm

In this section we show how to compute the transformations inducing an ar-
bitrary deformation from a universal one. So suppose F (x, u) : Rn+d → R2 is
a universal deformation of E, and let G : Rn+q → R2 be an arbitrary defor-
mation of the same map. We are looking for a left-right transformation (A,B),
depending on parameters v ∈ Rq, and a reparametrization h : Rq → Rd, such
that

A(x, 0) = x,

B(y, 0) = y,

h(0) = 0,

G(x, v) = B

(
F ( A(x, v), h(v) ), v

)
= B ◦ F (·, h) ◦A.(7.8)

We proceed in the same way as in Kas and Schlessinger’s algorithm. Expand A,
B and h with respect to the total order in the parameters v, and write
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A(x, v) :=
∑
i≥0

Ai(x, v), B(y, v) :=
∑
i≥0

Bi(y, v), h(v) :=
∑
i≥0

hi(v),

where Ai, Bi and hi are homogeneous of degree i in v. Denote the partial sums
up to and including order p by superscripting with p:

Ap(x, v) :=
p∑
i=0

Ai(x, v), Bp(y, v) :=
p∑
i=0

Bi(y, v), hp(v) :=
p∑
i=0

hi(v).

Assume that Ap, Bp and hp solve (7.8) up to order p. This is true for p = 0 if we
set A0(x, v) = x, B0(y, v) = y and h0(v) = 0, since F (x, 0) = G(x, 0) = E(x).
To solve (7.8) for the next order p+ 1 we add (p+ 1)st order terms:

Bp+1 ◦ F (·, hp+1) ◦Ap+1 = (Bp +Bp+1) ◦ F (·, hp + hp+1) ◦ (Ap +Ap+1)
= Bp ◦ F (·, hp) ◦Ap

+ Bp+1(F (A0(x, v), h0(v)), v)
+ B0(DuF (A0(x, v), u)|u=0 · hp+1)
+ B0(DxF (A0(x, v), h0(v))) ·Ap+1) + O(|v|p+2)

= Bp ◦ F (·, hp) ◦Ap
+ Bp+1(E(x), v)
+ DuF (x, u)|u=0 · hp+1
+ DxE(x) ·Ap+1 + O(|v|p+2).

This expression should be equal to G(x, v) up to (but not including) order p+ 2
in v. Since the term Bp ◦F (·, hp)◦Ap is already equal to G(x, v) up to O(|v|p+1)
terms, the other three terms should account for the remaining terms in v of order
p+ 1. The resulting equation is

(7.9) G(x, v) − Bp ◦ F (·, hp) ◦Ap

= Bp+1(E(x), v) +
d∑
i=1

(ti(x), 0) ·hp+1,i(v) + αp+1(x, v)E(x) + O(|v|p+2).

Here we wrote αp+1 for a vector field on Rn of order p + 1 in v, and we used
that F (x, u) is of the form

F (x, u) = E(x) + u1(t1(x), 0) + · · ·+ ud(td(x), 0).

Note that (7.9) is an equation of maps to R2.
From this point on, we use two facts that are particular to the application

to the energy–momentum map. The first is that the projection of the tangent
space TE to its second component is surjective, so that deformation terms can be
chosen of the form (ti, 0) (see Sect. 3.2.3). The second fact is more of a condition:
We do not want to leave the circle-symmetric setting, in which we found ourselves
after the Birkhoff procedure; therefore the vector field α is required to be circle-
equivariant.
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Collecting terms of the form vσ of order p + 1, solving (7.9) boils down to
solving, given g(x) and E(x) and ti(x), several instances of an equation of the
form

(7.10) g(x) = β(E(x)) + α(x)E(x) +
d∑
i=1

(ti(x), 0)µi

for maps β : R2 → R2, circle-equivariant vector fields α, and real numbers µi.
From the assumption that F (x, u) = E(x)+

∑
i(ti, 0)ui is a universal deformation

of E(x) it follows that this equation has a solution.
In Sect. 3.2.3, the tangent space TE is reduced to

T rE = J + {1, f1, f2}R[[H,H2]],

where J = 〈h0, h1, h2〉. With the results of Sect. 6.4.5 we can find functions
t1, . . . , td complementing T rE. More precisely, given an element g ∈ R[[x]], there
are a0, a1, a2 ∈ R[[x]] and γ0, γ1, γ2 ∈ R[[y1, y2]] and µ1, . . . , µd ∈ R such that

(7.11) g(x) =
2∑
i=0

aihi + γ0(H,H2) + f1γ1(H,H2) + f2γ2(H,H2) +
d∑
i=0

µiti.

We shall refer to equation (7.11) as the infinitesimal stability equation, since it
is the equivalent of (7.1) in the current context. Solving this equation is the
subject of section 7.3.2 below. A solution to (7.11) translates, reading Sect. 3.2.3
backwards, into a solution for (7.10). This works as follows. For the notation,
see Sect. 3.2.3.

Suppose the left-hand-side of (7.10) has the form

g(x) = ( g1(x), g2(x) ) .

Note that although at the first pass we have g2(x) ≡ 0, since the second com-
ponent of the unfolding G(x, v) is constant, this may not be true at subsequent
passes. Write

(7.12) g2(ρ1, ρ2, ψ) = a0 + ρ1a1(ρ1, ρ2, ψ) + ρ2a2(ρ1, ρ2, ψ) + ψa3(ρ1, ρ2, ψ),

where a0 ∈ R. Using (3.4) or (3.5), we can find a vector field α′ such that

(7.13) α′H2 = g2 − a0.

In fact,

α′ :=
a1

q

(
ρ1

∂

∂ρ1
+

1
2
pψ

∂

∂ψ

)
+
a2

p

(
ρ2

∂

∂ρ2
+

1
2
qψ

∂

∂ψ

)
+

a3

(
1
2q
ψ
∂

∂ρ1
+

1
2p
ψ
∂

∂ρ2
+ ρp−1

1 ρq−1
2

(
p

4q
ρ2 +

q

4p
ρ1

)
∂

∂ψ

)
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works. Now define
g := g1 −α′′H

and suppose ai, γi and µi solve (7.11) for this g. Recall that the ideal generators
hi of J correspond to generators wi of the module of circle-equivariant vector
fields that leave H2 invariant:

w1 = 2ρ1ρ2

(
p
∂

∂ρ1
− q

∂

∂ρ2

)
+ (p2ρ2 − q2ρ1)ψ

∂

∂ψ
,

w2 = 2ψ
(
p
∂

∂ρ1
− q

∂

∂ρ2

)
+ (p2ρp−1

1 ρq2 − q2ρp1ρ
q−1
2 )

∂

∂ψ
.

The generators of J are all defined in terms of the wi by

h1 := w1H, h2 := w2H,

with the exception of h0, which is the relation. Also recall the definition of α1
and α2 (see Sect. 3.2.3). These vector fields obey α1H2 = H and α2H2 = H2,
moreover α1H = −f1 and α2H = −f2. Using this, and the solution of (7.11)
we define

β1(y1, y2) := γ0(y1, y2),
β2(y1, y2) := y1γ1(y1, y2) + y2γ2(y1, y2) + a0,

α := a1w1 + a2w2 + α′ − γ1(H,H2)α1 − γ2(H,H2)α2.

We then get

αH2 + β2(H,H2) = a1w1H2 + a2w1H2 + α′H2 + a0 = g2

(modulo h0) since wiH2 = 0 by definition of J , and

αH + β1(H,H2) =
a1w1H + a2w2H + α′H − γ1(H,H2)α1H − γ2(H,H2)α2H + γ0(H,H2) =
a1hi + a2h2 + (g1 − g) + γ1(H,H2)f1 + γ2(H,H2)f2 + γ0(H,H2) =

g1 −
∑

µiti(x)

(also modulo h0), where we used (7.11). These calculations show that α and
β = (β1, β2) and µ1, . . . , µd solve (7.10). Summarizing, we get the following:

Proposition 7.5. Suppose E(x) = (H(x), H2(x)) and g(x) = (g1(x), g2(x)).
Write g2 as in (7.12) and let α′ be such that (7.13) holds. Let g := g1 − α′H,
and suppose that ai ∈ R[[x]], γi ∈ R[[y]] and µi ∈ R are such that (7.11) holds
for this g. Then

α := a1w1 + a2w2 + α′ − γ1(H,H2)α1 − γ2(H,H2)α2

β(y1, y2) := ( γ0(y1, y2) , y1γ1(y1, y2) + y2γ2(y1, y2) + a0 )

together with the µi solve (7.10) modulo h0.
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7.3.2 Solving the infinitesimal stability equation

The main building block of the algorithm for computing a left-right transfor-
mation inducing the given deformation G(x, v) from the universal deformation
F (x, v), is the solution to the infinitesimal stability equation (7.11), as was shown
in the previous section. If the generators ({hi}, {fi}, {gi}) described in Proposi-
tion 3.3 form a standard basis of the reduced tangent space

T rE = 〈h0, h1, h2〉 + {1, f1, f2}R[[g1, g2]],

the deformation directions ti are easily found, and the normal form algorithm
immediately gives a solution to (7.11).

However, these generators do not form a standard basis, and we should add
generators to turn it into a one. This is done with a suitable generalization
of Buchberger’s algorithm, already outlined in Sect. 6.4.5. This creates a new
problem: The normal form algorithm now returns a solution to the ‘extended’
infinitesimal stability equation, the equation with the new generators added to it.
This solution cannot be used directly to build the left-right transformation. Just
as in Sect. 7.2.3 this problem is solved by extending the Buchberger algorithm so
that it computes a map Θ that maps expressions using standard basis generators,
to those using only the original generators. In this way a solution to the extended
infinitesimal stability equation is mapped to a solution to (7.11).

Now some remarks on Buchberger’s algorithm for this case. Since T rE is an
R[[g1, g2]]-module, to find a standard basis one can compute the normal forms
of syzygies described by lemma 6.31, and add nonzero ones to the {fi} until
each syzygy is reduced to 0. Though this algorithm is correct, efficient it is not.
The reason is that it always adds nonzero syzygies at the ‘coarsest’ level of
an R[[g1, g2]]-module, while for example ideal-syzygies, which are reduced using
ideal generators only to nonzero normal form, may be added to the ideal gen-
erators {hi}, thereby reducing the codimension of Im Ψ̃ at least as much, and
possibly far more, than addition to the module generators {fi} would. Also,
adding to the subalgebra-generators as much as possible leads to increased effi-
ciency. An outline of the resulting algorithm is as follows:

a) Expand {hi} to a standard ideal basis of 〈hi〉, then
b) Expand {gi} to a standard subalgebra basis of R[[gi]], then
c) Expand {fi} to make ({hi}, {fi}, {gi}) a standard basis for 〈hi〉+{fi}R[[gi]].

Remark 7.6. (Efficiency) One could add a stage before the last, namely
extending {gi} to make ({hi}, {gi}) a standard basis for 〈hi〉+R[[gi]]. This makes
sense since f0 = 1 and therefore syzygies for 〈hi〉 + R[[gi]] are also syzygies for
the left-right tangent space. However the practical improvement turns out to be
slight in our case.

The map Θ, mapping back to original generators, is built up during the Buch-
berger algorithm. We now introduce some notation for the intermediate maps.
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Note that we start counting from h0 and f0, to be compatible with the notation
used throughout.

Definition 7.7.
a) Mk := ⊕ki=0Re1i
b) Nlm := ⊕li=0R[[y1, . . . , ym]]e2i
c) Θklm : Mk ⊕Nlm →M2 ⊕N22

Note that T rE has 3 ideal generators (including h0), 3 module generators (includ-
ing f0 = 1) and 2 subalgebra generators. The maps Ψklm are defined, in Sect.
6.4.5, in terms of the basis 〈h0, . . . , hk〉 + {f0, . . . , fl}R[[y1, . . . , ym]], and map
from Mk⊕Nlm to R. On Mk these maps are R-module homomorphisms. On Nlm
they are R[[y1, . . . , ym]]-module homomorphisms, with obvious multiplication in
the domain, while on the range yi · f := gif . We also introduce the restricted
maps Ψhk : Mk → R and Ψgm : N0m → R, with the superscripts denoting the
generators in terms of which they are defined.

With this notation we can write down the extended Buchberger algorithm.
Note that in the text below, whenever a new map Θ(k+1)lm is defined, it is
understood to coincide with the previous Θklm on Mk ⊕Nlm.

Algorithm 7.8. (Extended Buchberger algorithm for LR-tangent spaces)
Input: h0, h1, h2, f0 = 1, f1, f2, g1, g2 ∈ R
Output: Elements hi, fi, gi and a map Θklm : Mk ⊕Nlm →M2 ⊕N22 such that

a) ({h0, . . . , hk}, {f0, . . . , fl}, {g1, . . . , gm}) is a standard basis for the left-right
tangent space 〈hi〉 + {fi}R[[gi]],

b) Ψklmα = Ψ222Θklmα for all α ∈Mk ⊕Nlm.

Algorithm:

k ← 2, l← 2, m← 2
Θ222 ← Identity map
While NFΨ

h
k
r (Ψhk (sij)) �= 0 for any 1 ≤ i < j ≤ k, do:

hk+1 ← NFΨ
h
k
r (Ψhk (sij))

Θ(k+1)lme1(k+1) := Θklm

(
sij − NFΨ

h
k
α (Ψhk (sij))

)
k ← k + 1

EndWhile
Compute subalgebra-syzygies {bi} using Algorithm 6.24
While NFΨ

g
m
r (Ψgm(bi)) �= 0 for any i, do:

gm+1 ← NFΨ
g
m
r (Ψgm(bi))

Θkl(m+1)ym+1 := Θklm

(
bi − NFΨ

g
m
α (Ψgm(bi))

)
m← m+ 1
Re-compute syzygies {bi} for basis {g1, . . . , gm}

EndWhile
Compute LR-tangent space syzygies (Lemma 6.31,6.15; Alg. 6.26, 6.34,

6.36)
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While NFΨklm
r (Ψklm(S)) �= 0 for syzygy S of 2nd or 3rd kind, do:

fl+1 ← NFΨklm
r (Ψklm(S))

Θk(l+1)me2(l+1) := Θklm
(
S − NFΨklm

α (Ψklm(S))
)

l← l + 1
Re-compute syzygies for basis ({h1 . . . hk}, {f1 . . . fl}, {g1 . . . gm})

EndWhile

Proof: In general the output NFΨr (f) is equal to f modulo ImΨ . Since f ∈ ImΨ
it follows that hk+1 ∈ 〈h1, . . . , hk〉, gm+1 ∈ R[[g1, . . . , gm]] and fl+1 ∈ {hi} +
{fi}R[[gi]]. This with the fact that the condition in the final While-loop is false at
exit proves part (a), since syzygies of the first kind reduce to zero as {h1, . . . , hk}
has been extended to a standard ideal basis in the first part of the algorithm.

For part (b) we show that Ψklmα = Ψ222Θklmα is an invariant of the algo-
rithm. Indeed, for k = l = m = 2 equality is trivial, and for other values in-
variance follows, by induction, from the equality NFΨr (ΨS) = Ψ(S −NFα(ΨS)),
which holds for any S and any map Ψ for which a normal form is defined. This
proves part (b).

Termination is guaranteed if we work inside the finite dimensional vector
space of truncated formal power series, since each new generator increases the
set 〈LMhi〉 + {LM fi}R[[LM gi]] by at least one monomial, by definition of the
normal form.

7.3.3 Example of a LR-tangent space calculation

This section is intended to show how algorithm 7.8 works on an easy example.
The example was chosen so as to exhibit the essential features of a generic
problem instance, but has no extra ‘meaning’ by itself. We consider the following
LR-tangent space:

(7.14) T =
〈
xy2, x2y + a1y

4 + a2x
4〉 + {1, xy}R[[a3(x2 + y2), a4x

4 − a5x5]].

This is the image of Ψ : M2 ⊕N22 → R as follows:

M2 = {e11, e12}R
N22 = {e21, e22}R[[y1, y2]]
Ψ : e11r �→ h1r (r ∈ R)

e12r �→ h2r

e21Y �→ f1Y (g1, g2) (Y ∈ R[[z1, z2]])
e22Y �→ f2Y (g1, g2).

Below we shall also use the restricted maps Ψh : M2 → R and Ψg : R[[zi]] → R.
The variables a1, . . . , a5 are coefficients, and are treated as constants. During

the calculation certain nondegeneracy-conditions in terms of these coefficients
are encountered. These can be read off from the final results.
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Standard ideal basis Following algorithm 7.8, first we find a standard ideal
basis for

〈
xy2, x2y + a1y

4 + a2x
4
〉
. As a term order we choose the graded or-

der with x < y. The first (and only) syzygy between the generator’s leading
monomials is

s12 = xe11 − ye12

whose image under Ψh is −a2yx
4 − a1y

5. This element reduces to −a1y
5 +

a2a1x
2y4 + a2

2x
6 by addition of a2x

2 times the second generator. The result has
leading monomial y5, which is not in Im Ψ̃h =

〈
xy2, x2y

〉
. Adding it to the basis

(with pre-image e13) gives rise to two new nontrivial syzygies. The syzygy

s13 = −a1y
3e11 − xe13

maps to −a2
2x

7−a2a1x
3y4, which needs no reduction since its leading monomial

is x7. The other syzygy, nor those involving x7, give new elements. The final
standard ideal basis is {h1, h2, h3, h4} :=

{xy2 , x2y + a1y
4 + a2x

4 , − a1y
5 + a2a1x

2y4 + a2
2x

6 , − a2
2x

7 − a2a1x
3y4}.

Using the expressions for the syzygies, and the subsequent reduction, the new
basis elements h3, h4 can be expressed in the original ones. Algorithm 7.8 collects
this information in the map Θ. As a map from M4 to M2, it takes the following
form:

Θ =
(

1 0 x −x2 − a1y
3

0 1 −y + a2x
2 xy − a2x

3

)
.

For example, from the fourth column it follows that h4 is equal to (−x2 −
a1y

3)h1 + (xy − a2x
3)h2. Figure 7.1 depicts the standard basis, and the leading

monomial occurring in the ideal.

Fig. 7.1 Leading monomials of an ideal, and of its standard basis.



148 7.3. Deformations of maps

Standard subalgebra basis In the second part of the algorithm, the set
{g1, g2} = {a3(x2 + y2), a4x

4 − a5y
4} is extended to a standard subalgebra ba-

sis. The syzygies involved are called the syzygies of the first kind, see Chap. 6.
These syzygies may be computed using algorithm 6.24. It begins by computing
a Gröbner basis for the ideal〈

z1 − a3x
2, z2 − a4x

4〉
with respect to the elimination term order with {z1, z2} < {x, y}. The resulting
Gröbner basis is

{a4z
2
1 − a2

3z2, z1 − a3x
2}.

Here z1 and z2 correspond to the respective generators of the subalgebra. Fol-
lowing algorithm 6.24 we select those basis elements that do not depend on x or
y. There is only one such generator, yielding the syzygy a4z

2
1 − a2

3z2. Its image
under Ψg is 2a2

3a4x
2y2 + a2

3(a5 + a4)y4, and since its leading monomial is x2y2

this element cannot be reduced. A second round gives a larger Gröbner basis,
but the only binomial involving only the zi is the one already considered. The
standard subalgebra basis thus becomes {g1, g2, g3} :=

{a3(x2 + y2), a4x
4 − a5y

4, 2a2
3a4x

2y2 + a2
3(a5 + a4)y4}.

This completes the second stage. The leading monomials of elements of the
subalgebra are shown in Fig. 7.2. Those associated with generators are shown as
thick bullets.

The data in Fig. 7.2 leaves open the possibility that g2, with leading monomial
x4, is now superfluous, since there is another generator with leading monomial
x2. Indeed g2 can be written in terms of the other two, and may be deleted from
the generating set, resulting in what could be called a minimal standard basis.
Such a reduction may shorten subsequent calculations, however we shall not use
this.

Fig. 7.2 Leading monomials of a subalgebra, and of its standard basis.
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Standard left-right tangent space basis Now for the third and final stage.
This stage deals with syzygies of the second and third kind. These involve at
least one element of the form fiY (g1, . . . , gm). If the other element is also of this
form, but with a different fi, we speak of syzygies of the third kind. (The same fi
leads to subalgebra-syzygies, or syzygies of the first kind). If the other element
is from the ideal 〈hi〉, it is a syzygy of the second kind – see Chap. 6 for more
details.

The syzygies are found by a Gröbner basis calculation. To implement this
stage efficiently, all syzygies found are reduced by the normal form algorithm,
with nonzero ones being added to the basis, before the syzygies of the extended
basis are re-calculated.

The resulting basis may contain superfluous elements. However the reduction
of the calculation time is significant, while a larger basis amounts to only a slight
overhead for the normal form calculations. The superfluous elements may also
be identified and deleted after the standard basis calculation, if desired. The
resulting basis may again be called a minimal standard basis, in analogy with
Gröbner bases (see e.g. [CLO92, p. 90]).

Let’s first calculate the syzygies of the third kind, between elements of the
ideal and the subalgebra-module. In the notation of lemma 6.29, we need gen-
erators zβe2i of the N32-submodule of elements that map into LM 〈h1, h2, h3〉
under Ψ̃2 = Ψ̃N32 . This is what algorithm 6.34 calculates.

At this point the two generators of the algebra-module are f0 = 1 and
f1 = x2y2. The generator t2 − f1 makes the variable t2 play the role of f1.
Of course f2

1 and higher powers are in general not in T , but we will filter out
these higher powers of t2 later, which is possible by choice of term order. By
adding the generators zi − gi, i = 1, 2, 3, we let the variables z1, z2, z3 play
the role of subalgebra-generators g1, g2, g3. Finally, the monomial generators
of LM 〈h1, h2, h3〉 are just LMh1, LMh2, LMh3 themselves, since they already
formed a standard ideal basis. So we have the generators

{t2 − x2y2, z1 − a3x
2, z2 − a4x

4, z3 − 2a2
3a4x

2y2, xy2, x2y,−a1y
5,−a2

2x
7},

a Gröbner basis with respect to the elimination term order with {zi} � {t2} �
{x, y} of which is

{z3, a4z
2
1 − a2

3z2, z
2
2 , t2z1, t2z2, t

2
2, xz1z2, xt2, yz1, yz2, yt2a3x

2 − z1, xy − t2, y
5}.

We are after the monomials involving only the zi, and t2 in degree at most 1.
Using algorithm 6.36 we find the following generating set:

{z3, t2z1, t2z2, z2
2}.

These monomials correspond to the elements g3, f1g1, f1g2 and g2
2 with leading

monomials x2y2, x3y, x5y and x8 respectively, indeed lying in LM 〈hi〉. This gives
only one term of the binomial syzygy. The other term is computed by subtracting
a multiple of some ideal generator, such that the leading monomial vanishes. The
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first syzygy is then e.g. g3−2a2
3a4xh1, which has leading monomial y4 and cannot

be reduced. This gives a new subalgebra-module generator, f2 = a2
3(a4 + a5)y4.

The second syzygy is f1g1 − a3xh2 with leading monomial xy3. This one can
be reduced, via h1. The result has leading monomial x5 and cannot be reduced
further, giving a second new subalgebra-module generator f3 = −a3x(a2x

4 +
a1y

4). The other two elements can be reduced to 0.
Next, we compute the syzygies of the second kind, among elements of the

subalgebra-module. The algorithm computing these is described in Proposition
6.26, and leads to two syzygies:

a4g
2
1 − a2

3g2 and − a4a
2
3(a4 + a5)g3 − 4a4

3a
2
4f2g2.

Since after the second stage the algebra generators form a standard basis, the
first syzygy, which does not involve the module generators, is guaranteed to
reduce to zero. The second must be checked, and turns out also to reduce to
zero.

To complete the third stage we have to check all syzygies of the third kind
involving the new generators f2 and f3. There are four new syzygies:

f2g1 − a2
2a3(a4 + a5)xy2h1, f3g1 − a2

3x
7

a2
h4,

f2g2 − a2
2a4(a4 + a5)x3y2h1, f3g2 − a3a4

a2
x2h4,

which all reduce to 0. The final result is in Fig. 7.3, with the monomials asso-
ciated to the fi shown as bullets. Summarizing, we found the following module
generators in the final stage:

f1 = xy, f2 = a2
3(a4 + a5)y4, f3 = −a3(a2x

5 + a1xy
4).

Codimension The monomials not in the tangent space T span a complement.
In this case a complement is formed by the set

{x, x3, y, y2, y3},
and the codimension of the LR-tangent space is 5.

Fig. 7.3 Leading monomials in a LR-tangent space.
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Nondegeneracy conditions The set LMT of leading monomials looks like
Fig. 7.3 only if the coefficients associated to those monomials are nonzero. In
this case, there are four nondegeneracy-conditions. The following table lists them,
together with the related generators, and some monomials that will disappear
from LMT if the condition is not met:

Condition: Generators: Monomials:

a1 �= 0 h3 y5

a2 �= 0 h4, f3 x7, x5

a3 �= 0 g1 x2

a4 + a5 �= 0 f2 y4

Note that the leading coefficient 2a2
3a4 of g3 does not contribute a nondegeneracy-

condition, since the associated monomial x2y2 (and multiples) is already con-
tained in the ideal-part of LMT .
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