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Abstract

Approximation algorithms are the prevalent solution methods in the field of stochastic program-
ming. Problems in this field are very hard to solve. Indeed, most of the research in this field has
concentrated on designing solution methods that approximate the optimal solutions. However,
efficiency in the complexity theoretical sense is usually not taken into account. Quality state-

ments mostly remain restricted to convergence to an optimal solution without accompanying
implications on the running time of the algorithms for attaining more and more accurate solu-

tions.

However, over the last twenty years also some studies on performance analysis of approxi-
mation algorithms for stochastic programming have appeared. In this direction we find both
probabilistic analysis and worst-case analysis. There have been studies on performance ratios
and on absolute divergence from optimality. Only recently the complexity of stochastic pro-
gramming problems has been addressed, indeed confirming that these problems are harder than
most combinatorial optimization problems.
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Approximation in the traditional stochastic programming sense will not be discussed in this pa-
per. The reader interested in this issue is referred to surveys on stochastic programming, like the
Handbook on Stochastic Programming [31] or the text books [2, 16, 29]. We concentrate on the

studies of approximation algorithms which are more similar in nature to those for combinatorial
optimization.
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1. I ntroduction

Stochastic programming models arise as reformulations or extensions of optimization
problems with random parameters. To set the stage for our review of approximation in
stochastic (integer) programming, we first introduce the models and give an overview
of relevant mathematical properties.

Consider the optimization problem

min cx

sit. Ax=0b
Tx=nh
x e X,

whereX C R" specifies nonnegativity of and possibly integrality constraints on the
decision variables. In addition to then; deterministic constraintdx = b, there is

a set ofm constraintsTx = h, whose parameterg and . depend on information

which becomes available only after a decisiois made. Thestochastic programming
approach to such problems is to assume that this uncertainty can be modeled by random
variables with known probability distribution, and then to reformulate the model to
obtain a meaningful and well-defined optimization problem. In this paper we will use
bold face characters for random variables, and plain face to indicate their realizations.

1.1  Stochastic programming models

The firstimportant class of stochastic programming models, knowecasirse models

is obtained by allowing additional or recourse decisions after observing the realizations
of the random variable€T', k). Thus, recourse models are dynamic: time is modeled
discretely by means of stages, corresponding to the available information. If all uncer-
tainty is dissolved at the same moment, this is captured by a recourse model with two
stages: ‘present’ and ‘future’. Given a first-stage decisioffior every possible real-
izationg, T, h of ¢, T, h, infeasibilitiesh — Tx are compensated at minimal costs by
choosing second-stage decisions as an optimal solution of the second-stage problem

min gy
y
st. Wy=h—-Tx,
yey,

whereq is the (random) recourse unit cost vector, the recourse mitrgpecifies the
available technology, and the setc R is defined analogously t&. We will useé =



(g, T, h) to denote the random object representing all randomness in the problem. The
value function of this second-stage problem, specifying the minimal recourse costs as a
function of the first-stage decisionand a realization of, will be denoted by (x, &);

its expectation (x) := EE [v(x, &)] gives the expected recourse costs associated with

a first-stage decision. Thus, the two-stage recourse model is

min c¢x + Q(x)
st. Ax=0b (1)
x e X,

where the objective functioaw + Q(x) specifies the total expected costs of a decision
X.

Examplel.1  Consider the following production planning problem. Usingroduc-

tion resources, denoted bye R with corresponding unit cost vector a production
plan needs to be made such that the uncertain future demandgosducts, denoted

by h € R", is satisfied at minimal costs. The available production technology suf-
fers from failures: deploying resourcesyields uncertain amounts of productsy,

i =1,...,m. Restrictions on the use afare captured by the constraims = b.

We assume that the uncertainty about future demand and the production technology
can be modelled by the random vectdt, h), whose joint distribution is known, for
example based on historical data.

A possible two-stage recourse model for this problem is based on the following exten-
sion of the model. For each of the individual products, if the dematutns out to be
larger than the productiofix, the demand surplus — T; x is bought from a competitor

at unit costsz}. On the other hand, a demand shortage gives rise to storage cgéts of
per unit. The corresponding second-stage problem and its value function are

v(x,£) = min g¢'y'+4¢%?
S.yt. yl—y2=h —Tx, £ et,
y =@t y?) e RY".
Defining Q as the expectation of this value function, we obtain a two-stage recourse
model that fits the general form (1).

This particular model type with recourse matix = (1,,, —1,,), wherel,, is them-
dimensional identity matrix, is known as a simple recourse model. The integer recourse
version of this model, for example corresponding to the case that only batches of fixed
size can be bought, will be discussed in Section 3. <



So far, we have introduced the recourse concept as a modelling tool to handle ran-
dom constraints, by means of specifying recourse actions with corresponding recourse
costs. There is however another class of problems for which the (two-stage) recourse
model is a natural approach, naméligrarchical planning mode[$1PM). Such prob-

lems involve decisions at two distinct levedrategicdecisions which have a long-term
impact, andoperationaldecisions which are depending on the strategic decisions. For
example, in the hierarchical scheduling problem discussed in Section 4, the strategic
decision is the number of machines to be installed, and the operational decisions in-
volve the day-to-day scheduling of jobs on these machines. At the time that the strate-
gic decision needs to be made, only probabilistic information on the operational level
problems (e.g. the number of jobs to be scheduled) is available. Hierarchical planning
models fit the structure of two-stage recourse models, with strategic and operational
decisions corresponding to first-stage and second-stage variables, respectively. More-
over, since strategic decisions are typically fixed for a relatively long period of time, it
is natural to use the expectation of the operational costs as a measure of future costs.

Unlike conventional linear recourse models (1), HPM are not necessarily formulated
as (mixed-integer) LP problems, see our example in Section 4. Nevertheless, despite
these differences in interpretation and formulation, we use the generic name (two-stage)
recourse model to refer to both model types, in line with the stochastic programming
literature.

In many applications new information becomes available at several distinct moments,
sayr = 1, ..., H,whereH is the planning horizon. That is, we assume that realizations
of random vectorg’ = (¢°, T', h") become known at time. This can be modelled
explicitly in a multistage recourse structure: for each such momestl, ..., H, a

time stage with corresponding recourse decisions is defined. In compact notation, the
multistage recourse model is

m!)n cx® 4+ 01 (x%)

st. Ax°=»b
x%e X,
where the function®)’,r = 1, ..., H, representing expected recourse costs, are recur-

sively defined as

Qt(xtfl) = Eg’ [,Ut(xtfl, gt) | El, o Etfl] ,



where the expectation is with respect to the conditional distributidghgifen&?, . . .,
Etfl
vt(xl‘fl, EI) e m|n tht + Ql‘+l(xl‘)
xt
st. Wix' =h' —T'x'7?
x' e X!,
and Q¥*1 = 0 (or some other suitable choice). In this paper we concentrate on two-
stage problems only.

The second main class of stochastic programming problems consgstsbatbilistic or
chance-constrained problemghich model random constraihtsy requiring that they
should be satisfied with some prescribed reliabiditye [0, 1]; typically, « € (.5, 1).
Thus, the random constraintsc > h are replaced by th@int chance constraint

P{Tx > h} > «,
or by m individual chance constraints
Pi{T;x > h;}>«;, i=1...,m.

Since we will not consider chance-constrained models in our discussion of approxima-
tion results, we do not present them in more detail here.

1.2  Mathematical properties

In this section, we review mathematical properties of recourse models. This provides
the background and motivation for the discussion of approximation results.

First we consider properties of continuous recourse models. Some of the results will

be used when we discuss the complexity of this problem class, and furthermore they
facilitate the subsequent discussion of properties of mixed-integer recourse models. We
state all properties here without proof. In the Notes at the end of the paper references
to the proofs are given.

Remark 1.1  As before, all models are discussed here in their canonical form, i.e., all
constraints are either equalities or nonnegativities. The models in subsequent sections,
which also contain inequalities and/or simple bounds, can be written in canonical form
using standard transformations.

1 Barring uninteresting cases, chance constraints make sense only for inequality constraints.



1.2.1 Continuous recourse

Properties of (two-stage) recourse models follow from those of the recourse function
Q. In case all second-stage variables are continuous, properties of the value function
are well-known from duality and perturbation theory for linear programming, and are
summarized here for easy reference.

Lemmal.1l Thefunction v, defined for x € R" and & = (¢, T, h) € R"zHm+D,
v(x, €)= inf{qy Wy=h—-Tx, yc€ R’J’f}
takes values in [—oo, oo].

It is a convex polyhedral function of x for each & e R2t"+D and it is concave
polyhedral in ¢ and convex polyhedral in (i, T') for all x € R'. ]

If for some x the functionv takes on the value-oco with positive probability, this
means thatr is extremely unattractive since it has infinitely high expected recourse
costsQ(x). From a modelling point of view this is not necessarily a problem, but in
practice it may be desirable to exclude this situation.

On the other hand, the situation thdk, &) equals—oo with positive probability should
be excluded altogether. Indeed, the vatueo indicates that the model does not ade-
guately represent our intention, which is penalization of infeasibilities.

Finiteness ob is often guaranteed by assuming that the recoursengpleteand suf-
ficiently expensive

Definition 1.1  The recourse igompleteif v < 400, i.e., if for allt € R” there
exists ay € Y such thatWy = t.

Assuming thatr = R’?, completeness is a property of the recourse mattionly.
Such a matrix is called eomplete recourse matrix

Definition 1.2 The recourse isufficiently expensivéf v > —oo with probability 1,

i.e.,if P{é € E: 31 € R" such thaly > AW} = 1.

For example, the recourse is sufficiently expensive {§Pr 0} = 1.



From now on we assume that the recourse is complete and sufficiently expensive. Then
the recourse or expected value functiQrix) is finite if the distribution of¢ satisfies
the following condition:

For alli, j, k the random functiong;k; andq ; T, have finite expectations.

Sufficiency of thisweak covariance conditiofollows from the representation of basic
feasible solutions in terms of the problem parameters.
The following properties of the recourse functigrare inherited from the second-stage
value functionv.
Theorem 1.1  Consider the continuous recourse function Q, defined by
o) = E§ [inf {qy :Wy=h—-Tx, ye€ R'ff}], x € R".

Assume that the recourse is complete and sufficiently expensive.

(&) Thefunction Q is convex, finite, and (Lipschitz) continuous.

(b) If & follows afinite discrete distribution, then Q isa convex polyhedral function.

(c) Thefunction Q is subdifferentiable, with subdifferential

9000 = [ 00§ dFG). xR,

where F isthe cdf Sf the random vector &.
If & follows a continuous distribution, then Q is continuously differentiable.

0

Consider the special case tl§dbllows a finite discrete distribution specified by{Pe=

(g5, T*, W%} = p* k=1, ..., K. The finitely many possible realizationig’, T*, %)

of the random parameters are also calednarioslt is easy to see that in this case the
two-stage recourse model is equivalent to the large-scale linear programming problem

K
max cx + Zpquyk
k=1
Ss.t. Ax =b (2)
T*x + Wy =hk k=1....K
x e RY, vk e R2.

Analogously, a mixed-integer recourse problem with finite discrete distribution can be
represented as a deterministic large-scale mixed-integer programming problem.



1.2.2 Mixed-integer recourse

Mixed-integer recourse models do not posses such nice mathematical properties; in
particular, convexity of the recourse functighis not guaranteed. Indeed, the underly-

ing second-stage value functienis only lower semicontinuous (assuming rationality

of the recourse matri¥), and discontinuous in general.

Also in this setting we are mostly interested in the casedlgfinite. To havey < 400

we will assume complete recourse, see Definition 1.1. For example, this condition is
satisfied ifW is a complete recourse matrix, whé#e consists of the columns oV
corresponding to the continuous second-stage variables. On the othewhandpo

if the recourse is sufficiently expensive, see Definition 1.2, i.e., if the dual of the LP
relaxation of the second-stage problem is feasible with probability 1.

Theorem 1.2  Consider the mixed-integer recourse function Q, defined by
0(x) :E§ [inf{gy : Wy=h—-Tx, yeY}], xeR"

where Y := Z x R?"". Assume that the recourse is complete and sufficiently expen-
sive, and that & = (h, T') satisfies a weak covariance condition. Then

(@) Thefunction Q islower semicontinuous on R".

(b) Let D(x), x € R", denote the set containing all £ € E suchthat z — Tx isa
discontinuity point of the mixed-integer value function v. Then Q is continuous
atx if Pr{é € D(x)} = 0.

In particular, if £ is continuously distributed, then Q is continuousonR'. 7]

1.3 Outline

As mentioned above, solving stochastic programming problems is very difficult in gen-
eral. Indeed, such problems are defined in terms of expectations of value functions
of linear (mixed-integer) programming problems or indicator functions (in the case of
chance constraints). This calls for the evaluation of multi-dimensional integrals, which
is computationally challenging already if the underlying random vestbas low di-
mension, and becomes a formidable task for problems of realistic size. Even if the
underlying distribution is discrete, the typically huge number of possible realizations
may render the frequent evaluation of function values impracticable. In Section 2 the
computational complexity of two-stage recourse models is addressed.

It is therefore not surprising that much of the stochastic programming literature is de-



voted to approximation of some sorts. For example, a key issue for recourse models
is the construction of suitable discrete approximations of the distribution of the un-
derlying random vector. Such an approximation should have a relatively small num-
ber of possible realizations, and at the same time result in a good approximation of
the recourse function, at least in a neighborhood of an optimal solution. For chance-
constrained problems such discrete approximations of the distribution would destroy
convexity of the problem. In this context, fast and accurate approximation of high-
dimensional (normal) distribution functions receives much research attention.

We do not discuss these ‘typical’ stochastic programming approximation issues here.
They, as well as related subjects such as convergence and stability, are covered in the
Handbook on Stochastic Programming [31]. Instead, we consider approximations as
they appear in a number of other ways in stochastic programming and which are in
spirit closer to approximation in combinatorial optimization.

Section 3 deals with convex approximations for integer recourse problems. Here the
problems themselves are approximated by perturbing the distribution functions such as
to achieve convex expected value functions. The strength of this approximation is that
a bound on the absolute approximation error can be given, making this an example of
worst-case analysis of approximation algorithms

Hierarchical planning problems, which are (integer) recourse problems, are discussed
in Section 4. The key idea here is to replace hard second-stage problems by easier
ones, which asymptotically still give accurate results. Here the approacbhabilistic
analysis of approximation algorithms

In Section 5 we will give one of the scarce examples of an approximation algorithm for

a stochastic programming problem for which a constemtst-case performance ratio

can be proved. The example also shows again that stochastic programming problems
are usually more complicated than their deterministic counterparts.

We conclude with a section containing bibliographical notes on approximation in stochas-
tic programming as reviewed in this paper. It also addresses some interesting open prob-
lems and new research directions in this field, major parts of which are still unexplored.

2. Complexity of two-stage stochastic programming problems

In this section we study the complexity of two-stage stochastic programming problems.
The complexity of a problem, in terms of time or space to solve it, is related to input

10



size. For each instance a bound on the number of elementary computer operations or
on the number of computer storage units required to solve the problem instance as a
function of the size of its input indicates, respectively, the time or space complexity of
the problem. We will see that the way in which the random parameters in stochastic
programming problems are described has a crucial impact on the complexity.

To illustrate this we start by studying problem (2), the deterministic equivalent LP
formulation of the two-stage stochastic programming problem.

If in the input of the problem each scenarig, T*, h*) and its corresponding proba-
bility p* is specifiedseparatelythen the input size of the problem is just the size of the
binary encoding of all the parameters in this (large-scale) deterministic equivalent prob-
lem and hence the problem is polynomially solvable in case the decision variables are
continuous and NP-complete if there are integrality constraints on decision variables.

However, consider another extreme in which all parameters are independent identically
distributed random variables. For example, if in this case each parameter hag value
with probability p anda, with probability 1— p, then there ar& = 2'+t""+™ possible
scenarios. Hence, the size of the deterministic equivalent problem is exponential in the
dimension of the parameter space, which is essentially the size required to encode the
input. The complexity changes correspondingly, as will become clear below.

Let us consider models wherein all random (second-stage) parameters are indepen-
dently and discretely distributed. We will establigk-hardness of the evaluation of

the second-stage expected value functi®gx) for fixed x. The classiP consists of
counting problems, for which membership to the set of items to be counted can be de-
cided in polynomial time. We notice that strictly following this definitionddt, none

of the stochastic programming problems can belong to this complexity class. We will
use the termiP-hard for an optimization problem in the same wayNaB-hardness

is used for optimization problems, whose recognition versiaM #&complete. For an
exposition of the definitions and structures of the various complexity classes we refer
to [28].

To provet P-hardness of the evaluation of the second stage expected value function
QO (x) we use a reduction from theP-complete problenGRAPH RELIABILITY.

Definition 2.1 GRAPH RELIABILITY. Given a directed graph withx arcs andn
vertices, what is the probability that the two given vertigeendv are connected if all
edges fail independently with probability 1/2 each.

11



This is equal to the problem of counting the number of subgraphs, from amorig all 2
possible subgraphs, that contain a path feoto v.

Theorem 2.1 Two-stage stochastic programming with discretely distributed param-
etersis g P-hard.

PrRoOOF  That the problem igP-easycan be seen from the fact that for any realiza-
tion of the second-stage random parameters a linear program remains to be solved.

To provet P-hardness, take any instanceGHAPH RELIABILITY, i.e., a networkG =

(V, A) with two prefixed nodes andv in V. Introduce an extra arc from to u,

and introduce for each ar@, j) € A a variabley;;. Give each arc a random weight
q;; except for the arqv, ) that gets weight 1. Let the weights be independent and
identically distributed (i.i.d.) with distributiorPr{q = —2} = Pr{q = 0} = 1/2.
DenoteA’ = A U (v, u). Now define the two-stage stochastic programming problem

max{—cx + Q) |0<x <1}
with Q(x) = Egq [v(x, ¢)] and

v(x,g) = max Z QijYij + You

(.)€A
S.t. Z Yij — Z yjk:0 V]EV
i:(i,j)eA’ k:(j,k)eA’
Yij =x Y@, j) € A.
The event{g = —2} corresponds to failure of the arc in theRGPH RELIABILITY

instance. For a realization of the failures of the arcs, the network has a path famm

if and only if in the corresponding realization of the weights there exists a pathifrom

to v consisting of arcs with weight 0. The latter accounts for an optimal solution value
x of the corresponding realization of the second-stage problem, obtained by setting all
yij's corresponding to ara§, j) on this path and,, equal tox, whereasy,; = 0 for

all (i, j) not on the path. If for a realization the graph does not have a path:frtam

v, implying in the reduced instance that on each path there is an arc with weRyht
and vice versa, then the optimal solution of the realized second-stage problem is 0, by
setting ally;;'s equal to 0, and henceforth alsg, = 0). Therefore, the network has
reliability R if and only if Q(x) = Rx and hence the objective function of the two-stage
problem is(R — ¢)x.

Thus, ifc < R then the optimal solution is = 1 with value(R —¢), and ifc > R then

12



the optimal solution isc = 0 with value 0. SinceR can take only’2 possible values,
bisection allows to solve only: two-stage stochastic programming problems to know
the exact value oR. O

By total unimodularity of the restriction coefficients matrix in the proof, the same re-
duction shows that two-stage integer programming problem with discretely distributed
parameters igP-hard.

Given af P-oracle for evaluating in any pointx, solving two-stage stochastic linear
programming problems (with discretely distributed random variables) will require a
polynomial number of consultations of the oracle, siités a concave function im,

and maximizing a concave function over a convex set is known to be easy [26]. Thus,
two-stage stochastic linear programming is in the cl&és= 4 P.

Assuming & P-oracle for evaluating in any pointx of a two-stage stochastic integer
programming problem, makes the decision version of this problem a membép of

The functionQ is not convex in this case, but there are a finite number of paitisit

are candidate for optimality. Thus, the decision version of two-stage stochastic integer
programming is in the class P*".

In case the random parameters of the two-stage stochastic programming problem are
continuously distributed, the evaluation of the functi@rin a single point of its domain
requires the computation of a multiple integral. Most of the stochastic programming lit-
erature on this subclass of problems is concerned with how to get around this obstacle.
We give the complexity of this class of problems without proof.

Theorem 2.2  Two-stage stochastic programming problems with continuously dis-
tributed parameters is gP-hard, even if all stochastic parameters have the uniform
[0, 1] distribution. H

The membership of this problem P requires additional conditions on the input
distributions, since exact computation may not even b@SRACE

3. Convex approximationsfor integer recour se problems

In this section we consider convex approximations for pure integer recourse models.
For such problems, the second-stage problem is necessarily defined using only inequal-

13



ities. Moreover, in all models considered here only the right-hand side vieésaran-
dom. The second-stage value function is thus

v(x,h) ;== min gy
y

st. Wy>h-—Tx, xeR" heR"
y e 72,

where the components & are assumed to be integers. Assuming complete and suf-
ficiently expensive recourse as befords a finite, discontinuous, piecewise constant
function; in particulary is non-convex. It follows from Theorem 1.2 that the integer
recourse functiorp(x) = Ey, [v(x, h)], x € R", is continuous ifk is continuously
distributed, but in genera) is non-convex.

However, for certain integer recourse models, characterized by their recourse matri-
cesW, a class of distributions ok is known such that the corresponding recourse
function Q is convex. Thus, for such integer recourse models we can construct convex
approximations of the functio® by approximating any given distribution @&f by a
distribution belonging to this special class.

Below we first apply this approach to the simple integer recourse model. Subsequently,
we consider general complete integer recourse models, starting with the case of totally
unimodular recourse matrices.

3.1 Simpleinteger recourse

The simple integer recourse second-stage problem is defined as
min g y* +g7y"
y
st. y">h-—Tx,
y- = —(h—Tx),
vty eZl,
where the indices- and — are conventionally used to indicate surplus and shortage,

respectively. This recourse structure is obviously complete, and it is sufficiently expen-
sive ifg*™ > 0 andg~ > 0 (componentwise), as will be assumed from now on.

It is trivial to find a closed form for the simple integer recourse value function. Due to
the simple recourse structure, this function is separable itetider variableg := T x:

v, ) =) vz, ki),  zheR",
i=1

14



where
vi(zis b)) = q Thi — 21" +q; Lhi — 2], (3)

with [s]T := max0, [s]} and |s|~ := max0, —|s|}, s € R. Since all functions;
have the same structure, we restrict the presentation to one such function, and drop the

index. It is straightforward to translate the results below back to the full-dimensional
case.

Given the closed form (3), it follows that the one-dimensional generic simple integer
recourse functiorQ equals

Q@) =q"Ep[[h—21"]+q Ep[lh—z]"]. z€R, ()
whereh € R is a random variable. Throughout we assumeliidtik|] is finite, which
is necessary and sufficient for finiteness of the function
Lemma3.l Consider the one-dimensional simple integer recourse function Q de-
fined in (4).

(@) Forall z e R,
0(2) :q*ZPr{h > z+k}+q*ZPr{h <z—k).
k=0 k=0

(b) Assumethat 2 hasapdf f that isof bounded variation. Then theright derivative
Q' exists everywhere:

0\@=—q" ) fre+kb+q ) fiz—k, z€R,

k=0 k=0
where f, isthe right-continuous version of f. 0

Theorem 3.1  Theone-dimensional simple recourse function Q isconvex if and only
if the underlying random variable & is continuously distributed with a pdf f that is of
bounded variation, such that

fi(s) =G +1) —G(s), seR, (5)

where G is an arbitrary cdf with finite mean value. H

Sufficiency of (5) is easy to see, since it implies that

0. ()=—-¢"(1-G@)+q Gz+1), zeR, (6)

15



is non-decreasing. Below we will make extensive use of the following special case.

Corollary 3.1 Assume that % is continuously distributed with a pdf f whose right-
continuous version is constant on every interval [a + k, o + k + 1), k € Z, for some
a € [0, 1). Then the function Q is piecewise linear and convex, with knots contained in
{a +7Z}.

PROOF  Immediate from Theorem 3.1 and (6), sinfe(s) = G(s + 1) — G(s)
whereG is the cdf of a discrete distribution with support contained i Z. O

To arrive at convex approximations of the functigh we will use Corollary 3.1 to
construct suitable approximations of the distribution of the random varimbkeor
future reference, we present the multivariate definition of the approximations that we
have in mind.

Definition 3.1  Leth € R™ be a random vector with arbitrary continuous or discrete
distribution, and choose = (a4, ..., «,) € [0, 1)". Definethe «-approximationh,

as the random vector with joint pdf, that is constant on every hyperculgg :=
[Tt (e + ki — 1,0 + ki1, k € Z", such that Rk, € CX} = Pr{h € CX}, k € 2.

Returning to the one-dimensional case, it is easy to see that-#pproximationdy,,
a € [0, 1), of an arbitrary random variable, satisfy the assumptions of Corollary 3.1.
It follows that thex -approximationsof the functionQ, defined forx € [0, 1),

0u(2) = 6]+th [rha - Z-|+:| + quha [Lha - Zji] , Z€R,

are piecewise linear convex approximation @f with knots contained o + Z}.
Moreover, it follows from Lemma 3.1 (a) and Definition 3.1 that

0.(2) = 0(), zel{a+Z}

We conclude that, for eachh € [0, 1), Q, is the piecewise linear convex function
generated by the restriction @ to {« + Z}. See Figure 3.1 for an example of the
function Q and one of itsx-approximations.

In the discussion above, no assumptions were made on the type of distributton of
However, to establish a non-trivial bound on the approximation error, we need to as-
sume thatk is continuously distributed. This loss of generality is acceptable, because
for the case with discretely distributddit is possible to construct the convex hull of
the functionQ.
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Figure 3.1: Thefunction Q and its a-approximation Q, (dashed) in case h is exponen-
tially distributed with parameter 5, 4" = 1,¢~ = 1.5,and o« = 0.5.

Theorem 3.2  Assume that & is continuously distributed with a pdf f that is of
bounded variation. Then, for all « € [0, 1),

A
100~ Ol = @* +47)1 57,

where |A| f denotes the total variation of f.

PrRoOF  We will sketch a proof for the special case that= 1 andg~ = 0. The
proof for the general case is analogous.

Assume thaiy™ = 1 andg~ = 0. Then the functionQ reduces to the expected
surplus functiong(z) := Ey, [[h —z]17], z € R, with a-approximationsg, (z) :=
Ep, [[hy —217], @ € [0, 1). Sinceg(z) = g.(2) if z € {a + Z}, consider an arbitrary
fixedz ¢ {« + Z}, and letz € {« + Z} be such that < z < z + 1.
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Using Lemma 3.1 (b) we find that

g(g)—g(z):/ > F+ k.
2 k=0

It follows from Lemma 2.5 in [20] that

1- F()—|T<Zf(t+k)<l F()+| 'f, re(zz+10),
k=0
so that
|ALS
1-F@-—~)k-2 = 8@ -28@
< (1-ro+ )2 ™)

On the other hand, using Lemma 3.1 (a) we see that
gs+1D =g()—(1—-F()), selR

Since the functiorg, coincides withg on {« + Z}, and moreoveg, is linear on the
interval [z, z + 1], it follows that

8(2) — gu(2) =1 - F(2))(z—2). (8)
Together, (7) and (8) imply

18a(2) — g(@)| = (2 —z)ﬂ z€lz,z+ 1] 9)

Similarly, by comparing (z) andg,(z) to g(z + 1), one obtains

18a(z) =8| < (z+1— Z)ﬂ, z€elz,z+ 1] (10)

For a-approximations of expected surplus functignthe claimed error bound now
follows from (9) and (10) on the observation that fiin— z), (z + 1 — z)} < 1/2.
Analogously, the same error bound can be derived for the special casg¢ with and
g~ = 1. The claim for the general case then follows trivially. O

The uniform error bound of Theorem 3.2 can be reduced by a factor 2 if the following
combination ofx-approximations is used. Fare [0, 0.5) andB = « + 0.5, define the
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pdf

sty = 2O L5,

where f, and fz are density functions ak-approximations as before. The resulting
convex approximationg),s of Q satisfy

A
10— Qo < @™ +47) 5L

It can be shown that this error bound can not be reduced by using other convex combi-
nations of pdf of typef,.

eR

(11)

The error bound presented above is proportional to the total variation of th¢ pdf

of k. For many distributions, e.g. with unimodal densities, the total variation of a pdf
decreases as the variance of the distribution increases. We may therefore expect that the
approximationQ, becomes better as the variance of such distributions becomes higher.

Finally, we remark that convex approximations of the funct@rcan be represented

as (one-dimensionalgontinuoussimple recourse functions. The latter functions are
defined like (4), except that no rounding operations are involved. In the cage of
approximations, the corresponding modification of the underlying distribution is known
in closed form [19].

Lemma3.2 Let h be a continuous random variable with cdf F with finite mean
value, and o € [0, 1). Then
qtq”
0u(2) =4"Ey, [(pu 0]+ By, [p 7]+ s zeR
where ¢, is a discrete random variable with support in « + Z and, for k € Z,
q+

q k+1
Prlo,=a+k} = ———Pr{heC)+ ———PrhecC:?)
it b= P b+ P }

0

We conclude that simpl@étegerrecourse functions can be approximateddowtinu-

ous simple recourse functions wittliscretely distributedight-hand side parameters,
simply by dropping the integrality restrictions and a modification of the distribution
according to Lemma 3.2. The resulting convex problem can be solved using existing
algorithms for continuous simple recourse problems with discrete underlying distribu-
tions.
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3.2 Completeinteger recourse

We now turn to the much more general class of complete integer recourse models. In
addition to completeness and sufficiently expensive recourse, s tldfinite, we
assume that the recourse matWxis integer (or rational, so that integrality @f can

be obtained by scaling). We will see that also in this casepproximations of the
distribution ofk lead to convex approximations of the recourse functibrin fact, if

the recourse matrix igotally unimodular(TU) then this approach leads to the convex
hull of Q. Below we first derive the results for this special case.

BecauseW is TU, the extreme points of the feasible $etc R'? : Wy > h} are
integral for any integer right-hand side However, in our recourse problem the right-
hand sidek — T'x is not an integer vector in general. But sind® is integral for all

y € Z"? we may round up the right-hand-side. Due to the assumptiori¥hatTU, we
may now relax the integrality restrictions gnwithout changing the optimal value of
the problem. That is,

v(x,h) = min gy
S.yt. Wy>h—Tx, yeZ?
= min gy (12)
S.yt. Wy >Th—Tx], y e R?
= mAax ATh — Tx] (23)

st. AW =<gq, »eRY,
where the last equality follows from (strong) LP duality.

Since the recourse structure is complete and sufficiently expensive, it follows that the
dual feasible regiom\ := {A € R : AW < ¢} is a bounded, non-empty polyhedral
set. Hence,

v(x, h) = _max AMTh—Tx], xeR' heR", (14)

where)®, k = 1, ..., K, are the finitely many extreme points of the dual feasible set
A.

Thus,v is the maximum of finitely many round up functions, and hence non-convex.
However, as we will see below, the recourse functi@ris convex if the underlying
distribution of# is of a certain type. Analogous to the simple recourse case, this allows
the construction of convex approximations@foy means of special purpose approxi-
mations of the distribution.
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To set the stage, we first study the expected round up function
R(z) = AEp [[h —z]], ze€R",
defined for any fixed. € R™.
If m = 1,1 = 1, andh is continuously distributed, then
R@) =Ep[Th—27]|-Ep[lh—z+1]7]. zeR, (15)

since[s] = [s1" — [s]7,s € R,and[s]” = |s + 1| for all s ¢ Z. The right-

hand side of (15) is very similar to the one-dimensional simple recourse function with
gt =1andg~ = —1. Hence, in view of Corollary 3.1 it is not surprising that this one-
dimensional functiorr is convex ifk has a piecewise constant pdf of the type specified
in that lemma. This result can be generalizeatdimensional round up functions.

Lemma3.3 Leth € R™ be a continuous random vector with joint pdf f, that is
constant on every hypercube C* := [, (& + ki — 1, o; + ki1, k € Z", for an arbitrary
but fixed o = (o, ..., @) € [0, 1)™. Then

EplTh—211=Eg, [0, — 2] = e —2z, z€R",
where ¢, = [h — o] + « isa discrete random vector with mean value y, and support
ino + Z™, with

P, =a +k} =Prih e C*}, keZ".

Hence, in this case the round up function R(z) = AEy, [[k — z]], z € R™, isaffine with
gradient —A.

PrRoOOE  We use that
Epllh—211= Y Plhe CHE,[[h—z1|heCl]. zeR" (16)
keZ™

For each fixedk € Z", P{h € C*} is either zero or the conditional distribution of
h givenh € C¥ is uniform onC¥%. In that case, the components of the vedtoare
independent random variables 6f, with eachk; uniformly distributed on(e; + k; —

Lo + k], i = 1,...,m. Hence, writing each component as in (15) and applying
Lemma 3.2 to each term individually, it follows that
Ep[lh—21|heCll=a+k—z, zeR" (17)

Substitution of (17) in (16) proves the first claim.
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The second claim follows trivially from the first one. O

Based on Lemma 3.3, we defineapproximations of the functioR: for « € [0, 1)",
R, (2) := )‘Eha [Thy —Z]], zeR™

In general, am-approximation is neither a lower bound nor an upper bound. However,
sinceR(z + k) = R(z) — Mk, k € Z™, for everyz, we see thaR (z) + Az is a periodic
function, which repeats itself on every s&t Thus, defining

a* € argmin{R(z) + Az : z € [0, )™}, (18)

R.+ is a lower bound foR, which is sharp at every € o* + Z". By construction, the
affine functionR,- is actually the convex hull oR.

The components?, i = 1,...,m, of the parameter vectar can independently be
determined analytically in almost all practical cases. If the marginal distributidn of
is continuous, one-sided derivatives of the functi®;) := LiEp, [TR; — z;7] (anal-
ogous to Lemma 3.1) are used; if it is discrete with finitely many different fractional
values in its support, the computationapfis based on the direct relation between these
fractional values and discontinuities of the lower semicontinuous fundion

Now we are ready to prove the main result for this class of models with TU recourse
matrix. Using the dual representation (14) of the value functione have

0(x) =Ep, [k:rrfaxKAkfh — wa} , x el

Note thatQ is not simply the pointwise maximum of a number of expected round up
functions R. However, the results above for the functi@nplay a major role in the
proof of Theorem 3.3.

Theorem 3.3  Consider the integer recourse expected value function Q, defined as
Qx) =y, |:minqy Wy>h—Tx, ye Z'f:| , x eR™ (29)
y

Assume that

(i) therecourse is complete and sufficiently expensive, and
(i) therecourse matrix W is totally unimodular.

If

(iii) the matrix T isof full row rank,

22



then the convex hull of Q is the continuous recourse expected value function Q,-, de-
fined as

Qu+(x) =Eg , [minqy Wy>¢@,—Tx, ye R'J’f] , xeRM", (20)
* y
where o* is defined by (18), and ¢,. isthe discrete random vector ¢,,. = [h —o*] +a*
with support in o* 4+ Z™, and
Prlg,. =a*+k}=Prih e CL}, keZ".

If condition (iii) is not satisfied, then Q,. isalower bound for Q.

PrRoOF  We will prove thatQ,- is the convex hull o if T is of full row rank. The
other case then follows from Theorem 2.2 in [17].

Assuming thaff" is of full row rank, we may conveniently considégyas a function of
the tender variables:= Tx € R".

First we will prove thatQ,- is a lower bound forQ, and subsequently th&,-(z) =
Q(z) for all z € o* 4+ Z™. This completes the proof, since all vertices of the polyhedral
function Q.+ are contained ia* + Z™.

Using the dual representation (14) of the value functipwe have

=4,...,

and, analogously,

() =FE o, — R™.
Qur(z) =Eg_, [kzﬁfaxk (@ z)] z€

Conditioning on the events € C.., [ € Z", we obtain, for; € R”,

— l k l
Q) = Y PrheCL)Ey, [k:”ﬂ?’f/\ [h—z1| ke cw}
12"
[ k [
> > Prhe Car}, max 2" Ep [Th—z1|heCl]
A
[ k l
> > Prhe Car, max A'Ep, [Tho — 21| her € CL. ]
A
— 1 k * .
= > Prh € Cge}, max 2 (" +1—72)

le Zm
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.....

leZlﬂ
The second inequality is valid because e#dls nonnegative, so that theapproxima-
tion A*Ep,  [[her — 21| hor € CL. ] is alower bound for*Ey, [[h — 21| h € CL. ] by
the choice ofx*. The subsequent equality holds by Lemma 3.3.
It remains to prove thaf,- = Q ona* + Z". Consider a fixed € «* + Z" and a

fixed! € Z". Then[h — z] = [ — |z] is constant for alk € C., so that there exists a
A(z, 1) satisfying

Az, 1) € argmaxi‘Th — 7] Vh e Cl.
k=1,...K

Since this is true for every € o* + Z" andl € Z", it follows that, forz € «* + Z",

Q@) = Y PrlheCL)rzDE,[[h—z21|heC.]

12"

= ) PrheClLyrzDEy [[he —21] e € CL.]
12"

= > PrlheCL Az D (" +1-2)
12"

= Z Prih € C..)
12"

The second equality follows from the fact that eacapproximation is sharp an+7".

The last equality follows from the definition of(z,/) andg,. —z = 1 — [z], z €
a‘k + Zlﬂ. D

k * .
k:r???(K)\ (" +1-2).

We conclude that if the recourse mat#ik is totally unimodular, then the integer com-
plete recourse problem with recourse functi@rcan be approximated by the continu-

ous complete recourse problem with recourse funcfipn To construct this approxi-
mation, the integer restrictions on the second-stage variables are dropped, and the dis-
tribution of the right-hand side parameters is modified according to Theorem 3.3. The
resulting continuous complete recourse problem with discretely distributed right-hand
side parameters can be solved by existing special purpose algorithms [2, 16].

In particular, if the matrix is of full row rank, then solving the approximating problem
will yield the true optimal solution, at least if the first-stage constraints are not binding.

Finally, we drop the assumption th#t is TU. In this case, we will prove thad,- is
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a strictly better convex approximation than the one obtained using the LP relaxation of
the second-stage problem. The latter convex function will be denotest bydefined
as

oL (x) .= Ej, |:myin{qy Wy>=h—-Tx, ye€ R’f}] , x eR™M, (22)

Theorem 3.4  Consider the functions Q.- and Q”, defined by (20) and (21) re-
spectively, which both are convex lower bounds for the integer recourse expected value
function Q, defined by (19).

(@) Qu = QM
(b) Assume
(i) ¢ = 0,sothat Oisatrivial lower bound for v and Q;
(ii) there exists a subset L of Z" such that the support €2 is a subset of
Uer th - h < a* +1} and Prih <a*+l| heCl.})>0forallelL.
Then the function Q,- isa strictly better convex approximation of O than &7,
inthe sense that Q(x) > Oimplies Q,-(x) > QFF (x).

PROOF  As before, we condition on the evemise C.., [ € Z", to obtain, for
x € R™,

_— 1 k * _
Qe (x) = Z Prih € Cpu}, fﬂ?’fkk (¢ +1—Tx) (22)
leZm
and
LP _ l kop l
QL (x) = XZ: Prih € C..} By, LQ‘?,’,(K’\ (h—Tx)| he cw} . (23)
le

For each € Z" it follows from the definition ofC,. = [T, (o +1; — 1, o + ;] that
o +1>hforallh e C... Thus, fork = 1,..., K, A (@* +1—Tx) > A (h — Tx)
forall h € C., sincer* > 0. Substitution in (22) and (23) proves th@t > Q7.

To prove (b), we first show tha@(x) > 0 impliesQ,-(x) > 0. To this end, define
N(x):={r e R" :v(t — Tx) > 0}, x € R™,

ThenQ(x) > 0 if and only if Pk € N(x)} > 0, which is equivalent to Pk <
int N(x)} > 0 sinceN(x) is an open set. By Definition 3.1, it follows that then also
Pr{h, € N(x)} > 0, which impliesQ, (x) > 0 forall ¢ € [0, 1)".

Let x be such tha(x) > 0, implying Q,-(x) > 0. Then, since each term of (22) is
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non-negative by assumption (i), there exist$ an. such that

max A (a* +1— Tx) > 0;
k=1,..K

obviously, any optimal_solutioin of this problem satisfies # 0. For an arbitrary but
fixedh € C.. such thati < o* + [, it holds

A(h—Tx) <i(a*+1—Tx) VYrA=0,
with strict inequality unlesg = 0. Leti be an optimal solution of max* (h — Tx).
Then there are two possibilities:
(i) A =0,sothat (h — Tx) =0 < i (a* +1— Tx);
(i) & #0, SOthaﬁ(i_z—Tx) <)A\(a*+l_—Tx) 5)_\(01*—1-1_—Tx).
We conclude that, for all € Cf;* with h < o* +1,

Hla*+1-T A (h—Tx). 24
k:rﬁ?(Kk (" +1—Tx) > max, (h — Tx) (24)
Since Pth < a* + 1| h e CL.} > 0 by assumption (ii), and (24) holds with weak
inequality for allz € CL., it follows that

ki 7 _ kop I
kzrgé?(Kk (a +1 Tx) > Ep, [kzr???(Kk (h — Tx) | he Ca*] . (25)
Finally, using that (25) holds with weak inequality for &k Z", we see from (22) and

(23) thatQ,-(x) > QLF (x). O

For example, condition (b) (ii) of Theorem 3.4 is satisfiel fbllows a non-degenerated
continuous distribution.

Note that the distribution ap,. as defined in Theorem 3.3 is always discrete, no matter
what kind of distributionk follows. Thus, in particular if: is continuously distributed,
Q.+ is not only a better approximation @, it is alsocomputationally more tractable
than QF” which in this case is defined as andimensional integral.

4, Hierarchical planning models
Consider a two-level decision situation. At the higher level, aggregate decisions are

made concerning acquisition of resources. At the lower level, one has to decide on the
actual allocation of the resources. The time horizon for aggregate decisions in such
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hierarchical decision problenmay range from several months to a year. At the time
aggregate decisions are made much detailed information of what will ultimately be
required of the resources is not yet known with certainty. As mentioned in the intro-
duction, two-stage stochastic programming is the right tool to model the lower level of
hierarchical planning problems accurately, using stochastic parameters for which prob-
ability distributions are specified. The objective at the higher level is to minimize known
costs at that level plus the expected objective value of optimal lower level decisions.

We focus on hierarchical planning problems with detailed-level problems which are of
a combinatorial nature. This class of problems includes hierarchical scheduling prob-
lems, hierarchical vehicle routing problems, and hierarchical knapsack problems (cap-
ital budgeting problems). We will consider the design and analysis of approximation
algorithms for such problems. In management science literature such algorithms are of-
ten calledhierarchical planning systemle diverge here from the previous section by
not aiming at approximation algorithms for the stochastic integer programming prob-
lem in which all hierarchical combinatorial optimization problems can be formulated,
but instead at algorithms tailored to the specific particular hierarchical combinatorial
optimization problems. We use as an example a hierarchical scheduling problem and
apply probabilistic analysis to measure the performance quality of an approximation
algorithm for this problem

Consider the followinghierarchical scheduling problemt the time machines are to

be installed only probabilistic information is available on the jobs to be processed. The
two-stage stochastic programming model of this problem has to select the number or
the types of the machines so as to minimize the installation costs of the machines plus
the expected cost of processing the jobs optimally on the installed machines.

In this problem, the machines to be installed at the aggregate level are identical and
work in parallel. Installation of each machine costsA decision is required on the
number of machines to be installedxlfienotes this number, then the installation costs
arecx.

There areN jobs to be processed and each jplbequires processing for a timg

j =1,..., N. At the time the machines are purchased, there is only probabilistic in-
formation about the processing times of the jobs. A schedule of the jobs on the available
machines is feasible if each job gets assigned one time interval of length equal to its
processing time on one of the machines, and each machine processes only one job at
a time. The makespan of a set of jobs is the time by which the last job is completed
in a feasible schedule. The objective is to minimize the sum of installation costs of the
machines and the expected makespan of the jobs on the available machines. (To make
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dimensions compatible assume, without loss of generality, that the cost per time unit in
the second-stage schedule is equal to 1.)

Let v*(x, t) denote the optimal second-stage costs, which is a random variable, a func-
tion of the random processing times of the jobs (;, ..., ty). Let O(x) = E¢ [v*(x, t)]
denote its expectation. Then the objective is niiv) = cx + Q(x). Letx* denote the
optimal solution.

From Section 2 we know that computiigyx) is a formidable task. Even if the distribu-

tion of t would be given by discrete probabilities over a set of vectors, the deterministic
equivalent problem is NP-hard, since computing the optimal makespan of a set of jobs
on more than one machine is NP-hard. The approximation algorihgonsists of
replacingQ (x) by a simple function’ (x) as an approximate.

Obviously, given a realizationof t, Z?’zl tj/x, the makespan of the schedule in which
all x machines have equal workload, is a lower boundi@m, ¢):

N
v, 1) = ) t/x. (26)

j=1

We choose to tak@" (x) = E; [Z?’zl tj] /x as an approximate value f@ (x). If we

assuming for simplicity that, . .., ty have equal meap then Q7 (x) = Nu/x. We
solve the approximate problem

minz? (x) = cx + 0% (x). 27)

zH(x) is a convex function an% = 0 atx = \/Npu/c. Since the number of machines
must be integer, we use discrete optimization to find tHat [/Nu/c + 1/4—1/2]
is an optimal solution. The outcome of the approximation algorithm is tléh).

Taking expectations in (26) yield3(x) > Q" (x). Hencez(x) > z¥(x) for all x, and
therefore

minz(x) = z(x*) > 8 (x") = exf! + Q7 (x¥) > 2\/cN L. (28)

To estimate the quality of the approximation we aim to find an appropriate upper bound
onz?(x") in terms ofz(x*). It is well-known [14] that the list scheduling rule, which
assigns the jobs in an arbitrary order to the machines and each next job is assigned to
the earliest available machine, yields the following upper bound on the makespan for
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any number of machinesgiven any realization of t:

N
*
vi(x, 1) < ti/x + max ft;.
(x, 1) 2;]/ j=1..N "’
]:

In particular forx”, denotingimax = max;_1 v 7; and taking expectations yields
0™ = Q") + E [tmax -

Hence,
2™y < ex™ + 0" (x™) + Bt [tmad - (29)

Together, (28) and (29) give a bound on the worst-case performance ratio of the ap-
proximation algorithm.

Lemma4.1

Z(XH)<1 IEt['[max]
z(x*) — 2«/cNu'

Probability theory (see e.g. [34]) tells us that
Lemmad4.2 Iftq, ..., ty have finite second moments, then

limEx [tmay /N =0.

This probabilistic result applied to Lemma 4.1 yields asymptotic optimality of the ap-
proximation algorithm.

Theorem 4.1  Ifty, ..., ty have finite second moments then

jim 2&D _

N—oo z(x*)
PrROOF  The combination of Lemmas 4.1 and 4.2 impliesyim, ZZ((’;H)) < 1. Clearly,
w5 g, O

Z(x*) =

The above shows something more than asymptotic optimality. In replacing the expected
second-stage optimal costs by an estimate, the NP-hardness of the second-stage prob-
lem is not taken into consideration. This could imply that we take the estimate of a
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guantity that we are unable to compute efficiently once we obtain a realization of the
second-stage parameters (the processing times of the jobs).

However, as we have seen, asymptotic optimality is proved by comparing the solution
given by the algorithm to a solution based on a polynomial time approximation algo-
rithm for the second-stage problem. It implies that optimality is retained even if we use
a simple approximation algorithm to solve the second-stage problem.

We could also assess the quality of an algorithm that ¥é@s the number of machines
and list scheduling for the second-stage problem/bmachines. The solution value

is a random variable’S(x",t) = cx + vI5(x",t). One could wonder how close
this value is to the solution value of an algorithm that selett®achines and upon

a realization of the processing times is able to select the optimal schedule on‘those
machines. Let denote this solution valuedyx*) = cx* + v*(x*, t).

Or one could even wonder ha’ (x”, t) compares to the solution value of an optimal
clairvoyant algorithm that is able to know the realization of the processing times be-
fore deciding the number of machines to be installed. In this case the optimal number
of machines becomes a random variable denotes’y. Let us denote the optimal
solution value in this case bf(x°(t), t) = cx%(t) + v*(x°(t), t). This is the solution

of the model that in stochastic programming is called disribution modelln more
popular terms it is called theait and seenodel for obvious reasons opposedhre

and nowmodel used for the two-stage model. The approximation algorithm presented
above appears to have the strong asymptotic optimality property that, again under the
assumption that the random processing times have finite second moments,

ZLS(XH, t) _
N—oo 20(x0(t),t)

with probability 1 or almost surelyA sequence of random variablgs. .., yy is said

to converge almost surely to a random variaplé Pr{limy_..yn = y} = 1. The

proof is similar to the proof of Theorem 4.1. Under some mild extra conditions on the
random variables, which are satisfied for example if the distributions of all random
variables have bounded support, this asymptotic quality guarantee implies directly that

]

LS ,.H
. ,t
lim M =1,
N—oo z*(x*,1)

almost surely. It also implies the result of Theorem 4.1.

The ideas used above in constructing an asymptotically optimal approximation algo-
rithm for the two-stage stochastic scheduling problem are applicable more generally.
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Given a two-stage combinatorial optimization problem replace the value function by
an estimate that is asymptotically accurate and use an asymptotically optimal approxi-
mation algorithm for the second-stage problem in case this problem is NP-hard.

5. Wor st-case performance analysis

As an example of worst-case performance analysis of approximation algorithms for
stochastic optimization problems we consider a service provision problem. Actually, to
the best of our knowledge it is the only example of this type of analysis in stochastic
programming. In that sense, a rich research area lies nearly unexplored.

The problem we study concerns provision of services from a resource. For each of
a given set of services there are requests from customers. In order to meet a request
for a service, the service has to be installed and once installed, the request has to be
served. Both installation and provision of a service requires capacity from the same
resource. The resource has limited capacity. Each request served yields a given profit.
The problem is to select a subset of the services to be installed and to decide which
customer requests to serve, such as to maximize the total profit by serving requests.

If all demands for services are known in advance, the problem is NPinahe ordi-
nary sensand a fully-polynomial time approximation scheme exists.

We study the problem with uncertain demand for services. The uncertainty is repre-
sented by a discrete probability distribution over the demands. The two-stage stochastic
programming problem is to select services to be installed such as to maximize expected
profit of serving requests for services. We will show that this problestrgnglyNP-

hard. Thus, the complexity of the problem increases by introducing stochasticity.

We analyse the performance of an approximation algorithm for this problem under
the restriction that the resource has enough capacity to install all services. It may not
be optimal to install all of them since it may leave too little capacity for serving the
requests.

We start with formulating the problem as a two-stage stochastic integer programming
problem. Letn be the number of services andhe capacity of the single resource.
Let g; be the profit obtained from allocating one resource unit to meeting demand
for service,j. Each servicg requires a resource capacityto be installed, which is
independent of the demand met. Demand is denoted by the random deci®t, with

d ; denoting the demand for servigeBinary decision variableg are used to indicate
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whether servicg is installed ¢; = 1), ornot¢; = 0), j = 1, ..., n. Decision variable
x; gives the amount of resource used to meet demand for sejvitbe two-stage
stochastic programming formulation becomes:

max [Eg[v(z,d)]

S.t. Z rjizj =s

j=1
;{01 j=1.....n

with

v(z, d) = max quxj

=1
n n
S.t. ijfs—erzj
Jj=1 Jj=1
Xjfdej ]:1,...,71,
x; >0 j=1,...,n.

The second-stage problem is to set the values of the varighlesler two constraints:

the capacity constrainensuring that resource capacity is not exceeded andahmnd
constraintensuring that demand is not exceeded and met only for services that have
been installed. The constraint in the first stage ensures relatively complete recourse; i.e.
for every first stage solution that is feasible with respect to the first stage constraints,
the resulting second-stage problem is feasible for every realization of the random pa-
rameters.

Let K be the number of scenarios describing the probability distribution on demand,
p* the probability that scenarib occurs, andzj‘ the demand for servicg in scenario

k. Given the scenarios the the following deterministic equivalent linear mixed integer
program can be formulated, in which we usg to denote the resource allocated to
providing servicej in scenariok (we use a subscript instead of superscriptifdrere
because of notational convenience later on).

K n
max Y p') 4
k=1 j=1
s.t. Z(rjzj +xj) <s k=1...,K, (30)
j=1
d;fzj —-xp=>0 j=1...,n, k=1...,K,
z;€{0,1}, xjx =0 j=1...,n, k=1..., K.

32



Though integrality conditions only hold for the first stage variahjesf the data,
resource capacity, installation requirements, and demands are integral, the second stage
will have an integer solution in every scenario.

Theorem 5.1  The stochastic single resource service provision problem is strongly
NP-hard.

PrRoOOFE  The natural recognition version of this problem obtained by introducing a
numberA and asking if there is a feasible solution with objective value at laaist

in NP, following directly from the deterministic equivalent formulation. To see that
it is strongly NP-Complete consider a reduction from the well-known strongly NP-
Complete vertex cover problem (see [13]):

Given a graphG = (V, E) with |V| vertices andE| edges and a con-
stantx, does there exist a subsgtof the vertices, such that each edge
in E is incident to at least one vertex i, and such thaftV’| < «?

For every vertexj € V introduce a servicg with installation requirement = FlE\

For every edge introduce a scenario with demand 1 for the two services incident to
it and demand O for all other services. Let all scenarios have probq%jljtpefine
qj = |E|Vj € V,s = ka + 1 (resource capacity), antl = |E|.

If there exists a vertex cover of size at mgghen there is a solution to the instance of

the stochastic service provision problem with total expected profit at |E&sinstall

the services corresponding to the vertices in the vertex cover. Then for each scenario
(edge) at least one of the services with demand 1 is installed. The total capacity used by
the installation of the services is at mast leaving at least capacity 1 in each scenario

to satisfy demand.

The other direction is a bit more complicated. Suppose there does not exist a vertex
cover of sizex or less. Then installing all services corresponding to a vertex cover
would use node capacity strictly greater thanleaving strictly less than 1 for meeting
demand in each of thgE| scenarios, making a total expected profit of at Ig&4t
unattainable. Installing any set of services of dize « would leave(x — L) +1 node
capacity for meeting demand in each scenario. However, at least one edge will remain
uncovered, implying that there is at least one scenario in which both services with a
positive demand are not installed. With at midst— 1 scenarios the expected profit will
be atmost| E| - 1)((k — L)a+1) < (E|-D(ka+1) = (E|-D)(g+1) < [E| = A,

O
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As announced, we assume tiﬁf;zl rj < s. Moreover, to facilitate the exposition

the assumption is made that no demand is higher than the node capacity minus the
corresponding installation requirement: For any seryizeany scenarid, cg‘ e [0, s—

r;]. If necessary, this can be ensured by preprocessing.

The approximation algorithm that we will present is based on rounding the optimal
solution of the LP-relaxation of problem (30), obtained by replacing the binary restric-
tions on thez-variables by 0< z; < 1, j = 1, ..., n. To facilitate the exposition we
assume, without loss of generality, that the resource capawstgqual to 1.

Let (z-P, x1P) be an optimal basic solution of the LP relaxation. L.dte the number
of fractionalszF> and let¢,, of these services have < w for some O< w < 1to be

chosen later. LeZ be the set of services wity” = 1. By renumbering the services if

necessary, assume thak0z-" < 1 andr; <wfor j =1,....¢, and 0< z-P < 1
andr; > wfor j = ¢, +1, ..., £. Write the optimal LP value as
7P = 7tP 4 2P 4 A LP (31)
where
K
LP k. LP
ot =20 P
JEL k=1
Ly K
LP k. LP
=) P
j=1 k=1
and

4 K
b= Y > prgxy
j=Cy+1 k=1
Feasible solutions generated from the LP solution constitute the approximation algo-
rithm, which selects from those solutions the best one. The algorithm is therefore a
kind of rounding algorithm and we denote its solution valuetdyLet 7 °*T denote
the optimal solution value of the stochastic integer program.

The first feasible solution is obtained by installing servidéand only if P = 1;i.e.,
install all services € Z. The remaining capacity is then allocated to serve demand for
the installed services in a greedy way, in order of non-increaginglues. Denote the
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resulting solution by(z¢, x¢) and its value byr¢. Then, obviously,

ncl,‘P <70 < xR, (32)

The next set of feasible solutions is used to borh@. DefineA = 3°_, r;z-" and
note thaty """, x5 < 1— A for eachk = 1, ..., K. Partition the sefl, ... £,} into
I subsets{S;}/_,, such that

er§ﬂ+w i=1...,1

JESi
and

}:mzﬁ i=1...,1—-1, (33)
JESi
for some constant > 0 to be chosen later, such that+ w < 1. Notice thad _, ¢, 7;
is allowed to be smaller thag. In the algorithm this partition is made in the most
simple way, starting filling sef; until addition of the next service would make the sum
of installation requirements excegdt+ w. This service is then the first one 8§f etc.

In the optimal solution of the LP relaxation at most A units of capacity are available
for the x variables. Installing only the services in one of the sgtgill leave at least

1 — B — w units of capacity available. The-variable values from the LP relaxation
solution corresponding to services§mmay be scaled down, if necessary, to use a total
of no more than - 8 — w units of capacity in each scenario.

For each =1, ..., I we obtain a feasible solutio@z”, x#) with zf" =1forje s,
2 =0forj ¢S, xj =yxiPforjes, k=1 Kandxj =O0for; ¢S and
all k, where

1=F-v  piw=a
——r-> w ,
y = 1-A - (34)
1 otherwise
The objective value of solutiox”, x) is
K K
PR i LP
nf=3 ) rraxi=v Y ) rra
jesi k=1 jesi k=1
Hence,
1 K 1 1 I
LP LP ;
wt =) ) ) prapy =2y < —nf (35)
i=1 jeS§; k=1 Y i=1 Y
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By the assumptiorijzl r; < s and the definition of the set$ (specifically (33)) we
have
n Ly 1
1= "= r=> > r=U-1 (36)
j=1 j=1 i=1 jes;
Thus,I < 1+ 1/8 which inserted in (35) implies that

1
P < B nr (37)
By
The last set of feasible solutions considered by the algorithm consists of installing each
servicej = €, + 1,...., ¢ (havingr; > w) individually. SinceA = ', r;z5P >

14 LP
Zj:éerl rjZ;

0
A
E Z.I/'P =—.
j=twt1 w

Just installing servicg has objective valug; E[5;], since we have assumed that for
any servicej in any scenaric. a’j? e [0, s — r;]. Satisfying the demand constraints

implies thaty";, px57 < E[8;]}P. Altogether this yields the following bound.

14 K
P = Z ZpkqjijkP

j=tw+1k=1

0
> qiEl8;125F

j:ew‘l’l

12
< 7f ) P <
j:ew‘l’l

¢ LP
>w) 412, » Wehave

IA

g | >

7_L,OF:’T (38)

7k <

S

Combining (32), (37), and (38) gives

7P < (1+ﬂ—+1+é) 7R (39)

Theorem 5.2  Under the assumption that Zf}zl r; < 1, the approximation algorithm
has wor st-case performance ratio
OPT

< (54 2V3).

36



PrROOF  The choice ofw and 8 depends oM in (39). WhenA < % takew =
1-3V3andg = -1 + 1v/3 and whend > 1 takew = B = 1A. In both cases

w+ B > A, and therefores = 2222 In the former case (39) leads to
2(1 1-A A
ZOPT_ P (1 (1+v3)( ) R
-1++/3 —3V3

— (1 +(1+v3%1—A) + 41+ %«/é)A) 7R

= (5+2V/3)xk.

In the latter case (39) leads to

2
7 OPT < 7P < (4+ Z) R <8k < B+ 2\/§)ﬂR.

|

We notice that so far tightness of the bound has not been established. There exist an
instance in which the ratio between the LP-bound and the optimal value is 4 and an in-
stance for which the algorithm has ratio 2. The results show the possibilities of achiev-
ing worst-case performance results for approximation algorithms for stochastic inte-
ger programming problems. It is worthwhile to stress once more that the deterministic
counterpart of the problem, having the same number of binary decision variables, is
weakly NP-hard. Thus, the complexity of the problem increases by introducing stochas-
ticity, even if it only means adding continuous decision variables for each scenario of
the problem.

6. Notes

Stochastic programming models date back to the fifties [5, 3]. Several surveys on
stochastic programming have appeared of which we mention here the introductory
book of Kall and Wallace [16] and the comprehensive books by Prekopa [29] and by
Birge and Louveaux [2]. For surveys specifically on stochastic integer programming we
refer to the chapter by Louveaux and Schultz in the Handbook on Stochastic Program-
ming [31], and the survey papers Klein Haneveld and Van der Vlerk [2dfiR¢h and
Schultz [30], and Stougie and Van der Vlerk [37]. Resources on the Internet are the
Stochastic Programming Community Home Pgeand the bibliography [42].
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The focus in this paper is on the two-stage recourse model. For a detailed discussion
of the multistage model and generalizations (including random recourse matrices and
nonlinear models) we refer to the Handbook on Stochastic Programming [31] or to
[2, 16, 29].

More about the important class of chance-constrained problems and the related (condi-
tional) value at risk models can be found in the Handbook on Stochastic Programming
[31]. This class is of problems is very well surveyed in [29] and [39].

The mathematical properties of two-stage stochastic linear programming problems have
been derived by various people and at a rather early stage in the research activities on
stochastic programming. In particular we refer to the overview by Wets [45] and the
monograph Kall [15].

The mathematical properties of two-stage stochastic integer programming problems
have been established much more recently [36, 41, 32]. Schultz [32] proved the prop-
erties of the mixed-integer recourse function presented in Theorem 1.2. In addition,
Schultz presented rather technical conditions for Lipschitz continuity of the function

0.

The results in Section 2 are selected from [¥2]-completeness of the probleeRAPH
RELIABILITY has been proved in [40]. That exact evaluation of the second-stage ex-
pected value function may not even be$ P ACE in case random parameters are
continuously distributed follows from a result in [23].

Dyer and Stougie [12] also provRS P AC E-hardness of a specific non-standard ver-
sion of a multi-stage stochastic programming problem if the number of stages is con-
sidered to be part of the input. The complexity of standard multi-stage stochastic pro-
gramming remains unsolved.

Kannanet al.[11] have designed a polynomial randomized approximation scheme for
the two-stage stochastic programming problem with continuously distributed parame-
ters and continuous decision variables, when the input distributions are restricted to be
log-concave Their scheme relies heavily on the convexity@fand therefore cannot

be applied to the two-stage stochastic integer programming problem.

The idea in Section 3 of approximating the expected value function of a stochastic
programming problem with integer recourse by a convex function through perturbing

the distributions of the random right-hand sides is due Klein Hanesiedd. [20, 19].

They implemented this idea for the case of simple integer recourse. See Van der Vlerk
[44] for a generalization to multiple simple recourse models, allowing for piecewise-
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linear penalty cost functions. The extension to the compete integer recourse case was
done by Van der Vlerk [43].

For the problem with simple integer recourse, the formula and properties in Lemma 3.1
have been derived by Louveaux and Van der Vlerk [25], while the characterization of
all probability distributions that lead to convex expected value functions in Theorem 3.1
is due to Klein Hanevelet al.[20].

The uniform error bounds on the-approximation in Theorem 3.2 and on thg-
approximation in (11) are from [19]. There it is also shown that the latter error bound
can not be reduced by using other convex combinations of probability density functions
of type f,. The error bounds are derived in case the distributions of the random right
hand sides are continuous. For the case with discretely distribute@ possible to
construct the convex hull of the functiap, see [18].

Algorithms for continuous simple recourse problems with discretely distributed right-
hand side parameters can be found in e.g. [2, 16]. Using the structure of such problems,
they can be represented as relativetyall deterministic LP problems.

If the matrix W is complete but not TU, then the functi@h- defined in Theorem 3.3

can be used as a convex lower bounding approximation of the fungjaailowing

to approximately solve the integer recourse problem by solving a continuous complete
recourse model. Although this approach is easy to implement and in many cases will
give better results than using the LP lower bou®d’, no (non-trivial) bound on the
approximation error is known. Indeed, in most applications the approximation will not

be good enough for this purpose. On the other hand, because of the properties discussed
in Section 3, the functior@,- is well-suited as a building block in special-purpose
algorithms for integer complete recourse models; several of these algorithms [1, 22,
27, 33] use the LP relaxatio@”” for bounding purposes.

Hierarchical planning problems appear in many applications in management science.
Usually the solution methods consist of solving the problems at the different levels
separately and glue them together. Dempeteal.[6, 7] gave the first mathematically
rigorous analysis of such a hierarchical planning system. They presented the result
on the hierarchical scheduling problem exposed in Section 4. Their result has been
extended to other hierarchical scheduling problems with different types of machines
and common deadlines for the jobs by Stougie [36].

The notion of asymptotic optimality with respect to an optimal clairvoyant algorithm
was introduced by Lenstrat al.[24]. In the same paper the authors investigated a
general framework for the probabilistic analysis of approximation algorithms for hier-
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archical planning problems. They show implications between the various asymptotic
quality statements. Applications of this framework on routing and location problems
appeared in [36], where also an survey of the above mentioned research can be found.

The probabilistic value analysis of combinatorial optimization problems which are used
in the estimates for the second-stage costs form a body of literature on its own (see for
a survey [35]).

Section 5 is extracted from work by Dyet al. [9]. In the same paper a pseudo-
polynomial time dynamic programming algorithm is derived if the number of scenar-
ios is fixed. The existence of a fully polynomial time approximation scheme for this
case is open. NP-hardness in the ordinary sense of the deterministic counterpart of the
problem was proved in [8]. In the same paper a fully-polynomial time approximation
scheme has been presented for this deterministic problem. All versions of the problem
with multiple resources are strongly NP-hard [10, 8].

The setting of the problem is inspired by an application in telecommunication dealing
with provision of processing based services a computer network with distributed
processing capabilities [38].

Worst-case performance analysis in stochastic integer programming with discretely dis-
tributed second-stage parameters like the one presented in Section 5 is an almost unex-
plored rich research field with many challenging questions.
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