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Abstract

Approximation algorithms are the prevalent solution methods in the field of stochastic program-
ming. Problems in this field are very hard to solve. Indeed, most of the research in this field has
concentrated on designing solution methods that approximate the optimal solutions. However,
efficiency in the complexity theoretical sense is usually not taken into account. Quality state-
ments mostly remain restricted to convergence to an optimal solution without accompanying
implications on the running time of the algorithms for attaining more and more accurate solu-
tions.

However, over the last twenty years also some studies on performance analysis of approxi-
mation algorithms for stochastic programming have appeared. In this direction we find both
probabilistic analysis and worst-case analysis. There have been studies on performance ratios
and on absolute divergence from optimality. Only recently the complexity of stochastic pro-
gramming problems has been addressed, indeed confirming that these problems are harder than
most combinatorial optimization problems.
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Approximation in the traditional stochastic programming sense will not be discussed in this pa-
per. The reader interested in this issue is referred to surveys on stochastic programming, like the
Handbook on Stochastic Programming [31] or the text books [2, 16, 29]. We concentrate on the
studies of approximation algorithms which are more similar in nature to those for combinatorial
optimization.

Key words: integer recourse, approximation
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1. Introduction

Stochastic programming models arise as reformulations or extensions of optimization
problems with random parameters. To set the stage for our review of approximation in
stochastic (integer) programming, we first introduce the models and give an overview
of relevant mathematical properties.

Consider the optimization problem

min
x

cx

s.t. Ax = b

T x = h

x ∈ X,

whereX ⊂ R
n specifies nonnegativity of and possibly integrality constraints on the

decision variablesx. In addition to them1 deterministic constraintsAx = b, there is
a set ofm constraintsT x = h, whose parametersT and h depend on information
which becomes available only after a decisionx is made. Thestochastic programming
approach to such problems is to assume that this uncertainty can be modeled by random
variables with known probability distribution, and then to reformulate the model to
obtain a meaningful and well-defined optimization problem. In this paper we will use
bold face characters for random variables, and plain face to indicate their realizations.

1.1 Stochastic programming models

The first important class of stochastic programming models, known asrecourse models,
is obtained by allowing additional or recourse decisions after observing the realizations
of the random variables(T ,h). Thus, recourse models are dynamic: time is modeled
discretely by means of stages, corresponding to the available information. If all uncer-
tainty is dissolved at the same moment, this is captured by a recourse model with two
stages: ‘present’ and ‘future’. Given a first-stage decisionx, for every possible real-
izationq, T , h of q,T ,h, infeasibilitiesh − T x are compensated at minimal costs by
choosing second-stage decisions as an optimal solution of the second-stage problem

min
y

qy

s.t. Wy = h − T x,

y ∈ Y,

whereq is the (random) recourse unit cost vector, the recourse matrixW specifies the
available technology, and the setY ⊂ R

n2+ is defined analogously toX. We will useξ =
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(q,T ,h) to denote the random object representing all randomness in the problem. The
value function of this second-stage problem, specifying the minimal recourse costs as a
function of the first-stage decisionx and a realization ofξ , will be denoted byv(x, ξ);
its expectationQ(x) := Eξ [v(x, ξ )] gives the expected recourse costs associated with
a first-stage decisionx. Thus, the two-stage recourse model is

min
x

cx + Q(x)

s.t. Ax = b

x ∈ X,

(1)

where the objective functioncx + Q(x) specifies the total expected costs of a decision
x.

Example 1.1 Consider the following production planning problem. Usingn produc-
tion resources, denoted byx ∈ R

n
+ with corresponding unit cost vectorc, a production

plan needs to be made such that the uncertain future demand form products, denoted
by h ∈ R

m, is satisfied at minimal costs. The available production technology suf-
fers from failures: deploying resourcesx yields uncertain amounts of productsTix,
i = 1, . . . , m. Restrictions on the use ofx are captured by the constraintsAx = b.

We assume that the uncertainty about future demand and the production technology
can be modelled by the random vector(T ,h), whose joint distribution is known, for
example based on historical data.

A possible two-stage recourse model for this problem is based on the following exten-
sion of the model. For each of the individual products, if the demandhi turns out to be
larger than the productionTix, the demand surplushi −Tix is bought from a competitor
at unit costsq1

i . On the other hand, a demand shortage gives rise to storage costs ofq2
i

per unit. The corresponding second-stage problem and its value function are

v(x, ξ) = min
y

q1y1 + q2y2

s.t. y1 − y2 = h − T x, ξ ∈ �,

y = (y1, y2) ∈ R
2m
+ .

Defining Q as the expectation of this value function, we obtain a two-stage recourse
model that fits the general form (1).

This particular model type with recourse matrixW = (Im,−Im), whereIm is them-
dimensional identity matrix, is known as a simple recourse model. The integer recourse
version of this model, for example corresponding to the case that only batches of fixed
size can be bought, will be discussed in Section 3. �
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So far, we have introduced the recourse concept as a modelling tool to handle ran-
dom constraints, by means of specifying recourse actions with corresponding recourse
costs. There is however another class of problems for which the (two-stage) recourse
model is a natural approach, namelyhierarchical planning models(HPM). Such prob-
lems involve decisions at two distinct levels:strategicdecisions which have a long-term
impact, andoperationaldecisions which are depending on the strategic decisions. For
example, in the hierarchical scheduling problem discussed in Section 4, the strategic
decision is the number of machines to be installed, and the operational decisions in-
volve the day-to-day scheduling of jobs on these machines. At the time that the strate-
gic decision needs to be made, only probabilistic information on the operational level
problems (e.g. the number of jobs to be scheduled) is available. Hierarchical planning
models fit the structure of two-stage recourse models, with strategic and operational
decisions corresponding to first-stage and second-stage variables, respectively. More-
over, since strategic decisions are typically fixed for a relatively long period of time, it
is natural to use the expectation of the operational costs as a measure of future costs.

Unlike conventional linear recourse models (1), HPM are not necessarily formulated
as (mixed-integer) LP problems, see our example in Section 4. Nevertheless, despite
these differences in interpretation and formulation, we use the generic name (two-stage)
recourse model to refer to both model types, in line with the stochastic programming
literature.

In many applications new information becomes available at several distinct moments,
sayt = 1, . . . , H , whereH is the planning horizon. That is, we assume that realizations
of random vectorsξt = (q t ,T t ,ht ) become known at timet . This can be modelled
explicitly in a multistage recourse structure: for each such momentt = 1, . . . , H , a
time stage with corresponding recourse decisions is defined. In compact notation, the
multistage recourse model is

min
x0

cx0 + Q1(x0)

s.t. Ax0 = b

x0 ∈ X,

where the functionsQt , t = 1, . . . , H , representing expected recourse costs, are recur-
sively defined as

Qt(xt−1) := Eξ
t

[
vt(xt−1, ξ t )

∣∣ ξ1, . . . , ξ t−1
]
,
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where the expectation is with respect to the conditional distribution ofξt givenξ1, . . . ,

ξ t−1,

vt(xt−1, ξ t ) := min
xt

qt xt + Qt+1(xt )

s.t. Wtxt = ht − T txt−1

xt ∈ Xt,

andQH+1 ≡ 0 (or some other suitable choice). In this paper we concentrate on two-
stage problems only.

The second main class of stochastic programming problems consists ofprobabilistic or
chance-constrained problems, which model random constraints1 by requiring that they
should be satisfied with some prescribed reliabilityα ∈ [0, 1]; typically, α ∈ (.5, 1).
Thus, the random constraintsT x ≥ h are replaced by thejoint chance constraint

Pr{T x ≥ h} ≥ α,

or bym individual chance constraints

Pr{T ix ≥ hi} ≥ αi, i = 1, . . . , m.

Since we will not consider chance-constrained models in our discussion of approxima-
tion results, we do not present them in more detail here.

1.2 Mathematical properties

In this section, we review mathematical properties of recourse models. This provides
the background and motivation for the discussion of approximation results.

First we consider properties of continuous recourse models. Some of the results will
be used when we discuss the complexity of this problem class, and furthermore they
facilitate the subsequent discussion of properties of mixed-integer recourse models. We
state all properties here without proof. In the Notes at the end of the paper references
to the proofs are given.

Remark 1.1 As before, all models are discussed here in their canonical form, i.e., all
constraints are either equalities or nonnegativities. The models in subsequent sections,
which also contain inequalities and/or simple bounds, can be written in canonical form
using standard transformations.

1 Barring uninteresting cases, chance constraints make sense only for inequality constraints.

6



1.2.1 Continuous recourse

Properties of (two-stage) recourse models follow from those of the recourse function
Q. In case all second-stage variables are continuous, properties of the value functionv

are well-known from duality and perturbation theory for linear programming, and are
summarized here for easy reference.

Lemma 1.1 The function v, defined for x ∈ R
n and ξ = (q, T , h) ∈ R

n2+m(n+1),

v(x, ξ) = inf
{
qy : Wy = h − T x, y ∈ R

n2+
}

takes values in [−∞,∞].
It is a convex polyhedral function of x for each ξ ∈ R

n2+m(n+1), and it is concave
polyhedral in q and convex polyhedral in (h, T ) for all x ∈ R

n.

If for some x the functionv takes on the value+∞ with positive probability, this
means thatx is extremely unattractive since it has infinitely high expected recourse
costsQ(x). From a modelling point of view this is not necessarily a problem, but in
practice it may be desirable to exclude this situation.

On the other hand, the situation thatv(x, ξ) equals−∞ with positive probability should
be excluded altogether. Indeed, the value−∞ indicates that the model does not ade-
quately represent our intention, which is penalization of infeasibilities.

Finiteness ofv is often guaranteed by assuming that the recourse iscompleteandsuf-
ficiently expensive.

Definition 1.1 The recourse iscompleteif v < +∞, i.e., if for all t ∈ R
m there

exists ay ∈ Y such thatWy = t .

Assuming thatY = R
n2+ , completeness is a property of the recourse matrixW only.

Such a matrix is called acomplete recourse matrix.

Definition 1.2 The recourse issufficiently expensiveif v > −∞ with probability 1,
i.e., if Pr{ξ ∈ � : ∃λ ∈ R

m such thatq ≥ λW } = 1.

For example, the recourse is sufficiently expensive if Pr{q ≥ 0} = 1.
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From now on we assume that the recourse is complete and sufficiently expensive. Then
the recourse or expected value functionQ(x) is finite if the distribution ofξ satisfies
the following condition:

For all i, j, k the random functionsqjhi andqjT ik have finite expectations.

Sufficiency of thisweak covariance conditionfollows from the representation of basic
feasible solutions in terms of the problem parameters.

The following properties of the recourse functionQ are inherited from the second-stage
value functionv.

Theorem 1.1 Consider the continuous recourse function Q, defined by

Q(x) = Eξ
[
inf
{
qy : Wy = h − T x, y ∈ R

n2+
}]

, x ∈ R
n.

Assume that the recourse is complete and sufficiently expensive.

(a) The function Q is convex, finite, and (Lipschitz) continuous.
(b) If ξ follows a finite discrete distribution, then Q is a convex polyhedral function.
(c) The function Q is subdifferentiable, with subdifferential

∂Q(x) =
∫

�

∂v(x, ξ) dF (ξ), x ∈ R
n,

where F is the cdf of the random vector ξ .
If ξ follows a continuous distribution, then Q is continuously differentiable.

Consider the special case thatξ follows a finite discrete distribution specified by Pr{ξ =
(qk, T k, hk)} = pk, k = 1, . . . , K. The finitely many possible realizations(qk, T k, hk)

of the random parameters are also calledscenarios. It is easy to see that in this case the
two-stage recourse model is equivalent to the large-scale linear programming problem

max cx +
K∑

k=1

pkqkyk

s.t. Ax = b

T kx + Wyk = hk, k = 1, . . . , K

x ∈ R
n
+, yk ∈ R

n2+ .

(2)

Analogously, a mixed-integer recourse problem with finite discrete distribution can be
represented as a deterministic large-scale mixed-integer programming problem.
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1.2.2 Mixed-integer recourse

Mixed-integer recourse models do not posses such nice mathematical properties; in
particular, convexity of the recourse functionQ is not guaranteed. Indeed, the underly-
ing second-stage value functionv is only lower semicontinuous (assuming rationality
of the recourse matrixW ), and discontinuous in general.

Also in this setting we are mostly interested in the case thatv is finite. To havev < +∞
we will assume complete recourse, see Definition 1.1. For example, this condition is
satisfied ifW̄ is a complete recourse matrix, whereW̄ consists of the columns ofW
corresponding to the continuous second-stage variables. On the other hand,v > −∞
if the recourse is sufficiently expensive, see Definition 1.2, i.e., if the dual of the LP
relaxation of the second-stage problem is feasible with probability 1.

Theorem 1.2 Consider the mixed-integer recourse function Q, defined by

Q(x) = Eξ [inf {qy : Wy = h − T x, y ∈ Y }] , x ∈ R
n,

where Y := Z
p
+ × R

n2−p
+ . Assume that the recourse is complete and sufficiently expen-

sive, and that ξ = (h,T ) satisfies a weak covariance condition. Then

(a) The function Q is lower semicontinuous on R
n.

(b) Let D(x), x ∈ R
n, denote the set containing all ξ ∈ � such that h − T x is a

discontinuity point of the mixed-integer value function v. Then Q is continuous
at x if Pr{ξ ∈ D(x)} = 0.
In particular, if ξ is continuously distributed, then Q is continuous on R

n.

1.3 Outline

As mentioned above, solving stochastic programming problems is very difficult in gen-
eral. Indeed, such problems are defined in terms of expectations of value functions
of linear (mixed-integer) programming problems or indicator functions (in the case of
chance constraints). This calls for the evaluation of multi-dimensional integrals, which
is computationally challenging already if the underlying random vectorω has low di-
mension, and becomes a formidable task for problems of realistic size. Even if the
underlying distribution is discrete, the typically huge number of possible realizations
may render the frequent evaluation of function values impracticable. In Section 2 the
computational complexity of two-stage recourse models is addressed.

It is therefore not surprising that much of the stochastic programming literature is de-
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voted to approximation of some sorts. For example, a key issue for recourse models
is the construction of suitable discrete approximations of the distribution of the un-
derlying random vector. Such an approximation should have a relatively small num-
ber of possible realizations, and at the same time result in a good approximation of
the recourse function, at least in a neighborhood of an optimal solution. For chance-
constrained problems such discrete approximations of the distribution would destroy
convexity of the problem. In this context, fast and accurate approximation of high-
dimensional (normal) distribution functions receives much research attention.

We do not discuss these ‘typical’ stochastic programming approximation issues here.
They, as well as related subjects such as convergence and stability, are covered in the
Handbook on Stochastic Programming [31]. Instead, we consider approximations as
they appear in a number of other ways in stochastic programming and which are in
spirit closer to approximation in combinatorial optimization.

Section 3 deals with convex approximations for integer recourse problems. Here the
problems themselves are approximated by perturbing the distribution functions such as
to achieve convex expected value functions. The strength of this approximation is that
a bound on the absolute approximation error can be given, making this an example of
worst-case analysis of approximation algorithms.

Hierarchical planning problems, which are (integer) recourse problems, are discussed
in Section 4. The key idea here is to replace hard second-stage problems by easier
ones, which asymptotically still give accurate results. Here the approach isprobabilistic
analysis of approximation algorithms.

In Section 5 we will give one of the scarce examples of an approximation algorithm for
a stochastic programming problem for which a constantworst-case performance ratio
can be proved. The example also shows again that stochastic programming problems
are usually more complicated than their deterministic counterparts.

We conclude with a section containing bibliographical notes on approximation in stochas-
tic programming as reviewed in this paper. It also addresses some interesting open prob-
lems and new research directions in this field, major parts of which are still unexplored.

2. Complexity of two-stage stochastic programming problems

In this section we study the complexity of two-stage stochastic programming problems.
The complexity of a problem, in terms of time or space to solve it, is related to input
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size. For each instance a bound on the number of elementary computer operations or
on the number of computer storage units required to solve the problem instance as a
function of the size of its input indicates, respectively, the time or space complexity of
the problem. We will see that the way in which the random parameters in stochastic
programming problems are described has a crucial impact on the complexity.

To illustrate this we start by studying problem (2), the deterministic equivalent LP
formulation of the two-stage stochastic programming problem.

If in the input of the problem each scenario(qk, T k, hk) and its corresponding proba-
bility pk is specifiedseparately, then the input size of the problem is just the size of the
binary encoding of all the parameters in this (large-scale) deterministic equivalent prob-
lem and hence the problem is polynomially solvable in case the decision variables are
continuous and NP-complete if there are integrality constraints on decision variables.

However, consider another extreme in which all parameters are independent identically
distributed random variables. For example, if in this case each parameter has valuea1
with probabilityp anda2 with probability 1−p, then there areK = 2n1+mn+m possible
scenarios. Hence, the size of the deterministic equivalent problem is exponential in the
dimension of the parameter space, which is essentially the size required to encode the
input. The complexity changes correspondingly, as will become clear below.

Let us consider models wherein all random (second-stage) parameters are indepen-
dently and discretely distributed. We will establish�P -hardness of the evaluation of
the second-stage expected value functionQ(x) for fixed x. The class�P consists of
counting problems, for which membership to the set of items to be counted can be de-
cided in polynomial time. We notice that strictly following this definition of�P , none
of the stochastic programming problems can belong to this complexity class. We will
use the term�P -hard for an optimization problem in the same way asNP -hardness
is used for optimization problems, whose recognition version isNP -complete. For an
exposition of the definitions and structures of the various complexity classes we refer
to [28].

To prove�P -hardness of the evaluation of the second stage expected value function
Q(x) we use a reduction from the�P -complete problemGRAPH RELIABILITY.

Definition 2.1 GRAPH RELIABILITY . Given a directed graph withm arcs andn
vertices, what is the probability that the two given verticesu andv are connected if all
edges fail independently with probability 1/2 each.
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This is equal to the problem of counting the number of subgraphs, from among all 2m

possible subgraphs, that contain a path fromu to v.

Theorem 2.1 Two-stage stochastic programming with discretely distributed param-
eters is �P -hard.

PROOF. That the problem is�P -easycan be seen from the fact that for any realiza-
tion of the second-stage random parameters a linear program remains to be solved.

To prove�P -hardness, take any instance ofGRAPH RELIABILITY, i.e., a networkG =
(V ,A) with two prefixed nodesu and v in V . Introduce an extra arc fromv to u,
and introduce for each arc(i, j) ∈ A a variableyij . Give each arc a random weight
qij except for the arc(v, u) that gets weight 1. Let the weights be independent and
identically distributed (i.i.d.) with distributionPr{q = −2} = Pr{q = 0} = 1/2.
DenoteA′ = A ∪ (v, u). Now define the two-stage stochastic programming problem

max{−cx + Q(x) | 0 ≤ x ≤ 1}
with Q(x) = Eq [v(x, q)] and

v(x, q) = max
∑

(i,j)∈A

qij yij + yvu

s.t.
∑

i:(i,j)∈A′
yij −

∑
k:(j,k)∈A′

yjk = 0 ∀j ∈ V

yij ≤ x ∀(i, j) ∈ A.

The event{q = −2} corresponds to failure of the arc in the GRAPH RELIABILITY

instance. For a realization of the failures of the arcs, the network has a path fromu to v

if and only if in the corresponding realization of the weights there exists a path fromu

to v consisting of arcs with weight 0. The latter accounts for an optimal solution value
x of the corresponding realization of the second-stage problem, obtained by setting all
yij ’s corresponding to arcs(i, j) on this path andyvu equal tox, whereasyij = 0 for
all (i, j) not on the path. If for a realization the graph does not have a path fromu to
v, implying in the reduced instance that on each path there is an arc with weight−2
and vice versa, then the optimal solution of the realized second-stage problem is 0, by
setting allyij ’s equal to 0, and henceforth alsoyvu = 0). Therefore, the network has
reliability R if and only ifQ(x) = Rx and hence the objective function of the two-stage
problem is(R − c)x.

Thus, ifc ≤ R then the optimal solution isx = 1 with value(R − c), and ifc ≥ R then
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the optimal solution isx = 0 with value 0. SinceR can take only 2m possible values,
bisection allows to solve onlym two-stage stochastic programming problems to know
the exact value ofR. �

By total unimodularity of the restriction coefficients matrix in the proof, the same re-
duction shows that two-stage integer programming problem with discretely distributed
parameters is�P -hard.

Given a�P -oracle for evaluatingQ in any pointx, solving two-stage stochastic linear
programming problems (with discretely distributed random variables) will require a
polynomial number of consultations of the oracle, sinceQ is a concave function inx,
and maximizing a concave function over a convex set is known to be easy [26]. Thus,
two-stage stochastic linear programming is in the classP�P = �P .

Assuming a�P -oracle for evaluatingQ in any pointx of a two-stage stochastic integer
programming problem, makes the decision version of this problem a member ofNP .
The functionQ is not convex in this case, but there are a finite number of pointsx that
are candidate for optimality. Thus, the decision version of two-stage stochastic integer
programming is in the classNP�P .

In case the random parameters of the two-stage stochastic programming problem are
continuously distributed, the evaluation of the functionQ in a single point of its domain
requires the computation of a multiple integral. Most of the stochastic programming lit-
erature on this subclass of problems is concerned with how to get around this obstacle.
We give the complexity of this class of problems without proof.

Theorem 2.2 Two-stage stochastic programming problems with continuously dis-
tributed parameters is �P -hard, even if all stochastic parameters have the uniform
[0, 1] distribution.

The membership of this problem in�P requires additional conditions on the input
distributions, since exact computation may not even be inPSPACE.

3. Convex approximations for integer recourse problems

In this section we consider convex approximations for pure integer recourse models.
For such problems, the second-stage problem is necessarily defined using only inequal-
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ities. Moreover, in all models considered here only the right-hand side vectorh is ran-
dom. The second-stage value function is thus

v(x,h) := min
y

qy

s.t. Wy ≥ h − T x, x ∈ R
n, h ∈ R

m

y ∈ Z
n2+ ,

where the components ofW are assumed to be integers. Assuming complete and suf-
ficiently expensive recourse as before,v is a finite, discontinuous, piecewise constant
function; in particular,v is non-convex. It follows from Theorem 1.2 that the integer
recourse functionQ(x) = Eh [v(x,h)], x ∈ R

n, is continuous ifh is continuously
distributed, but in generalQ is non-convex.

However, for certain integer recourse models, characterized by their recourse matri-
cesW , a class of distributions ofh is known such that the corresponding recourse
functionQ is convex. Thus, for such integer recourse models we can construct convex
approximations of the functionQ by approximating any given distribution ofh by a
distribution belonging to this special class.

Below we first apply this approach to the simple integer recourse model. Subsequently,
we consider general complete integer recourse models, starting with the case of totally
unimodular recourse matrices.

3.1 Simple integer recourse

The simple integer recourse second-stage problem is defined as

min
y

q+y+ + q−y−

s.t. y+ ≥ h − T x,

y− ≥ −(h − T x),

y+, y− ∈ Z
m
+,

where the indices+ and− are conventionally used to indicate surplus and shortage,
respectively. This recourse structure is obviously complete, and it is sufficiently expen-
sive if q+ ≥ 0 andq− ≥ 0 (componentwise), as will be assumed from now on.

It is trivial to find a closed form for the simple integer recourse value function. Due to
the simple recourse structure, this function is separable in thetender variablesz := T x:

v(z,h) =
m∑

i=1

vi(zi,hi), z,h ∈ R
m,
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where

vi(zi,hi) = q+
i hi − zi�+ + q−

i �hi − zi�−, (3)

with s�+ := max{0, s�} and�s�− := max{0,−�s�}, s ∈ R. Since all functionsvi

have the same structure, we restrict the presentation to one such function, and drop the
index. It is straightforward to translate the results below back to the full-dimensional
case.

Given the closed form (3), it follows that the one-dimensional generic simple integer
recourse functionQ equals

Q(z) = q+
Eh

[h − z�+]+ q−
Eh

[�h − z�−] , z ∈ R, (4)

whereh ∈ R is a random variable. Throughout we assume thatEh [|h|] is finite, which
is necessary and sufficient for finiteness of the functionQ.

Lemma 3.1 Consider the one-dimensional simple integer recourse function Q de-
fined in (4).

(a) For all z ∈ R,

Q(z) = q+
∞∑

k=0

Pr{h > z + k} + q−
∞∑

k=0

Pr{h < z − k}.
(b) Assume that h has a pdf f that is of bounded variation. Then the right derivative

Q′+ exists everywhere:

Q′
+(z) = −q+

∞∑
k=0

f+(z + k) + q−
∞∑

k=0

f+(z − k), z ∈ R,

where f+ is the right-continuous version of f .

Theorem 3.1 The one-dimensional simple recourse function Q is convex if and only
if the underlying random variable h is continuously distributed with a pdf f that is of
bounded variation, such that

f+(s) = G(s + 1) − G(s), s ∈ R, (5)

where G is an arbitrary cdf with finite mean value.

Sufficiency of (5) is easy to see, since it implies that

Q′
+(z) = −q+ (1 − G(z)

)+ q−G(z + 1), z ∈ R, (6)
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is non-decreasing. Below we will make extensive use of the following special case.

Corollary 3.1 Assume that h is continuously distributed with a pdf f whose right-
continuous version is constant on every interval [α + k, α + k + 1), k ∈ Z, for some
α ∈ [0, 1). Then the function Q is piecewise linear and convex, with knots contained in
{α + Z}.

PROOF. Immediate from Theorem 3.1 and (6), sincef+(s) = G(s + 1) − G(s)

whereG is the cdf of a discrete distribution with support contained inα + Z. �

To arrive at convex approximations of the functionQ, we will use Corollary 3.1 to
construct suitable approximations of the distribution of the random variableh. For
future reference, we present the multivariate definition of the approximations that we
have in mind.

Definition 3.1 Let h ∈ R
m be a random vector with arbitrary continuous or discrete

distribution, and chooseα = (α1, . . . , αm) ∈ [0, 1)m. Definetheα-approximationhα

as the random vector with joint pdffα that is constant on every hypercubeCk
α :=∏m

i=1(αi + ki − 1, αi + ki], k ∈ Z
m, such that Pr{hα ∈ Ck

α} = Pr{h ∈ Ck
α}, k ∈ Z

m.

Returning to the one-dimensional case, it is easy to see that theα-approximationshα,
α ∈ [0, 1), of an arbitrary random variableh, satisfy the assumptions of Corollary 3.1.
It follows that theα-approximationsof the functionQ, defined forα ∈ [0, 1),

Qα(z) := q+
Ehα

[hα − z�+]+ q−
Ehα

[�hα − z�−] , z ∈ R,

are piecewise linear convex approximation ofQ, with knots contained in{α + Z}.
Moreover, it follows from Lemma 3.1 (a) and Definition 3.1 that

Qα(z) = Q(z), z ∈ {α + Z}.
We conclude that, for eachα ∈ [0, 1), Qα is the piecewise linear convex function
generated by the restriction ofQ to {α + Z}. See Figure 3.1 for an example of the
functionQ and one of itsα-approximations.

In the discussion above, no assumptions were made on the type of distribution ofh.
However, to establish a non-trivial bound on the approximation error, we need to as-
sume thath is continuously distributed. This loss of generality is acceptable, because
for the case with discretely distributedh it is possible to construct the convex hull of
the functionQ.
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Figure 3.1: The function Q and its α-approximation Qα (dashed) in case h is exponen-
tially distributed with parameter 5, q+ = 1, q− = 1.5, and α = 0.5.

Theorem 3.2 Assume that h is continuously distributed with a pdf f that is of
bounded variation. Then, for all α ∈ [0, 1),

‖Qα − Q‖∞ ≤ (q+ + q−)
|�|f

4
,

where |�|f denotes the total variation of f .

PROOF. We will sketch a proof for the special case thatq+ = 1 andq− = 0. The
proof for the general case is analogous.

Assume thatq+ = 1 andq− = 0. Then the functionQ reduces to the expected
surplus functiong(z) := Eh

[h − z�+], z ∈ R, with α-approximationsgα(z) :=
Ehα

[hα − z�+], α ∈ [0, 1). Sinceg(z) = gα(z) if z ∈ {α + Z}, consider an arbitrary
fixed z �∈ {α + Z}, and letz ∈ {α + Z} be such thatz < z < z + 1.
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Using Lemma 3.1 (b) we find that

g(z) − g(z) =
∫ z

z

∞∑
k=0

f (t + k)dt.

It follows from Lemma 2.5 in [20] that

1 − F(z) − |�|f
2

≤
∞∑

k=0

f (t + k) ≤ 1 − F(z) + |�|f
2

, t ∈ (z, z + 1),

so that(
1 − F(z) − |�|f

2

)
(z − z) ≤ g(z) − g(z)

≤
(

1 − F(z) + |�|f
2

)
(z − z). (7)

On the other hand, using Lemma 3.1 (a) we see that

g(s + 1) = g(s) − (1 − F(s)), s ∈ R.

Since the functionga coincides withg on {α + Z}, and moreovergα is linear on the
interval [z, z + 1], it follows that

g(z) − gα(z) = (1 − F(z))(z − z). (8)

Together, (7) and (8) imply

|gα(z) − g(z)| ≤ (z − z)
|�|f

2
, z ∈ [z, z + 1]. (9)

Similarly, by comparingg(z) andgα(z) to g(z + 1), one obtains

|gα(z) − g(z)| ≤ (z + 1 − z)
|�|f

2
, z ∈ [z, z + 1]. (10)

For α-approximations of expected surplus functiong, the claimed error bound now
follows from (9) and (10) on the observation that min{(z − z), (z + 1 − z)} ≤ 1/2.

Analogously, the same error bound can be derived for the special case withq+ = 0 and
q− = 1. The claim for the general case then follows trivially. �

The uniform error bound of Theorem 3.2 can be reduced by a factor 2 if the following
combination ofα-approximations is used. Forα ∈ [0, 0.5) andβ = α + 0.5, define the
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pdf

fαβ(s) = fα(s) + fβ(s)

2
, s ∈ R,

wherefα andfβ are density functions ofα-approximations as before. The resulting
convex approximationsQαβ of Q satisfy

‖Qαβ − Q‖∞ ≤ (q+ + q−)
|�|f

8
. (11)

It can be shown that this error bound can not be reduced by using other convex combi-
nations of pdf of typefα.

The error bound presented above is proportional to the total variation of the pdff

of h. For many distributions, e.g. with unimodal densities, the total variation of a pdf
decreases as the variance of the distribution increases. We may therefore expect that the
approximationQα becomes better as the variance of such distributions becomes higher.

Finally, we remark that convex approximations of the functionQ can be represented
as (one-dimensional)continuoussimple recourse functions. The latter functions are
defined like (4), except that no rounding operations are involved. In the case ofα-
approximations, the corresponding modification of the underlying distribution is known
in closed form [19].

Lemma 3.2 Let h be a continuous random variable with cdf F with finite mean
value, and α ∈ [0, 1). Then

Qα(z) = q+
Eϕα

[
(ϕα − z)+]+ q−

Eϕα

[
(ϕα − z)−]+ q+q−

q+ + q− , z ∈ R,

where ϕα is a discrete random variable with support in α + Z and, for k ∈ Z,

Pr{ϕα = α + k} = q+

q+ + q− Pr{h ∈ Ck
α} + q−

q+ + q− Pr{h ∈ Ck+1
α }.

We conclude that simpleinteger recourse functions can be approximated bycontinu-
ous simple recourse functions withdiscretely distributedright-hand side parameters,
simply by dropping the integrality restrictions and a modification of the distribution
according to Lemma 3.2. The resulting convex problem can be solved using existing
algorithms for continuous simple recourse problems with discrete underlying distribu-
tions.
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3.2 Complete integer recourse

We now turn to the much more general class of complete integer recourse models. In
addition to completeness and sufficiently expensive recourse, so thatv is finite, we
assume that the recourse matrixW is integer (or rational, so that integrality ofW can
be obtained by scaling). We will see that also in this caseα- approximations of the
distribution ofh lead to convex approximations of the recourse functionQ. In fact, if
the recourse matrix istotally unimodular(TU) then this approach leads to the convex
hull of Q. Below we first derive the results for this special case.

BecauseW is TU, the extreme points of the feasible set{y ∈ R
n2 : Wy ≥ h} are

integral for any integer right-hand sideh. However, in our recourse problem the right-
hand sideh − T x is not an integer vector in general. But sinceWy is integral for all
y ∈ Z

n2 we may round up the right-hand-side. Due to the assumption thatW is TU, we
may now relax the integrality restrictions ony, without changing the optimal value of
the problem. That is,

v(x,h) := min
y

qy

s.t. Wy ≥ h − T x, y ∈ Z
n2+

= min
y

qy

s.t. Wy ≥ h − T x�, y ∈ R
n2+

(12)

= max
λ

λh − T x�
s.t. λW ≤ q, λ ∈ R

m
+,

(13)

where the last equality follows from (strong) LP duality.

Since the recourse structure is complete and sufficiently expensive, it follows that the
dual feasible region
 := {λ ∈ R

m
+ : λW ≤ q} is a bounded, non-empty polyhedral

set. Hence,

v(x,h) = max
k=1,...,K

λkh − T x�, x ∈ R
n,h ∈ R

m, (14)

whereλk, k = 1, . . . , K, are the finitely many extreme points of the dual feasible set

.

Thus,v is the maximum of finitely many round up functions, and hence non-convex.
However, as we will see below, the recourse functionQ is convex if the underlying
distribution ofh is of a certain type. Analogous to the simple recourse case, this allows
the construction of convex approximations ofQ by means of special purpose approxi-
mations of the distribution.
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To set the stage, we first study the expected round up function

R(z) := λEh [h − z�] , z ∈ R
m,

defined for any fixedλ ∈ R
m.

If m = 1, λ = 1, andh is continuously distributed, then

R(z) = Eh
[h − z�+]− Eh

[�h − z + 1�−] , z ∈ R, (15)

sinces� = s�+ − s�−, s ∈ R, ands�− = �s + 1�− for all s �∈ Z. The right-
hand side of (15) is very similar to the one-dimensional simple recourse function with
q+ = 1 andq− = −1. Hence, in view of Corollary 3.1 it is not surprising that this one-
dimensional functionR is convex ifh has a piecewise constant pdf of the type specified
in that lemma. This result can be generalized tom-dimensional round up functions.

Lemma 3.3 Let h ∈ R
m be a continuous random vector with joint pdf fh that is

constant on every hypercube Ck
α := ∏m

i=1(αi +ki −1, αi +ki], k ∈ Z
m, for an arbitrary

but fixed α = (α1, . . . , αm) ∈ [0, 1)m. Then

Eh [h − z�] = Eϕα

[
ϕα − z

] = µα − z, z ∈ R
m,

where ϕα = h − α� + α is a discrete random vector with mean value µα and support
in α + Z

m, with

Pr{ϕα = α + k} = Pr{h ∈ Ck
α}, k ∈ Z

m.

Hence, in this case the round up function R(z) = λEh [h − z�], z ∈ R
m, is affine with

gradient −λ.

PROOF. We use that

Eh [h − z�] =
∑
k∈Z

m

Pr{h ∈ Ck
α}Eh

[h − z� ∣∣ h ∈ Ck
α

]
, z ∈ R

m. (16)

For each fixedk ∈ Z
m, Pr{h ∈ Ck

α} is either zero or the conditional distribution of
h given h ∈ Ck

α is uniform onCk
α. In that case, the components of the vectorh are

independent random variables onCk
α, with eachhi uniformly distributed on(αi + ki −

1, αi + ki], i = 1, . . . , m. Hence, writing each component as in (15) and applying
Lemma 3.2 to each term individually, it follows that

Eh

[h − z� ∣∣ h ∈ Ck
α

] = α + k − z, z ∈ R
m. (17)

Substitution of (17) in (16) proves the first claim.
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The second claim follows trivially from the first one. �

Based on Lemma 3.3, we defineα-approximations of the functionR: for α ∈ [0, 1)m,

Rα(z) := λEhα
[hα − z�] , z ∈ R

m.

In general, anα-approximation is neither a lower bound nor an upper bound. However,
sinceR(z + k) = R(z) − λk, k ∈ Z

m, for everyz, we see thatR(z) + λz is a periodic
function, which repeats itself on every setCk

α. Thus, defining

α� ∈ argmin
{
R(z) + λz : z ∈ [0, 1)m

}
, (18)

Rα� is a lower bound forR, which is sharp at everyz ∈ α� + Z
m. By construction, the

affine functionRα� is actually the convex hull ofR.

The componentsα�
i , i = 1, . . . , m, of the parameter vectorα� can independently be

determined analytically in almost all practical cases. If the marginal distribution ofhi
is continuous, one-sided derivatives of the functionRi(zi) := λiEhi

[hi − zi�] (anal-
ogous to Lemma 3.1) are used; if it is discrete with finitely many different fractional
values in its support, the computation ofα�

i is based on the direct relation between these
fractional values and discontinuities of the lower semicontinuous functionRi.

Now we are ready to prove the main result for this class of models with TU recourse
matrix. Using the dual representation (14) of the value functionv, we have

Q(x) = Eh

[
max

k=1,...,K
λkh − T x�

]
, x ∈ R

n.

Note thatQ is not simply the pointwise maximum of a number of expected round up
functionsR. However, the results above for the functionR play a major role in the
proof of Theorem 3.3.

Theorem 3.3 Consider the integer recourse expected value function Q, defined as

Q(x) = Eh

[
min

y
qy : Wy ≥ h − T x, y ∈ Z

n2+

]
, x ∈ R

n1, (19)

Assume that

(i) the recourse is complete and sufficiently expensive, and
(ii) the recourse matrix W is totally unimodular.

If

(iii) the matrix T is of full row rank,
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then the convex hull of Q is the continuous recourse expected value function Qα� , de-
fined as

Qα�(x) = Eϕα�

[
min

y
qy : Wy ≥ ϕα� − T x, y ∈ R

n2+

]
, x ∈ R

n1, (20)

where α� is defined by (18), and ϕα� is the discrete random vector ϕα� = h−α��+α�

with support in α� + Z
m, and

Pr{ϕα� = α� + k} = Pr{h ∈ Ck
α�}, k ∈ Z

m.

If condition (iii) is not satisfied, then Qα� is a lower bound for Q.

PROOF. We will prove thatQα� is the convex hull ofQ if T is of full row rank. The
other case then follows from Theorem 2.2 in [17].

Assuming thatT is of full row rank, we may conveniently considerQ as a function of
the tender variablesz := T x ∈ R

m.

First we will prove thatQα� is a lower bound forQ, and subsequently thatQα�(z) =
Q(z) for all z ∈ α� + Z

m. This completes the proof, since all vertices of the polyhedral
functionQα� are contained inα� + Z

m.

Using the dual representation (14) of the value functionv, we have

Q(z) = Eh

[
max

k=1,...,K
λkh − z�

]
, z ∈ R

m,

and, analogously,

Qα�(z) = Eϕα�

[
max

k=1,...,K
λk(ϕα� − z)

]
, z ∈ R

m.

Conditioning on the eventsh ∈ Cl
α�, l ∈ Z

m, we obtain, forz ∈ R
m,

Q(z) =
∑
l∈Z

m

Pr{h ∈ Cl
α�} Eh

[
max

k=1,...,K
λkh − z� ∣∣ h ∈ Cl

α�

]

≥
∑
l∈Z

m

Pr{h ∈ Cl
α�} max

k=1,...,K
λk

Eh

[h − z� ∣∣ h ∈ Cl
α�

]

≥
∑
l∈Z

m

Pr{h ∈ Cl
α�} max

k=1,...,K
λk

Ehα�

[hα� − z� ∣∣ hα� ∈ Cl
α�

]

=
∑
l∈Z

m

Pr{h ∈ Cl
α�} max

k=1,...,K
λk
(
α� + l − z

)
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=
∑
l∈Z

m

Pr{ϕα� = α� + l} max
k=1,...,K

λk
(
α� + l − z

) = Qα�(z).

The second inequality is valid because eachλk is nonnegative, so that theα-approxima-
tion λk

Ehα�

[hα� − z� ∣∣ hα� ∈ Cl
α�

]
is a lower bound forλk

Eh
[h − z� ∣∣ h ∈ Cl

α�

]
by

the choice ofα�. The subsequent equality holds by Lemma 3.3.

It remains to prove thatQα� = Q on α� + Z
m. Consider a fixed̄z ∈ α� + Z

m and a
fixed l ∈ Z

m. Thenh − z̄� = l − �z̄� is constant for allh ∈ Cl
α, so that there exists a

λ(z̄, l) satisfying

λ(z̄, l) ∈ argmax
k=1,...,K

λkh − z̄� ∀h ∈ Cl
α.

Since this is true for everȳz ∈ α� + Z
m andl ∈ Z

m, it follows that, forz ∈ α� + Z
m,

Q(z) =
∑
l∈Z

m

Pr{h ∈ Cl
α�} λ(z, l) Eh

[h − z� ∣∣ h ∈ Cl
α�

]

=
∑
l∈Z

m

Pr{h ∈ Cl
α�} λ(z, l) Ehα�

[hα� − z� ∣∣ hα� ∈ Cl
α�

]

=
∑
l∈Z

m

Pr{h ∈ Cl
α�} λ(z, l)

(
α� + l − z

)

=
∑
l∈Z

m

Pr{h ∈ Cl
α�} max

k=1,...,K
λk
(
α� + l − z

)
.

The second equality follows from the fact that eachα-approximation is sharp onα+Z
m.

The last equality follows from the definition ofλ(z, l) andϕl
α� − z = l − �z�, z ∈

α� + Z
m. �

We conclude that if the recourse matrixW is totally unimodular, then the integer com-
plete recourse problem with recourse functionQ can be approximated by the continu-
ous complete recourse problem with recourse functionQα�. To construct this approxi-
mation, the integer restrictions on the second-stage variables are dropped, and the dis-
tribution of the right-hand side parameters is modified according to Theorem 3.3. The
resulting continuous complete recourse problem with discretely distributed right-hand
side parameters can be solved by existing special purpose algorithms [2, 16].

In particular, if the matrixT is of full row rank, then solving the approximating problem
will yield the true optimal solution, at least if the first-stage constraints are not binding.

Finally, we drop the assumption thatW is TU. In this case, we will prove thatQα� is
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a strictly better convex approximation than the one obtained using the LP relaxation of
the second-stage problem. The latter convex function will be denoted byQLP , defined
as

QLP (x) := Eh

[
min

y

{
qy : Wy ≥ h − T x, y ∈ R

n2+
}]

, x ∈ R
n1. (21)

Theorem 3.4 Consider the functions Qα� and QLP , defined by (20) and (21) re-
spectively, which both are convex lower bounds for the integer recourse expected value
function Q, defined by (19).

(a) Qα� ≥ QLP

(b) Assume
(i) q ≥ 0, so that 0 is a trivial lower bound for v and Q;

(ii) there exists a subset L of Z
m such that the support  is a subset of⋃

l∈L {h : h ≤ α� + l} and Pr{h < α� + l
∣∣ h ∈ Cl

α� } > 0 for all l ∈ L.
Then the function Qα� is a strictly better convex approximation of Q than QLP ,
in the sense that Q(x) > 0 implies Qα�(x) > QLP (x).

PROOF. As before, we condition on the eventsh ∈ Cl
α�, l ∈ Z

m, to obtain, for
x ∈ R

n1,

Qα�(x) =
∑
l∈Z

m

Pr{h ∈ Cl
α�} max

k=1,...,K
λk
(
α� + l − T x

)
(22)

and

QLP (x) =
∑
l∈Z

m

Pr{h ∈ Cl
α�} Eh

[
max

k=1,...,K
λk (h − T x)

∣∣ h ∈ Cl
α�

]
. (23)

For eachl ∈ Z
m it follows from the definition ofCl

α� = ∏m
i=1

(
α�

i + li − 1, α�
i + li

]
that

α� + l ≥ h for all h ∈ Cl
α�. Thus, fork = 1, . . . , K, λk (α� + l − T x) ≥ λk (h − T x)

for all h ∈ Cl
α�, sinceλk ≥ 0. Substitution in (22) and (23) proves thatQα� ≥ QLP .

To prove (b), we first show thatQ(x) > 0 impliesQα�(x) > 0. To this end, define

N(x) := {
t ∈ R

m : v(t − T x) > 0
}
, x ∈ R

n1.

ThenQ(x) > 0 if and only if Pr{h ∈ N(x)} > 0, which is equivalent to Pr{h ∈
int N(x)} > 0 sinceN(x) is an open set. By Definition 3.1, it follows that then also
Pr{hα ∈ N(x)} > 0, which impliesQα(x) > 0 for all α ∈ [0, 1)m.

Let x be such thatQ(x) > 0, implyingQα�(x) > 0. Then, since each term of (22) is
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non-negative by assumption (i), there exists anl̄ ∈ L such that

max
k=1,...,K

λk
(
α� + l̄ − T x

)
> 0;

obviously, any optimal solution̄λ of this problem satisfies̄λ �= 0. For an arbitrary but
fixed h̄ ∈ Cl

α� such that̄h < α� + l̄, it holds

λ
(
h̄ − T x

) ≤ λ
(
α� + l̄ − T x

) ∀λ ≥ 0,

with strict inequality unlessλ = 0. Letλ̂ be an optimal solution of maxk λk
(
h̄ − T x

)
.

Then there are two possibilities:

(i) λ̂ = 0, so that̂λ
(
h̄ − T x

) = 0 < λ̄
(
α� + l̄ − T x

)
;

(ii) λ̂ �= 0, so that̂λ
(
h̄ − T x

)
< λ̂

(
α� + l̄ − T x

) ≤ λ̄
(
α� + l̄ − T x

)
.

We conclude that, for all̄h ∈ Cl̄
α� with h̄ < α� + l̄,

max
k=1,...,K

λk
(
α� + l̄ − T x

)
> max

k=1,...,K
λk
(
h̄ − T x

)
. (24)

Since Pr{h < α� + l̄ | h ∈ Cl̄
α�} > 0 by assumption (ii), and (24) holds with weak

inequality for allh ∈ Cl̄
α�, it follows that

max
k=1,...,K

λk
(
α� + l̄ − T x

)
> Eh

[
max

k=1,...,K
λk (h − T x)

∣∣∣ h ∈ Cl̄
α�

]
. (25)

Finally, using that (25) holds with weak inequality for alll ∈ Z
m, we see from (22) and

(23) thatQα�(x) > QLP (x). �

For example, condition (b) (ii) of Theorem 3.4 is satisfied ifh follows a non-degenerated
continuous distribution.

Note that the distribution ofϕα� as defined in Theorem 3.3 is always discrete, no matter
what kind of distributionh follows. Thus, in particular ifh is continuously distributed,
Qα� is not only a better approximation ofQ, it is alsocomputationally more tractable
thanQLP which in this case is defined as anm-dimensional integral.

4. Hierarchical planning models

Consider a two-level decision situation. At the higher level, aggregate decisions are
made concerning acquisition of resources. At the lower level, one has to decide on the
actual allocation of the resources. The time horizon for aggregate decisions in such
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hierarchical decision problemsmay range from several months to a year. At the time
aggregate decisions are made much detailed information of what will ultimately be
required of the resources is not yet known with certainty. As mentioned in the intro-
duction, two-stage stochastic programming is the right tool to model the lower level of
hierarchical planning problems accurately, using stochastic parameters for which prob-
ability distributions are specified. The objective at the higher level is to minimize known
costs at that level plus the expected objective value of optimal lower level decisions.

We focus on hierarchical planning problems with detailed-level problems which are of
a combinatorial nature. This class of problems includes hierarchical scheduling prob-
lems, hierarchical vehicle routing problems, and hierarchical knapsack problems (cap-
ital budgeting problems). We will consider the design and analysis of approximation
algorithms for such problems. In management science literature such algorithms are of-
ten calledhierarchical planning systems. We diverge here from the previous section by
not aiming at approximation algorithms for the stochastic integer programming prob-
lem in which all hierarchical combinatorial optimization problems can be formulated,
but instead at algorithms tailored to the specific particular hierarchical combinatorial
optimization problems. We use as an example a hierarchical scheduling problem and
apply probabilistic analysis to measure the performance quality of an approximation
algorithm for this problem

Consider the followinghierarchical scheduling problem. At the time machines are to
be installed only probabilistic information is available on the jobs to be processed. The
two-stage stochastic programming model of this problem has to select the number or
the types of the machines so as to minimize the installation costs of the machines plus
the expected cost of processing the jobs optimally on the installed machines.

In this problem, the machines to be installed at the aggregate level are identical and
work in parallel. Installation of each machine costsc. A decision is required on the
number of machines to be installed. Ifx denotes this number, then the installation costs
arecx.

There areN jobs to be processed and each jobj requires processing for a timetj ,
j = 1, . . . , N . At the time the machines are purchased, there is only probabilistic in-
formation about the processing times of the jobs. A schedule of the jobs on the available
machines is feasible if each job gets assigned one time interval of length equal to its
processing time on one of the machines, and each machine processes only one job at
a time. The makespan of a set of jobs is the time by which the last job is completed
in a feasible schedule. The objective is to minimize the sum of installation costs of the
machines and the expected makespan of the jobs on the available machines. (To make
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dimensions compatible assume, without loss of generality, that the cost per time unit in
the second-stage schedule is equal to 1.)

Let v∗(x, t) denote the optimal second-stage costs, which is a random variable, a func-
tion of the random processing times of the jobst = (t1, . . . , tN). LetQ(x) = Et [v∗(x, t)]
denote its expectation. Then the objective is minz(x) = cx + Q(x). Let x∗ denote the
optimal solution.

From Section 2 we know that computingQ(x) is a formidable task. Even if the distribu-
tion of t would be given by discrete probabilities over a set of vectors, the deterministic
equivalent problem is NP-hard, since computing the optimal makespan of a set of jobs
on more than one machine is NP-hard. The approximation algorithmH consists of
replacingQ(x) by a simple functionQH (x) as an approximate.

Obviously, given a realizationt of t,
∑N

j=1 tj /x, the makespan of the schedule in which
all x machines have equal workload, is a lower bound onv∗(x, t):

v∗(x, t) ≥
N∑

j=1

tj /x. (26)

We choose to takeQH(x) = Et

[∑N
j=1 tj

]
/x as an approximate value forQ(x). If we

assuming for simplicity thatt1, . . . , tN have equal meanµ thenQH (x) = Nµ/x. We
solve the approximate problem

minzH (x) = cx + QH(x). (27)

zH (x) is a convex function anddzH

dx
= 0 atx = √

Nµ/c. Since the number of machines
must be integer, we use discrete optimization to find thatxH = √Nµ/c + 1/4−1/2�
is an optimal solution. The outcome of the approximation algorithm is thenz(xH ).

Taking expectations in (26) yieldsQ(x) ≥ QH (x). Hencez(x) ≥ zH (x) for all x, and
therefore

minz(x) = z(x∗) ≥ zH (xH ) = cxH + QH(xH ) ≥ 2
√

cNµ. (28)

To estimate the quality of the approximation we aim to find an appropriate upper bound
on zH (xH ) in terms ofz(x∗). It is well-known [14] that the list scheduling rule, which
assigns the jobs in an arbitrary order to the machines and each next job is assigned to
the earliest available machine, yields the following upper bound on the makespan for
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any number of machinesx given any realizationt of t:

v∗(x, t) ≤
N∑

j=1

tj /x + max
j=1,...,N

tj .

In particular forxH , denotingtmax = maxj=1,...,N tj and taking expectations yields

Q(xH ) ≤ QH(xH ) + Et [tmax] .

Hence,

z(xH ) ≤ cxH + QH(xH ) + Et [tmax] . (29)

Together, (28) and (29) give a bound on the worst-case performance ratio of the ap-
proximation algorithm.

Lemma 4.1

z(xH )

z(x∗)
≤ 1 + Et [tmax]

2
√

cNµ
.

Probability theory (see e.g. [34]) tells us that

Lemma 4.2 If t1, . . . , tN have finite second moments, then

lim
N→∞

Et [tmax] /
√

N = 0.

This probabilistic result applied to Lemma 4.1 yields asymptotic optimality of the ap-
proximation algorithm.

Theorem 4.1 If t1, . . . , tN have finite second moments then

lim
N→∞

z(xH )

z(x∗)
= 1.

PROOF. The combination of Lemmas 4.1 and 4.2 implies limN→∞ z(xH )

z(x∗) ≤ 1. Clearly,
z(xH )

z(x∗) ≥ 1. �

The above shows something more than asymptotic optimality. In replacing the expected
second-stage optimal costs by an estimate, the NP-hardness of the second-stage prob-
lem is not taken into consideration. This could imply that we take the estimate of a
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quantity that we are unable to compute efficiently once we obtain a realization of the
second-stage parameters (the processing times of the jobs).

However, as we have seen, asymptotic optimality is proved by comparing the solution
given by the algorithm to a solution based on a polynomial time approximation algo-
rithm for the second-stage problem. It implies that optimality is retained even if we use
a simple approximation algorithm to solve the second-stage problem.

We could also assess the quality of an algorithm that usesxH as the number of machines
and list scheduling for the second-stage problem onxH machines. The solution value
is a random variablezLS(xH , t) = cxH + vLS(xH , t). One could wonder how close
this value is to the solution value of an algorithm that selectsx∗ machines and upon
a realization of the processing times is able to select the optimal schedule on thosex∗
machines. Let denote this solution value byz∗(x∗) = cx∗ + v∗(x∗, t).

Or one could even wonder howzLS(xH , t) compares to the solution value of an optimal
clairvoyant algorithm that is able to know the realization of the processing times be-
fore deciding the number of machines to be installed. In this case the optimal number
of machines becomes a random variable denoted byx0(t). Let us denote the optimal
solution value in this case byz0(x0(t), t) = cx0(t) + v∗(x0(t), t). This is the solution
of the model that in stochastic programming is called thedistribution model. In more
popular terms it is called thewait and seemodel for obvious reasons opposed tohere
and nowmodel used for the two-stage model. The approximation algorithm presented
above appears to have the strong asymptotic optimality property that, again under the
assumption that the random processing times have finite second moments,

lim
N→∞

zLS(xH , t)
z0(x0(t), t)

= 1,

with probability 1, or almost surely. A sequence of random variablesy1, . . . , yN is said
to converge almost surely to a random variabley if Pr{limN→∞ yN = y} = 1. The
proof is similar to the proof of Theorem 4.1. Under some mild extra conditions on the
random variables, which are satisfied for example if the distributions of all random
variables have bounded support, this asymptotic quality guarantee implies directly that

lim
N→∞

zLS(xH , t)
z∗(x∗, t)

= 1,

almost surely. It also implies the result of Theorem 4.1.

The ideas used above in constructing an asymptotically optimal approximation algo-
rithm for the two-stage stochastic scheduling problem are applicable more generally.
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Given a two-stage combinatorial optimization problem replace the value function by
an estimate that is asymptotically accurate and use an asymptotically optimal approxi-
mation algorithm for the second-stage problem in case this problem is NP-hard.

5. Worst-case performance analysis

As an example of worst-case performance analysis of approximation algorithms for
stochastic optimization problems we consider a service provision problem. Actually, to
the best of our knowledge it is the only example of this type of analysis in stochastic
programming. In that sense, a rich research area lies nearly unexplored.

The problem we study concerns provision of services from a resource. For each of
a given set of services there are requests from customers. In order to meet a request
for a service, the service has to be installed and once installed, the request has to be
served. Both installation and provision of a service requires capacity from the same
resource. The resource has limited capacity. Each request served yields a given profit.
The problem is to select a subset of the services to be installed and to decide which
customer requests to serve, such as to maximize the total profit by serving requests.

If all demands for services are known in advance, the problem is NP-hardin the ordi-
nary senseand a fully-polynomial time approximation scheme exists.

We study the problem with uncertain demand for services. The uncertainty is repre-
sented by a discrete probability distribution over the demands. The two-stage stochastic
programming problem is to select services to be installed such as to maximize expected
profit of serving requests for services. We will show that this problem isstronglyNP-
hard. Thus, the complexity of the problem increases by introducing stochasticity.

We analyse the performance of an approximation algorithm for this problem under
the restriction that the resource has enough capacity to install all services. It may not
be optimal to install all of them since it may leave too little capacity for serving the
requests.

We start with formulating the problem as a two-stage stochastic integer programming
problem. Letn be the number of services ands the capacity of the single resource.
Let qj be the profit obtained from allocating one resource unit to meeting demand
for service,j . Each servicej requires a resource capacityrj to be installed, which is
independent of the demand met. Demand is denoted by the random vectord ∈ R

n, with
dj denoting the demand for servicej . Binary decision variableszj are used to indicate
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whether servicej is installed (zj = 1), or not (zj = 0),j = 1, . . . , n. Decision variable
xj gives the amount of resource used to meet demand for servicej . The two-stage
stochastic programming formulation becomes:

max Ed [v(z, d)]

s.t.
n∑

j=1

rj zj ≤ s

zj ∈ {0, 1} j = 1, . . . , n,

with

v(z, d) = max
n∑

j=1

qjxj

s.t.
n∑

j=1

xj ≤ s −
n∑

j=1

rj zj

xj ≤ dj zj j = 1, . . . , n,

xj ≥ 0 j = 1, . . . , n.

The second-stage problem is to set the values of the variablesxj under two constraints:
thecapacity constraintensuring that resource capacity is not exceeded and thedemand
constraintensuring that demand is not exceeded and met only for services that have
been installed. The constraint in the first stage ensures relatively complete recourse; i.e.
for every first stage solution that is feasible with respect to the first stage constraints,
the resulting second-stage problem is feasible for every realization of the random pa-
rameters.

Let K be the number of scenarios describing the probability distribution on demand,
pk the probability that scenariok occurs, anddk

j the demand for servicej in scenario
k. Given the scenarios the the following deterministic equivalent linear mixed integer
program can be formulated, in which we usexjk to denote the resource allocated to
providing servicej in scenariok (we use a subscript instead of superscript fork here
because of notational convenience later on).

max
K∑

k=1

pk

n∑
j=1

qjxjk

s.t.
n∑

j=1

(rj zj + xjk) ≤ s k = 1, . . . , K,

dk
j zj − xjk ≥ 0 j = 1, . . . , n, k = 1, . . . , K,

zj ∈ {0, 1}, xjk ≥ 0 j = 1, . . . , n, k = 1, . . . , K.

(30)
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Though integrality conditions only hold for the first stage variableszj , if the data,
resource capacity, installation requirements, and demands are integral, the second stage
will have an integer solution in every scenario.

Theorem 5.1 The stochastic single resource service provision problem is strongly
NP-hard.

PROOF. The natural recognition version of this problem obtained by introducing a
number
 and asking if there is a feasible solution with objective value at least
 is
in NP, following directly from the deterministic equivalent formulation. To see that
it is strongly NP-Complete consider a reduction from the well-known strongly NP-
Complete vertex cover problem (see [13]):

Given a graphG = (V ,E) with |V | vertices and|E| edges and a con-
stantκ, does there exist a subsetV ′ of the vertices, such that each edge
in E is incident to at least one vertex inV′, and such that|V ′| ≤ κ?

For every vertexj ∈ V introduce a servicej with installation requirementα = 1
κ|E| .

For every edge introduce a scenario with demand 1 for the two services incident to
it and demand 0 for all other services. Let all scenarios have probability1

|E| . Define
qj = |E| ∀j ∈ V , s = κα + 1 (resource capacity), and
 = |E|.
If there exists a vertex cover of size at mostκ then there is a solution to the instance of
the stochastic service provision problem with total expected profit at least|E|. Install
the services corresponding to the vertices in the vertex cover. Then for each scenario
(edge) at least one of the services with demand 1 is installed. The total capacity used by
the installation of the services is at mostκα leaving at least capacity 1 in each scenario
to satisfy demand.

The other direction is a bit more complicated. Suppose there does not exist a vertex
cover of sizeκ or less. Then installing all services corresponding to a vertex cover
would use node capacity strictly greater thanκα leaving strictly less than 1 for meeting
demand in each of the|E| scenarios, making a total expected profit of at least|E|
unattainable. Installing any set of services of sizeL < κ would leave(κ −L)α+1 node
capacity for meeting demand in each scenario. However, at least one edge will remain
uncovered, implying that there is at least one scenario in which both services with a
positive demand are not installed. With at most|E|−1 scenarios the expected profit will
be at most(|E|−1)((κ−L)α+1) ≤ (|E|−1)(κα+1) = (|E|−1)( 1

|E| +1) < |E| = 
.
�
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As announced, we assume that
∑n

j=1 rj ≤ s. Moreover, to facilitate the exposition
the assumption is made that no demand is higher than the node capacity minus the
corresponding installation requirement: For any servicej in any scenariok, dkj ∈ [0, s−
rj ]. If necessary, this can be ensured by preprocessing.

The approximation algorithm that we will present is based on rounding the optimal
solution of the LP-relaxation of problem (30), obtained by replacing the binary restric-
tions on thez-variables by 0≤ zj ≤ 1, j = 1, . . . , n. To facilitate the exposition we
assume, without loss of generality, that the resource capacitys is equal to 1.

Let (zLP, xLP) be an optimal basic solution of the LP relaxation. Let� be the number
of fractionalzLP

j and let�w of these services haverj ≤ w for some 0< w < 1 to be

chosen later. LetZ be the set of services withzLP
j = 1. By renumbering the services if

necessary, assume that 0< zLP
j < 1 andrj ≤ w for j = 1, . . . , �w and 0< zLP

j < 1
andrj > w for j = �w + 1, . . . , �. Write the optimal LP value as

πLP = πLP
0 + πLP

1 + πLP
2 (31)

where

πLP
0 =

∑
j∈Z

K∑
k=1

pkqjx
LP
jk ,

πLP
1 =

�w∑
j=1

K∑
k=1

pkqjx
LP
jk ,

and

πLP
2 =

�∑
j=�w+1

K∑
k=1

pkqjx
LP
jk .

Feasible solutions generated from the LP solution constitute the approximation algo-
rithm, which selects from those solutions the best one. The algorithm is therefore a
kind of rounding algorithm and we denote its solution value byπR. Let πOPT denote
the optimal solution value of the stochastic integer program.

The first feasible solution is obtained by installing servicej if and only if zLP
j = 1; i.e.,

install all servicesj ∈ Z. The remaining capacity is then allocated to serve demand for
the installed services in a greedy way, in order of non-increasingqj values. Denote the
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resulting solution by(zG, xG) and its value byπG. Then, obviously,

πLP
0 ≤ πG ≤ πR. (32)

The next set of feasible solutions is used to boundπLP
1 . DefineA = ∑�

j=1 rj z
LP
j and

note that
∑�w

j=1 xLP
jk ≤ 1 − A for eachk = 1, . . . , K. Partition the set{1, . . . , �w} into

I subsets,{Si}I
i=1, such that∑

j∈Si

rj ≤ β + w i = 1, . . . , I

and ∑
j∈Si

rj ≥ β i = 1, . . . , I − 1, (33)

for some constantβ > 0 to be chosen later, such thatβ + w < 1. Notice that
∑

j∈SI
rj

is allowed to be smaller thanβ. In the algorithm this partition is made in the most
simple way, starting filling setS1 until addition of the next service would make the sum
of installation requirements exceedβ + w. This service is then the first one ofS2, etc.

In the optimal solution of the LP relaxation at most 1−A units of capacity are available
for thex variables. Installing only the services in one of the setsSi will leave at least
1 − β − w units of capacity available. Thex-variable values from the LP relaxation
solution corresponding to services inSi may be scaled down, if necessary, to use a total
of no more than 1− β − w units of capacity in each scenario.

For eachi = 1, . . . , I we obtain a feasible solution(zHi , xHi ) with z
Hi

j = 1 for j ∈ Si,

z
Hi

j = 0 for j /∈ Si, x
Hi

jk = γ xLP
jk for j ∈ Si, k = 1, . . . , K andx

Hi

jk = 0 for j /∈ Si and
all k, where

γ =



1 − β − w

1 − A
if β + w ≥ A,

1 otherwise.
(34)

The objective value of solution(zHi , xHi ) is

πHi =
∑
j∈Si

K∑
k=1

pkqjx
Hi

jk = γ
∑
j∈Si

K∑
k=1

pkqjx
LP
jk .

Hence,

πLP
1 =

I∑
i=1

∑
j∈Si

K∑
k=1

pkqjx
LP
jk = 1

γ

I∑
i=1

πHi ≤ I

γ
πR (35)
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By the assumption
∑n

j=1 rj ≤ s and the definition of the setsSi (specifically (33)) we
have

1 ≥
n∑

j=1

rj ≥
�w∑

j=1

rj =
I∑

i=1

∑
j∈Si

rj ≥ (I − 1)β. (36)

Thus,I ≤ 1 + 1/β which inserted in (35) implies that

πLP
1 ≤ β + 1

βγ
πR. (37)

The last set of feasible solutions considered by the algorithm consists of installing each
servicej = �w + 1, . . . , � (having rj ≥ w) individually. SinceA = ∑�

j=1 rj z
LP
j ≥∑�

j=�w+1 rj z
LP
j ≥ w

∑�
j=�w+1 zLP

j , we have

�∑
j=�w+1

zLP
j ≤ A

w
.

Just installing servicej has objective valueqjE[δj ], since we have assumed that for
any servicej in any scenariok. dk

j ∈ [0, s − rj ]. Satisfying the demand constraints

implies that
∑K

k=1 pkxLP
jk ≤ E[δj ]zLP

j . Altogether this yields the following bound.

πLP
2 =

�∑
j=�w+1

K∑
k=1

pkqjx
LP
jk

≤
�∑

j=�w+1

qjE[δj ]zLP
j

≤ πR

�∑
j=�w+1

zLP
j ≤ A

w
πR ≤ A

w
πOPT (38)

Combining (32), (37), and (38) gives

πLP ≤
(

1 + β + 1

βγ
+ A

w

)
πR (39)

Theorem 5.2 Under the assumption that
∑n

j=1 rj ≤ 1, the approximation algorithm
has worst-case performance ratio

πOPT

πR
≤ (5 + 2

√
3).
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PROOF. The choice ofw and β depends onA in (39). WhenA < 1
2 take w =

1 − 1
2

√
3 andβ = −1

2 + 1
2

√
3 and whenA ≥ 1

2 takew = β = 1
2A. In both cases

w + β ≥ A, and thereforeγ = 1−β−w

1−A
. In the former case (39) leads to

πOPT ≤ πLP ≤
(

1 + 2(1 + √
3)(1 − A)

−1 + √
3

+ A

1 − 1
2

√
3

)
πR

=
(

1 + (1 + √
3)2(1 − A) + 4(1 + 1

2

√
3)A

)
πR

= (5 + 2
√

3)πR.

In the latter case (39) leads to

πOPT ≤ πLP ≤
(

4 + 2

A

)
πR ≤ 8πR ≤ (5 + 2

√
3)πR.

�

We notice that so far tightness of the bound has not been established. There exist an
instance in which the ratio between the LP-bound and the optimal value is 4 and an in-
stance for which the algorithm has ratio 2. The results show the possibilities of achiev-
ing worst-case performance results for approximation algorithms for stochastic inte-
ger programming problems. It is worthwhile to stress once more that the deterministic
counterpart of the problem, having the same number of binary decision variables, is
weakly NP-hard. Thus, the complexity of the problem increases by introducing stochas-
ticity, even if it only means adding continuous decision variables for each scenario of
the problem.

6. Notes

Stochastic programming models date back to the fifties [5, 3]. Several surveys on
stochastic programming have appeared of which we mention here the introductory
book of Kall and Wallace [16] and the comprehensive books by Prekopa [29] and by
Birge and Louveaux [2]. For surveys specifically on stochastic integer programming we
refer to the chapter by Louveaux and Schultz in the Handbook on Stochastic Program-
ming [31], and the survey papers Klein Haneveld and Van der Vlerk [21], R¨omisch and
Schultz [30], and Stougie and Van der Vlerk [37]. Resources on the Internet are the
Stochastic Programming Community Home Page[4] and the bibliography [42].
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The focus in this paper is on the two-stage recourse model. For a detailed discussion
of the multistage model and generalizations (including random recourse matrices and
nonlinear models) we refer to the Handbook on Stochastic Programming [31] or to
[2, 16, 29].

More about the important class of chance-constrained problems and the related (condi-
tional) value at risk models can be found in the Handbook on Stochastic Programming
[31]. This class is of problems is very well surveyed in [29] and [39].

The mathematical properties of two-stage stochastic linear programming problems have
been derived by various people and at a rather early stage in the research activities on
stochastic programming. In particular we refer to the overview by Wets [45] and the
monograph Kall [15].

The mathematical properties of two-stage stochastic integer programming problems
have been established much more recently [36, 41, 32]. Schultz [32] proved the prop-
erties of the mixed-integer recourse function presented in Theorem 1.2. In addition,
Schultz presented rather technical conditions for Lipschitz continuity of the function
Q.

The results in Section 2 are selected from [12].�P -completeness of the problemGRAPH

RELIABILITY has been proved in [40]. That exact evaluation of the second-stage ex-
pected value function may not even be inPSPACE in case random parameters are
continuously distributed follows from a result in [23].

Dyer and Stougie [12] also provePSPACE-hardness of a specific non-standard ver-
sion of a multi-stage stochastic programming problem if the number of stages is con-
sidered to be part of the input. The complexity of standard multi-stage stochastic pro-
gramming remains unsolved.

Kannanet al. [11] have designed a polynomial randomized approximation scheme for
the two-stage stochastic programming problem with continuously distributed parame-
ters and continuous decision variables, when the input distributions are restricted to be
log-concave. Their scheme relies heavily on the convexity ofQ, and therefore cannot
be applied to the two-stage stochastic integer programming problem.

The idea in Section 3 of approximating the expected value function of a stochastic
programming problem with integer recourse by a convex function through perturbing
the distributions of the random right-hand sides is due Klein Haneveldet al. [20, 19].
They implemented this idea for the case of simple integer recourse. See Van der Vlerk
[44] for a generalization to multiple simple recourse models, allowing for piecewise-
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linear penalty cost functions. The extension to the compete integer recourse case was
done by Van der Vlerk [43].

For the problem with simple integer recourse, the formula and properties in Lemma 3.1
have been derived by Louveaux and Van der Vlerk [25], while the characterization of
all probability distributions that lead to convex expected value functions in Theorem 3.1
is due to Klein Haneveldet al.[20].

The uniform error bounds on theα-approximation in Theorem 3.2 and on theαβ-
approximation in (11) are from [19]. There it is also shown that the latter error bound
can not be reduced by using other convex combinations of probability density functions
of typefα. The error bounds are derived in case the distributions of the random right
hand sides are continuous. For the case with discretely distributedh it is possible to
construct the convex hull of the functionQ, see [18].

Algorithms for continuous simple recourse problems with discretely distributed right-
hand side parameters can be found in e.g. [2, 16]. Using the structure of such problems,
they can be represented as relativelysmall deterministic LP problems.

If the matrixW is complete but not TU, then the functionQα� defined in Theorem 3.3
can be used as a convex lower bounding approximation of the functionQ, allowing
to approximately solve the integer recourse problem by solving a continuous complete
recourse model. Although this approach is easy to implement and in many cases will
give better results than using the LP lower boundQLP , no (non-trivial) bound on the
approximation error is known. Indeed, in most applications the approximation will not
be good enough for this purpose. On the other hand, because of the properties discussed
in Section 3, the functionQα� is well-suited as a building block in special-purpose
algorithms for integer complete recourse models; several of these algorithms [1, 22,
27, 33] use the LP relaxationQLP for bounding purposes.

Hierarchical planning problems appear in many applications in management science.
Usually the solution methods consist of solving the problems at the different levels
separately and glue them together. Dempsteret al. [6, 7] gave the first mathematically
rigorous analysis of such a hierarchical planning system. They presented the result
on the hierarchical scheduling problem exposed in Section 4. Their result has been
extended to other hierarchical scheduling problems with different types of machines
and common deadlines for the jobs by Stougie [36].

The notion of asymptotic optimality with respect to an optimal clairvoyant algorithm
was introduced by Lenstraet al. [24]. In the same paper the authors investigated a
general framework for the probabilistic analysis of approximation algorithms for hier-
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archical planning problems. They show implications between the various asymptotic
quality statements. Applications of this framework on routing and location problems
appeared in [36], where also an survey of the above mentioned research can be found.

The probabilistic value analysis of combinatorial optimization problems which are used
in the estimates for the second-stage costs form a body of literature on its own (see for
a survey [35]).

Section 5 is extracted from work by Dyeet al. [9]. In the same paper a pseudo-
polynomial time dynamic programming algorithm is derived if the number of scenar-
ios is fixed. The existence of a fully polynomial time approximation scheme for this
case is open. NP-hardness in the ordinary sense of the deterministic counterpart of the
problem was proved in [8]. In the same paper a fully-polynomial time approximation
scheme has been presented for this deterministic problem. All versions of the problem
with multiple resources are strongly NP-hard [10, 8].

The setting of the problem is inspired by an application in telecommunication dealing
with provision ofprocessing based serviceson a computer network with distributed
processing capabilities [38].

Worst-case performance analysis in stochastic integer programming with discretely dis-
tributed second-stage parameters like the one presented in Section 5 is an almost unex-
plored rich research field with many challenging questions.
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