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Abstract
Using modern tools from the geometric theory of Hamiltonian systems it
is shown that electronic excitations in diatoms which can be modelled by
the two-centre problem exhibit a complicated case of classical and quantum
monodromy. This means that there is an obstruction to the existence of global
quantum numbers in these classically integrable systems. The symmetric case
of H+

2 and the asymmetric case of H He++ are explicitly worked out. The
asymmetric case has a non-local singularity causing monodromy. It coexists
with a second singularity which is also present in the symmetric case. An
interpretation of monodromy is given in terms of the caustics of invariant tori.

PACS numbers: 03.65.Sq, 05.45.−a, 31.10.+z

The two-centre problem represents an important integrable limiting case of the three-body
problem. As such it has a long history dating back to Euler and Jacobi, see [1, 2] and the
reference therein. The corresponding quantum system plays a similar fundamental role in
molecular physics as the hydrogen atom in atomic physics. As a model for the simplest
molecule H+

2 the symmetric two-centre problem is a paradigm for chemical bonding, and it
was first considered by Pauli in his doctoral thesis under the direction of Sommerfeld [3].
The separation of the Schrödinger equation was done in the 1930s [4], but their expansion
method only captures the low lying Keplerian states. A systematic semiclassical approach
was given by Strand and Reinhardt [5] and only very recently, an improvement of their results
including consideration of the asymmetric case was presented in [6]. Besides its obvious
role in molecular physics the importance of the two-centre problem extends to aspects of two
electron atoms [7], ion–atom scattering [8] and elementary particle physics [9]. Despite the
long and outstanding history of the two-centre problem it has not been recognized before that
the system exhibits classical and quantum monodromy. Monodromy describes the effect of a
global twisting of a family of invariant tori parametrized by a circle of regular values of the
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energy–momentum map of the integrable system. This leads to topological obstructions to the
definition of single-valued smooth action variables as shown by Duistermaat [10]. A quantum
mechanical consequence of monodromy is the non-uniqueness of quantum numbers, as first
reported by Cushman and Duistermaat [11] for the spherical pendulum, and later rigorously
proved in [12]. In recent years the concept of monodromy has given insight into the spectra of
prominent quantum systems as, e.g., the bending progressions of quasi-linear molecules [13],
the spectrum of the hydrogen atom in the crossed fields configuration [14], rearrangements
of bands in systems with coupled angular momenta [15] and vibrational spectra of Bose
condensates [16].

1. The two-centre problem

The two-centre problem (TCP) describes the motion of a test particle in the field of two fixed
attracting centres. In the diatomic interpretation the two-centres are two nuclei with charge Zie

attracting a single electron of charge −e; the distance between the nuclei is considered fixed
at 2d in the Born–Oppenheimer approximation. We choose d,me and (med

3/e2(Z1 + Z2))
1/2

as unit of length, mass and time, respectively. With the z-axis along the line connecting the
fixed centres the Hamiltonian in Euclidean coordinates is

H = p2

2
− µ1

r+
− µ2

r−
(1)

where r2
± = x2 + y2 + (z ± 1)2 and µ1 = µ2 = 1/2 for H+

2 or µ2 = 2µ1 = 2/3 for H He++.
Due to rotational symmetry about the z-axis Lz = xpy − ypx is conserved. The non-trivial
constant of motion is obtained from the separation constant G = � + H [17] where, with
L = r × p being the angular momentum, � reads

2� = L2 − (
p2

x + p2
y

)
+ 2(z + 1)

µ1

r+
− 2(z − 1)

µ2

r−
. (2)

The constants of motion H,G,Lz are in involution and independent almost everywhere, and
where independent the Liouville–Arnold theorem [18] guarantees the existence of action angle
variables for the invariant 3-tori of bounded motion. We denote the values of the constants of
motion by h, g and l.

The TCP can be separated in prolate ellipsoidal coordinates

φ = arctan(y/x) η = (r+ − r−)/2 ξ = (r+ + r−)/2 (−1 � η � 1 � ξ). (3)

The separation makes each conjugate momentum a function of only its respective coordinate
and the values of the constants of motion (h, g, l) that fix the 3-torus. They are

pφ = Lz = l p2
η = P−(η)/(1 − η2)2 p2

ξ = P+(ξ)/(1 − ξ2)2 (4)

where

P±(ζ ) = 2(ζ 2 − 1)(hζ 2 + (µ2 ± µ1)ζ − g) − l2. (5)

2. Caustics

Most of the structure of the problem is contained in the polynomialsP±. Their roots delimit the
intervals of real momenta in (4), and the occurrence of double roots corresponds to bifurcations
of tori. In the generic case l �= 0 a regular value (h, g, l) has a single torus (TP ) or two tori
(TS) in its preimage in phase space. The corresponding caustics which are shown in figure 1(a)
are composed of coordinate surfaces of the separating coordinates (φ, η, ξ). For l = 0 the
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Figure 1. (a) Caustics of generic tori in the asymmetric TCP with l �= 0. The stronger centre is
at the top. (b) Caustics of 2-tori in the planar asymmetric TCP. Following the notation in [1], s, l

and p refer to satellite, lemniscate and planetary-type motion, respectively. In the symmetric TCP
ts′ does not exist and the others are symmetric.

3-tori become resonant and are foliated by invariant 2-tori of planar motions. These 2-tori
have three different types of caustics in the symmetric case and four different types of caustics
in the asymmetric case. They are presented in figure 1(b). As l → 0, the generic caustic TP

gives rise to the three topologically different caustics ts ′ , tl and tp for the asymmetric TCP, and
to the two caustics tl and tp for the symmetric case.

We will see that monodromy in the TCP can be explained by the change of caustics at
l = 0. The symmetry axis connecting the two centres can only be reached by the electron when
the conserved angular momentum vanishes. Due to the singularity in the coordinate system
this single line in physical space consists of the three segments ξ = 1 (between the nuclei),
and η = ±1 (above/below the nuclei) in the ellipsoidal coordinates. Monodromy will be
determined by the number of singular segments visited by the motion in configuration space,
see figure 1(b). For the ξ -coordinate this is 0 for tp, 1 otherwise, while for the η-coordinate it
is 1 for ts ′ and 2 otherwise.

3. Bifurcation diagrams

The relation between the type of motion and the value of the constants of motion is best
described in terms of bifurcation diagrams. The bifurcation diagram is the set of critical
values of the energy–momentum map given by (H,G,Lz). At a critical point the constants
of motion are not independent and the Liouville–Arnold theorem does not apply. One can
check that the double roots of P± in the physical range −1 � η � 1 � ξ give critical points
of the energy–momentum map. It turns out that the complete bifurcation diagram can be
conveniently parametrized by the location of the double roots of P±.

We illustrate the bifurcation diagram by showing sections of constant energy, see figure 2
for the symmetric TCP and figure 3 for the asymmetric TCP. At critical energies bifurcations
occur and the structure of the sections changes. The Hamiltonian Hopf bifurcations at
h = −(µ1 + µ2)/2 = −1/2, in both the symmetric and the asymmetric TCP, creates the
planetary-type motion tp; the isolated periodic orbit bouncing between the two nuclei becomes
unstable. This orbit corresponds to the isolated points F in figure 2 and F1 in figure 3. Another
Hopf bifurcation in the asymmetric case, at h = −|µ1 − µ2|/2, destroys the single nucleus
motion TS and renders unstable the orbit that is deflected from the weakly charged nucleus
to the outside (the point F2 in figure 3). Note that even before this bifurcation takes place
the ‘kite shaped’ region TS at energies h3 and h4 in figure 3 is isolated in the sense that it
can be encircled by a loop of non-critical values in TP . The existence of loops that cannot
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Figure 2. Bifurcation diagrams (thick lines) of the symmetric TCP for representative energies
h1 < h2 < h3 < h4 < 0. To each point in the light or dark grey regions there corresponds a
single torus (TP ) or two tori (TS) in phase space, respectively. The corners represent the periodic
orbits shown in the lower panel. D,E,B,H and G are stable and G and F are unstable. The
primes denote the respective time reversed periodic orbits. Resonant tori of type tl and tp are on
the (l = 0)-axis to the left and right of the isolated point F, respectively, as shown for H = h4.

be contracted without intersecting the bifurcation diagram is indicative of the existence of
monodromy.

4. Actions and monodromy

Let us concentrate on the family of invariant tori of type TP represented by the light grey
regions in figures 2 and 3. Since there is a separating coordinate system the natural choice of
action variables is

I = (Lz, Iη, Iξ )
t =

(
l,

1

2π

∮
γη

pη dη,
1

2π

∮
γξ

pξ dξ

)t

. (6)

With ζ representing η or ξ the projections of the closed paths γζ to configuration space are
coordinate lines of the separating coordinate system.

Let us first show that the natural actions I are continuous but not differentiable at l = 0.
To see this note at first that l enters the polynomials P±(ζ ) in (5) quadratically. Hence, the
discrete symmetry w.r.t. reversing angular momentum gives

I(l) = RI(−l) R = diag(−1, 1, 1). (7)

The matrix R contains the signs indicating that the first component of I(l) is odd, while the
actions Iζ are even in l. Hence, if the action components Iζ were differentiable w.r.t. l at l = 0
the partial derivatives ∂Iζ /∂l would vanish at l = 0. By a deformation of the paths for the
integration of ∂Iζ /∂l in the complex plane, ∂Iζ /∂l can be calculated in the limit l → 0+ from
the residues of the integrand ∂/∂l

√
P±(ζ )/(1 − ζ 2) augmented by information about which

of the singular points ζ = ±1 are encountered. A careful choice of the branch of
√

P± yields
the result that each singularity contributes the residue −1/2, i.e. the slopes liml→0+ ∂Iζ /∂l

are simply given by −1/2 times the number of singular coordinate segments involved.
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Figure 3. Analogue of figure 2 for the asymmetric TCP. The periodic orbits A, B,C,D,E and H
are stable, G,F1 and F2 are unstable. The location of the segments ts′ , tl and tp of the (l = 0)-axis
is shown for H = h5.

This number can be read off from the caustics and we already determined it above. In
this way we obtain

lim
l→0+

(
∂Iη

∂l
,
∂Iξ

∂l

)
=




(−1/2,−1/2) ts ′

(−1,−1/2) tl

(−1, 0) tp.

(8)

Note that the tori at l = 0 satisfy the resonance condition m · ω = 0 with the rational vector
m = liml→0+(1, ∂Iη/∂l, ∂Iξ/∂l).

From the Liouville–Arnold theorem we know that, locally, there exist smooth actions for
regular values of the energy–momentum map. To find them we retain the actions I for l � 0
and define new actions for l < 0. Since actions are defined up to unimodular transformations
locally smooth actions can be obtained from

J =
{

I l � 0
MI l < 0

(9)

where M ∈ SL(3, Z) remains to be determined. Since the natural actions I are continuous at
l = 0, the matrix M can differ from the identity only in its first column for which we write
(1,mη,mξ )

t . The integers mζ are obtained by equating the left- and right-hand derivatives
of J,

lim
l→0+

∂Iζ

∂l
= lim

l→0−
∂Jζ

∂l
⇔ mζ = 2 lim

l→0+

Iζ

∂l
. (10)

As we have already seen, the limits liml→0+ ∂Iζ /∂l depend on whether we have ts ′ , tl or tp on
l = 0. This way we obtain the three matrices

Ms ′ =

 1 0 0

−1 1 0
−1 0 1


 Ml =


 1 0 0

−2 1 0
−1 0 1


 Mp =


 1 0 0

−2 1 0
0 0 1


 . (11)

Monodromy describes the change of smooth actions along a closed loop of regular values
of the constants of motions. If the loop is contractible there is no change. In the TCP the
isolated singularities that can prevent this are located on l = 0. Encircling them we cross
l = 0 twice in regions with different l = 0 caustics. In the symmetric case a closed loop about
F in figure 2 crosses tl and tp. In the asymmetric case we cross ts ′ and tl for a loop about
F1 and tl and tp for a loop about F2 or the isolated kite shaped region TS in figure 3. For
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Figure 4. (a) Surface of eigenvalues with nη = 26 in the symmetric TCP. The circle marks the
intersection with the isolated line F of the bifurcation diagram in figure 2. Monodromy is illustrated
by transporting a quantum cell around the singular point. (b) Surface of eigenvalues with nξ = 11
in the asymmetric TCP. Monodromy around a non-local singularity is illustrated.

the anticlockwise traversal of a loop crossing ta and tb with (a, b) any pair from {s′, l, p} the
monodromy matrix Mab describing the unimodular change of the smooth actions J of (9) is

Mab = (MbR)−1MaR = MbRMaR = MbM−1
a (12)

where we used that R is a reversor for each of the Ma of (11), i.e. RMaR = M−1
a , a = s′, l, p.

This way we obtain the monodromy matrices

Ms ′l =

 1 0 0

−1 1 0
0 0 1


 Mlp =


1 0 0

0 1 0
1 0 1


 . (13)

The fact that they differ from the identity matrix proves the presence of monodromy, i.e. the
smooth continuation of actions leads to multivalued functions.

5. Quantum monodromy

The quantum mechanical two-centre problem is described by three commuting operators
Ĥ , Ĝ and L̂z which are related to the constants of motion H,G and Lz by the correspondence
principle [19]. The implications of monodromy on the joint spectrum of these operators, which
for the bound quantum states is a point set in R

3(h, g, l), can be described semiclassically. In
terms of the natural actions the EBK quantization conditions are I = h̄(n +α/4) with quantum
numbers n. The vector of Maslov indices is α = (0, 2, 2)t for all 3-tori of the TCP.

In order to illustrate the quantum monodromy we choose certain subsets of states with
eigenvalues located on two-dimensional surfaces in R

3(h, g, l) which intersect the isolated
parts of the bifurcation diagram transversally. The surface of quantum states in the symmetric
TCP shown in figure 4(a) is defined by Jη = h̄(nη +1/2) with a constant nη ∈ N. The quantum
numbers of this subset of states are invariant under Mp, Ml , Mlp defined in (11) and (13). As
expected from the monodromy matrix Mlp a cell of the eigenvalue lattice transported on a
closed loop about the isolated point F returns sheared by one lattice site. Due to this defect of
the eigenvalue lattice there are only two ‘good’ or single-valued quantum numbers, the angular
momentum quantum number nφ and nη, to label states which classically correspond to tori of
type TP . The situation about the isolated point F1 of the asymmetric TCP is similar and we
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omit the presentation of a separate figure. Even more spectacular is the defect of the eigenvalue
lattice of the asymmetric TCP shown in figure 4(b). The eigenvalue surface there is given by
Jξ = h̄(nξ + 1/2) with a constant nξ ∈ N. It is invariant under Ms ′ , Ml , Ms ′l from (11) and
(13). In accordance with the monodromy matrix Ms ′l a lattice cell returns also sheared by one
lattice site when transported about the non-local singularity. Since the eigenvalue lattice of
the asymmetric TCP has two defects with different invariant lattice planes there is no further
‘good’ global quantum number besides the angular momentum quantum number.

6. Conclusions

In this letter we reported on classical and quantum monodromy in the two-centre problem
which is a highly interesting result because of the special importance of the two-centre problem
in physics on the one hand and the particularly interesting variant of monodromy exhibited by
the two-centre problem on the other.

Monodromy is well understood in two degrees of freedom where its simplest form is
related to a focus–focus singularity and the monodromy matrix is of the form (1, n; 0, 1) when
the corresponding separatrix connects n � 1 focus–focus critical points [20]. The monodromy
in the symmetric two-centre problem where the source of monodromy is a codimension 2
singularity is similar. The 3 × 3 monodromy matrix has only a single off-diagonal entry and
in principle a reduction to the two degree of freedom case should be possible. In contrast to
that, there are two sources of monodromy in the asymmetric two-centre problem of which
one is of non-local nature. The corresponding 3 × 3 matrices have only a single non-trivial
off-diagonal entry. But since the non-trivial entries appear at different positions within the
monodromy matrices they act on different action components and for a complete picture it is
necessary to analyse the full three degree of freedom system.

In our calculations we kept the distance between the nuclei fixed. This is an unrealistic
simplification for single electron diatoms. Hence, H+

2 and H He++ should be considered as
symbols for systems that can be modelled by the TCP, as e.g., Rydberg states in polyelectronic
molecules where the bonding is maintained by the non-excited electrons. In figures 4(a) and
4(b) we chose d = m = e2 = 1 and h̄ = 1/20 to obtain a sufficiently high density of states for
the matter of representation. The experimental observation of monodromy requires excitation
to energies h ∈ (−(µ1 + µ2)/2, 0), or to h ∈ [−0.553,−1/6) for the special monodromy in
the case of H He++. Many details of this work will be represented in a forthcoming paper [21].
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