

 University of Groningen

Shading in a distributed environment
Nicolae, Goga; Moldoveanu, Florica; Telea, Alexandru

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Nicolae, G., Moldoveanu, F., & Telea, A. (2004). Shading in a distributed environment. In EPRINTS-BOOK-
TITLE University of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 20-06-2022

https://research.rug.nl/en/publications/3ba82021-4dd6-4d35-8cc8-18a02305f7fe

Shading in a distributed environment

Goga Nicolae1, Florica Moldoveanu2, Alexandru Telea1

1Computer Science Department,
Eindhoven University of Technology,

the Netherlands,
2Computer Science Department,

Politehnica University of Bucharest,
Romania,

goga@win.tue.nl, fm@cs.pub.ro, alext@win.tue.nl

Abstract

This paper presents a tool for light-shading in a dis-
tributed environment. A parallelization method based on
a concurrent model is described. The purpose of this work
is to lower the image generation time in the complex 3D
scenes synthesis process. The experimental results concern-
ing the speedup of light shading algorithm are also pre-
sented.

1 Introduction

Computer-generated images can achieve a high degree of
realism with light shading mapping [3]. This technique is
used to make the images of three-dimensional objects more
interesting and apparently more complex.

There are different methods used to provide a light shad-
ing. Among these, three major methods are very pop-
ular and they are: (1) The most well known is flat, or
constant, shading. This approach applies an illumination
model once to determine a single intensity value that is
then used to shade an entire polygon, and holding the value
across the polygon to reconstruct the polygon’s shade (2)
Gouraud shading, also called intensity, or color, interpola-
tion shading. Gouraud shading extends the concept of in-
terpolated shading applied to individual polygons by inter-
polating polygon vertex illumination values that take into
account the surface being approximated. Each polygon is
shaded by linear interpolation of vertex intensities along
each edge and then along each scan line. (3) Phong shad-
ing also known as normal-vector interpolation shading in-
terpolates the surface normal vector rather than the inten-

sity. Interpolation occurs across a polygon span on a scan
line, between starting and ending normals for the span.

Of these methods, the first two are used in games con-
soles. In this paper we address the case of constant shading.
This approach is valid if several assumptions are true: a) the
light source is at infinity; b) the viewer is at infinity; c) the
polygon represents the actual surface being modeled, and is
not an approximation to a curved surface. Because of these
assumptions, flat shading is sometimes no that realistic, but
because it is fast is used in practice in different domains.

One of the major problems for the light shading is that
because of the complexity of the computations the gener-
ation of the image is slow. One way to solve this prob-
lem is to divide the computations among more proces-
sors/machines and to execute them in parallel [4]. The cur-
rent paper presents the tool ConstShadIm which applies an
constant shading model to the objects of the scene. The
serial and the parallel modules are presented together with
the comparison of their performances. ConstShadIm is de-
signed such that it can be simply extended through the in-
troduction of new shading models.

The aim of our tool is to better understand the effect of
distributed shading computations with respect to accelera-
tion. This understanding is very important when designing
multi-layer parallel shading architectures, such as the cur-
rent pixel shaders existing in the nowadays graphics cards
[5, 1]. Specifically, one can design new modules for Con-
stShadIm to test the effect of distributing shading computa-
tions with respect to the type of computation (shading).and
type of distribution (inter-module communication).

This paper is organised as fellows. Section 1 presents a
general theory of light shading. Section 3 describes the tool
ConstShadIm. Section 4 describes the experimental results
of the comparison. Section 5 gives the conclusions.

1

Proceedings of the Eighth International Conference on Information Visualisation (IV’04)
1093-9547/04 $ 20.00 IEEE

2 Flat Shading

For the shading model [2] the following mathematical
definitions are used:

• L: light source vector (direction) striking the surface

• R: light reflected vector

• V : viewpoint vector (eyepoint) looking at the surface

• N : normal vector (perpendicular) to the surface

• I: light intensity

The light reflected at a surface point is represented in
Figure 1.

Light

Object

L

N
R

V

Viewer

Figure 1. Light reflection.

When the shading is applied to a surface point, then
it is computed taking into account the other elements in
the scene. Light ray may hit several surfaces before it
reaches the viewer. For a better approximation, higher cost
is needed.

Local illumination models are used in computer graphics
to achieve interactivity. Some tricks are used in conjunction
with some models to approximate a global solution. Global
illumination models are used to improve image quality.

When ambient light is used, it approximates indirect
light reaching the surface. Some amount of diffuse light is
added to the environment. This is a trick that tries to achieve
a global effect using a local model.

A = Ia × ka

where Ia is the ambient intensity and 0 ≤ ka ≤ 1 de-
scribes how much of the ambient light is reflected by the
surface material (out tool uses the ambient light trick)

Assuming that N and L have been normalized, the per-
ceived intensity at the surface point due to illumination is

A = Ia × ka + Il × kd × (N × L)

where Il is the intensity of the point light source and
0 ≤ kd ≤ 1 is the diffuse reflection coefficient of the sur-
face material and tells how much of the incident light is
diffusely reflected by the material.

Light

Object

L

N
R

V

Viewer

Figure 2. Specular reflection.

On ideal surfaces, light is reflected only in the direction
R. If the surface is not a perfect mirror, light is reflected
inside a cone of directions around ideal reflected direction.
The rapid fall of the specularly reflected intensity is approx-
imated as cosn(α), where α is the angle between R and V .
For normalized R and V vectors, the resulting illumination
models becomes:

A = Ia × ka + Il × (kd × (N × L) + kd × (V × R))n

where 0 ≤ ks ≤ 1 is the specular reflection coefficient.

When the effect of multiple light sources are added the
formula becomes:

A = Ia × ka +
lights∑

1

Il × (kd × (N ×L) + kd × (V ×R))n

A shading model determines when the illumination
model is evaluated, e.g. once per polygon, once per ver-
tex or once per pixel. Flat shading is an illumination model
evaluated once per polygon, i.e. all pixels of the polygon
are shaded with the same color. It introduces intensity dis-
continuities and match band effect, i.e. discontinuities in
intensity or in its first derivatives. Valid only if:

1. the light source is at infinity, so N × L is constant
across the polygon face

2. the viewer is at infinity, so N × V is constant across
the polygon face;

3. the polygon represents the actual surface being mod-
eled, and is not an approximation to a curved surface.

The implications of using fast-shading in graphics is that
for high realism and detail levels, a large number of flat-
shaded polygons is needed for a good-looking image. This
technique is used for example by the CAD/CAM designers.

2

Proceedings of the Eighth International Conference on Information Visualisation (IV’04)
1093-9547/04 $ 20.00 IEEE

3 Light shading in a distributed environment

The tool ConstShadIm implements the constant shading
method. It allows the use of more light sources and the efect
of the ambient light. Each object of the scene is described
by means of polygons. Each polygon is defined by its ver-
tices. For constructing the image, a Z-buffer algorithm is
used. The tool allows operations as rotations, translations
and scales for the objects in the scene.

The shaded image is constructed in an internal buffer and
after that displayed on the screen. The serial module can be
summarised as follows:

for all polygons of the scene execute
{
compute the color of the pixels of the
polygon according to flat-shading

draw the filled polygon to the Z-buffer
}

draw the Z-buffer to screen

The programming methods used is the OOP technique.
The classes are represented in Figure 3.

Object3D Class

Polygon3D Class

Matrix Class Lights Class

Globals Class

Figure 3. Object classes

The class Lights contains data and methods concerning
the computations of the flat shading. The class Polygon3D
has data and methods related to a polygon of the scene.
The class Matrix implements operations such as rotations or
translations. The class Objects3D stores data and methods
regarding objects of the scene. The class Globals contains
globals data and methods such as the Z-buffer and the draw-
ing of the Z-buffer. Using the OOP technique the tool can
be easily extended with new features such as new types of
shading implemented as new methods of the class Lights.

The parallel module of the tool uses a concurrent pro-
cesses model and is based on the data partitioning method.
The number of processes used depends on the size of the
graphical database and the number of connected machines
in the network. The processes are started at the same mo-
ment of time for performing the computations in parallel.
The user decides in advance the distributions of the pro-
cesses on the machines. In this way the task distribution

is static and no execution time is consumed for performing
this operation.

Each process has access at a graphical database which
stores the polygons of the scene. This database can be lo-
cated on a shared network directory or it can be copied lo-
cally on the connected machines. Each process has assigned
a portion from the total number of polygons to compute.
In total a number of n Z-buffers are produced, where n
represents the total numbers of processes. These Z-buffers
should be combined for the image to be displayed on a tar-
get screen. The transmitions of the Z-buffers to the process
which displays the image on the screen cause an overhead
for the parallel module.

Performance tests were achieved using two implementa-
tions of the flat-shading algorithm: the serial module and
the parallel module.

4 Experimental results

The measurements were performed on a network formed
by identical machines. Their characteristics are presented in
table 1.

Table 1. The Network Architecture

Machine Characteristics

Processor Intel Pentium III
Frequency 1 GHz
Memory 256 MB

• Screen: Phillips JMW Computers

• SO: Windows XP Professional

• Communication: at socket level, TCP/IP protocol

• Length of message transmited: 200 kb aproximatelly,
for the parallel module

The technical conditions imposed to have the parallel
module running on two machines (the parallel module con-
sisted on two processes). For the serial and the parallel
modules we performed 5 measurements of the execution
time and the obtained values are presented in table 2. The
scene contained nine identical objects. Each object has a
number of 1976 vertices and 3751 polygons Three point
light sources were considered.

Table 2. Execution Time

Nr Serial Paralel

1 15.21 s 10.32s
2 13.45 s 9.41s
3 14.73s 11.02s
4 14.25s 9.75 s
5 13.89s 10.67s

3

Proceedings of the Eighth International Conference on Information Visualisation (IV’04)
1093-9547/04 $ 20.00 IEEE

Making the average of these measurements we obtained
the following values of the execution time.

• serial module: Ts = 14.30s

• parallel module:

– Tp = 10.23s

– SpeedUp = 14.30
10.23 = 1.39

Measurements of the execution time were performed
varying the number of the objects of the scene. The ob-
jects were identical and contained the number of polygons
and vertices as indicated above, i.e. 1976 vertices and 3751
polygons per object. Three lights were considered. For each
scene a number of five measurements were performed. The
experimental results obtained are presented in Table 3.

Table 3. Execution time for different numbers of
objects (average values)

Nr. Objects Serial Parallel

1 2.45s 4.34s
3 6.41s 6.21s
6 9.85s 8.35s
9 14.30s 10.23s

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Time

3751 11253 22506 33759 Nr. polygons.

2
3
4
5

1

6
7
8
9

14
13
12
11
10

paralel module

serial module

Figure 4. Execution time vs. nr. polygons

What is interesting to observe is that the experimental
results show that a decrease of the computation time for the
parallel module vs. the serial module happens only when
starting with a number of polygons above 11000 (the case
of three identical objects). For a number of polygons less
than 11000 the overhead caused by the transmission of the
Z-buffer is greater than the efficiency caused by the splitting

of the computations. The point of equilibrium is obtained
around the value of 11000. This is also represented in the
Figure 4 by the two curves for the serial and the parallel
module.

5 Conclusions

The purpose of this work is to present a tool for light
shading and to study how the performances enhance for
shading algorithm in a distributed environment. To have
a comparison between the serial and the parallel module we
adopted a simple scheme of parallelisation based on con-
current processes model. The tool was developed so that
it can be simply extended for new graphic functionalities
such as the new shading methods. One of the future aims of
the tool is to simulate parallelization scenarios similar to the
ones occuring in the nowadays shading architectures [5, 1].

In the parallel module an extra time is necessary for the
communication between the processes. This extra require-
ment is not neglijable but benefit may be gained through
parallel processing. Tests were also performed in order to
investigate the influence of varying the number of polygons
in the scene concerning the execution time.

The tests showed that for a sufficiently greater number
of polygons in the scene (in our case above 11000) a benefit
is gained through parallel processing. For a small number
of polygons in the scene no benefit is gained by parallel
processing and consequently the serial method works faster
than the parallel one. This is explained by the overhead
introduced by the communication between the parallel pro-
cesses which is the usual draw-back of the paralelisation

References

[1] General-purpose computation using graphics hardware. URL:
http://www.gpgpu.org.

[2] T. Akenine-Moller and E. Haines. Real -time rendering. 2002.
[3] J. Foley, A. Adam, S. Feiner, and J. Hughes. Computer

graphis -principles and practice. 1997.
[4] N. Goga, R. Zoea, and A. Telea. Texture mapping in a dis-

tributed environment. Proceedings of IV’03, IEEE Computer
Society Press, 2003.

[5] K. Proudfoot, W. R. Mark, S. Tzvetkov, and P. Hanrahan.
A real-time procedural shading system for programmable
graphics. SIGGRAPH, pages 159–170, 2001.

4

Proceedings of the Eighth International Conference on Information Visualisation (IV’04)
1093-9547/04 $ 20.00 IEEE

	footer1:

