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Abstract
We test the efficiency of estimators proposed for truncated height samples with
a new data set of over 23,000 height observations covering nearly all conscripts
in Drenthe, a province of the Netherlands, over the period 1826–1860. We find
that the ‘best’ estimator, truncated ML, in its unrestricted form overestimates the
mean and underestimates the variance. If the variance is set to the population
variance, the mean is underestimated. We question the normality assumption
that is typically made in this literature. Our ‘population’ is skewed, which might
explain the poor performance of the estimators.
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1 Introduction

The anthropometric approach to the issues of economic growth and standard

of living has become very popular during the last decades, see e.g., Steckel

(1995). A clear link exists between the average height attained by a popu-

lation and its living standards, as reflected by nutrition, sanitary conditions

and so on. Therefore the average height of the population can be treated

as an indicator of living conditions and economic development, especially in

the absence of reliable figures on for example GDP per capita, a very likely

situation in development economics or historical research.

The empirical data to assess the development of average height through

time often originate from military conscription registers. Conscription was

introduced on a large scale throughout Europe in the beginning of the nine-

teenth century. Because of the recurrent character of these samples (in the

form of yearly drafts) and their relative homogeneity (measured at approxi-

mately the same age) these data are well suited for statistical comparisons.

There is, however, one major drawback. Most armies only admitted con-

scripts whose height exceeded a certain threshold. The heights of undersized

conscripts were rarely recorded. This leaves the researcher without knowl-

edge about the shape of the left tail of the height distribution. The problem

is illustrated in Figure 1, where the height distribution of a typical cohort of

conscipts is plotted, smoothed with an algorithm proposed by Scott (1992,

chapter 6). If the sample is truncated, all observations below the truncation

point (157 cm in the example) are not available. We assume here that the

truncation point has not changed over time, which need not necessarily be
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the case. For example in time of war the minimum height was reduced. The

truncation of the distribution has important implications for the estimation

of our parameter of interest, the mean, since the left tail of the distribution

may contain considerable probability mass.

Figure 1: Height distribution and truncation
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Recently, the statistical problem of estimating the mean of height samples

with shortfall attracted a lot of interest in the anthropometric literature, see

Komlos (2003) and A’Hearn (2004). Several estimation procedures have been

proposed, with a recent focus on maximum likelihood (ML) estimation based

on a normal distribution. The aim of this paper is to evaluate estimators for

truncated height samples, using a historical data population rather than a

(truncated) sample. To that purpose we employ height data which are part

of a more extensive data set on the Dutch province of Drenthe for the period
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1826–1860 (Tassenaar, 2000). Our subset consists of 35 cohorts, based on an

annual conscription procedure. The number of conscripts per cohort ranges

approximately between 500 and 1000, which is rather large in the field of

historical research. Both the threshold height (that is, the truncation point)

and the age at which the conscripts were measured did not change throughout

this period. The most important feature is, however, that in this specific data

set all heights are recorded including heights below the truncation point,

which enables us to put the suggested estimation procedures to the test.

We calculate the true sample mean µ̂, which is an unbiased estimate of the

population mean µ. Then we discard all observations below the truncation

point, and use various estimation procedures to estimate the mean acting as

if we have a truncated sample, and compare the outcomes to the true sample

mean.

Estimating the central tendencies of height distributions is a classic prob-

lem in the history of (applied) statistics, associated with great nineteenth cen-

tury statisticians like Quetelet, Galton, and Pearson (Stigler, 1986). Nowa-

days height samples are typically used to illustrate the normal distribution.

As (Meier, 1982) put it: “ Although adult male heights in a relatively ho-

mogeneous healthy population really are very nearly normally distributed,

hardly anything else one is likely to study shares this property.” We find that

our height population is not normally distributed, which affects the proper-

ties of the ML estimators that assume normality. This finding brings us back

to Karl Pearson’s efforts to adopt smooth families of skewed distributions

instead of the normal distribution. This is indeed one of the alternatives we

propose when we get beyond normality, the other is estimation of the median
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by means of quantile regression.

The remainder of paper is organised as follows. Section 2 introduces trun-

cated sample estimators. Section 3 presents our data and addresses statistical

properties. Section 4 tests the performance of three popular truncated height

sample estimators. Section 5 sketches robust alternatives, going beyond the

normality distribution assumption in modelling skewed distributions. Sec-

tion 6 concludes.

2 Estimators

This section gives an overview of several estimation methods for the mean

of truncated samples. We briefly discuss six methods: the quantile bend

estimator, truncated least squares, the Komlos and Kim estimator, trun-

cated maximum likelihood, restricted truncated maximum likelihood, and

converted truncated least squares. The overview is based on Komlos (2003)

and and A’Hearn (2004).

Quantile Bend Estimator (QBE)

The Quantile Bend Estimator, proposed by Wachter and Trussell (1982)

generates observations below the truncation point, assuming a normal dis-

tribution. The mean µ̂GQE and standard deviation σ̂QBE are estimated from

this artificial distribution. The estimates are unbiased, but not efficient.

This procedure has been widely criticised. Heintel (1996) and Komlos

and Kim (1990) found that these estimates displayed excessive short-term

variability. Simulations by Komlos (2003) indicated that the QBE is inef-
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ficient and that the average bias µ̂QBE − µ is relatively large compared to

other methods. Due to these drawbacks we will not include this estimator in

our comparison exercise below.

Komlos and Kim (KK)

The Komlos and Kim (1990) estimator simply calculates the mean of the

observations from the truncated sample, µKK = ȳTR. This estimator is obvi-

ously biased, but can be used to analyze the development of the population

mean over time. The sign of the difference between the KK estimates of two

subsequent years is equal to the sign of the difference between the population

means, that is sign(µi − µj) = sign(ȳTRi
− ȳTRj

). This relationship holds

because of the fact that although the KK estimate is a biased estimate of the

population mean, it is nevertheless an unbiased estimate of the mean of the

truncated sample, which in turn is a monotonous function of the population

mean µ. The great advantage of the KK estimator is that it does not require

any assumptions about the shape of the distribution including normality.

The major drawback is that confidence intervals are not available. So, the

KK estimator gives information on the direction of the change in average

height, but not on the significance and the magnitude of the change. Since

the KK estimator is widely used in practice, we will include this nonpara-

metric method in our comparison below.

Truncated Maximum Likelihood (TML)

The TML estimator uses the maximum likelihood estimator that is based

on the probability distribution function of a truncated normal distribution.
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Suppose the random variable y has a truncated normal distribution with

mean µ, variance σ2 and truncation point τ . The probability distribution

function (pdf) of y is given by

f(y) =


σ−1φ( y−µ

σ )
1−Φ( τ−µ

σ )
y ≥ τ,

0 y < τ,

(1)

where φ stands for the pdf of a standard normal distribution and (Φ) for the

cumulative pdf of a standard normal distribution. Theoretically, the TML

estimator gives unbiased, consistent and asymptotically efficient estimates of

the mean. In addition it produces an estimate of the population standard

deviation σ. The method is also applicable in samples with a time-varying

truncation point, because the truncation parameter τ is treated as a param-

eter of the distribution. Despite these advantages, the performance of TML

in practical situations is still subject of study.

Restricted Truncated Maximum Likelihood (RTML)

The Restricted Truncated Maximum Likelihood approach follows the same

procedure as the standard TML method described above, except for the fact

that the standard deviation in Equation (1) is set in advance. In practi-

cal situations the population standard deviation is unknown. Setting the

standard deviation at a value that does not match the true value of the stan-

dard deviation leads to a biased estimate of the remaining parameter, µ. In

general, however, the standard deviation of the constrained estimate will be

lower than the standard deviation of the unconstrained estimate of the mean.
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This bias-precision trade-off in terms of the squared error

MSE = E(µ̂− µ)2 = bias(µ̂)2 + var(µ̂),

has recently been discussed A’Hearn (2004). The performance of the RTML

estimator depends on the validity of the assumption about σ. If a proper

value for σ is selected, the RTML estimator outperforms the standard TML

estimate. In addition, the reduction of MSE achieved by using RTML de-

pends on the position of the truncation point, i.e., the percentage of the

distribution that is cut-off, and on the sample size. The MSE reduction de-

creases when the sample size gets larger and when the value of the truncation

point decreases as compared to the mean.

Converted Truncated Least Squares (CTLS)

This method also uses the truncated probability distribution function f(y)

of Equation (1) but makes use of an expression for the mean of the truncated

sample µTR

µTR =

∫ ∞

τ

yf(y)dy.

Assuming that the truncation parameter τ and the variance σ are known,

we can calculate the integral for various values of µ. This procedure can

be repeated numerically until we find µTR = ȳTR The value of µ for which

this equality holds is then used as an estimate of the population mean. As

is the case with the RTML estimate, the CTLS method requires that one

sets the value for the variance σ in advance. As this value is unknown,

the CTLS estimator is biased. A recent simulation study by A’Hearn and
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Komlos (2003) demonstrates that the estimates of the mean thus obtained

are equivalent with those obtained by the RTML method. As the RTML is

easier to handle using standard statistical packages, we will confine ourselves

to an analysis of RTML, and omit the CTLS method.

3 The Drenthe height sample

Our data is extracted from a larger nineteenth century data set on Drenthe,

a province of the Netherlands. For a full description see Tassenaar (2000).

Figure 2 summarizes the statistical properties of our height sample, which

consists of a pooled sample of all cohorts of conscripts measured between 1826

and 1860. We recall that we deal with a full sample here, without truncation

shortfall. The minimum height required to be admitted to the army was 157

centimeters, but the heights of the undersized conscripts were recorded as

well. A small percentage of the height distribution is not observed, though,

due to absenteeism. We will discuss this issue below. The histogram in

Figure 2 is based on nearly 23,400 observations, and uses an interval length

of 2.5 centimeters. We observe that heights in our sample vary between

118.6cm and 192cm, with a mean of 163.3cm. The standard deviation is

equal to 8.6 cm, and deviates from the value of 6.86 cm which has been

suggested as plausible for males based on data from modern populations

(A’Hearn, 2004, p12).

As can be seen from the histogram and the summary statistics, the height

distribution is skewed. The mean of the sample mean is smaller than the

median and the skewness statistic is significantly negative. The heights in
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Figure 2: Drenthe height sample: histogram and summary statistics
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our sample are obviously not normally distributed, a finding that is confirmed

by the outcome of the Jarque-Bera test. The asymmetric shape of the height

distribution will play an important role in the remainder of our discussion.

The skewness is not the result of pooling the individual cohorts. We analyzed

the statistical properties of all thirty-five cohorts separately, and not a single

cohort passes the normality test at the 5 per cent level. The non-normality

cannot be explained by absenteeism either. Only six per cent of the conscripts

did not show up at the examinations and the absentees did not belong to

one specific social class (Tassenaar, 2000, p48). The skewed distribution

might also the result of combining several normal distributions with different

parameters, due to the differences in living standards within the population.

However, our empirical distribution is not multi-modal, i.e. does not contain

any ‘humps’. A more likely explanation comes from the field of medicine, in
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particular pediatrics.1 Due to stunted growth because of malnutrition and

child diseases in a large part of the population, the height distribution in the

Netherlands was skewed in the nineteenth century.

4 Performance

This paper compare the Komlos-Kim estimator, the unresticted ML estima-

tor and two varieties of the restricted ML estimator, one using the pooled

sample standard deviation and another using the standard deviation of the

individual cohorts. We look at how well the truncated height sample meth-

ods estimate the mean of our Drenthe sample and whether they are capable

of capturing the fluctuations in the mean. Height data are informative on

fluctuations of the standard of living over time, so we check whether the

first differences of the full-sample means have the same sign and magnitude

as the first differences of the means of the truncated samples. So, we do

not disqualify the KK estimator on a priori grounds because it is biased. It

might well be that this estimator is superior in mirroring the fluctuations of

the full-sample mean.

Figure 3 shows the outcomes of the nonparametric Komlos and Kim

method and the means of the thirty five cohorts of our height sample. The

Komlos and Kim estimates are well above the values of the full-sample means.

This is not very surprising, since this estimate just uses the mean of the trun-

cated sample. The method captures the overall downward trend, but it fails

1We thank Hans van Wieringen for this insight.
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Figure 3: Komlos and Kim estimates and sample means
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in properly assessing the magnitude; the gap between the KK estimates and

the full-sample means grows over the years.

Although the unrestricted ML estimate of the mean is unbiased, its value

exceeds the real mean for all 35 observations, see Figure 4. We can elaborate

this issue by constructing confidence intervals around this point estimate and

checking whether the sample mean is located in the confidence interval. It

turns out that the sample mean lies outside a 95 per cent confidence interval

in 21 out of 35 cases, clearly revealing the poor quality of unconstrained ML

estimate.

How about the quality of unrestricted ML estimate of the standard devi-

ation? Clearly this is not the main point of interest from a historical point

of view, but it might give us information about the nature of the problems

surrounding ML-estimation. Figure 5 plots the full-sample estimates of the
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Figure 4: Unrestricted ML estimates and sample means
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standard deviation against the ML estimates of the truncated sample. The

unrestricted ML estimates consequently underestimate the full sample stan-

dard deviation. The full sample standard deviation proves to be outside the

95 per cent confidence interval around the ML estimates in 32 out of 35 cases.

We now turn to the evaluation of the quality of the RTML estimator in

the Drenthe data set. As discussed above, we need to set the value of the

standard deviation in advance. We consider two possibilities: (i) the full

sample standard deviation, and (ii) the standard deviations of each of the

35 samples cohorts. Clearly, we exploit once again the advantage of knowing

the full distribution. In a situation where the sample is truncated, both

possibilities are not available.

As becomes clear from Figures 6 and 7, the Restricted Maximum Like-

lihood Estimates match the full sample means quite well. The constructed
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Figure 5: ML estimates of standard deviation and sample standard deviations
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Figure 6: Restricted ML estimate, using the standard deviation of the pooled
sample
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Figure 7: Restricted ML estimate, using the standard deviations of each
individual cohort
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95 per cent confidence intervals around the estimates popint in the same

direction. In both cases only three out of thirty-five sample means fall out-

side these confidence intervals, a further indication of the good quality of the

estimators.

We are tempted to conclude that the Restricted Truncated Maximum

Likelihood Estimator is more robust against skewness than the unrestricted

estimator. This can be explained by the following argument. Suppose we

wish to estimate both the full-sample mean and the full-sample standard de-

viation for the truncated sample under the assumption of a normal distribu-

tion, using the (unrestricted) Maximum Likelihood Method. This procedure

does not take account of the extended left tail of the (actual) distribution, as

it assumes a symmetrical distribution. Thereby it underestimates the mass

of the left tail, which leads to an overestimation of the mean. Ignoring the
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extended left tail also causes the underestimation of the standard deviation.

Plugging in an suitable value of the standard deviation counters the latter

problem by imposing a proper spread around the mean.

The restricted maximum likelihood estimator seems to be rather effective

in the case of skewed distributions. If one has reasons to suspect that the

distribution of an observed truncated sample is skewed to the left, RTML

is definitely to be preferred over unrestricted ML. Still, practical difficulties

hamper the use of this technique. First, one has to find a suitable value of

the standard deviation to use as restriction. If the distribution is skewed and

the left tail is truncated there is no obvious way to obtain a reasonable guess.

Second, this method is not entirely satisfying as it does not truly account for

the skewness of the distribution. It only fixes the standard deviation of the

estimated distribution (which is still symmetric) to be equal to that of the

skewed one. However the difference between the smoothed sample distribu-

tion and the fitted normal distribution is considerable. This is illustrated in

Figure 8, where the first cohort of our sample has a relatively low standard

deviation and the thirty-fifth cohort has a relatively high standard deviation.

In both cases there is a clear difference between the fitted distribution and

the smoothed actual distribution.

Table 1 summarizes the outcomes of our evaluation. In our Drenthe sam-

ple, the bias of the KK estimator is largest (3.12 cm). The unrestricted

ML estimator overestimates the full sample mean by 1.28 cm, whereas the

restricted ML estimators underestimate the full sample mean by a lesser

amount. The unrestricted ML estimators also do a better job when confi-

dence intervals are taken into account. In 32 out of 35 cases the full sample
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Figure 8: Fitted and empirical distributions

First cohort

110 120 130 140 150 160 170 180 190 200
0

0.01

0.02

0.03

0.04

0.05

0.06

Height in centimeters

R
el

at
iv

e 
F

re
qu

en
cy

   
   

   
   

   
   

Fitted Distribution
Population

Thirty-fifth cohort

110 120 130 140 150 160 170 180 190 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Height in centimeters
                     

R
el

at
iv

e 
F

re
qu

en
cy

Fitted Distribution
Population

16



Table 1: Comparison of truncated height sample estimators

bias mean outside ∆ mean
95%-interval incorrect sign

(# obs out of 35) (# obs out of 34)

Komlos and Kim 3.12 9
Unrestricted ML 1.28 21 12
Restricted ML (population) −0.41 3 9
Restricted ML (cohort) −0.26 3 7

mean is in the 95 per cent interval around the RTML estimates, while this

holds only in 14 out of 35 times for the unrestricted ML estimate. As noted

by Komlos (2003), the KK estimator does a fairly good job in capturing

fluctuations in mean heights. The competitive advantage should not be ex-

aggerated. A correct sign of the change in the mean is signalled in 9 out of

34 cases, but this outcome is more or less in line with the other estimators.

5 Alternatives

Going for the median: Quantile regression

If the fraction of observations below the truncation point is known, but the

distribution itself is not, one can use quantile regression, as introduced by

Koenker and Bassett (1978) to estimate the value of the median. For a recent

non-technical introduction see Koenker and Hallock (2001). The median can

be obtained as the solution to the problem of minimizing a sum of absolute

residuals. Comparing the sample medians throughout time may shed a light

on the height trends as well as comparing the mean value.
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Beyond normality: fat tails and skewness

Recent literature provides us with families of distributions, which are charac-

terized by a single skewness parameter. In our view this kind of distributions

can be applied to great avail to deal with truncated height samples. One

approach is the following. Consider a truncated height sample, without any

information about the shape of the truncated left tail. An artificially skewed

distribution can be estimated using numerical maximum likelihood estima-

tion, with various values of the skewness control parameter. Thus one obtains

a range of possible estimates of the mean, based on the different degrees of

skewness. Instead of using point estimates corresponding to a symmetrical

distribution one can now compare ranges of estimates over time.

In practical management science problems the distributions of, for exam-

ple, throughput times or machine repair times are often skewed to the right,

but like truncated height samples the tails are often not observed. One of the

techniques used there is to append an exponential distribution (scaled down

with an appropriate factor) and generating random variates from a com-

bination of the distribution fitted to the observed data and the appended

exponential distribution. For a discussion of this approach see e.g., Law and

Kelton (1991, 350–353) and references therein.

6 Conclusion

In this paper we have explored the quality of a number of mean estima-

tion methods for truncated height samples using a full sample consisting of

nearly 23,400 height observations of conscripts in Drenthe in the nineteenth

18



century. We found that in our application the standard normality assump-

tion is questionable which has serious effects for the accuracy of the estima-

tors. Unrestricted maximum likelihood estimation produces biased results.

A proper restriction on the standard deviation improves the results signifi-

cantly. However, the very nature of the truncation problem makes it hard to

find proper values of the standard deviation. We sketched two alternatives,

quantile regressions and ML with skewed distributions. These methods need

to be worked out, especially if the skewness property of our height sample

generalizes to other historical height samples.
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