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Viscous-Inviscid Interaction:

Prandtl’s Boundary Layer challenged by Goldstein’s Singularity
Arthur E. P. Veldman

Institute of Mathematics and Computing Science, University of Groningen
P.O. Box 800, 9700AV Groningen, The Netherlands
veldman@.math.rug.nl

1. Prandtl’s boundary layer

Almost exactly 100 years ago the history of the development of viscous-inviscid interaction
methods began. To be precise, it began in Heidelberg at 11:30 a.m. on August 12, 1904, when
Ludwig Prandtl presented the ‘boundary layer’ before an audience of mathematicians attending
the Third International Mathematical Congress [57] (see also [56]). For decades, scientists had
been confused by d’Alembert’s Paradox (‘discovered’ in 1752), stating that “there is no drag on
a finite body at rest in an infinite, incompressible, inviscid flow otherwise in uniform motion”
[70]. Prandtl described how the hardly visible boundary layer near the surface of the body
resolves this paradox through the influence of viscosity.
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an seinean handbetrichenen Wassersanel in Hannover

Figure 1: Ludwig Prandtl (1875-1953) experimenting with his manually operated water tunnel
in Hannover (1904) [24].

Prandtl’s Heidelberg lecture is a landmark in the development of a branch of mathematics
nowadays called ‘matched asymptotic expansions’, although various roots of the boundary-
layer idea can be found already in the 19th century [74]. The method of matched asymptotic
expansions treats differential equations where a small parameter multiplies the highest derivative,
i.e. setting the small parameter at zero implies dropping one (or more) boundary conditions.
As a consequence, a series development in the small parameter is no longer valid uniformly
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Figure 2: Subdivision of the flow field around an airfoil in an inviscid-flow region and a viscous
shear layer (exaggerated in thickness).

throughout the domain. Next to the boundary where in the small-parameter limit boundary
conditions have to be dropped, a thin layer has to be added where a different series development
is required. Prandtl named this thin layer Grenzschicht (English translation: boundary layer),
a name that has been used ever since for similar thin layers in other applications.

In aerodynamic applications (Fig. 2), the boundary layer is driven by the inviscid pressure
distribution p, and (through Bernoulli’s law) its related streamwise velocity u.. In the boundary
layer the streamwise velocity component is reduced to zero in order to comply with the no-slip
condition at the surface. The lateral coordinate y, together with its corresponding velocity
component v, scales with the inverse square root of the Reynolds number Re (defined in the usual
way'). The flow equations can be simplified by neglecting the viscous streamwise derivatives,
whereas the lateral momentum equation states the pressure to be constant through the boundary
layer. Prandtl’s Grenzschichtgleichungen emerge (in non-dimensional form):

%_}_8_”_0 ua_u+va_u_u %‘Fi@ (1)
or oy ' Oz Oy “dr Reoy?’

with boundary conditions
U(JJ,O) = U('Ta()) =0; U’(waye) = ue(‘T) ’

where y, denotes the outer edge of the boundary layer.

Effectively, the boundary layer changes (thickens and smoothes) the shape of the geometry.
The resulting effective shape is called the displacement body y = §*; it becomes a streamline
for the inviscid flow (e.g. Lighthill [43]).

The main advantage of the boundary-layer concept is that the elliptic character of the Navier—
Stokes equations is changed into a much easier handled parabolic character. The latter was very
relevant in an era where mainly analytical tools were available for solving differential equations.
The stable direction of the boundary-layer equations (1) is governed by the sign of u. Hence this
direction switches in reversed-flow regions, which has implications for the way they are solved,
as we will see below.

2. Goldstein’s singularity

For situations with attached flow the boundary layer provides only a small perturbation to the
inviscid flow. However, it is found that as soon as the flow wants to separate from the body
surface, the steady boundary-layer calculation breaks down with a solution that tends to become
singular. In his now famous paper of 1948, Goldstein [23] describes the computational findings
of his colleague Hartree as follows: “All computations in which any attempt was made to obtain

L All variables have been made dimensionless with a characteristic length scale L and a characteristic velocity
scale U. Re= UL/v, where v is the kinematic viscosity.



real accuracy at and near separation seem to have met with considerable difficulty. As a result
of his computations, Professor Hartree was convinced that there was a singularity in the solution
at the point of separation.” A number of possible causes for the computational problems can
easily be imagined:

i) The growth of the solution violates the assumption made in boundary-layer theory that
streamwise derivatives are small. The remedy would be to include these streamwise deriva-
tives in the equations of motion, but then the elliptic character of the Navier—Stokes equa-
tions is retained with its corresponding much higher computational complexity.

i1) The stable parabolic direction of the boundary-layer equations changes locally in reversed-
flow regions, with negative streamwise velocity. As a consequence, in these regions the
equations should be solved from downstream to upstream, hence one single downstream-
marching computational sweep does not suffice anymore.

Now, one has to keep in mind that in the first half of the century there were hardly any
appropriate tools to solve the flow equations. At that time it was impossible to check the
above two possibilities, and the issue had to remain open.

Inspired by the mathematical and numerical challenge, Goldstein [23, p. 45] “undertook
to try to find some formulae that would hold near this singularity and would help in finishing
the computation.” As a result, he presented an in-depth discussion on the breakdown of the
boundary-layer equations at separation in which he added some more possible causes. Since
then, the singularity at separation bears his name. In particular, on page 50 of his paper,
Goldstein formulates the following suggestion: “Another possibility is that a singularity will
always occur except for certain special pressure variations in the neighbourhood of separation,
and that, experimentally, whatever we may do, the pressure variations near separation will always
be such that no singularity will occur.”

It took twenty more years before algorithms and computers were sufficiently developed to
perform some numerical experiments in order to explore the options mentioned above. One of
these experiments was described in 1966 by Catherall and Mangler [6], who tried to solve the
steady boundary-layer equations with prescribed displacement thickness. Indeed, they succeeded
to pass the point of flow separation, but ran into difficulties a bit further downstream. The reason
hereof is clear, and in fact was already formulated by the authors [6, p. 178]: “This is possibly
to be expected, since the region of reversal flow should really be integrated in the negative &-
direction with boundary conditions provided from downstream.” With current computer power,
this problem is easily remedied by a downstream discretization of the convective terms and
subsequent repeated sweeps through the boundary layer. Nevertheless, as Catherall and Mangler
were not convinced of their success, they stopped further research into this subject. In fact,
Catherall learned only some twenty years after publication about the large impact their paper
had created [private communication, 1992].

3. The asymptotic nature of viscous-inviscid interaction

3..1. Hierarchy

In the late sixties, inspired by ideas put forward by Lighthill in 1953 [42], Stewartson (for steady
subsonic and supersonic flow) [68,72], Messiter (subsonic) [48] and Neiland (supersonic) [52]
developed asymptotic theories in the neighbourhood of singular points in the flow field, such as
a trailing edge or a point of flow separation.

In broad, qualitative lines their reasoning is as follows. Let us start in a hierarchical way
with a given pressure distribution (usually obtained from the inviscid-flow equations) to which
the boundary layer is assumed to give a (minor) correction. Near a point of flow separation,
or another singular point, it is anticipated that the relevant physical length scale in streamwise



direction becomes smaller. As a result the z-derivative in the continuity equation in (1) becomes
larger, and consequently so does the vertical velocity component. This translates into a more
sudden displacement effect acting upon the external inviscid flow, and with Bernoulli’s law it
results in a larger pressure disturbance. As soon as this disturbance becomes of the same order
as the initially applied pressure distribution the assumption of hierarchy becomes violated. Both
inviscid flow and boundary layer now have an equal say in the resulting pressure distribution.
In aerodynamical terms, the hierarchy between boundary layer and inviscid flow changes from
weak interaction into strong interaction.

Lagerstrom [38, p. 209] in 1975 described the situation as follows: “An important feature is
that the pressure is self-induced, that is, the pressure due to displacement thickness is determined
simultaneously with the revised boundary layer solution. [...] this solution exhibits a definite
loss of hierarchy.” This lack of hierarchy should also be visible in the numerical information
exchange between boundary layer and inviscid flow, thus guiding their appropriate numerical
iterative treatment; see Section 5..

For supersonic flow, a similar conclusion about the boundary-layer interaction near a point of
flow separation was reached already sixteen years earlier, as described by Hayes and Probstein in
their monograph on hypersonic flow [26, p. 365]: “... in general it requires solving simultaneously
the integrated momentum and energy equations and the inviscid flow relation describing the
pressure along the curve y = 6*(x).” One should realise, of course, that here the inviscid flow
is supersonic and the interaction (by a local Prandtl-Meyer relation) is of hyperbolic instead of
elliptic nature (see below).

3..2. The triple deck

To reach the insight behind the above paragraphs, it took a great intellectual effort of the above-
mentioned authors. And because of the impact of their work, in this section we will give a more
quantitative asymptotic description of the flow near singular points.

Thus, let us consider a narrow region around a singular point S, of extent

z—z5=0(Re ®), 0<a<i, withascaled coordinate z, = (z — z5)Re” ,

where z-derivatives will be more important than assumed thus far. The restriction o < 1/2
implies that the width is larger than the boundary-layer thickness, hence x-derivatives remain
less important than y-derivatives, which simplifies the analysis. Further it may be anticipated
that in vertical direction close to the singular point something happens: say at a y-scale given
by Re? with 8 > 1/2 (which is smaller than the boundary-layer thickness).

The oncoming boundary-layer thickness y = O(Re~'/2) will play a role as well. Here the
velocity profile immediately before the singular point can be written as (§ = Re!/ Zy)

w(zs,y) = B'(§) + O(Re™'/?), where for j | 0: B(j) ~ Laj? . (2)

The function B'(y) is known, e.g. it is a Blasius profile where a = 0-332. Also the y-scale
y = O(Re™®) will play a role, since there z-derivatives are as large as y-derivatives.

This three-layered structure, called the triple deck, is sketched in Fig. 3. What is left to find
are the particular values for @ and 3, the modelling pertinent to the individual flow domains,
and the flow of information between the separate decks. The latter point turns out to be of
crucial importance for the design of numerical solution methods.

To obtain the required insight into the triple-deck behaviour it is unavoidable to go into
some detail, therefore we will next give a short resume of the derivation of the (incompressible)
triple deck, based on an earlier presentation in [77].
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Figure 3: The triple deck describes the asymptotic flow structure near singular points.

The lower deck y = O(Re™?)

In the lower deck the viscous terms balance with the convective terms. For small values of g,
(2) implies that the oncoming velocity profile is given by u ~ ajj. Hence, for y = O(Re™?) the
horizontal velocity is of magnitude u = O(Re/?> #). An estimate of the convective and diffusive
terms gives for z = O(Re™):

2
convection u% = O(Ret 28+2) . diffusion %g—yg = O(Re#71/2)

Balancing these terms yields a relation between « and 3:

N —

a
5—§+

For this value of 8 the horizontal velocity scales like u = O(Re™®/%), whereas the balancing
pressure gradient is p = O(Re™2%/3),

Substitution of these estimates in the Navier—Stokes equations reveals that the flow in the
lower deck is still governed by Prandtl’s boundary-layer equations, with a pressure that is again
constant in vertical direction: p(z,y) = Re 2%/ 3P(z4). High in the lower deck, for Yg = Refy —
oo, we have

w(a,ys) ~ Re*/3ays +aG(wa) + -} . (3)

The function G is related to the displacement thickness, as will be clear in (4) below.

Next to the solid-wall conditions at yg = 0, as a first boundary condition at infinity the
coefficient of ys (i.e. a) is given. Additionally, another boundary condition is required. In the
classical interpretation this would be the prescription of the pressure, i.e. P(z,), but in the spirit
of Catherall and Mangler [6] this could also be a displacement effect, i.e. G(zq)-

It is stressed that in this way the lower-deck equations form one relation between P and G.
A second relation can be found by matching with the other decks, as will be described next.

The middle deck y = O(Re /?)

In order to concentrate on the essential properties of the triple deck, the derivation of the
asymptotic expansions in the middle deck is only summarized. For more details, the reader
is referred to the original papers by Stewartson [68] and Messiter [48] (or later papers by e.g.
Meyer [49] and Nayfeh [51]).



The middle deck is determined through matching with the oncoming flow (2) and the lower
deck (3). It ‘simply’ shows a vertical shift of the oncoming velocity profile, caused by the
displacement effect of the lower deck. The expansions in the middle deck are

u(z,y) ~ B'(§)+Re *’B"(§)G(za) + -+,

o(z,y) ~ —Re?P12B(§)G (z4) +--- (4)

The leading term in the pressure, once again, turns out to be constant in y-direction p(z,y) ~
Re~2%/3 P(z,). This information is now passed on to the upper deck.

The upper deck y = O(Re™)

In the upper deck the z- and y-dimensions are equal, whereas viscous effects are not important.
It is governed by inviscid flow where Laplace’s equation and Bernoulli’s law hold.

As B'(j) — 1 for § — oo, the vertical velocity in (4) induces a velocity —Re?*/3~1/2G"(z,)
in the upper deck, which according to ‘Laplace’ leads to a horizontal velocity perturbation

o) = Lpgers [© GO~
i(ra,y) = — R/ [ R T ae 6)

When in Bernoulli’s law p + (u? + v?)/2 = C one substitutes v = 1 + @ and v = ¥, with @ < 1
and ¥ < 1, then to first approximation

p+i=C-1/2. (6)

20/3-1/2 \which is hence

This implies that also the pressure expansion contains a term of order Re
related to displacement effects.

Matching of middle and upper deck now yields two kinds of pressure terms in an expansion
that reads

p(z,y) = Re 223pP) (14, y,) + Re®*/3 120 (24, yo) + -+ . (7)

The term p(®) matches the pressure in the middle deck, hence it satisfies p®) (z4,0) = P(z4); the
term p(®) is due to displacement effects and through (6) it is related to the horizontal velocity
perturbation induced by (5).

Loss of hierarchy

Figure 4 shows the relative order of the two terms present in (7), and herewith it reveals the
essential character of the triple deck.

When o < 3/8 the term p?) is the larger one in (7), and it determines, as usual, the pressure
P in the boundary layer. The lower-deck equations then provide G after which the second term
p(® can be determined, which in turn provides a pressure correction in the boundary layer. The
classical hierarchy between inviscid flow and boundary layer is recognized.

This situation changes for « = 3/8 when both pressure terms in (7) are equally important,
and this is what constitutes the essence of the triple deck. The pressure terms p® and p®)
have to be identical, thus by equating their values at y, = 0, from (5) and (6) a second relation
between P and G is obtained:

Paa) == [7 E e, ®)

TJoo Ta —§

The triple-deck equations now consist of Prandtl’s boundary-layer equations, with boundary
condition (3) and a second relation between pressure and displacement given by the Cauchy—
Hilbert integral (8). The latter is responsible for the elliptic character of the mathematical
formulation. The first numerical solutions to the triple-deck equations have been presented in
the mid-seventies [33, 46, 82].
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Figure 4: Hierarchy between pressure contributions in lower and upper deck at a streamwise
length scale x = O(Re™).

Remark 1 Parallel to the above subsonic triple deck, a supersonic version was developed by
Stewartson and Williams [72]. It is similar, except for the description of the interaction with
the inviscid flow. The global Cauchy—Hilbert integral (8) is replaced by a local Prandtl-Meyer
relation

P(zy) = —G'(zq) .

Because of its hyperbolic character the numerical treatment of the supersonic equations is rela-
tively easy: in the absence of reversed flow a single marching sweep through the boundary layer
suffices [72].

Remark 2 The triple deck has been the inspiration of a wealth of research on asymptotic
descriptions; refer for example to the review papers by Stewartson [69], Smith et al. [59, 61,62,
64] and Kluwick [36], and the monograph by Sychev et al. [73].

Remark 8 The above interactive boundary-layer concept is restricted to mildly separated flows,
i.e. flows where the thickness of the reversed-flow region is comparable to the boundary-layer
thickness. For larger regions of reversed flow (marginal separation or, larger still, massive sepa-
ration) the asymptotic structure has to be revised [19, 71]. In the same time, the flow in these
larger separated-flow regions physically becomes unstable: an unsteady boundary-layer model
has to be used, whose validity, in turn, terminates with a Van Dommelen-Shen singularity [15].
In a consistent way, numerical simulation methods based on the thin boundary-layer concept
tend to break down when the thickness of the separated-flow region becomes significant, e.g.
[27,87], thus giving a warning that the selected flow modelling should be reconsidered. Read-
ers might wish to consult Chapter 14 of the enlarged edition of Schlichting’s ‘Boundary-Layer
Theory’ [60] for a more detailed discussion of these asymptotic issues.

4. Non-asymptotic points of view

In the late seventies, the quest for the cause of the singularity has also moved along non-
asymptotic lines that in retrospect can be related to the above. Several investigations into the
boundary-layer relation between pressure and displacement thickness have been carried out,
which all produced a similar outcome.

First, we will present the reflections of LeBalleur [39] at ONERA. He considered an integral
formulation of the turbulent boundary-layer equations, consisting of Von Kéirmdan’s integral
equation and Head’s entrainment equation. In case u. is prescribed, these differential equations



are conveniently ordered as

de 0 du,
Von Karman: 1 = fc5— U_e(2 + H) dq.; , o
de dH E 60Hd
Entrainment: H;— + o—1 — = 1 Cte .
dx dx Ug Uue dzx

Here, 0 is the momentum thickness, H the shape factor §/6*, c; the shear-stress coefficient,
E Head’s entrainment function and H; the entrainment shape factor (which is assumed to be
a function of H only). The two differential equations are supplemented with three algebraic
relations for determining H, F and cy.

Figure 5: Some H-H; relationships as used at ONERA [39], RAE [44] and NLR [31] around
1980. The three relations agree on having a minimum near H = 2.7, corresponding with the
onset of separation. For larger values of H the curves disagree, but experimental data to support
these curves was rare at that time.

LeBalleur [39] demonstrated that the numerical problems at separation are caused by the
algebraic relation between H and H;. Since H; follows from the two differential equations (9),
the algebraic relation should provide H. However the graph of H; as a function of H shows a
minimum at (or nearby) a point of flow separation. Figure 5 gives versions of this relation as
used at ONERA [39], RAE [44] and NLR [31] around that time; supporting experimental data
can be found in the review paper by Lock and Williams [45]. As a consequence, not for every
value of Hj is it possible to find a value for H! LeBalleur further showed that when also u, is
considered as an unknown no difficulties arise (an extra equation has to be added that describes
the interaction between inviscid flow and boundary layer).

As another example, a numerical experiment performed at the National Aerospace Labora-
tory NLR in Amsterdam will be described [77,79]. In this study the original boundary-layer
equations (1), i.e. as a field method, were solved with a prescribed displacement thickness chosen
such that flow separation occurred. Then at a fixed z-station §* was varied, keeping every other
station fixed, and the variations of u. and the shear-stress coefficient c¢; were studied. It turned
out that in this way u. as a function of 0* possessed a minimum, that seemed to correspond
(within one or two grid cells) with the point where c; vanishes, i.e. a point of flow separation;
Fig. 6 (left) gives the idea,? very resemblant of Fig. 5.

All similar studies [2,30] suggested that the velocity distribution u. cannot be prescribed
arbitrarily near a point of flow separation. There is a certain range in u.-values outside which
no solution seems to exist, a situation correctly predicted by Goldstein some thirty years earlier.

2The curves have been copied from my research notes of 15 December 1977, drawn in pencil on millimeter
paper. The scaling of the axes was not indicated, but it is not relevant: the locations of the minimum in w. and
of the zero of ¢y are all that matter.
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Figure 6: Behaviour of u. and c; as a function of §* at a fixed boundary-layer station (left),
and Falkner—Skan relation between pressure parameter m, shear stress f”(0) and displacement
parameter § (right). The left-hand graph is from boundary-layer calculations in 1977; the right-
hand graph could have been drawn in 1954.

In terms of dynamical systems, passing the separation point with u. prescribed amounts to
crossing a saddle point [34,37]. Another option has been to solve the boundary-layer equations
with prescribed wall shear [35], but as will be obvious from Fig. 6 this option runs into similar
diffculties. It would be interesting to study this issue from a theoretical point of view. Only
little theory on existence and uniqueness of solutions of the boundary-layer equations exists
[53, 54, 84], but with the current numerical evidence it is known what to look for.

In retrospect, it is not difficult to recognize that already earlier similar types of graphs could
have been presented, e.g. in relation with the family of Falkner—Skan similarity solutions of the
boundary-layer equations [20]. This family is governed by the equation

P (1= ) =0, f0) = F(0)=0, feo)=1,
m+1

where m is a parameter related to the pressure gradient through m = z(du./dz)/u.. In par-
ticular, the main branch of attached flow solutions only exists for m > —0-0904, whereas for
—0-0904 < m < 0 also a separated flow branch exists; this branch was identified by Stewartson
in 1954 [67]. Figure 6 (Tight) gives an unusual presentation of the Falkner—Skan results: the
pressure parameter m and the shear variable f”(0) are shown as a function of the displacement
thickness 0 (defined through f(n) ~ n — ¢ for n — o0); the resemblance with the much more
recent graph in Fig. 6 (left) is striking!

5. Viscous-inviscid interaction methods

The above, mainly theoretical, considerations brought the insight to tackle engineering boundary-
layer problems in an industrial context. The message is threefold:

— firstly, the boundary-layer approximation is sufficiently accurate to model the flow in mildly
separated flow regions;

— secondly, the interaction involves and requires a local region of invisicd flow;

— thirdly, and most important, the hierarchy between boundary layer and inviscid flow is lost.
Although for turbulent flow a different asymptotic structure exists [47], the messages from
laminar-flow theory carry over, and in the discussion of Goldstein’s singularity the distinction
between laminar flow and turbulent flow is not relevant. It is good to realize that Goldstein’s
singularity has no fundamental physical basis, but it is created artificially by mathematically
splitting the flow field in two hierarchical parts: a splitting against which the physics protests!

3Because of the second message, it makes no sense to apply the full Navier-Stokes equations in the boundary
layer. ‘Goldstein’ will still strike back, unless the computational region is much thicker than the boundary layer.



Thus interactive boundary-layer models were proposed, where Prandtl’s boundary-layer
equations were coupled with a relation like (8), describing the main interaction with the in-
viscid flow, or with an accurate inviscid-flow solver. Such a coupled problem can be written as,
in principle, two equations with two unknowns:

external inviscid flow  u, = E[§"], (10)

boundary-layer flow  u, = B[d*]. (11)

Here E denotes the external inviscid-flow operator, whereas B is the boundary-layer operator
for prescribed displacement thickness; note that near flow separation the inverse B~! does not
exist. In the classical, or ‘direct’, method u, is computed from the inviscid-flow equation in (10),
whereas the displacement thickness is determined from the viscous flow equation in (11) with a
breakdown of B! in separation.

Inspired by the theoretical developments described above, in the second half of the seventies
a number of ideas have been brought forward to circumvent the breakdown singularity. The
simplest way is to invert the direction of the iterative process in the classical method. One
obtains the so-called ‘inverse’ method, where, following the idea set forward by Catherall and
Mangler [6], the boundary layer is solved with prescribed displacement thickness. An early
success was obtained by Carter [5] when he computed the separated flow past an indented plate.
For engineering applications, however, the inverse method converges very slow, and it has not
been used on large scale. To speed up convergence, other methods were developed, of which
two have survived [45]: the semi-inverse method of LeBalleur [39,40] and Carter [4], and the
quasi-simultaneous method [76, 78].

Semi-inverse

The semi-inverse method (Fig. 7, left) introduced by LeBalleur in France [39,40], and indepen-
dently by Carter in the USA [4], is a mixture of the direct and the inverse method. It solves the
boundary-layer equations with prescribed displacement thickness, and the inviscid flow in the
traditional way (hence also with prescribed displacement thickness):

uf = E[5*® V] (direct); uf = B[5*® V] (inverse);

5 = 5= 4, (uf — uf) .

Experience in tuning the relaxation parameter w has developed throughout the years, and many
applications of the semi-inverse method, including massively separated flow(!), can be found in
the literature, e.g. [21,41, 55].

semi-inverse quasi-simultaneous
External flow External flow
(™ u = oy/o
O34 8"=8""+w (U -u’) d=-y :) u = og/on
B
L j u Boundary layer
+ -
Boundary layer Interaction law

Figure 7: Semi-inverse and quasi-simultaneous VII method.
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Quasi-simultaneous

The quasi-simultaneous method follows the suggestion made by Lagerstrom [38]. It wants to
reflect the lack of hierarchy between both subdomains: in principle, it wants to solve both subdo-
main problems simultaneously. When the boundary layer is modelled by an integral formulation
a simultaneous coupling is well feasible, with early examples dating back to the seventies already,
e.g. [16,22,31, 50]. In principle, such a fully simultaneous approach is to be preferred. However,
when in both domains a field formulation is chosen, software complexity may prohibit a practical
implementation. Recall that around 1980 mainframe computers possessed a memory of only 1(!)
Mbyte. At that time this prevented a fully simultaneous approach, and the idea was born to
solve the boundary-layer equations simultaneously with a simple but good approzimation of the
inviscid flow, which was termed the interaction law. The difference between this approximation
and the ‘exact’ inviscid flow can then be handled iteratively. In this way, the quasi-simultaneous
method (Fig. 7, right) can be formulated as

ugn) _ I[d*(n)] — E[d*(n_l)] _ I[(S*(n_l)] :
(12)
ugn) _ B [5*(n)] = 0,

where (n) is the iteration count. Note that the VII iterations ‘only’ need to account for the
difference between the external flow E and its approximation I. In other words, the interac-
tion law is used in defect formulation: it does not influence the final converged result, but it
circumvents Goldstein’s singularity and enhances the VII convergence.

Next, the question arises how to choose the interaction law. A fair description of how an
inviscid flow reacts on displacement effects is delivered by thin-airfoil theory, in its simplest form
given by .
o) = weolo) + 1187, with 1187 = - [ G %
where u.( is the edge velocity without displacement effects. Also triple-deck theory provides
this type of approximation, cf. (8), which makes the Cauchy-Hilbert integral in (13) a good
candidate for an interaction law. Indeed, it has turned out to be successful. An example of
the use of this interaction law (describing thickness effects) together with its skew-symmetric
counterpart (describing camber effects) is given in Section 6.. Many other examples of the use
of (13) can be found in the literature, for example in the monograph [7].

Later, when larger computers became available, in engineering applications this ‘simple’
interaction law has sometimes been replaced by more sophisticated ones, for instance interaction
laws based on a discrete Laplace description of the inviscid flow [3], or based on an inviscid panel
method (e.g. [11]). In this way a better convergence of the iterations in (12) can be obtained.

On the other hand, at least from a scientific point of view, it is interesting to find out how
far the above interaction law can be simplified without being struck by Goldstein’s singularity,
while at the same time yielding acceptable convergence of the iterations in (12). We will pursue
this question in Section 7..

(13)

Remark 4 In three dimensions a similar approach is feasible, with two thin-airfoil expressions
like (13) relating the two inviscid surface-velocity components to the shape of the displacement
body, as demonstrated for example by Roget et al. [58] and Edwards [18]. The latter author was
largely inspired by Davis, who at the east coast of the USA has initiated research in interactive
boundary layers [86]. Related work in the UK has been carried out by Smith and co-workers [63].
At the USA west coast Cebeci has been an active advocate of quasi-simultaneous VII methods
in engineering applications (airfoil analysis and design) [10]. For three-dimensional engineering
flow simulations much pioneering work has been done by Cousteix and his colleagues in France
8,13, 58].
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Remark 5 The interacting boundary-layer (IBL) formulation can be obtained from other con-
siderations, such as the approach by Cousteix and Mauss [14] where the flow modelling is chosen
according to the successive complementary expansion method. But, unavoidably, the threefold
message presented at the beginning of this section has to be acknowledged. Other appearances
of IBL methods can be found for example in [66].

6. Application to transonic airfoil flow

The performance of the quasi-simultaneous coupling concept will be demonstrated on a typical
calculation of transonic flow past an RAE2822 airfoil with the NLR Vistrafs code. The boundary
layer was modelled by Prandtl’s equations with the algebraic Cebeci-Smith turbulence model;
effects of streamline curvature were included [80]. The inviscid flow was modelled by transonic
full potential theory. As an interaction law, the integral (13) has been used to describe the sym-
metric displacement effects (‘thickness problem’), together with its skew-symmetric counterpart
to describe the effects of camber (‘lift problem’); for details see Veldman et al. [81].

RAE 2822 - case 6: pressure lift vs. angle of attack
-1.5
+ . t o * experiment
experimen 0.78 O Navier-Stokes
1 ' o x VIl methods
o + VIl Vistrafs
] 0.76 y
-05 ¥ U—' o +0 ol x
* X O
0.74 X
0
X
0.72 o
0.5
0 0.5 1 2.2 24 26 , 28 3

Figure 8: RAE2822 airfoil at M=0-725, Re=6-5mill., a=2-44, C,=0-743 (Case 6). Pressure
distribution (left) and comparison of lift predictions by various VII and NS methods [28] (right).

The flow case presented in Fig. 8 is mildly transonic, with a small amount of separated flow
near the trailing edge. Pertinent flow parameters are M = 0-725, Re = 6-5 million, cexp, = 2-92
(with a corrected value of @ = 2-44) and fixed transition at 3% chord.

The computational grid consists of 173 x 21 grid points (C-type, with 128 points along the
airfoil surface) in the boundary layer, and the inviscid-flow grid was 128 x 64 (O-type). The
computations require about 10 quasi-simultaneous iterations to converge to 3—4 digits, which on
a modern PC takes less than one minute (it was so much different in the mid-eighties when this
method was developed...). The rate of convergence is governed by the difference between the
exact inviscid flow F and its approximation I; as a consequence it is independent of the grid
size. To appreciate the fast convergence even better, one should realize that the external flow
in this example is transonic, with a significant supersonic flow region, whereas the interaction
law (13) is based on sub(!)sonic theory.

In 1986 this flow case has been the subject of a workshop [28], where about twenty aerody-
namic codes were compared. The lift coefficient predicted by these codes is presented in Fig. 8
(right), where a distinction has been made between viscous-inviscid interaction (VII) codes and
Navier—Stokes codes. A similar situation was found for the other flow cases investigated in the
workshop. The participants were also requested to quantify the computational complexity of
their codes: it was found that, depending on the inviscid flow model used, VII codes were one
to two orders of magnitude cheaper than Navier-Stokes codes. The latter codes required 106
107 floating-point operations per grid point; a price tag that is still representative for today’s
Navier—Stokes codes, as can be inferred from the review data presented by Agarwal [1].
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A conclusion of the workshop must be that, in spite of their much smaller complexity, the
quality of the VII results is comparable to that of the Navier—Stokes results. In fact, the
quality of flow simulations for this type of flow appears to be dominated by the quality of
the turbulence model. Any difference between a full Navier—Stokes model and a simplified
boundary-layer model just drowns in the uncertainty in turbulence modelling. As stated by
Holst [28]: “An engineering turbulence model that can approzimately predict the size and extent
of separated regions is desperately needed.” Since 1986 the situation has not changed significantly.
A European CFD validation project in 1992 once again revealed that the uncertainty due to
turbulence modelling produces a large spreading of the Navier—Stokes results [25].

Of course, Navier-Stokes modelling is required in situations where the viscous region can no
longer be considered as thin, such as massive flow separation in take-off and landing configura-
tions, or the flow near essentially three-dimensional objects. In this respect it is remarkable that
maximum-lift prediction with a VII method appears to be feasible, as demonstrated by Cebeci
and co-workers [9, 10]; see also Section 9..

7. In search of a simpler interaction law

The implementation of an interaction law, be it the thin-airfoil expressions for thickness and
camber or an influence matrix of a panel method, can be cumbersome. Therefore, it is worthwhile
to investigate how much the interaction law can be simplified without being struck by Goldstein’s
singularity. The viscous-inviscid convergence is likely to deteriorate, but the effort to adapt an
existing ‘classical’ boundary-layer code to separated-flow computations will be smaller. Thus,
referring to the quasi-simultaneous formulation (12), the question is

How ‘small’ can I be chosen?

This question has been thoroughly investigated in the PhD thesis of Coenen [12]. She has
performed an analysis based on the theory for non-negative matrices and the closely related M-
matrices (see [29, 75]). We will first summarize the theory as developed by Coenen; thereafter the
usefulness of the theory will be demonstrated on some realistic flow problems. As a reminder,
it is remarked that I = 0 corresponds with the direct method that blows up in Goldstein’s
singularity.

A model problem

To shape the theory, as a model problem the flow past an indented plate (Fig. 9) is studied
for which the external flow will be described by the thin-airfoil expression (13). It is our aim
to construct a simple interaction law for this case. Let us first collect some properties of the
operators £ and B.

0.5

flow —>

Figure 9: Geometry sketch of indented plate geometry.

Ezternal flow The integral (13) is discretized on a uniform grid with mesh size h. The dis-
placement thickness §* is interpolated by a piece-wise linear function; only on the two intervals
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adjacent to the Cauchy principal value a quadratic interpolation is used:

dé* d¢ 1 Tit1 1 [Z+| dé*  d€
E [6* =1 = = Yo =
[6 ] df T; — £ = {/%1 + jF#i—1, . /wj } df ; _f
2h d%6* h do* i—j
- — Yiti1i — — . 14
 de2 i+ JAI— 10 aé oy n i—j—l‘ (14)

After discretization of the ¢-derivatives in (14), the corresponding discrete matrix E is symmetric,
positive definite with diagonal 4/7h, and with non-positive off-diagonal entries.

Boundary-layer flow Referring e.g. to [79], a discrete boundary-layer operator B typically is
lower diagonal, with negative diagonal entries for attached flow and (slightly) positive diagonal
entries for reversed flow; compare the slope of the (6%, u.)-relation in Fig. 6 (left).

8. Matrix theory of viscous-inviscid interaction

To develop the theory, first the quasi-simultaneous method (12) will be rewritten in matrix
notation

WM o156 = (B -T) 5D

= (I-B) &M = (1-E) s, 15
AW _B g — } ( ) ( ) (15)

After convergence, the ultimate system to be solved reads in matrix notation
(E-B)dé* =0. (16)

In this study we will consider situations with steady flow, for which it is natural to make the
following assumption; moreover it allows theory to be developed:

Assumption The matrix E — B is assumed to be (positive) stable, i.e. all its eigen-
values lie in the stable half plane, with positive diagonal entries and non-positive
off-diagonal entries (hence it is an M-matrix).

VII iterations An interaction law as in (15) corresponds with a splitting E— B = (I — B) —
(I—E). When I > E, under the above assumption I — B is an M-matrix, making (I-B)~! >0
[29, p. 114]; hence this splitting is regular [75, p. 88]. As the off-diagonals of E are non-positive,
this suggests to construct I from E by dropping one or more off-diagonals (Fig. 10). Since also
E — B is an M-matrix, the comparison theorem on regular splittings [75, p. 90] implies that
the convergence of the VII iterations deteriorates monotonously with the number of dropped

\\ NN
EN\VARN

Figure 10: Tne interaction law I (right) may be obtained from the external flow matrix E (left)
by omitting some off-diagonals (here only two diagonals on each side have been retained).

///;
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Boundary-layer iterations Each VII iteration a boundary-layer computation has to be per-
formed, in which (15) is to be solved. This is done by repeated marching through the boundary
layer, starting near the stagnation point and proceeding in downstream direction. Thus, a
Gauss—Seidel type of iteration is performed. This method ‘only’ has to iterate on the upper
triangular part of the matrix I — B, which here consists of entries from I. Hence it may be
expected that a ‘small’ upper-diagonal part will speed up convergence. And, indeed, under the
above assumption it can be proven that the Gauss-Seidel convergence improves monotonously
with the number of dropped off-diagonals in I [12]. This is opposite to the behaviour of the VII
iterations, hence a trade-off is opportune (see below). Further, it is remarked that an interaction
law which only consists of a main diagonal does not require boundary-layer iterations.

boundary layer

inviscid flow

Figure 11: A sketch of the boundary-layer behaviour, combined with an inviscid-flow relation.

Robustness As already discussed in Section 4., the boundary-layer formulation is highly non-
linear. In Fig. 11 we copy Fig. 6 (left), where, at a fixed boundary-layer station, the dependence
between the edge velocity u, and the displacement thickness §* is shown [79]. This sketch shows
clearly that below a certain value of ue no solution can be found anymore. Prescribing a linear
combination of u. and ¢*, as is the case when an interaction law is applied, should be useful
provided the coefficient of ¢* stays sufficiently away from zero. Also during the iterations the
process should not break down, hence the eigenvalues of the interaction matrix I, and herewith
the eigenvalues of I — B, should stay sufficiently far from the imaginary axis.

Again theory can be developed. With the above assumption, I — B can be written as a con-
stant positive diagonal matrix minus a non-negative matrix. For the latter type of matrices the
largest eigenvalue grows monotonously with the matrix entries (the Perron-Frobenius theorem
[75, p. 30]). Thus for I — B this dependency holds for the smallest eigenvalue. With I > E,
this eigenvalue is located in the stable half plane. Further, it grows with the number of dropped
off-diagonals, herewith increasing the robustness of the boundary-layer calculation. Also in this
respect an interaction law consisting of only the main diagonal of E scores best.

9. Simplified interaction in practice

Indented plate

The theory behind simplifying the interaction law will first be tested with the above indented
plate (Fig. 9). The dent is about one unit wide and chosen quite deep in comparison with the
boundary-layer thickness, which makes it a severe testcase for the VII algorithm. The Reynolds
number based on unit length is 10%. The boundary layer is modelled with Head’s entrainment
method [12].

The interaction law I is chosen by simply dropping off-diagonals in the ‘exact’ inviscid flow
matrix E. Figure 12 (left) gives the number of VII iterations as a function of the number of
retained off-diagonals. Three flow situations have been distinguished: one with attached flow
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Figure 12: Number of VII iterations (left) and total number of boundary-layer sweeps (right)
as a function of the number of retained off-diagonals.

(when the dent is very shallow), one with mild separation, and one with severe separation (as
in Fig. 9).

For all choices of I the VII iterations are found to converge. Moreover, according to theory,
the convergence of the VII iterations improves monotonously with the number of diagonals
retained in I. The limit number of iterations is 2-3. For attached flow this can be compared
with the direct method which also requires 3 iterations to converge (in the separated-flow cases
the direct method breaks down).

Further, the number of VII iterations drops fast when the number of retained off-diagonals
increases. On the other hand this leads to slower convergence of the boundary-layer iterations,
and therefore the total number of boundary-layer sweeps has also been monitored in Fig. 12
(right). A local minimum exists when the interaction law only consists of the main diagonal
(in this case one boundary-layer sweep per VII iteration suffices). When one off-diagonal is
added, the number of Gauss—Seidel sweeps per VII iteration increases, and herewith the total
number of boundary-layer sweeps. Adding more off-diagonals the decrease in VII iterations
becomes dominant. A minimum number of boundary-layer sweeps is found in the limit I — E.
Here, the number of boundary-layer sweeps should be equal to the number required for a fully
simultaneous treatment, i.e. when (16) is solved by Gauss—Seidel. Indeed, this is the case.

Thus for the interaction law two interesting choices exist. One option is to choose it according
to the ‘full’ external flow; the other option is to choose it equal to only the diagonal 4/7h of the
external-flow matrix. As the first option is against our quest for simplicity, below we will test
the second option on a realistic problem of boundary-layer flow past a two-dimensional airfoil.

Subsonic airfoil flow

The above ideas on simplifying the interaction law will now be tested for aerodynamic flow past
a NACAO0012 airfoil (at Re = 9-10°, and M, = 0); experimental data is available. The inviscid
flow is modelled by potential theory, and computed by means of a panel method. Boundary
layer plus wake are modelled with Head’s entrainment method (for more information we refer
to [12]). They are solved together with the interaction law

I = diag{4/nh} . (17)

We stress that this interaction law is unaware of the Kutta condition and its effect on the global
circulation; it only accounts for the local VII physics — but this turns out to be sufficient!

A large part of the lift polar has been computed. The calculations turn out to be highly
robust. It appears that even for separated-flow cases beyond maximum lift the calculations
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Figure 13: Lift polar for NACA0012 airfoil: viscous-inviscid calculation versus experiment.

converge without any need for a good initial guess; they can be started from scratch! The
number of VII iterations with the extremely simple interaction law (17) typically is less than
100 at zero lift upto 1000 around maximum lift; only for larger angles of attack the computations
break down. The number of iterations may sound large, but they can easily can be combined with
the time-stepping in an unsteady inviscid-flow solver. Anyway, for two-dimensional simulations,
the computing times count in just seconds on an average PC.

Remark 6 Experience with the above simplified interaction laws for three-dimensional bound-
ary layers has been described in Coenen’s PhD thesis [12].

10. Epilogue

Prandt!’s 1904 boundary-layer theory formed the starting point for the viscous-inviscid interac-
tion methods that have been developed in the last two decades of the 20th century. They have
become very popular, since in comparison with brute-force Navier—-Stokes solutions they are
about two orders less expensive, whereas for flow conditions with thin shear layers the results
are equally useful. Because of their modest computational complexity, they are ideal to be used
in aerodynamic airfoil and wing optimization studies, e.g. [17, 65, 83, 85].

The greatest challenge has been to understand and resolve the singularity at separation,
which occurs when the boundary-layer equations are solved with prescribed pressure. In 1948,
Goldstein already foresaw the possibility that near separation in general no solution does exist,
unless the pressure satisfies certain properties. Triple-deck theory provided the insight behind
these difficulties, and gave the clue towards their solution. Goldstein turns out to have pointed
in the right direction of non-existence; doubts on the validity of the boundary-layer model were
found not to be essential here.

Stewartson and his 1969 contemporaries have provided the asymptotic framework valid near
separation: the triple deck. In 1975 Lagerstrom described his view on the triple deck, and today
we know that his paper contains the essential message required to overcome the singularity at a
point of flow separation: boundary layer and inviscid flow have to be solved simultaneously. It
is through this type of insight that the use of viscous-inviscid interaction methods in engineering
applications could flourish.

An interesting question is how close one can get to Prandtl’s original boundary-layer for-
mulation of prescribed edge velocity without running into Goldstein’s singularity. It was found
that a simple modification suffices

4 (new) 4 (old)

This slight change, unlikely to be further simplified, results in a highly robust calculation method,
applicable to airfoil calculations beyond maximum lift.
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Only a small, strongly personally biased, glimpse of the world-wide efforts in solving Prandtl’s

boundary-layer equations as challenged by Goldstein’s separated-flow singularity could be dis-
cussed: emphasis has been on steady incompressible flow, whereas supersonic inviscid flow and
unsteady flow separation have been scratched only superficially.* Many places in the literature
can be found that, in retrospect, were close to unraveling the correct ‘interactive’ view, but
where lack of computational power prevented a further pursuit at that moment. It would be
interesting to analyse all these ‘close encounters’, and I hope to find another occasion to dig
deeper into this intriguing 20th-century story.
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