

 University of Groningen

A formal reduction for lock-free parallel algorithms
Gao, H.; Hesselink, W.H.

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Gao, H., & Hesselink, W. H. (2004). A formal reduction for lock-free parallel algorithms. In R. Alur, & DA.
Peled (Eds.), EPRINTS-BOOK-TITLE (pp. 44-56). (LECTURE NOTES IN COMPUTER SCIENCE; Vol.
3114). University of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 13-02-2023

https://research.rug.nl/en/publications/825edb3f-f7af-430d-ad3c-f567e37f1e97

A formal reduction for lock-free parallelalgorithmsGao, H. and Hesselink, W.H.Department of Mathematics and Computing Science, University of Groningen, P.O.Box 800, 9700 AV Groningen, The NetherlandsEmail: fhui,wimg@cs.rug.nlAbstract. On shared memory multiprocessors, synchronization oftenturns out to be a performance bottleneck and the source of poor fault-tolerance. Lock-free algorithms can do without locking mechanisms, andare therefore desirable. Lock-free algorithms are hard to design correctly,however, even when apparently straightforward. We formalize Herlihy'smethodology [13] for transferring a sequential implementation of anydata structure into a lock-free synchronization by means of synchroniza-tion primitives Load-linked (LL)/store-conditional (SC). This is done bymeans of a reduction theorem that enables us to reason about the generallock-free algorithm to be designed on a higher level than the synchroniza-tion primitives. The reduction theorem is based on re�nement mappingas described by Lamport [10] and has been veri�ed with the higher-orderinteractive theorem prover PVS. Using the reduction theorem, fewer in-variants are required and some invariants are easier to discover and easierto formulate.The lock-free implementation works quite well for small objects. How-ever, for large objects, the approach is not very attractive as the burdenof copying the data can be very heavy. We propose two improved lock-free algorithms for large objects in which slower processes don't need tocopy the entire object again if their attempts fail. This results in lowercopying overhead than in Herlihy's proposal.Keywords & Phrases: Distributed algorithms, Lock-free, Simulation, Re-�nement mapping

1 IntroductionOn shared-memory multiprocessors, processes coordinate with each other viashared data structures. To ensure the consistency of these concurrent objects,processes need a mechanism for synchronizing their access. In such a systemthe programmer typically has to explicitly synchronize access to shared databy di�erent processes to ensure correct behaviors of the overall system, usingsynchronization primitives such as semaphores, monitors, guarded statements,mutex locks, etc. Consequently the operations of di�erent processes on a shareddata structure should appear to be serialized: if two operations execute simul-taneously, the system guarantees the same result as if one of them is arbitrarilyexecuted before the other.Due to blocking, the classical synchronization paradigms using locks can incurmany problems such as convoying, priority inversion and deadlock. A lock-free(also called non-blocking) implementation of a shared object guarantees thatwithin a �nite number of steps always some process trying to perform an op-eration on the object will complete its task, independently of the activity andspeed of other processes [13]. As lock-free synchronizations are built withoutlocks, they are immune from the aforementioned problems. In addition, lock-free synchronizations can o�er progress guarantees. A number of researchers [1,4, 5, 13{15] have proposed techniques for designing lock-free implementations.The basis of these techniques is using some synchronization primitives such ascompare-and-swap (CAS), or Load-linked (LL)/store-conditional (SC).Typically, the implementation of the synchronization operations is left tothe designer, who has to decide how much of the functionality to implement insoftware using system libraries. The high-level speci�cation gives lots of freedomabout how a result is obtained. It is constructed in some mechanical way thatguarantees its correctness and then the required conditions are automaticallysatis�ed [3]. We reason about a high-level speci�cation of a system, with a largegrain of atomicity, and hope to deduce an implementation, a low-level speci-�cation, which must be �ne grained enough to be translated into a computerprogram that has all important properties of the high-level speci�cation.However, the correctness properties of an implementation are seldom easyto verify. Our previous work [6] shows that a proof may require unreasonableamounts of e�ort, time, or skill. We therefore develop a reduction theorem thatenables us to reason about a lock-free program to be designed on a higher levelthan the synchronization primitives. The reduction theorem is based on re�ne-ment mappings as described by Lamport [10], which are used to prove that alower-level speci�cation correctly implements a higher-level one. Using the re-duction theorem, fewer invariants are required and some invariants are easier todiscover and easier to be formulated without considering the internal structureof the �nal implementation. In particular, nested loops in the algorithm may betreated as one loop at a time.

2 Lock-free transformationThe machine architecture that we have in mind is based on modern shared-memory multiprocessors that can access a common shared address space. Therecan be several processes running on a single processor. Let us assume there areP (� 1) concurrently executing sequential processes.Synchronization primitives LL and SC, proposed by Jensen et al. [2], havefound widespread acceptance in modern processor architectures (e.g. MIPS II,PowerPC and Alpha architectures). They are a pair of instructions, closely re-lated to the CAS, and together implement an atomic Read/Write cycle. Instruc-tion LL �rst reads a memory location, say X , and marks it as \reserved" (not\locked"). If no other processor changes the contents of X in between, the subse-quent SC operation of the same processor succeeds and modi�es the value stored;otherwise it fails. There is also a validate instruction V L, used to check whetherX was not modi�ed since the corresponding LL instruction was executed. Imple-menting V L should be straightforward in an architecture that already supportsSC. Note that the implementation does not access or manipulate X other thanby means of LL=SC=V L. Moir [12] showed that LL=SC=V L can be constructedon any system that supports either LL=SC or CAS. A shared variable X onlyaccessed by LL=SC=V L operations can be regarded as a variable that has anassociated shared set of process identi�ers V:X , which is initially empty. Thesemantics of LL, V L and SC are given by equivalent atomic statements below.proc LL(ref X : val) : val =h V:X := V:X [fselfg; return X ; iproc VL(ref X : val) : boolean =h return (self 2 V:X) iproc SC (ref X : val; in Y : val) : boolean =h if self 2 V:X then V:X := ;; X := Y ; return trueelse return false; fi iwhere self is the process identi�er of the acting process.At the cost of copying an object's data before an operation, Herlihy [13]introduced a general methodology to transfer a sequential implementation ofany data structure into a lock-free synchronization by means of synchronizationprimitives LL and SC. A process that needs access to a shared object pointedby X performs a loop of the following steps:(1) read X using an LL operationto gain access to the object's data area; (2) make a private copy of the indicatedversion of the object (this action need not be atomic); (3) perform the desiredoperation on the private copy to make a new version; (4) �nally, call a SCoperation on X to attempt to swing the pointer from the old version to the newversion. The SC operation will fail when some other process has modi�ed Xsince the LL operation, in which case the process has to repeat these steps untilconsistency is satis�ed. The algorithm is non-blocking because at least one out

of every P attempts must succeed within �nite time. Of course, a process mightalways lose to some faster process, but this is often unlikely in practice.3 ReductionWe assume a universal set V of typed variables, which is called the vocabulary.A state s is a type-consistent interpretation of V , mapping variables v 2 V tovalues sJvK. We denote by � the set of all states. If C is a command, we denoteby Cp the transition C executed by process p, and sJCpKt indicates that in state sprocess p can do a step C that establishes state t. When discussing the e�ect of atransition Cp from state s to state t on a variable v, we abbreviate sJvK to v andtJvK to v0. We use the abbreviation Pres(V) for Vv2V (v0 = v) to denote thatall variables in the set V are preserved by the transition. Every private variablename can be extended with the suÆx \." + \process identi�er". We sometimesuse indentation to eliminate parentheses.3.1 Observed Speci�cationIn practice, the speci�cation of systems is concerned rather with externally visi-ble behavior than computational feasibility. We assume that all levels of speci�-cations under consideration have the same observable state space �0, and are in-terpreted by their observation functions � : � ! �0. Every speci�cation can bemodeled as a �ve-tuple (�;�;�;N ;L) where (�;�;N) is the transition system[16] and L is the supplementary property of the system (i.e., a precicate on �!).The supplementary constraint L is imposed since the transition system onlyspeci�es safety requirements and have no kind of fairness conditions or livenessassumptions built into it. Since, in reality, a stuttering step might actually per-form modi�cations to some internal variables in internal states, we do allowstuttering transitions (where the state does not change) and the next-state rela-tion is therefore reexive. A �nite or in�nite sequence of states is de�ned to bean execution of system (�;�;�;N ;L) if it satis�es initial predicate � and thenext-state relation N but not necessarily the requirements of the supplementaryproperty L. We de�ne a behavior to be an in�nite execution that satis�es thesupplementary property L. A (concrete) speci�cation Sc implements a (abstract)speci�cation Sa i� every externally visible behavior allowed by Sc is also allowedby Sa. We write Beh(S) to denote the set of behaviors of system S.3.2 Re�nement mappingsA re�nement mapping from a lower-level speci�cation Sc = (�c; �c; �c;Nc;Lc)to a higher-level speci�cation Sa = (�a; �a; �a;Na;La), written � : Sc v Sa, isa mapping � : �c ! �a that satis�es:1. � preserves the externally visible state component: �a Æ � = �c.2. � is a simulation, denoted � : Sc 4 Sa:

¬ � takes initial states into initial states: �c) �a Æ �.
 Nc is mapped by � into a transition (possibly stuttering) allowed by Na:Q ^Nc) Na Æ �, where Q is an invariant of Sc.3. � maps behaviors allowed by Sc into behaviors that satisfy Sa's supplemen-tary property: 8 � 2 Beh(Sc) : La(�(�)).Below we need to exploit the fact that the simulation only quanti�es over allreachable states of the lower-level system, not all states. We therefore explicitlyallow an invariant Q in the condition. The following theorem is stated in [11].Theorem 1. If there exists a re�nement mapping from Sc to Sa, then Sc im-plements Sa.Re�nement mappings give us the ability to reduce an implementation byreducing its components in relative isolation, and then gluing the reductionstogether with the same structure as the implementation. Atomicity guaranteesthat a parallel execution of a program gives the same results as a sequential andnon-deterministic execution. This allows us to use the re�nement calculus forstepwise re�nement of transition systems [8]. Essentially, the reduction theoremallows us to design and verify the program on a higher level of abstraction. Thebig advantage is that substantial pieces of the concrete program can be thendealt with as atomic statements on the higher level.The re�nement relation is transitive, which means that we don't have toreduce the implementation in one step, but can proceed from the implementationto the speci�cation through a series of smaller steps.3.3 CorrectnessThe safety properties satis�ed by the program are completely determined by theinitial predicate and the next-state relation. This is described by Theorem 2,which can be easily veri�ed.Theorem 2. Let Pc and Pa be safety properties for Sc and Sa respectively.The veri�cation of a concrete judgment (�c; �c;Nc) j= Pc can be reduced tothe veri�cation of an abstract judgment (�a; �a;Na) j= Pa, if we can exhibit asimulation � mapping from �c to �a that satis�es Pa Æ �) Pc.We make a distinction between safety and liveness properties (See [10] for theproof schemes). The proof of liveness relies on the fairness conditions associatedwith a speci�cation. The purpose for fairness conditions is to rule out executionswhere the system idles inde�nitely with control at some internal point of a pro-cedure and with some transition of that procedure enabled. Fairness argumentsusually depend on safety properties of the system.4 A lock-free patternWe propose a pattern that can be universally employed for a lock-free construc-tion in order to synchronize access to a shared node of nodeType. The interface

CONSTANTP = number of processes; N = number of nodesShared Variables:pub: aType; Node: array [1..N] of nodeType;Private Variables:priv: bType; pc: fa1; a2g; x: 1..N; tm: cType;Program:loopa1: noncrit(pub, priv, tm, x);a2: h if guard(Node[x], priv) then com(Node[x], priv, tm); fi iendInitial conditions �a : 8 p:1..P: pc = a1Liveness La : 2 (pc = a2 �! 3 pc = a1)Fig. 1. Interface SaCONSTANTP = number of processes; N = number of nodesShared Variables:pub: aType; node: array [1..N+P] of nodeType;indir: array [1..N] of 1..N+P;Private Variables:priv: bType; pc: [c1:: c7];x: 1..N; mp, m: 1..N+P; tm, tm1: cType;Program:loopc1: noncrit(pub, priv, tm, x);loopc2: m := LL(indir[x]);c3: read(node[mp], node[m]);c4: if guard(node[mp], priv) thenc5: com(node[mp], priv, tm1);c6: if SC(indir[x], mp) thenmp := m; tm :=tm1; break;fic7: elseif VL(indir[x]) then break; fifiendendInitial conditions �c :(8 p:1..P: pc = c1 ^ mp=N+p) ^ (8 i:1..N: indir[i]=i)Liveness Lc : 2 (pc = c2 �! 3 pc = c1)Fig. 2. Lock-free implementation Sc of Sa

Sa is shown in Fig. 1, where the following statements are taken as a schematicrepresentation of segments of code:1. noncrit(ref pub : aType; priv : bType; in tm : cType; out x : 1::N) :representing an atomic non-critical activity on variables pub and priv ac-cording to the value of tm, and choosing an index x of a shared node to beaccessed.2. guard(in X : nodeType; priv : bType) a non-atomic boolean test on thevariable X of nodeType. It may depend on private variable priv.3. com(ref X : nodeType; in priv : bType; out tm : cType) : a non-atomicaction on the variable X of nodeType and private variable tm. It is allowedto inspect private variable priv.The action enclosed by angular brackets h: : :i is de�ned as atomic. The privatevariable x is intended only to determine the node under consideration, the privatevariable tm is intended to hold the result of the critical computation com, ifexecuted. By means of Herlihy's methodology, we give a lock-free implementationSc of interface Sa in Fig. 2. In the implementation, we use some other schematicrepresentations of segments of code, which are described as follows:4. read(ref X : nodeType; in Y : nodeType) : a non-atomic read operationthat reads the value from the variable Y of nodeType to the variable X ofnodeType, and does nothing else. If Y is modi�ed during read, the resultingvalue of X is unspeci�ed but type correct, and no error occurs.5. LL; SC and V L : atomic actions as we de�ned before.Typically, we are not interested in the internal details of these schematic com-mands but in their behavior with respect to lock-freedom. In Sc, we declare Pextra shared nodes for private use (one for each process). Array indir acts aspointers to shared nodes. node[mp:p] can always be taken as a \private" node(other processes can read but not modify the content of the node) of processp though it is declared publicly. If some other process successfully updates ashared node while an active process p is copying the shared node to its \private"node, process p will restart the inner loop, since its private view of the node isnot consistent anymore. After the assignment mp := m at line c6, the \private"node becomes shared and the node shared previously (which contains the oldversion) becomes \private".Formally, we introduceNc as the relation corresponding to command noncriton (aType�bType�cType; aType�bType�1::N),Pg as the predicate computedby guard on nodeType � bType, Rc as the relation corresponding to com on(nodeType� bType; nodeType� cType), and de�ne�a , (Node[1::N]; pub)� (pc; x; priv; tm)P ;�c , (node[1::N + P]; indir[1::N]; pub)� (pc; x; mp; m; priv; tm; tm1)P ;�a(�a) , (Node[1::N]; pub); �c(�c) , (node[indir[1::N]]; pub),Na , W0�i�2Nai ; Nc , W1�i�7Nci ;The transitions of the abstract system can be described: 8s; t : �a; p : 1::P :

sJ(Na0)pKt , s = tsJ(Na1)pKt , pc:p = a1 ^ pc0:p = a2 ^ Pres(V � fpub; priv:p; pc:p; x:pg)^ ((pub; priv:p; tm:p); (pub; priv:p; x:p)0) 2 NcsJ(Na2)pKt , pc:p = a2 ^ pc0:p = a1 ^ (Pg(Node[x]; priv:p)^ ((Node[x]; priv:p); (Node[x]; tm:p)0) 2 Rc^ Pres(V � fpc:p; Node[x]; tm:pg)_ :Pg(Node[x]; priv:p) ^ Pres(V � fpc:pg)).The transitions of the concrete system can be described in the same way. Herewe only provide the description of the step that starts in c6: 8s; t : �c; p : 1::P :sJ(Nc6)pKt , pc:p = c6 ^ (p 2 V:indir[x:p]^ pc0:p = c1 ^ (indir[x:p])0 = mp:p ^ mp0:p = m:p^ tm0:p = tm1:p ^ (V:indir[x:p])0 = ;^ Pres(V � fpc:p; indir[x:p]; mp:p; tm:p; V:indir[x:p]g)_ p =2 V:indir[x:p] ^ pc0:p = c2 ^ Pres(V � fpc:pg))4.1 SimulationAccording to Theorem 2, the veri�cation of a safety property of concrete systemSc can be reduced to the veri�cation of the corresponding safety property ofabstract system Sa if we can exhibit the existence of a simulation between them.Theorem 3. The concrete system Sc de�ned in Fig. 2 is simulated by the ab-stract system Sa de�ned in Fig. 1, that is, 9� : Sc 4 Sa.Proof:We prove Theorem 3 by providing a simulation. The simulation function� is de�ned by showing how each component of the abstract state (i.e. stateof �a) is generated from components in the concrete state (i.e. state of �c).We de�ne � : the concrete location c1 is mapped to the abstract location a1,while all other concrete locations are mapped to a2; the concrete shared vari-able node[indir[x]] is mapped to the abstract shared variable Node[x], and theremaining variables are all mapped to the identity of the variables occurring inthe abstract system.The assertion that the initial condition �c of the concrete system implies theinitial condition �a of the abstract system follows easily from the de�nitions of�c, �a and �.The central step in the proof of simulation is to prove that every atomicstep of the concrete system simulates an atomic step of the abstract system.We therefore need to associate each transition in the concrete system with thetransition in the abstract system.It is easy to see that the concrete transition Nc1 simulates Na1 and thatNc2, Nc3, Nc4, Nc5, Nc6 with precondition \self =2 V:indir[x:self]", and Nc7with precondition \self =2 V:indir[x:self]" simulate a stuttering step Na0 in theabstract system. E.g., we prove that Nc6 executed by any process p with precon-dition \p =2 V:indir[x:p]" simulates a stuttering step in the abstract system. Bythe mechanism of SC, an active process p will only modify its program counter

pc:p from c6 to c2 when executing Nc6 with precondition \p =2 V:indir[x:p]".According to the mapping of �, we know both concrete locations c6 and c2 aremapped to abstract location a2. Since the mappings of the pre-state and thepost-state to the abstract system are identical, Nc6 executed by process p withprecondition \p =2 V:indir[x:p]" simulates the stuttering step Na0 in the abstractsystem.The proof for the simulations of the remaining concrete transitions is lessobvious. Since simulation applies only to transitions taken from a reachablestate, we postulate the following invariants in the concrete system Sc:Q1: (p6= q) mp:p 6= mp:q) ^ (indir[y] 6= mp:p)^ (y 6= z) indir[y] 6= indir[z])Q2: pc:p = c6 ^ p 2 V:indir[x:p]) ((node[m:p]; priv:p); (node[mp:p]; tm1:p)) 2 RcQ3: pc:p = c7 ^ p 2 V:indir[x:p]) : Pg(node[m:p]; priv:p)Q4: pc:p 2 [c3::c7] ^ p 2 V:indir[x:p]) m:p = indir[x:p]Q5: pc:p 2 fc4; c5g ^ p 2 V:indir[x:p]) node[m:p] = node[mp:p]Q6: pc:p = fc5; c6g) Pg(node[mp:p]; priv:p)In the invariants, the free variables p and q range over 1::P , and the free variablesy and z range over 1::N . Invariant Q1 implies that, for any process q, node[mp:q]can be indeed treated as a \private" node of process q since only process qcan modify that. Invariant Q4 reect the mechanism of the synchronizationprimitives LL and SC.With the help of those invariants above, we have proved that Nc6 and Nc7executed by process p with precondition \p 2 V:indir[x:p]" simulate the abstractstep Na2 in the abstract system. For reasons of space we refer the interestedreader to [7] for the complete mechanical proof. ut4.2 Re�nementRecall that not all simulation relations are re�nement mappings. According tothe formalism of the reduction, it is easy to obtain that � preserves the externallyvisible state component. For the re�nement relation we also need to prove thatthe simulation � maps behaviors allowed by Sc into behaviors that satisfy Sa'sliveness property, that is, 8� 2 Beh(Sc) : La(�(�)). Since � is a simulation, wededuce� j= Lc � � j= 2(pc = c2 �! 3pc = c1)) � j= 2(pc 2 [c2::c7] �! 3pc = c1)) �(�) j= 2(pc = a2 �! 3pc = a1)� La(�(�))Consequently, we have our main reduction theorem:Theorem 4. The abstract system Sa de�ned in Fig. 1 is re�ned by the concretesystem Sc de�ned in Fig. 2, that is, 9� : Sc v Sa.

The liveness property Lc of concrete system Sc can also be proved under theassumption of the strong fairness conditions and the following assumption:2 (2pc:p 2 [c2::c7] ^ 23p 2 V:indir[x:p]) 3(pc:p = c6 _ pc:p = c7) ^ p 2 V:indir[x:p]).The additional assumption indicates that for every process p, when process p re-mains in the loop from c2 to c7 and executes c2 in�nitely often, it will eventuallysucceed in reaching c6 or c7 with precondition \p 2 V:indir[x:p]".5 Large objectTo reduce the overhead of failing non-blocking operations, Herlihy [13] proposesan exponential back-o� policy to reduce useless parallelism, which is causedby failing attempts. A fundamental problem with Herlihy's methodology is theoverhead that results from making complete copies of the entire object (c3 inFig. 2) even if only a small part of an object has been changed. For a large objectthis may be excessive.We therefore propose two alternatives given in Fig. 3. For both algorithms the�elds of the object are divided intoW disjoint logical groups such that if one �eldis modi�ed then other �elds in the same group may be modi�ed simultaneously.We introduce an additional �eld ver in nodeType to attach version numbersto each group to avoid unnecessary copying. We assume all version numbersattached to groups are positive. As usual with version numbers, we assume thatthey can be suÆciently large. We increment the version number of a group eachtime we modify at least one member in the group.All schematic representations of segments of code that appear in Fig. 3 arethe same as before, except3. com(ref X : nodeType; in g : 1::W; priv : bType; out tm : cType) :performs an action on group g of the variable X of nodeType instead of onthe whole object X .4. read(ref X : nodeType; in Y : nodeType; g : 1::W) : only reads the valuefrom group g of node Y to the same group of node X .The relations corresponding to these schematic commands are adapted accord-ingly.In the �rst implementation,mp now becomes an array used to record pointersto private copies of shared nodes. In total we declare N � P extra shared nodesfor private use (one for each process and each node). Note that node[mp[x]:p]can be taken as a \private" node of process p though it is declared publicly.Array indir continues to act as pointers to shared nodes.At the moment that process p reads group i:p of node[m:p] (line l5), processp may observe the object in an inconsistent state (i.e. the read value is not thecurrent or historical view of the shared object) since pointer m:p may have beenredirected to some private copy of the node by some faster process q, which hasincreased the modi�ed group's version number(line l9 and l10). When process

CONSTANTP = number of processes; N = number of nodesW = number of groups;K = N + N * P (* II : K = N + P *)Type nodeType = recordval: array [1..W] of valType;ver: array [1..W] of posnat;endShared Variables:pub: aType; node: array [1..K] of nodeType;indir: array [1..N] of 1..K;Private Variables:priv: bType; pc: [l1::l11];x: 1..N; m: 1..K;mp: array [1..N] of 1..K; (* II : mp: 1..K; *)new: array [1..W] of posnat; old: array [1..W] of nat;g: 1..W; tm, tm1: cType; i: nat;Program:loopl1: noncrit(pub, priv, tm, x);choose group g to be modified;old:= node[mp[x]].ver; (* II : old:= � (i:1..W): 0; *)(* II : replace all ``mp[x]'' below by ``mp'' *)loopl2: m:= LL(indir[x]);l3: i := 1l4: while i � W donew[i]:= node[m].ver[i];if new[i] 6= old[i] thenl5: read(node[mp[x]], node[m], i); old[i]:= 0;l6: if not VL(indir[x]) then goto l2; fi;l7: node[mp[x]].ver[i]:= new[i]; old[i]:= new[i];fi;i++;endl8: if guard(node[mp[x]], priv) thenl9: com(node[mp[x]], g, priv, tm1); old[g]:= 0;node[mp[x]].ver[g]:= new[g]+1;l10: if SC(indir[x], mp[x]) thenmp[x]:= m; tm:=tm1; break;fil11: elseif VL(indir[x]) then break;fiendendFig. 3. Lock-free implementation I (* implementation II *) for large objects

p restarts the loop, process p will get higher version numbers to the array new,and only needs to reread the modi�ed groups, whose new version numbers di�erfrom their old version numbers. Excessive copying can be therefore prevented.Line l6 is used to check if the read value of a group is consistent with the versionnumber.The �rst implementation is fast for an application that often changes only asmall part of the object. However, the space complexity is substantial becauseP +1 copies of each node are maintained and copied back and forth. Sometimes,a trade-o� is chosen between space and time complexity. We therefore adaptit to our second lock-free algorithm for large objects (shown in Fig. 3 also) bysubstituting all statements enclosed by (� : : : �) for the corresponding statementsin the �rst version. As we did for small objects, we use only one extra copy of anode for each process in the second implementation.In the second implementation, since the private copy of a node may belongto some other node, a process �rst initializes all elements of old to be zero (linel1) before accessing an object, to force the process to make a complete copy ofthe entire object for the �rst attempt. The process then only needs to copy partof the object from the second attempt on. The space complexity for our secondversion saves (N � 1) � P times of size of a node, while the time complexity ismore due to making one extra copy of the entire object for the �rst attempt. Tosee why these two algorithms are correct, we refer the interested reader to [7]for the complete mechanical proof.6 ConclusionsThis paper shows an approach to veri�cation of simulation and re�nement be-tween a lower-level speci�cation and a higher-level speci�cation. It is motivatedby our present project on lock-free garbage collection. Using the reduction theo-rem, the veri�cation e�ort for a lock-free algorithm becomes simpler since fewerinvariants are required and some invariants are easier to discover and easier for-mulate without considering the internal structure of the �nal implementation.Apart from safety properties, we have also considered the important problem ofproving liveness properties using the strong fairness assumption.A more fundamental problem with Herlihy's methodology is the overheadthat results from having multiple processes that simultaneously attempt to up-date a shared object. Since copying the entire object can be time-consuming,we present two improved algorithms, which can easily be implemented, to avoidunnecessary copying for large objects in cases where only small part of the ob-jects are modi�ed. It is often better to distribute the contents of a large objectover several small objects to allow parallel execution of operations on a largeobject. However, this requires that the contents of those small objects must beindependent of each other.Formal veri�cation is desirable because there could be subtle bugs as thecomplexity of algorithms increases. To ensure our hand-written proof presentedin the paper is not awed, we use the higher-order interactive theorem prover

PVS for mechanical support. PVS has a convenient speci�cation language andcontains a proof checker which allows users to construct proofs interactively, toautomatically execute trivial proofs, and to check these proofs mechanically. Forthe complete mechanical proof, we refer the reader to [7].References1. B. Bershad: Practical Considerations for Non-Blocking Concurrent Objects. In Pro-ceedings of the 13th International Conference on Distributed Computing Systems,May 1993.2. E.H. Jensen, G.W. Hagensen, and J.M. Broughton: A new approach to exclusivedata access in shared memory multiprocessors. Technical Report UCRL-97663,Lawrence Livemore National Laboratory, November 1987.3. E. Clarke, O. Grumberg, and D. Long: Model checking and abstraction ACMTransactions on Programming Languages and Systems 16(5), January 1994.4. G. Barnes: A method for implementing lock-free data structures. In Proceedingsof the 5th ACM symposium on Parallel Algorithms & Architecture, June 1993.5. Henry Massalin, Calton Pu: A Lock-free Multiprocessor OS Kernel. Technical Re-port CUCS-005-91, Columbia University, 19916. H. Gao, J.F. Groote andW.H. Hesselink.: EÆcient almost wait-free parallel accessi-ble dynamic hashtables. Technical Report CS-Report 03-03, Eindhoven Universityof Technology, The Netherlands, 2003. To appear in the proceedings of IPDPS2004.7. http://www.cs.rug.nl/ wim/mechver/LLSCreduction8. J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors: Stepwise Re�ne-ment of Distributed Systems: Models, Formalism, Correctness. Lecture Notes inComputer Science 430. Spinger-Verlag, 1990.9. Anthony LaMarca: A Performance Evaluation of Lock-free Synchronization Pro-tocols. In proceedings of the thirteenth symposium on priniciples of distributedcomputing, 1994.10. L. Lamport: The Temporal Logic of Actions. ACM Transactions on ProgrammingLanguages and Systems 16(3), 1994, pp. 872{923.11. M. Abadi and L. Lamport: The existence of re�nement mappings. TheoreticalComputer Science, 2(82), 1991, pp. 253{284.12. Mark Moir: Practical Implementations of Non-Blocking Synchronization primi-tives. In Proceedings of the sixteenth symposium on principles of Distributed com-puting, 1997. Santa Barbara, CA.13. M. P. Herlihy: A methodology for implementing highly concurrent objects. ACMTransactions on Programming Languages and Systems 15, 1993, pp. 745{770.14. Maurice Herlihy, Victor Luchangco and Mark Moir: The Repeat O�ender Problem:A Mechanism for Supporting Dynamic-Sized, Lock-Free Data Structures. In Pro-ceedings of the 16th International Symposium on DIStributed Computing, 2002.15. Victor Luchangco, Mark Moir, Nir Shavit: Nonblocking k-compare-single-swap. InProceedings of the Fifteenth Annual ACM Symposium on Parallel Algorithms,2003, pp. 314-323.16. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:Speci�cation. Springer-Verlag, 1992.

