

 University of Groningen

EZEL
Voinea, Lucian; Telea, Alex; Wijk, Jarke J. van

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Voinea, L., Telea, A., & Wijk, J. J. V. (2004). EZEL: a Visual Tool for Performance Assessment of Peer-to-
Peer File-Sharing Networks. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute
for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 13-02-2023

https://research.rug.nl/en/publications/40c1e155-50fd-45e4-bbba-0b4b856f7bc2

EZEL: a Visual Tool for Performance Assessment
of Peer-to-Peer File-Sharing Networks

Lucian Voinea
*

Technische Universiteit Eindhoven

Alex Telea †

Technische Universiteit Eindhoven

Jarke J. van Wijk ‡

Technische Universiteit Eindhoven

ABSTRACT

In this paper we present EZEL, a visual tool we developed for the

performance assessment of peer-to-peer file-sharing networks. We

start by identifying the relevant data transferred in this kind of

networks and the main performance assessment questions. Then

we describe the visualization of data from two different points of

view. First we take servers as focal points and we introduce a new

technique, faded cushioning, which allows visualizing the same

data from different perspectives. Secondly, we present the

viewpoint of files, and we expose the correlations with the server

stance via a special scatter plot. Finally, we discuss how our tool,

based on the described techniques, is effective in the performance

assessment of peer-to-peer file-sharing networks.

CR Categories: H.5.2[User Interfaces]: Evaluation/methodology;

I.3.2 [Graphic Systems]: Stand-alone systems; J.7 [Computers in

Other Systems]: Command and control

Keywords: process visualization, distributed file systems

visualization, P2P file-sharing networks visualization, small

displays

1. INTRODUCTION

Process visualization is one of the oldest forms of information

visualization. It appeared once with the need of gaining insight in

the behavior of a system, and it dates back in time to the ancient

builders of the Stonehenge, which used the temple as a

‘visualization instrument’ for the succession of seasons. The

appearance of the graphic display computer marked the birth of a

plethora of process visualization techniques [1,4,5,7]. These

techniques address different domains, from the visualization of

application behavior [4] to the visualization of web site accesses

[5]. Visualization of distributed systems’ performance is,

however, one of the less explored domains. Most work in this area

is related to the visualization of the structure of such systems

[2,3].

We propose a new approach to the visualization of performance

of Peer-to-Peer (P2P) file-sharing networks, a branch of

distributed processing that has recently gained enormous

popularity. We illustrate the proposed visualization techniques by

a prototype tool, called EZEL, which we developed for the

assessment of performance in the ED2K P2P file-sharing network

[11]. We first present the issues that are relevant for the

assessment of performance in distributed processing systems, with

a focus on P2P file-sharing networks (Section 2). In Section 3, we

describe the data that is transferred in this kind of systems, and we

identify the transactions that are important for performance

evaluation.

*e-mail: lvoinea@win.tue.nl
†e-mail: alext@win.tue.nl
‡e-mail: vanwijk@win.tue.nl

Next, we detail the challenges that arise when supporting the

assessment with visual tools, and we present our approach to

address them.

In Section 4, we describe the visualization of data taking

servers as focal points. We show how, via the use of shading and

color, multiple aspects can be shown simultaneously in a compact

way. We elaborate on the space partitioning power of cushions,

and we introduce a novel technique: fading cushions. We

demonstrate how this technique allows visualizing the same data

from different perspectives. In Section 5, we add the viewpoint of

the file, and in Section 6 we expose the correlation between file

and servers via a special scatter plot.

Finally, we discuss in Section 7 the suitability of our approach

for the assessment of P2P file-sharing networks, and we conclude

by outlining future research directions.

2. PROBLEM DESCRIPTION

A distributed processing system is a collection of entities whose

purpose is to reduce the overall processing time for a given task

by dividing the processing load among its constituent parts. We

outline the most important concepts in such a system, with an eye

on their implementation in a P2P file-sharing system (see Figure 1

for a conceptual model).

Clients generate requests (e.g., file read requests) and assign

them to proxy entities. A proxy divides requests in smaller parts

(i.e., segments) that are uniquely identifiable and can be

independently fulfilled by server entities.

Client

Proxy

Server 1

Request segments

A B C

Processing Request

A B CAssign

A B C

A B C

Divide

Dispatch A B C

A

Schedule

A
serve segment

B

Schedule

B
serve segment

C

Distributed System

Server 2

Figure 1: Distributed processing system (conceptual model)

Every proxy has an internal dispatcher algorithm that decides to

what servers the requested segments will be sent for processing.

Every server has limited processing resources to handle request

segments from proxies, and uses a priority based scheduling to

manage them. The priorities are internally maintained by the

server for each client request.
October 10-12, Austin, Texas, USA
0-7803-8779-1/04/$20.00 ©2004 IEEE

IEEE Symposium on Information Visualization 2004

41

Visualization of a distributed system’s performance aims at

helping the user to understand such a system, based on

information obtained from transactions between its constituent

parts. Both snapshots and history recordings are therefore

important [1].

The user can employ this understanding to navigate the

transaction data and answer a number of performance related

questions. In the case of our distributed file-sharing systems, one

is mainly interested in two issues, as follows.

Dispatcher algorithm assessment

When the network of processing servers is large and dynamic

(e.g., P2P networks), the segment dispatching algorithm has a

strong influence on the request servicing time. The performance

visualization should help users to easily assess the dispatcher

algorithm, and reveal the factors and the circumstances that might

influence it. For example, users should be able to identify the

reasons for which a slower server is selected at a certain moment

instead of a faster one.

Server assessment

When the dispatcher algorithm on the proxy allows direct

selection of the servers, performance visualization should help to

determine which server delivers the best value. The interesting

case appears when the selection is based on a number of

independent performance figures. The most important questions

and quantities relevant to P2P networks are:

- download speed: how long does it take till one gets a requested

file?

- server popularity: how long do clients wait in the server-side

queue, and how frequently do other clients with higher priority

enter that queue?

- server specialization: what kind of requests can a server satisfy?

When assessing the performance of a P2P file-sharing network,

one has to investigate the evolution of a number of independent

parameters. An effective assessment should consider the loosely

coupled parameters together, and should be based on tradeoffs

that depend on the purpose of the assessment. The very nature of

tradeoff making requires the user to divide its focus over more

assessment criteria at once. This turns out to be rather difficult

when the number of criteria becomes higher than two. A typical

download session for a 700 MB movie file contains around

200,000 transactions. If one uses just standard time graphs to

visualize the above three quantities, the overall image is quickly

lost, and the dispatcher algorithm and server assessment questions

remain unanswered. The challenge is to build a unified

visualization, in which the user can focus on a particular quantity

of interest without losing overview.

For P2P file sharing networks, we use four main criteria to

assess a server:

- download speed (higher is better)

- size of segments (larger is better)

- queue evolution (fast advance and less re-queuing after

 admittance is better)

- segment position (depending on the download purpose,

 some segments may be more important than others)

The ideal server should be fast, able to provide large contiguous

segments, and should have a small waiting time. Additionally, it

should not be very popular, to reduce the chance that other clients

with a higher priority interrupt the download by acquiring the

server. However, such servers usually do not exist. Moreover, the

assessment depends on several characteristics of the downloaded

file, as explained next. For the fast download of a small file, such

as a 3 MB MP3 music file, selecting the fastest server may not be

the most appropriate decision. When the waiting time in the queue

of the fast server exceeds the time that another slower server

requires to perform the task, we prefer the slower server. Another

example is the download of an archive, (e.g., a ZIP file). Such a

download should not be attempted from a server providing

fragmented segments, even if it is fast. A slower server that

provides contiguous segments is preferred, as it makes archive

recovery simpler when the download cannot be completed.

In the following sections, we walk through the challenges of

building a visualization tool for P2P file-sharing networks. We

illustrate our solutions with snapshots from EZEL, a visualization

tool that we developed for the performance assessment of the

popular ED2K P2P network. A copy of the tool and example

datasets may be downloaded from

 http://www.win.tue.nl/~lvoinea/Ezel.htm.

3. DATA MODELING

The first issue we have to consider when building a visualization

tool is which data to visualize. P2P file-sharing networks are

characterized by a large number of terminals connected via the

Internet. Each terminal connected to such a network can act both

as a server and as a client in the same time. Clients generate file

read requests that proxies break down into segment requests. A

segment request is fulfilled by a single server, which provides the

client with the related file segment. A file segment consists of file

blocks and has a variable size (expressed in blocks).

All terminals in the network exchange transactions based on a

specific protocol. These transactions may contain either file

blocks, or control information (e.g., download requests, file

availability info, queue evolution info). In the case of the ED2K

network, the exact protocol in use is not disclosed, which makes

our assessment task considerably more difficult.

As mentioned in the previous section, server and dispatcher

algorithm assessment are central issues for performance

evaluation of P2P file-sharing networks. We address these issues

by analyzing the transaction data that a client exchanges with the

rest of the network.

To study the dynamic behavior of servers, we record two types

of transaction events: file block arrivals and queue position

reports. With this information, we build three functional

descriptions for a server, from the point of view of a given client.

In the following, we consider that a client is serviced by NS

servers S1,...,SNS , every server Si being identified by an integer

server id. The download time t runs from 0 to the download

completion moment TC. The three server descriptions are:

Queue position: NRNtSQ i :,

Gives the position of the client segment request in the queue

of server Si at time t. If Q(Si,t) is zero, the client can start

downloading from Si.

Download Speed: RRNtSV i :,

Gives the speed with which the client receives data from the

server Si at time t.

Contribution: NRNtSC i :,

Gives the data downloaded from a server Si from the

beginning till a given time t. In other words:

t

ii dSVtSC
0

,,

The total amount of downloaded data is thus:

42

NS

i Ci TSCD
1

),(

To assess the performance of the dispatcher algorithm, one has

to consider both the server assessment and the evolution of the

downloaded file itself. For that, we record the block arrival events

and correlate them with the file segment requests. With this

information, we construct three functional descriptions of a

download:

Provider: NNpP :
Gives the server that provided the block at a position p, for all

positions p in a downloaded file

Time of Arrival: RNpT :
Gives the moment when the client received the block at

position p, for all positions p in a downloaded file.

Segment: NNpS :
Gives the file segment to which the block at position p

belongs to, for all positions p in a downloaded file.

The quantities mentioned above are discrete. For example, a

typical movie download consists of around 200,000 time moments

t, NS=150 servers, and a total downloaded value of D=700 MB.

All above functional descriptions are equally important for the

performance evaluation of our P2P file-sharing network.

Consequently, the challenge we face is to build a visualization

that facilitates access to all of them and shows how they relate to

each other.

We want to assess the dynamic behavior of individual servers,

view how a file is downloaded, and see the relation between these

processes. Since the functional descriptions to be visualized have

several implicit, non-trivial dependencies, we find a

straightforward visualization (for instance using separate graphs)

not a good solution.

Given that our set of functional descriptions has three main

axes (Servers Si, Time t, block Position p), a visual representation

using a 3D scatter plot may appear to be a direct solution. Figure 2

depicts such an approach. Every dot represents the transmission of

a block from a server at a certain moment. However, this

visualization would be very hard to interpret, given the large

amount of time samples (hundreds of thousands), the inherent 3D

occlusion problems, and the data scattering.

Position

Time

Servers

1

2
3

4

5

Figure 2: 3D visualization for P2P performance assessment

Therefore, we split the visualization in two parts (one focusing

on servers, the other on the downloaded file) and we correlate

them using a scatter plot. The server visualization is described

next. The downloaded file visualization is described in Section 5.

Finally, Section 6 presents the custom made scatter plot.

4. SERVER VISUALIZATION

To support the assessment of servers with a visual representation,

we use a horizontal sequence of small diagrams, one per server.

This allows the user to easily compare the functional descriptions

of different servers (i.e., Q, V and C). Additionally, the

representation of each server should offer enough provisions to

relate it to the visualization of the downloaded file (Section 5).

There are several alternatives for an individual server

representation. The obvious choice is to use the horizontal axis for

Time, the vertical axis for Queue (Q) and Contribution (C) and to

display their variation as graphs (Figure 3.a). The Download

Speed (V) can be estimated in this setup from the slope of C.

Contribution

Time

Contribution
Queue position

Time
a)

b)

Queue
position Contribution

Speed

Speed

Queue
position

Contribution

Figure 3: Server diagram, with graphs only a)
 with graph and luminance strips b)

However this first alternative is quite noisy for real world cases.

Due to the mutual exclusion in time of downloading and queuing,

the evolution of Queue position and Contribution are not

continuous, but interleaved. To remove the noise from the

visualization, we replace the spatial encoding of Queue position

with a luminance encoding. We use rectangular strips whose gray

shade indicates queue position (darker shades indicate lower

positions). Although graphs are more precise, grayscale encoding

of the queue position is sufficient for our purposes. After all, the

user needs only to identify the overall position and to spot general

queue trends such as advance or high / low position alternations.

Additionally, we use solid color filling for the area under the C

graph to enhance the feeling of quantity that Contribution has.

Figure 3.b depicts the result of the second approach. Both C and Q

variations appear now continuous, which makes interpretation

easier. Moreover, while their representations do no interfere, they

still allow users to easily make correlations. The horizontal parts

in the variation of C, for example, indicate periods in which the

Contribution stagnated. The user can easily verify if queuing was

the cause of idleness, and can also check the queue evolution of

the segment request in that period. Similarly to the first approach,

the Download Speed evolution can be estimated from the slope of

C.

The next visualization design step is to arrange the server

images such that they allow easy comparative assessment. For

this, we need a way to easily distinguish and identify the

diagrams. We use color encoding for that, and in each image we

fill the area below the Contribution graph with a server dependent

color. Color allows one to easily distinguish the different

diagrams and also preserves server identity over changes in the

diagram arrangement.

43

To allow easy comparison of the server diagrams, we need to

arrange (sort) them along one of the spatially encoded axes, i.e.,

the Time axis or the Contribution axis. Using the Time axis for

arranging the server images (Figure 4) proves to have two major

drawbacks. First, it is hard to compare server quantities (queue

position, contribution) at the same given time instant. For

example, one could hardly decide if the contribution of a source

exceeds that of another, at a given time t0 (Figure 4).

T im e

C o n tr ib u tio n t0

A B C

S e rve rs

Figure 4: Server diagram arrangement along the Time axis

Secondly, the time interval (width of server diagrams in Figure

4) is identical for all servers, so no meaningful comparison could

be made along the Time axis itself.

The second alternative (i.e., arrange on Contribution axis) is

better, as it allows easy comparison of servers based on their total

contribution (Figure 5).

Time

Contribution

A B C D E

Servers

t0

Figure 5: Arranging server diagrams
along the Contribution axis

Additionally, for a given time t, this allows comparing the

queue position and the cumulated contribution to that moment t.

Figure 6 presents a typical visualization obtained with the

method presented so far: a file download served using five

servers. We see that the first server (purple) is the most productive

one: It gives about 50% of the total amount (half of the horizontal

axis), has a stable throughput (constant slope), we are promptly

getting on the first queue position, and we maintain this position

for the total download duration (purple image slope has no step-

like jumps, and its queue area has a constant light shade after we

get on the first position). We can also identify in this image the

less productive servers, i.e., the slow one (orange) and those

exhibiting frequent falls in the queue position (yellow and cyan).

Figure 6: Basic server visualization

However, this visualization is still limited. First, using only

color to encode server identity is not a good solution when the

server arrangement (horizontal axis sorting) can change. It may

happen that two servers with the same, or perceptually similar,

colors are arranged one next to the other (Figure 7.a). Indeed, we

wish to use only a few (10..16) perceptually different colors,

whereas we typically have over 150 servers. Using only

luminance (gray value) to encode the queue position causes

similar problems. On the other hand, color encoding of server

identity keeps visual coherence when rearrangement occurs.

4.1 Spatial partition with bi-level cushions

We solve the above problem using the space partitioning

properties of cushions. For a detailed description of cushions, see

[6]. As depicted in Figure 7, cushioning makes separation clear

between different severs encoded with the same or similar colors,

without using extra screen space. It also delineates the borders

where the difference in luminance makes distinction hard.

 Figure 7: Server arrangement : without cushioning (top) with one
level cushioning (down)

In the above server diagrams, the total contribution of a server

consists of a set of segments. As the size of the segments varies,

we would like to visualize it. That would be also useful later on

for making correlations with the download visualization.

With the server visualization presented so far, it is hard to

figure out the individual segments, as they are encoded using the

same color (i.e., the color of the server). To emphasize the

segment partitioning inside the diagram of a server, while

maintaining clear separation between servers, we use the bi-level

cushioning technique described by van Wijk and van de Wetering

in [6]. Figure 8.a depicts the main idea behind this approach. By

each server diagram we visualize the illumination of a height-

modulated surface. The height assigned to a point in a server

diagram is the sum of two parabolas (i.e., cushions), one that

describes the server, and one that describes the segment to which

the point belongs. The surface is illuminated using a spot light that

forms an incidence angle with the normal on the base plane.

Each server diagram depicts the image projected by light

reflection on a plane parallel with the base.

Figure 8.b depicts the result of this technique. By using

OpenGL texturing, we obtain a much higher performance than the

similar software-only implementation of van Wijk and van de

Wetering [6]. In detail, we blend the server rectangle image and

each of its segment rectangle images, as in Figure 7.(top), with a

1D texture containing the respective server or segment luminance

profile in the alpha channel.

44

Contribution

Surface Height
(Geometry)

First layer of cushioning

Second layer of cushioning

Segments

Servers

Light

900

Projection plane

Base

a)

b)

Figure 8: Bi-level cushioning for segment and source partitioning: a)
principle; b) result

4.2 Focus migration with faded cushions

Using the bi-level cushioning is very effective for delimiting

servers and segments within servers. However, the above method

draws cushioned segment information also over the area that

displays queue information (gray area in Figure 9) . Segment

partitioning is not relevant for that area, and this makes server

comparison based on queue evolution, i.e., following horizontal

correlations, difficult.

Figure 9: Basic bi-level cushion visualization

In order to maintain the desired segment and source partitioning

effect, and, in the same time, remove the undesired influence on

the queue evolution visualization, we extend our bi-level

cushioning. We change the perceived shape of the segment

cushions in the vertical direction from constant curvature to a

gradually flattening profile. To achieve this, we introduce a height

variation in the vertical direction using a decreasing profile as

sketched in Figure 10.a. For this profile, we use an asymptotic

function (e.g., the root of order n). The segment cushions are now

efficiently implemented as 2D alpha textures and blended atop of

the original 1D server cushions.

Eventually, we obtain a visualization that emphasizes both

segment and server segregation at the top of the image, and then

progressively focuses only on the partition in servers, as the user’s

focus moves to the bottom of the image. The gradual transition

makes focus migration smooth while preserving the server context

(Figure 10.b). In other words, the visualization exhibits vertical

coherence at the top (segment-server area), which smoothly

changes into horizontal coherence at the bottom (queue area). The

overall visual effect resembles the draping of a curtain, and nicely

scales up for visualizations containing over 100 servers and 1000

segments.

Y position

X position

Height of the second
cushioning level

First level
cushioning

Second level
cushioning

a)

b)

Figure 10: Enhanced bi-level cushioning for smooth focus
migration: a) principle b) results

5. DOWNLOAD VISUALIZATION

In this section, we address the visualization of the download itself

and the creation of correlations with the server visualization

described in Section 4.

The only alternative in this part is to use the block Position as

one of the main axes in the representation, and report the

functional descriptions to it. The challenges are, however, in

choosing the right visual encoding for the Provider (P), Time of

Arrival (T) and Segment (S) descriptions. To make correlation

with the server visualization easy, we use color to encode P, and

we choose the same color assignment as for the server

visualization.

For Segment encoding (i.e., S), we use a similar approach with

the one from the server visualization: we build one-level cushions

on top of fixed-width rectangles arranged along the Position axis

(Figure 11). We don’t need bi-level cushions, as the emphasis is

only on segment segregation, and has to be visible along the entire

width of the rectangles.

Position

Segments

Color encoded
Provider

Time (first block of segment)

Fixed
width

Figure 11: Visual encoding of functional description for a file
download

For Time encoding, we may consider a graph-like

representation. Neighboring segments on the Position axis,

45

however, may arrive at non-adjacent time intervals which

immediately leads to a very noisy visualization. Therefore, we

chose to use a rainbow colormap (t=0 is blue, t=T is red) to

encode the time on a per segment basis (Figure 11). While this

alternative is visually less accurate for identifying the arrival time

of a block, it consumes little space and attenuates the visual noise

caused by neighboring segments that arrive at different moments

in time. Moreover, the above color scheme highlights

discontinuities, i.e., segments that arrive at moments distant in

time with respect to their neighbors. To improve the image

generation speed, we don’t report the time to every single block in

a segment, as the T description specifies. Instead, we use for all

the blocks in a segment the same time description as for the first

block, and we try to implement a more accurate representation

through server correlations, which we describe next.

6. CORRELATION VISUALIZATION

In this section we present the visualization component that allows

making correlations between the server and download

visualizations. In the design of the visualization so far, we have

already a color-based correlation between the Provider description

(i.e., P) and the server diagrams. This allows to identify and

compare servers that provide some particular blocks in a

downloaded file.

Next to this, we also need a correlation that would make the T

description more accurate. Since the server visualization has a

good mapping from Time to Contribution (i.e., C), we extend this

mapping to the download visualization through a correlation along

the block axes (i.e., the Contribution and the Position axes).

However, given that the two axes are spatially encoded, a relation

at block level would be too fine-grained and hard to visualize. For

that reason, we choose to visualize the connections at the (higher

abstraction) segment level.

The discrete nature of the block axes favors using a scatter plot

representation to visualize the correlation. A simple scatter plot,

however, makes visual associations difficult, once the number of

segments is greater than 10 (Figure 12.a). A possible workaround

is to add lines that make connections explicit. However, this

alternative proves to be ineffective too, as it clutters the image,

and suffers from aliasing once the distance between lines becomes

too small (e.g., the black line in Figure 12.b). These problems are

only aggravated by the large number of correlations (hundreds)

that must be displayed for a standard download dataset.

In order to make the connections more explicit while keeping

the image uncluttered, we replace the solid lines with shades that

start from the points of the scatter plot and fade away as they

approach the axes (Figure 12.c). This alternative reduces the

confusion created by crossing lines, and offers still enough visual

clues for recognizing connections. Additionally, it introduces no

artifacts and scales very well with the image size. When the

distance between the points of the scatter plot becomes to small

to observe differences, the shades merge naturally, as if they were

addressing the same element. To accomplish this, we draw the

shades using OpenGL’s GL_MIN blending function, which

always keeps the darkest shade element at intersections,

regardless of the shade drawing order.

The complete visualization, obtained after linking the server

and download visualizations using the correlation methods

described in this section, is depicted in Figure 13. For easy

navigation, we added interactive selection facilities to allow

restricting the download visualization part and the corresponding

correlations to:

- specific parts of a file (by individual segment selection on

Position axis)

- specific time intervals (using a time cursor on the Time

axis).

- specific servers (by individual server selection on

Contribution axis)

These selection mechanisms easily allow one to answer

questions such as “which are the servers active at a given time

moment”, “which are the file blocks provided by a given server”,

and “which are the servers a given file part came from”.

Server visualization

D
o
w

n
lo

a
d

 v
is

u
a

liz
a

ti
o

n

a) b) c)

Figure 12: Correlation visualization alternatives a) basic scatter plot; b) adding connecting lines; c) adding shading

46

A D E F G H IB C

Contribution

D
o
w

n
lo

a
d

v
is

u
a
liz

a
ti
o
n

S
e

rv
e

r

v
is

u
a
liz

a
tio

n

Position

Time cursor

Time

Correlation Area

Figure 13: Visual tool for the assessment of performance in P2P file-sharing networks (EZEL snapshot)

7. DISCUSSION

In this section, we discuss how our P2P visualization tool

EZEL can be used to answer the main performance related

questions in distributed file-sharing networks.

In order to experiment with the tool, one needs real-life

information about transactions in P2P file-sharing networks.

We obtained such datasets by instrumenting eMule [10], an

open source download client for the ED2K network. The

instrumented client provides us with a log file from which the

functions Q,P,C,V,T, and S discussed in Section 3 may be

computed.

Figure 13 shows a visualization of the download of a large

movie file (702,4MB). The complete download took several

hours and contained 201,261 transactions. In this image, the

servers are sorted in the decreasing order of their total

contribution. The upper half of the image shows the segment

fragmentation on a per server basis. We see that the most

suitable download sources for archive files are A, B, E and H,

as they provide large sets of contiguous segments, which

makes archive recovery simpler in case of incomplete

download. The least preferred in this sense are sources D, F

and G, which provide tiny segments scattered along the entire

length of the file. Analyzing the slopes in the image (i.e., the

server speed) we see that I is one of the fastest sources.

Unfortunately, it is also a very popular one, as most of the

time our request waited in the server queue. A better

alternative, especially for the download of a small file, is

using servers B,C, F or G. Although F and G are slow and

provide fragmented segments, they are unpopular, and thus

start satisfying our requests very fast. Finally, if one were

asked to single out an overall ‘good’ download source, A

would qualify, as it gives us many data, with constant

throughput, and little waiting time.

Figure 14 depicts a situation where we spotted a

“weakness” of the dispatcher algorithm. For a downloaded

file (350MB) we arranged the servers in decreasing speed

order. In Figure 14.b, we switched off the display of segment

evolution in time. Using a time cursor, we selected those

segments that were downloaded at a certain moment t0 close

to the end of the download.

 Contribution /
servers Position

Time

A

A

B

B

a)

b)

Time
cursor

t0

t0

Figure 14: Dispatcher algorithm assessment

Figure 14.a shows that at t0 the downloaded segment came

from server A, while Figure 14.b shows that at the same time,

the faster source B was also available (i.e., we were not in

queue but ready to be served). That means the dispatching

47

algorithm in the eMule client is not optimized for the

minimization of waiting time.

Finally, Figure 15 illustrates the possibilities that the

techniques we described in this paper have for the field of

visualization on small displays. The good scaling behavior for

the server visualization combined with the efficiency of

shading in scatter plots, and the partitioning qualities of

cushions create uncluttered images that allow performance

assessment of P2P file-sharing networks even on low-

resolution displays.

Figure 15: Download visualization of a MP3 song on a
Nokia 7650 display using EZEL

8. CONCLUSIONS AND FUTURE WORK

In this paper we presented a new approach for the visual

assessment of performance in P2P file-sharing networks, and

we validated it using EZEL, a prototype assessment tool for

the ED2K network.

We started by identifying the data transferred in P2P file-

sharing networks, and then we tried to find relevant

performance descriptions based on it. Subsequently, we built

a custom visualization made of two correlated parts: a server

and a download visualization. For each part we visually

encoded a number of descriptions and we proposed a number

of enhancements and combinations of existing visualization

techniques. Notably, we used shaded cushions for virtually all

data elements (servers, segments, queue positions, and

correlation plot elements). Overall, our visualization gives a

compact and scalable way to present a download consisting of

thousands of transactions, from over 100 sources, on a single

screen. To our knowledge, this is the first attempt to visually

explore the data transfer dynamics in the rapidly growing

world of P2P file-sharing networks. The other work we are

aware of in this field addresses a different task, namely

visualizing the topology of a P2P network of a different type

[9].

The examples presented in this paper address the

visualization of data obtained at the end of a download.

However, using the same approach for building a dynamic,

“real-time” visualization of the acquired data is in theory

possible. The only issue in this case would be the frame rate at

which images are produced. In the worst case, more than

200.000 transactions have to be considered for the generation

of each frame. This would require an impressive processing

power in order to update the image at the arrival of each new

transaction (on average every 100 ms). The current

implementation of EZEL generates images at 0.5 – 1.0 fps on

a Pentium 4 processor running at 2.6 GHz. A scenario in-

between would be to generate on demand images with the

partial information available during the download. While

differences between consecutively generated images could be

too large to make meaningful correlations, the individual

images may be used to interact with the download process

based on intermediate assessments.

In the future, we would like to generalize our visualization

and extend it to the larger domain of distributed processing in

general. The challenges we foresee there relate to the process

visualization of the dispatching and scheduling entities.

ACKNOWLEDGEMENTS

This research was part of the ITEA project Space4U, whose

aim is to define a component based software framework for

the middleware layer of high volume embedded appliances

(http://www.win.tue.nl/space4u).

REFERENCES

[1] K. Matkovic, H. Hauser, R. Sainitzer, M. E. Gröller, Process

Visualization with Levels of Detail, Proc. Info Vis ‘02, pp. 67-70

[2] R.A. Becker, S.G. Eick, A.R. Wilks, Visualizing Network Data,

IEEE TVCG, vol. 1, no. 1 , March 1995, pp.16-28

[3] S.T. Eick, Aspects of Network Visualization, IEEE Comp. Graph.

& Appl., vol. 16 , no. 2 , March 1996, pp. 69-72

[4] C. Stolte, R. Bosch, P. Hanrahan, M. Rosenblum, Visualizing

Application Behavior on Superscalar Processors, Proc. Info Vis

‘99, pp. 10-17,141

[5] E. H. Chi, S. K. Card, Sensemaking of Evolving Web Sites Using

Visualization Spreadsheets, Proc. Info Vis ‘99, pp. 18-25,142

[6] J. J. van Wijk, H. van de Wetering, Cushion Treemaps:

Visualization of Hierarchical Information, Proc. Info Vis, 1999,

pp. 73-78

[7] R. Spence, Information Visualization, ACM Press, 2001.

[8] R. M. Wilson, R. D. Bergeron, Dynamic Hierarchy Specification

and Visualization, Proc. Info Vis ’99, pp. 65-72

[9] K.-P. Yee, D. Fisher, R. Dhamija, M. Hearst, Animated

Exploration of Dynamic Graphs with Radial Layout, Proc. Info

Vis ’01, pp. 43 – 50

[10] eMule : http://www.emule-project.net/

[11] ED2K : http://www.edonkey2000.com/

48

