

 University of Groningen

ADAPTIVE CONTEXT PROCESSING IN ON-LINE HANDWRITTEN CHARACTER
RECOGNITION
Iwayama, N.; Ishigaki, K.

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Iwayama, N., & Ishigaki, K. (2004). ADAPTIVE CONTEXT PROCESSING IN ON-LINE HANDWRITTEN
CHARACTER RECOGNITION. In EPRINTS-BOOK-TITLE s.n..

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://research.rug.nl/en/publications/985380c8-21dc-42dd-be6f-f00bf8c86b7b

ADAPTIVE CONTEXT PROCESSING IN ON-LINE HANDWRITTEN
CHARACTER RECOGNITION

NAOMI IWAYAMA, KAZUSHI ISHIGAKI

Fujitsu Laboratories Ltd., 64 Nishiwaki, Okubo-cho, Akashi, Hyogo 674-8555, Japan
E-mail: naomi@flab.fujitsu.co.jp, ishigaki@flab.fujitsu.co.jp

We propose a new approach to context processing in on-line handwritten character
recognition (OLCR). Based on the observation that writers often repeat the strings that they
input, we take the approach of adaptive context processing (ACP). In ACP, the strings input
by a writer are automatically added to a dictionary designated for ACP. This dictionary
thereby can provide good coverage of the strings a writer inputs. Furthermore, the dictionary
is compact enough to be loaded on a small terminal. In our experiments, the first-hit rate of
OLCR with ACP was 95.44% after all the strings to be input had been added to the ACP
dictionary while that without ACP was 86.09%.

1 Introduction

Our work is on on-line handwritten character recognition (OLCR) consisting
of classification and context processing (CP). Considerable efforts have been made
toward increasing recognition accuracy. We developed a high-performance
classifier that outputs the best candidates for an input pattern [1]. On average for the
database (HANDS_kuchibue_d-97-06) [2], the classifier has marked 88.8%
first-hit rate and the 99.0% rate that a correct character is included among 20
candidates (nominating rate). As post-processing, CP is useful for improving the
first-hit rate [3], so in this paper, we focus on CP as post-processing.

We expect that the first-hit rate of our OLCR with effective CP may
approximate to the 99.0% nominating rate since CP permutes candidates for each
pattern position in an input pattern sequence. CP based on a character bigram model
[4] raised the first-hit rate of our OLCR to 93.2%. We consider that this CP is not
sufficiently effective because of a large difference between 93.2% and the 99.0%
nominating rate. Therefore, the goal of this work is to develop more effective CP.

A dictionary for CP is the key to effective CP since CP works by referring to
the dictionary that is called the context dictionary (CD). In this work, CD must
satisfy two requirements. One requirement is that CD provides good coverage of
strings input by a writer. This is because CP failures are often caused by a lack of
strings in CD [5]. Good coverage means that CD includes not a large variety of the
strings input by a writer but a large number of the strings input by a writer. In short,
if CD includes the strings that a writer inputs many times, CD provides good
coverage. The other requirement is that CD is compact enough to be loaded on a
small mobile terminal.

469

In: L.R.B. Schomaker and L.G. Vuurpijl (Eds.), Proceedings of the Seventh International Workshop on Frontiers in Handwriting Recognition,
September 11-13 2000, Amsterdam, ISBN 90-76942-01-3, Nijmegen: International Unipen Foundation, pp 469-474

The development of CD that satisfies the two above requirements is confronted
by two difficulties. One difficulty is a trade-off between coverage of strings and
dictionary size. The other difficulty is that a conventional CD cannot always
provide good coverage even if the dictionary is very large. Since the dictionary is
compiled beforehand from a training corpus irrespective of the writer [6], a coinage
invented by the writer is never included in the dictionary. If the writer inputs the
coinage many times, the dictionary cannot provide good coverage.

To overcome these difficulties, we take a new approach for our CD: this CD
can adapt to the writer. This CD is called an adaptive context dictionary (ACD). In
this paper, we propose effective CP with ACD, which we call adaptive context
processing (ACP). Section two describes how ACD satisfies the two requirements,
and section three explains how ACP is implemented to maximize its effectiveness.
In section four, we show by experiments that OLCR with ACP improves the
first-hit rate remarkably more than OLCR without ACP. Lastly, our conclusions are
in section five.

2 Adaptive Context Dictionary

This section describes how ACD satisfies the two requirements.
First, to provide good coverage, ACD must include the specific strings that a

writer inputs. To find those strings, we gave careful consideration to two points
about writers’ behavior. One is that OLCR is often exclusively used by individual
writers. Indeed, OLCR is often used to input strings into small mobile terminals,
each of which has only one user. The other point is the high probability that a writer
inputs the same string that the writer has input before. In a small-scale investigation,
we observed that writers often repeat strings in their input. Based on these two
observations, we reached the conclusion that if ACD includes repeated strings that a
writer inputs, ACD can provide good coverage. Accordingly, we designed ACD to
be dynamically compiled from strings input by a writer. Therefore, ACD can also
include any repeated coinages that the writer inputs.

Next, to be compact, ACD must not increase monotonically. Moreover, ACD
must not narrow its coverage. This implies that ACD must delete strings that the
writer never inputs again. Therefore, we created the concept of least recently used
strings, which are strings that have not been input again for a certain fixed period.
These strings are designed to be automatically deleted from ACD. To find least
recently used strings, a time stamp along with an input string is recorded in ACD
when a writer inputs the string. In this way, ACD includes only the strings that a
writer repeats in his/her input since the least recently used strings are deleted from
ACD. Thus, ACD is compact in spite of providing good coverage.

Note that a writer requires no extra operation to construct ACD. If the output
string from OLCR is not the desired input string, a writer can try to input the string

470

by rewriting it or selecting the string from a set of candidates. If the writer
successfully inputs the string, the writer does not modify it, of course. To
summarize, by the writer’s reaction to the output from OLCR, OLCR can recognize
whether the writer has confirmed the results of recognition as an input string. The
strings confirmed by the writer are automatically added to ACD.

3 Adaptive Context Processing

This section explains how ACP is implemented to maximize its effectiveness.
First, the role of CP in OLCR is examined. OLCR is performed by a classifier

and a context processor. For an input pattern sequence, the classifier outputs
candidate strings that are ranked in order of confidence value. For each candidate
string, the context processor tests its validity by referring to CD and assigns a new
confidence value. According to the new confidence value, the context processor
permutes candidate strings. Finally, OLCR outputs the string that ranks first.
Basically, the role of CP is to raise the correct string to the first rank.

Figure 1: ACP

Next, ACP is described. Figure 1 shows an overview of ACP. To maximize the
effectiveness of ACP, ACP must work well (a)when a writer inputs a string that
exists in ACD, and (b)when a writer inputs a string that does not exist in ACD.

For ACP to work well in both situations, our ACP design combines two context
processors referring to different CDs. One is a context processor referring to ACD,
and we call this an adaptive context processor (AC processor). The other is a
context processor based on a character bigram model, and we call this a common
context processor (CC processor).

Input pattern sequence

Classifier

Adaptive context
processor

Output string

Pattern
dictionary

Common context
dictionary

Automatic
addition

Candidate strings with
confidence values

Confirmed stringModifying and confirming

Candidate strings with
confidence values

Is it determined as
existing in ACD?

Common context
processor

Candidate strings with
confidence values

Yes No

Automatic
deletion

Least recently
used string

Adaptive context
dictionary (ACD)

Adaptive context processing

471

The algorithm for ACP is as follows. Throughout this section, suppose that a
candidate string from a classifier is S. Let { S} be a set of S-es, let SC1 be the first S,
let LC(S) and LAC(S) and LCC(S) be the confidence values assigned to S by the
classifier and the AC processor and the CC processor respectively, and let SAC be
the S that has the highest LAC(S) among the S-es that exist in ACD.

(i) SAC = null and LAC(SAC) = 0
(ii) foreach Si (all strings that exist in ACD)
(iii) if Si exists in { S} then
(iv) if LAC(Si) > LAC(SAC) then SAC = Si
(v) if SAC is not null and LAC(SAC) > LC(SC1) then
(vi) OLCR outputs SAC
(vii) else
(viii) SCC1 = Sj such as LCC(SCC1) = max{ LCC(Sj)| Sj exists in { S} }
(ix) OLCR outputs SCC1

The algorithm is described below in greater detail.
First, LAC(S) is described. We defined LAC(S) as the formula (1) if S does not

exist in ACD and as the formula (2) if S exists in ACD. To determine the validity of
S that exists in ACD, we chose the following two criteria.

• How recently did the writer input S?
• How frequently does the writer input S?

The definition of the formula (2) is based on the two criteria. For two candidates S
and S’ , if both of them exist in ACD and S is more valid than S’ on the basis of the
two criteria, LAC(S) is higher than LAC(S’).

LAC(S) = LC(S) (1)
LAC(S) = LC(S) + w1 * f(elapse(S)) + w2 * g(freq(S)) (2)

where elapse(S) is the elapsed time from the time of the most recent use of S to the
current time, freq(S) is the usage frequency of S, f and g are the functions of
elapse(S) and freq(S) respectively, and w1 and w2 are the weights. We designed f as
a monotonic decreasing function and g as a monotonic increasing function.

By our definition, if S exists in ACD, LAC(S) is higher than LC(S). This means
that the AC processor raises the rank of S that exists in ACD since our classifier
outputs the best candidates in descending order of LC(S).

We determined w1 and w2 statistically from a pair of confidence values that the
classifier assigns to the first S and to the correct S. This means that the AC
processor was adjusted to the classifier. Consequently, if S exists in ACD and LC(S)
is high enough to be reliable, LAC(S) is higher than LC(SC1). Otherwise, if S exists in
ACD and LC(S) is too low to be reliable, LAC(S) is not higher than LC(SC1).

Next, step (v) and (vi) are described. If the condition in step (v) evaluates to
“ true” , SAC ranks first in descending order of LAC(S). In this case, OLCR outputs
SAC as the results of recognition.

Finally, step (viii) and (ix) are described. If the condition in step (v) evaluates
to “ false” , the first candidate from the AC processor is SC1, which does not exist in

472

ACD. In this case, the results from the AC processor are abandoned, and output
from the classifier is sent to the CC processor. Lastly, OLCR outputs the first
candidate from the CC processor, SCC1, as the results of recognition.

In the algorithm, an input string is determined as either existing in ACD or not
by step (v). If the condition in step (v) evaluates to “ true” , this is regarded as case
(a) (see paragraph 3 in this section). In case (a), our classifier mostly outputs the
input string as a candidate since our classifier has the 99.0% nominating rate.
Moreover, since the AC processor is adjusted to the classifier, the AC processor
raises the candidate to the first rank. Therefore, SAC is regarded as the input string.
This means that ACP works well for case (a).

Otherwise, if the condition in step (v) evaluates to “ false” , this is regarded as
case (b). In case (b), ACP that the AC processor performs fails because the AC
processor refers to ACD that does not include the input string. Consequently, SC1 is
not regarded as the input string. Since the CC processor refers to CD that has been
compiled from a training corpus, the CC processor can test the validity of strings
that any writer may have input. This means that ACP also works well for case (b).

4 Experiments

This section describes experiments showing that OLCR with ACP improves the
first-hit rate more than OLCR without ACP.

The experiments were conducted as follows. The data used in the experiments
is data from a person’s schedule over a three month period, and it contains 400
characters. Fourteen subjects participated in the experiments. Using OLCR, they
inputted the data in three cycles. In the first cycle, they used OLCR without ACP. In
the second and third cycles, they used OLCR with ACP. In the third cycle, each
subject inputted the data under the condition that all the strings to be input have
been added to the individual writer’s ACD. ACD size was about 3 KB on average.

To prove that OLCR with ACP improves the first-hit rate more than OLCR
without ACP, we have to confirm the following two properties. First, the classifier
has to have no difference in its first-hit rates among the three cycles. Second, the
first-hit rates after CP have to be significantly different among the three cycles.

Table 1: First-hit rate and nominating rate of classifier and first-hit rate after CP

Cycle of experiment First Second Third
First-hit rate of classifier (%) 81.71 81.84 80.51

Nominating rate of classifier (%) 97.19 97.54 97.73
First-hit rate after CP (%) 86.09 89.10 95.44

Table 1 lists the first-hit rates and nominating rates of the classifier and the
first-hit rates after CP in the three cycles. The results of analysis of variance
(ANOVA) for the first-hit rates of the classifier show no significant difference

473

(F(2,13)=0.78, p<0.05). Therefore, we conclude that there is no difference in the
first-hit rate of the classifier among the three cycles.

The results of ANOVA show no significant difference in the first-hit rate
between the first cycle and second cycle (F(1, 13)=2.49, p<0.05), but they show a
significant difference between the first cycle and the third cycle (F(1,13)=24.8,
p<0.05). Based on these results, we conclude that ACP is effective for data that has
many repeated strings.

5 Conclusions

We have proposed adaptive context processing (ACP) with ACD in OLCR. ACD is
dynamically updated as a writer inputs strings into OLCR. In our experiments, ACD
size was about 3 KB after all the strings to be input had been added to ACD. The
first-hit rate of OLCR with ACP was 95.44% while that without ACP was 86.09%.

We analyzed cases where OLCR with ACP made misrecognitions even though
input strings were included in ACD. We found that a misrecognition might occur if
the classifier does not output an input string as a candidate. Adapting the classifier
to individual writers enables an input string to be output as a candidate. Therefore,
the adaptive classifier integrated with ACP achieves even higher first-hit rate.

Acknowledgments

We would like to thank Prof. Masaki Nakagawa for valuable advice. We also wish
to thank Noboru Iwayama for critical review and all participants in our experiments.

References

1. H. Tanaka et al., Hybrid Pen-Input Character Recognition System Based on Integration
of Online-Offline Recognition, Proc. 5th ICDAR (1999) pp.209-212.

2. M. Nakagawa et al., Collection and utilization of on-line handwritten character patterns
sampled in a sequence of sentences without any writing instructions, IEICE Technical
Report, PRU95-110, vol.95, No.278 (1995) pp.43-48.

3. M. Nagata, Context-Based Spelling Correction for Japanese OCR, Proc. of 16th
COLING (1996) pp. 806-811.

4. M. Nakagawa et al., Robust and Highly Customizable Recognition of On-line
Handwritten Japanese Characters, Proc. 13th ICPR (1996) pp.269-273.

5. M. Okamoto et al., Theme on On-line Handwriting Character Recognition Method and
String Separation Method Using Language Processing, Progress in Handwriting
Recognition (1996) pp.387-392.

6. R.K. Srihari, Use of lexical and syntactic techniques in recognizing handwritten text,
Proc. of the ARPA workshop on Human Language Technology (1994) pp.403-407.

474

