
 

 

 University of Groningen

ADAPTIVE CONTEXT PROCESSING IN ON-LINE HANDWRITTEN CHARACTER
RECOGNITION
Iwayama, N.; Ishigaki, K.

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Iwayama, N., & Ishigaki, K. (2004). ADAPTIVE CONTEXT PROCESSING IN ON-LINE HANDWRITTEN
CHARACTER RECOGNITION. In EPRINTS-BOOK-TITLE s.n..

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://research.rug.nl/en/publications/985380c8-21dc-42dd-be6f-f00bf8c86b7b


 

ADAPTIVE CONTEXT PROCESSING IN ON-LINE HANDWRITTEN 
CHARACTER RECOGNITION 

NAOMI IWAYAMA, KAZUSHI ISHIGAKI 

Fujitsu Laboratories Ltd., 64 Nishiwaki, Okubo-cho, Akashi, Hyogo 674-8555, Japan  
E-mail: naomi@flab.fujitsu.co.jp, ishigaki@flab.fujitsu.co.jp 

We propose a new approach to context processing in on-line handwritten character 
recognition (OLCR). Based on the observation that writers often repeat the strings that they 
input, we take the approach of adaptive context processing (ACP). In ACP, the strings input 
by a writer are automatically added to a dictionary designated for ACP. This dictionary 
thereby can provide good coverage of the strings a writer inputs. Furthermore, the dictionary 
is compact enough to be loaded on a small terminal. In our experiments, the first-hit rate of 
OLCR with ACP was 95.44% after all the strings to be input had been added to the ACP 
dictionary while that without ACP was 86.09%. 

1 Introduction  

Our work is on on-line handwritten character recognition (OLCR) consisting 
of classification and context processing (CP). Considerable efforts have been made 
toward increasing recognition accuracy. We developed a high-performance 
classifier that outputs the best candidates for an input pattern [1]. On average for the 
database  (HANDS_kuchibue_d-97-06) [2], the classifier has marked 88.8% 
first-hit rate and the 99.0% rate that a correct character is included among 20 
candidates (nominating rate). As post-processing, CP is useful for improving the 
first-hit rate [3], so in this paper, we focus on CP as post-processing.  

We expect that the first-hit rate of our OLCR with effective CP may 
approximate to the 99.0% nominating rate since CP permutes candidates for each 
pattern position in an input pattern sequence. CP based on a character bigram model 
[4] raised the first-hit rate of our OLCR to 93.2%. We consider that this CP is not 
sufficiently effective because of a large difference between 93.2% and the 99.0% 
nominating rate. Therefore, the goal of this work is to develop more effective CP. 

A dictionary for CP is the key to effective CP since CP works by referring to 
the dictionary that is called the context dictionary (CD). In this work, CD must 
satisfy two requirements. One requirement is that CD provides good coverage of 
strings input by a writer. This is because CP failures are often caused by a lack of 
strings in CD [5]. Good coverage means that CD includes not a large variety of the 
strings input by a writer but a large number of the strings input by a writer. In short, 
if CD includes the strings that a writer inputs many times, CD provides good 
coverage. The other requirement is that CD is compact enough to be loaded on a 
small mobile terminal. 
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The development of CD that satisfies the two above requirements is confronted 
by two difficulties. One difficulty is a trade-off between coverage of strings and 
dictionary size. The other difficulty is that a conventional CD cannot always 
provide good coverage even if the dictionary is very large. Since the dictionary is 
compiled beforehand from a training corpus irrespective of the writer [6], a coinage 
invented by the writer is never included in the dictionary. If the writer inputs the 
coinage many times, the dictionary cannot provide good coverage. 

To overcome these difficulties, we take a new approach for our CD: this CD 
can adapt to the writer. This CD is called an adaptive context dictionary (ACD). In 
this paper, we propose effective CP with ACD, which we call adaptive context 
processing (ACP). Section two describes how ACD satisfies the two requirements, 
and section three explains how ACP is implemented to maximize its effectiveness. 
In section four, we show by experiments that OLCR with ACP improves the 
first-hit rate remarkably more than OLCR without ACP. Lastly, our conclusions are 
in section five. 

2 Adaptive Context Dictionary 

This section describes how ACD satisfies the two requirements. 
First, to provide good coverage, ACD must include the specific strings that a 

writer inputs. To find those strings, we gave careful consideration to two points 
about writers’  behavior. One is that OLCR is often exclusively used by individual 
writers. Indeed, OLCR is often used to input strings into small mobile terminals, 
each of which has only one user. The other point is the high probability that a writer 
inputs the same string that the writer has input before. In a small-scale investigation, 
we observed that writers often repeat strings in their input. Based on these two 
observations, we reached the conclusion that if ACD includes repeated strings that a 
writer inputs, ACD can provide good coverage. Accordingly, we designed ACD to 
be dynamically compiled from strings input by a writer. Therefore, ACD can also 
include any repeated coinages that the writer inputs. 

Next, to be compact, ACD must not increase monotonically. Moreover, ACD 
must not narrow its coverage. This implies that ACD must delete strings that the 
writer never inputs again. Therefore, we created the concept of least recently used 
strings, which are strings that have not been input again for a certain fixed period. 
These strings are designed to be automatically deleted from ACD. To find least 
recently used strings, a time stamp along with an input string is recorded in ACD 
when a writer inputs the string. In this way, ACD includes only the strings that a 
writer repeats in his/her input since the least recently used strings are deleted from 
ACD. Thus, ACD is compact in spite of providing good coverage. 

Note that a writer requires no extra operation to construct ACD. If the output 
string from OLCR is not the desired input string, a writer can try to input the string 
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by rewriting it or selecting the string from a set of candidates. If the writer 
successfully inputs the string, the writer does not modify it, of course. To 
summarize, by the writer’s reaction to the output from OLCR, OLCR can recognize 
whether the writer has confirmed the results of recognition as an input string. The 
strings confirmed by the writer are automatically added to ACD. 

3 Adaptive Context Processing 

This section explains how ACP is implemented to maximize its effectiveness. 
First, the role of CP in OLCR is examined. OLCR is performed by a classifier 

and a context processor. For an input pattern sequence, the classifier outputs 
candidate strings that are ranked in order of confidence value. For each candidate 
string, the context processor tests its validity by referring to CD and assigns a new 
confidence value. According to the new confidence value, the context processor 
permutes candidate strings. Finally, OLCR outputs the string that ranks first. 
Basically, the role of CP is to raise the correct string to the first rank.  

Figure 1:  ACP 

Next, ACP is described. Figure 1 shows an overview of ACP. To maximize the 
effectiveness of ACP, ACP must work well (a)when a writer inputs a string that 
exists in ACD, and (b)when a writer inputs a string that does not exist in ACD. 

For ACP to work well in both situations, our ACP design combines two context 
processors referring to different CDs. One is a context processor referring to ACD, 
and we call this an adaptive context processor (AC processor). The other is a 
context processor based on a character bigram model, and we call this a common 
context processor (CC processor). 
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The algorithm for ACP is as follows. Throughout this section, suppose that a 
candidate string from a classifier is S. Let { S}  be a set of S-es, let SC1 be the first S, 
let LC(S) and LAC(S) and LCC(S) be the confidence values assigned to S by the 
classifier and the AC processor and the CC processor respectively, and let SAC be 
the S that has the highest LAC(S) among the S-es that exist in ACD. 

(i) SAC = null and LAC(SAC) = 0 
(ii) foreach Si (all strings that exist in ACD) 
(iii)   if Si exists in { S}  then  
(iv)     if LAC(Si) > LAC(SAC) then SAC = Si 
(v) if SAC is not null and LAC(SAC) > LC(SC1) then 
(vi)   OLCR outputs SAC 
(vii) else 
(viii)   SCC1 = Sj such as LCC(SCC1) = max{ LCC(Sj)| Sj exists in { S} }  
(ix)   OLCR outputs SCC1 

The algorithm is described below in greater detail. 
First, LAC(S) is described. We defined LAC(S) as the formula (1) if S does not 

exist in ACD and as the formula (2) if S exists in ACD. To determine the validity of 
S that exists in ACD, we chose the following two criteria. 

• How recently did the writer input S? 
• How frequently does the writer input S? 

The definition of the formula (2) is based on the two criteria. For two candidates S 
and S’ , if both of them exist in ACD and S is more valid than S’  on the basis of the 
two criteria, LAC(S) is higher than LAC(S’). 

LAC(S) = LC(S)                         (1) 
LAC(S) = LC(S) + w1 *  f(elapse(S)) + w2 *  g(freq(S))           (2) 

where elapse(S) is the elapsed time from the time of the most recent use of S to the 
current time, freq(S) is the usage frequency of S, f and g are the functions of 
elapse(S) and freq(S) respectively, and w1 and w2 are the weights. We designed f as 
a monotonic decreasing function and g as a monotonic increasing function. 

By our definition, if S exists in ACD, LAC(S) is higher than LC(S). This means 
that the AC processor raises the rank of S that exists in ACD since our classifier 
outputs the best candidates in descending order of LC(S). 

We determined w1 and w2 statistically from a pair of confidence values that the 
classifier assigns to the first S and to the correct S. This means that the AC 
processor was adjusted to the classifier. Consequently, if S exists in ACD and LC(S) 
is high enough to be reliable, LAC(S) is higher than LC(SC1). Otherwise, if S exists in 
ACD and LC(S) is too low to be reliable, LAC(S) is not higher than LC(SC1). 

Next, step (v) and (vi) are described. If the condition in step (v) evaluates to 
“ true” , SAC ranks first in descending order of LAC(S). In this case, OLCR outputs 
SAC as the results of recognition. 

Finally, step (viii) and (ix) are described. If the condition in step (v) evaluates 
to “ false” , the first candidate from the AC processor is SC1, which does not exist in 
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ACD. In this case, the results from the AC processor are abandoned, and output 
from the classifier is sent to the CC processor. Lastly, OLCR outputs the first 
candidate from the CC processor, SCC1, as the results of recognition. 

In the algorithm, an input string is determined as either existing in ACD or not 
by step (v). If the condition in step (v) evaluates to “ true” , this is regarded as case 
(a) (see paragraph 3 in this section). In case (a), our classifier mostly outputs the 
input string as a candidate since our classifier has the 99.0% nominating rate. 
Moreover, since the AC processor is adjusted to the classifier, the AC processor 
raises the candidate to the first rank. Therefore, SAC is regarded as the input string. 
This means that ACP works well for case (a). 

Otherwise, if the condition in step (v) evaluates to “ false” , this is regarded as 
case (b). In case (b), ACP that the AC processor performs fails because the AC 
processor refers to ACD that does not include the input string. Consequently, SC1 is 
not regarded as the input string. Since the CC processor refers to CD that has been 
compiled from a training corpus, the CC processor can test the validity of strings 
that any writer may have input. This means that ACP also works well for case (b). 

4 Experiments 

This section describes experiments showing that OLCR with ACP improves the 
first-hit rate more than OLCR without ACP. 

The experiments were conducted as follows. The data used in the experiments 
is data from a person’s schedule over a three month period, and it contains 400 
characters. Fourteen subjects participated in the experiments. Using OLCR, they 
inputted the data in three cycles. In the first cycle, they used OLCR without ACP. In 
the second and third cycles, they used OLCR with ACP. In the third cycle, each 
subject inputted the data under the condition that all the strings to be input have 
been added to the individual writer’s ACD. ACD size was about 3 KB on average. 

To prove that OLCR with ACP improves the first-hit rate more than OLCR 
without ACP, we have to confirm the following two properties. First, the classifier 
has to have no difference in its first-hit rates among the three cycles. Second, the 
first-hit rates after CP have to be significantly different among the three cycles. 

Table 1: First-hit rate and nominating rate of classifier and first-hit rate after CP 

Cycle of experiment First Second Third 
First-hit rate of classifier (%) 81.71 81.84 80.51 

Nominating rate of classifier (%) 97.19 97.54 97.73 
First-hit rate after CP (%) 86.09 89.10 95.44 

Table 1 lists the first-hit rates and nominating rates of the classifier and the 
first-hit rates after CP in the three cycles. The results of analysis of variance 
(ANOVA) for the first-hit rates of the classifier show no significant difference 
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(F(2,13)=0.78, p<0.05). Therefore, we conclude that there is no difference in the 
first-hit rate of the classifier among the three cycles. 

The results of ANOVA show no significant difference in the first-hit rate 
between the first cycle and second cycle (F(1, 13)=2.49, p<0.05), but they show a 
significant difference between the first cycle and the third cycle (F(1,13)=24.8, 
p<0.05). Based on these results, we conclude that ACP is effective for data that has 
many repeated strings. 

5 Conclusions 

We have proposed adaptive context processing (ACP) with ACD in OLCR. ACD is 
dynamically updated as a writer inputs strings into OLCR. In our experiments, ACD 
size was about 3 KB after all the strings to be input had been added to ACD. The 
first-hit rate of OLCR with ACP was 95.44% while that without ACP was 86.09%. 

We analyzed cases where OLCR with ACP made misrecognitions even though 
input strings were included in ACD. We found that a misrecognition might occur if 
the classifier does not output an input string as a candidate. Adapting the classifier 
to individual writers enables an input string to be output as a candidate. Therefore, 
the adaptive classifier integrated with ACP achieves even higher first-hit rate. 
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