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CLASSIFIER COMBINATION: THE ROLE OF A-PRIORI KNOWLEDGE

V.DI LECCE1, G.DIMAURO2, A.GUERRIERO1, S.IMPEDOVO2, G.PIRLO2, A.SALZO2

(1) Dipartimento di Ing. Elettronica -Politecnico di Bari-
 via Re David -70126 Bari- Italy

(2) Dipartimento di Informatica - Università di Bari -
 Via Orabona, 4 - 70126 Bari – Italy

The aim of this paper is to investigate the role of the a-priori knowledge in the process of
classifier combination. For this purpose three combination methods are compared which use
different levels of a-priori knowledge. The performance of the methods are measured under
different working conditions by simulating sets of classifier with different characteristics. For
this purpose, a random variable is used to simulate each classifier and an estimator of
stochastic correlation is used to measure the agreement among classifiers.
The experimental results, which clarify the conditions under which each combination method
provides better performance, show to what extend the a-priori knowledge on the
characteristics of the set of classifiers can improve the effectiveness of the process of
classifier combination.

1 Introduction

Classifier combination is a diffuse strategy that has been widely used in complex
classification problems for which very high performance is required [1]. For classifier
combination, many methods have been proposed so far which are generally classified into
three categories depending on the amount of information they combine [2,3]. Abstract-level
combination methods use the top candidate provided by each classifier [4,5,6] ; Ranked-level
combination methods use the entire ranked list of candidates [7,8] ; Measurement-level
combination methods use also the confidence value of each candidate in the ranked list
[9,10]. Among the others, classifier combination at abstract-level is the most general
approach since every classifier is able at least to provide results at abstract level.

In the process of classifier combination, some kind of a-priori knowledge can also be
used in order to achieve better performance. On the basis of the kind of a-priori knowledge
the combination methods use, they can be classified into three categories. Methods of the first
category do not require any kind of a-priori information on the combined classifiers [4,7,8].
Methods of the second category use information at the level of individual classifiers as a-
priori knowledge [5]. Methods of the third category require information at the level of the
entire set of combined classifiers [6,9,10].

In this paper, the role of a-priori knowledge in the process of classifier combination is
investigated by comparing three combination methods: the Majority Vote Method (MV)
which is of the first category [4]; the Dempster-Shafer Method (DS) which is of the second
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category [5]; the Behavioural Knowledge Space Method (BKS) which is of the third category
[6]. For this purpose, a recent methodology is considered for the evaluation of methods for
classifier combination. The behaviour of a method is evaluated by using sets of classifiers
with different characteristics. Each classifier is considered as a random variable and a
suitable estimator of  complementarity is used to measure the agreement in the set of
combined classifiers.  This paper is organised as follows. Section 2 presents the methodology
used in evaluating the methods for classifier combination based on simulated data sets.
Section 3 discusses the process of data set generation. The combination methods used in the
experimental test are briefly ill ustrated in Section 4. Section 5 reports the experimental
results. They clarify the conditions under which each combination method is the best, and
show to what extend the use of a-priori knowledge on the characteristics of the set of
classifiers is useful to improve the performance of classifier combination.

2 A Methodology to Evaluate Abstract-Level Combination Methods

In this paper a recent methodology is used for the evaluation of abstract-level combination
methods. The performance of a combination method is measured by using several sets of
classifiers which differ in terms of recognition rate and level of correlation. For this purpose,
each classifier is considered as a random variable and it is simulated by its outputs (which are
simple class labels) and a “Similarity Index” is used to estimate the stochastic correlation
among the classifiers of each set [11]. Precisely, let be A1 and A2 two classifiers and T a
database of N patterns. Let be A1(x) and A2(x) the top candidate provided by A1 and A2 for
the pattern x, x∈  T, the agreement between A1 and A2 for x is evaluated by the function:
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and the “Similarity Index” between A1 and A2 is defined as:
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For instance, figure 1 shows two sets of simulated classifiers. Each set consist of two
classifiers. It is assumed that N=20 input patterns belonging to the class “0” are fed to the
classifiers and therefore that the correct recognition result is “0” . Although the recognition
rate of the classifiers is 60% in both cases, in Fig. 1a it results ρ=1, while in Fig. 1b it results
ρ=0.2. It should be noted that, in order to achieve  ρ=1 the two classifiers must always
produce the same response both in the case of correct recognition and in the case of
misrecognition.
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A1 A2 A1 A2

0 0 0 1
0 0 0 4
0 0 0 7
0 0 0 7
0 0 0 8
0 0 0 5
0 0 0 4
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 0
4 4 4 0
7 7 7 0
7 7 7 0
8 8 8 0
5 5 5 0
4 4 4 0
1 1 1 0

(a)                                                  (b)

Figure 1: Variability range of “Similarity Index”

Now, if a set A of K classifiers is considered, A = Ai | i=1,2,...K , the Similarity Index
ρA for A is defined as :
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Moreover, for a set of K classifiers each one with a recognition rate equal to R, the
“Similarity Index” ρA  ranges in [ρmin,1], where ρmin is equal to [11]:
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The procedure for the evaluation of a combination method follows three steps:

Selection of the characteristics of the sets of classifiers. This step defines the number of
classifier of the set (K) and the recognition rate of each individual classifier (R) (for the sake
of simplicity in this paper we suppose that all classifiers have the same recognition rate);

Classifiers Simulation. For each value ρ*
 of the Similarity Index (starting from ρ=ρmin to

ρ=1, and using a suitable step δρ) generate m lists of outputs for K classifiers with Similarity
Index equal to ρ* (an effective procedure used for data set generation is discussed in Section
3);

Performance Evaluation. For each value R of the recognition rate and ρ*
 of the Similarity

Index, evaluate the performance of the combination methods for the m lists available.

3 Data Set Generation

In order to evaluate the performance of a classifier combination method in different working
conditions, different sets of individual classifiers must be simulated. Since abstract-level
classifiers output simple class labels, they can be simulated by generating suitable lists of
outputs. The aim of the procedure described in this section is to generate automatically
outputs of sets of classifiers with different characteristics to be used for the testing of the
combination method. The input data of the procedure are:

•  the number K of classifiers of the set;
•  the recognition rate Ri of each classifier Ai ,i=1,2,....,K;
•  the number N of outputs that must be generated by each classifier.

In the first phase, the input data are used to generate by a random number generation routine
an initial li st of outputs, which simulates only one set of K classifiers. Figure 2 shows a list of
outputs (N=10) simulating a set of 4 classifiers having the same recognition rate Ri=60%,
i=1,2,3,4. Correct outputs are indicated by R, while substitutions are indicated by S1, S2, S3
and S4, where ∀  i≠j , we have Si≠Sj. It is easy to verify that the Similarity Index of the set is
ρ=2.3/6.

Starting from this initial set of classifiers, new sets are generated by modifying the
list of outputs. The basic idea is to generate new sets of classifiers having different
correlation values without changing the recognition rate of the individual classifiers. For
instance, if we set A3(9)=S2 the correlation for the new list of outputs is ρ=2.4/6. If we also
set A4(3)=R and A4(9)=S2 it results ρ=2.5/6. This modification procedure continues until a
pool of different sets of classifiers is obtained with fixed individual characteristics
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(recognition and reliabil ity rate of the individual classifiers), which have, however, a
correlation spanning the entire range of possible values, from ρ=ρmin to ρ=1.

A1 A2 A3 A4

Pattern 1 R R R R
Pattern 2 R R R S1
Pattern 3 R R S3 S2
Pattern 4 S1 S4 R S3
Pattern 5 S4 S3 R R
Pattern 6 R R R R
Pattern 7 S3 R S2 R
Pattern 8 S2 R S1 S1
Pattern 9 R S2 S4 R
Pattern 10 R S4 R R

Figure. 2: Lists of  outputs of 4 classifiers: R→Recognition; S1,S2,S3,S4→Substitution.

4 Combination Methods

In order to evaluate the effect of the a-priori knowledge on the effectiveness of methods for
classifiers combination, three abstract-level combination methods have been considered in
this work.

The Majority Vote Method (MV) does not require any kind of a-priori knowledge on
the combined classifiers. MV assigns to each class ωi, i=1,2,...,m, a score S(ωi) equal to the
number of classifiers for which the class ωi is the top candidate [4]. The final response of the
combined classifier is the class label ωi for which the score is the maximum (i.e.
S(ωj)=max S(ωi ), i=1,2,...,m  ).

The Dempster-Shafer Method (DS) uses as a-priori knowledge the performance of
each individual classifier. DS combines different classifiers using their recognition and
substitution rates as a-priori knowledge [5]. For an input pattern x, all classifiers having the
same output are collected into a group Ek, k=1,...,K’ (K’ is the number of different outputs),
which is equivalent to a new classifier with a new recognition and substitution rates.
Successively, from the analysis of the set of equivalent classifiers Ek, k=1,...,K’ , two belief
measures are computed (see [5] for details): the belief of correct output Bel(Aj) and the belief
of misrecognized output Bel(¬A j). The final response of the combined classifier is the class
label ωj for which the difference is maximum between the belief measures for correct output
and misrecognition (i.e. Bel(A j)- Bel(¬Aj) =max  Bel(Ai)- Bel(¬Ai) | i=0,1,...m   ).

The Behaviour Knowledge Space (BKS) uses as a-priori knowledge the behaviour of
the whole set of classifiers extracted in a suitable “learning” procedure (top–candidate
vectors corresponding to the classification results of the whole set of classifiers). BKS is
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based on two processing phases : the “learning” phase and the “operation” phase [6]. The
“ learning” allows to fill a suitable K-dimensional space. Each dimension of this space
corresponds to the decision of a specific classifier and the K-tuple of decisions provided by
the K classifiers defines a “Focal Unit” . When a “Focal Unit” is addressed by the vector of
recognition responses, the index I(j) corresponding to the class ωj of the input pattern is
incremented. This index counts the number of times in which a pattern belonging the class ωj

generates the specific K-tuple of decisions. In the “operation” phase, when a “Focal Unit” is
addressed by the K-tuple of decisions, the final result of the combined classifier is the class
label ωj for which the corresponding index is maximum (i.e. I(ωj) = max  I(ωi ), i=1,2,...m  ).

5 Experimental Results

The effectiveness of MV, DS and BKS has been evaluated by simulating 1000 different sets
of classifiers for the training and 1000 for the test. Figure 3 shows the structure of a typical
output generated by the simulation procedure. In this case it has been assumed that K=4,
R=0.75 and N=20 input patterns belonging to the class of the numeral ‘0’ were inputted to
the classifiers (therefore “0” is the correct output). The values of the “Similarity Index” are
ρ12=15/20, ρ23=13/20, ρ34=12/20, ρ13=10/20, ρ14=12/20, ρ24=12/20, and ρ1234=0.617.

A1 A2 A3 A4

0 0 0 3
0 0 0 0
0 0 0 0
0 0 0 0
0 0 5 3
8 8 0 0
0 0 0 0
0 0 0 0
0 0 3 0
3 0 0 0
3 8 0 3
0 8 1 3
0 0 0 0
0 0 0 0
0 5 5 0
7 0 0 0
0 0 0 1
4 4 0 0
0 0 6 0
0 0 0 0

Figure 3: Output of the simulation procedure
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The performance of MV, DS and BKS are compared for the case of K=3,4 and 5
classifiers. The recognition rate of each classifier is equal to 90% and no rejection is allowed
at the level of individual classifier. According to eq. (4), for all K=3,4 and 5, the "Similarity
Index" changes within the range [0.8,1]. The results are shown in Figure 4 (obtained for
δρ=0.1) in which the performance of the methods are evaluated in terms of recognition rate
and reliability rate (defined as: Reliabilit y Rate=Recognition Rate/(1-Rejection Rate) [3]).

•  When K=3, DS is the best method in terms of recognition rate when the combined
classifiers are weakly correlated (ρ<0.93); for more correlated classifiers the best
performance are achieved by BKS. Concerning reliability, MV is the most reliable
method for very low correlated classifiers (ρ<0.86). As the correlation increases the
most reliable method becomes DS first (0.86≤ ρ≤ 0.92) and BKS successively (ρ>0.92).

•  When K=4, the best method in terms of recognition rate is DS, for weakly correlated
classifiers (ρ<0.85), and BKS for strongly correlated classifiers (ρ>0.85). In terms of
reliabilit y the best method is MV, for weakly correlated classifiers (ρ<0.92), and BKS
when the correlation among classifiers increases (ρ>0.92).

•  When K=5, concerning recognition the best method is MV if the classifiers are very
weakly correlated (ρ<0.85). As the correlation increases the best method becomes DS
first (0.85≤ ρ≤ 0.9), and BKS successively (ρ>0.9). In terms of reliabili ty rate the best
method is MV, for weakly correlated classifiers (ρ<0.86), and BKS for more correlated
classifiers (ρ>0.86).

These results confirm the well -known concept that combination methods achieve best results
when complementary classifiers are combined (i.e. ρ as close to ρmin as possible). Moreover
they demonstrate that when weakly correlated classifiers are combined, the a-priori
knowledge is not necessary to achieve high-performance from the classifier combination
process. In fact, MV works generally very well when weakly correlated classifiers are
combined. Conversely, as the correlation increases, the a-priori knowledge becomes the key
aspect for classifier combination. As matter of this fact, we observe that an increasing level of
a-priori knowledge is necessary as correlation becomes close to the maximum (i.e. ρ=1). In
fact, as the classifiers become more correlated the DS becomes very effective, while BKS
achieve the best performance when classifiers are very strongly correlated.
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Figure 4: Experimental results
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Another experimental test has been carried out with real data by using five different
classification algorithms for handwritten numeral recognition [13] : A- Region-Based
Classifier, B- Contour-based Classifier, C- Enhanced-Loci Classifier, D- Histogram-based
Classifier, E- Crossing-based Classifier. Data sets from the CEDAR database (BR and BS
directories) have been used for training and test. After training, the performance of each
individual classifier is about 90%. Table 1 reports the results for differently correlated sets of
K=3,4, and 5 classifiers. For each set of combined classifiers, the best results in terms of
recognition rate and reliabilit y are on grey background. These results confirm the
considerations obtained in the previous experimental test (carried out by using simulated
data) about the relevance of a-priori knowledge in classifiers combination when strongly
correlated classifiers are considered.

Table 1: Performance of the combination methods

MV DS BKS

Set ρρ

Classification

Algorithm

Recogn. Reliab. Recogn. Reliab. Recogn. Reliab.

0.82 A-B-C 94,1 94,7 94,3 94,4 91,3 93,5K=3

0.87 A-B-D 91,7 92,2 92.1 92.1 90,3 92,0

0.85 A-B-C-E 90,6 97,3 93,7 94.2 94,2 95,2K=4

0.86 A-B-C-D 89,7 96,5 92,5 93,1 93,7 94,8

K=5 0.84 A-B-C-D-E 96,4 96,7 96,1 96,4 91,8 94,6

6 Conclusion

This paper presents an investigation on the role of a-priori knowledge in the
process of classifier combination. For this purpose, a recent methodology for the analysis of
abstract-level methods for classifier combination is applied to evaluate the effectiveness of
three combination methods: Majority Vote, Dempster-Shafer and Behaviour Knowledge
Space. The results point out the relevance of using the a-priori knowledge in the process of
classifier combination specially when strongly correlated classifiers are combined.

References

 1.   H. Bunke, S. Impedovo and P.S.P. Wang (ed.) “Bankcheck Processing Systems”, World
Scientific, Singapore, 1997.

151



 2.   L. Lam, Y.S. Huang, C.Y. Suen, “Combination of Multiple Classifier Decisions for
Optical Character Recognition” , in Handbook of Character Recognition and Document
Image Analysis, Ed. H. Bunke and P.S.P. Wang, World Scientific, Singapore, 1997, pp.
79-101.

 3.   Ley XU, Adam Krzyzak, Ching Y-Suen, “Methods of Combining Multiple Classifiers
and Their Applications to Handwriting Recognition” , IEEE Transaction on Systems,
Man and Cybernetics, Vol. 22, N.3, 1992, pp. 418-435.

 4.   C.Y. Suen, C. Nadal, T.A. Mai, R. Legault, L. Lam, “Recognition of totally
unconstrained handwritten numerals based on the concept of multiple experts” , Proc. Of
Frontiers in Handwriting Recognition, CENPARMI, Montreal, Canada, 1990, pp. 131-
143.

 5.   Lu, F. Yamaoka, “ Integration of Handwritten Digit Recognition results using Evidential
Reasoning” , Proc. Of  IWFHR-4, 1994, pp. 456-463.

 6.   Huang, C.Y. Suen, “An Optimal Method of Combining Multiple Classifiers for
Unconstrained Handwritten Numeral Recognition” , Proc. Of IWFHR-3, Buffalo, NY,
1993, pp. 11-20.

 7.   T.K. Ho, J.J. Hull, S.N. Srihari, “Decision Combination in Multiple Classifier Systems”
IEEE PAMI, Vol. 16, No. 1, Jan. 1994, pp. 66-75.

 8.   J.Hull ,T.K.Ho,J.Favata,V.Govindaraju,S.Srihari,“Combination of Segmentation -based
and Wholistic Handwritten Word Recognition Algorithms”, in From Pixels to Features
III- Frontiers in Handwriting Recognition, S. Impedovo and J.C. Simon eds., Elsevier
Publ., 1992, pp. 261-272.

 9.   N. Gorsky, “Pratical Combination of Multiple Classifiers” , in Progress in Handwriting
Recognition, Eds. A.C. Downton and S. Impedovo, World Scientific Publ., 1997, pp.
277-284.

 10.   Y.S. Huang, K. Liu, C.Y. Suen, “A Neural Network Approach for Multi -classifier
recognition systems”, Proc. Of IWFHR-4, 1994, pp. 235-244.

 11.   G. Dimauro, S. Impedovo, G. Pirlo, “Multiple Expert : A New Methodology for the
Evaluation of the Combination Processes” , Proc. Of IWFHR-5, Colchester, Uk, 1996,
pp. 131-136.

 12.   S. Impedovo, A. Salzo, “Evaluation of Combination Methods” , Proc. ICDAR’99,
Bangalore, Sept. 1999, pp. 394-397.

 13.   G. Dimauro, S. Impedovo, G. Pirlo, A. Salzo, “Automatic Bankchecks Processing : A
New Engineered System”, International Journal of Pattern Recognition and Artifi cial
Intelli gence, Vol. 11, N.4, World Scientific Publ., Singapore, 1997, pp. 1-38.

152


