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Reduction axioms for epistemic actions

Barteld Kooi
∗

and Johan van Benthem
†

Abstract: Current dynamic epistemic logics often become cumbersome and opaque when
common knowledge is added for groups of agents. We propose new versions that extend the
underlying static epistemic languages in such a way that completeness proofs for the full
dynamic systems can be obtained by perspicuous reduction axioms.

Keywords: dynamic logic, epistemic logic.

1 Introduction

Epistemic logic typically deals with what agents consider possible given their current
information. This includes knowledge about facts, but also higher-order information

about information that other agents have. A prime example is common knowledge.
A formula ϕ is common knowledge if everybody knows ϕ, everybody knows that
everybody knows that ϕ, and so on.

The aim of dynamic epistemic logics is to analyze changes in basic and higher-
order information. Completeness proofs for such logics are either easy, or hard.
For instance, the logic of public announcements without common knowledge has an
easy completeness proof due to axioms such as [ϕ]2iψ ↔ (ϕ → 2i[ϕ]ψ). We call
these reduction axioms, because the announcement operator is “pushed through”
the epistemic operators. The completeness proof works by way of a translation
that follows the reduction axioms. Formulas with announcements are translated to
provably equivalent ones without announcements. Then completeness follows from
the known completeness of the epistemic base logic. This approach also is taken in
[2] and [1] for more general epistemic actions.

Completeness proofs for dynamic epistemic logics with common knowledge are
hard. Reduction axioms are not available, as the logic with epistemic actions is more
expressive than the logic without them [1]. In this paper we extend the base language
with static operators in such a way that reduction axioms do work. Section 2 does
this for public announcement logic, Section 3 for general epistemic actions. Section 4
draws conclusions and indicates directions for further research. We see our proposal
as more than a technical trick for smoothening completeness proofs. It also addresses
a significant issue of independent interest: what is the best epistemic language for
describing information models of a group of agents?

2 Public announcement logic

Section 2.1 is an introduction to public announcement logic. In Section 2.2 we give
a new logic of relativized common knowledge. It ties in closely to the idea of viewing
updates as a kind of relativization, first introduced in [6]. This logic is expressive
enough to allow a reduction axiom for common knowledge. A proof system is defined
in Section 2.3, and shown to be complete in Section 2.4. The system is extended
with reduction axioms for public announcements in Section 2.5.
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2.1 Language and semantics

Public announcement logic (PAL) was first developed by Plaza [5]. A public an-
nouncement is an epistemic action where all agents commonly know that they learn
a certain formula. This is modeled by a modal operator [ϕ]. A formula of the form
[ϕ]ψ is read as “ψ holds after the announcement of ϕ”. This language LPAL is
interpreted in models for epistemic logic.

Definition 1 (Epistemic models) Let a finite set of propositional variables P
and a finite set of agents N be given. An epistemic model is a triple M = (W,R, V )
such that W 6= ∅ is a set of possible worlds, R : N → ℘(W × W ) assigns an
accessibility relation to each agent, and V : P → ℘(W ) assigns a set of worlds to
each propositional variable. ¤

In epistemic logic R is usually restricted to equivalence relations. In this paper we
treat the general modal case. The semantics are defined with respect to models with
a distinguished ‘actual world’: (M,w).

Definition 2 (Semantics of PAL) Let a model (M,w) with M = (W, R, V ) be
given. Let i ∈ N , B ⊆ N , and ϕ,ψ ∈ LPAL. For atomic propositions, negations,
and conjunctions we take the usual definition.

(M,w) |= 2iϕ iff (M, v) |= ϕ for all v such that (w, v) ∈ R(i)
(M,w) |= CBϕ iff (M, v) |= ϕ for all v such that (w, v) ∈ R(B)∗

(M,w) |= [ϕ]ψ iff (M,w) |= ϕ implies (M |ϕ,w) |= ψ

where R(B) =
⋃

i∈B R(i), and R(B)∗ is its reflexive transitive closure. The updated
model M |ϕ = (W ′, R′, V ′) is defined by restricting M to those worlds where ϕ

holds. Let [[ϕ]] = {v ∈ W |(M, v) |= ϕ}. Now W ′ = [[ϕ]], R′(i) = R(i) ∩ [[ϕ]]2, and
V ′(p) = V (p) ∩ [[ϕ]]. ¤

A completeness proof with reduction axioms is impossible for this logic.

2.2 Relativized common knowledge

For public announcement logic there is no reduction axiom for formulas of the form
[ϕ]CBψ, given the results in [1]. However the semantic intuition is clear. If ϕ is true
in the old model, then every B-path in the new model ends in a ψ world. This implies
that in the old model every B-path that consists exclusively of ϕ-worlds ends in a
[ϕ]ψ world. To facilitate this, we introduce a new operator CB(ϕ,ψ), which expresses
that every B-path which consists exclusively of ϕ-worlds ends in a ψ world. We call
this operator relativized common knowledge. The crucial clause in the semantics of
the logic of relativized common knowledge, RCL, is: (M,w) |= CB(ϕ,ψ) iff

(M, v) |= ψ for all v such that (w, v) ∈ (R(B) ∩ [[ϕ]]2)∗

where (R(B)∩[[ϕ]]2)∗ is the reflexive transitive closure of R(B)∩[[ϕ]]2. The semantics
of the other operators is standard. Ordinary common knowledge can be defined with
the new notion: CBϕ ≡ CB(>, ϕ). The new operator is like the “until” of temporal
logic. A temporal sentence “ϕ until ψ” is true iff there is some point in the future
where ψ holds and ϕ is true up to that point.
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2.3 Proof system

Relativized common knowledge still resembles common knowledge, and so we need
just a slight adaptation of the usual axioms1.

Definition 3 (Proof system for RCL) The proof system for RCL contains the
following axioms and rules:

Taut all instantiations of propositional tautologies

Dist 2i(ϕ→ ψ) → (2iϕ→ 2iψ) (distribution)

Dist CB(ϕ,ψ → χ) → (CB(ϕ,ψ) → CB(ϕ, χ)) (distribution)

Mix CB(ϕ,ψ) ↔ (ϕ→ (ψ ∧ EB(ϕ→ CB(ϕ,ψ)))) (mix)

Ind ((ϕ→ ψ) ∧ CB(ϕ,ψ → EB(ϕ→ ψ))) → CB(ϕ,ψ) (induction)

MP
ϕ ϕ→ ψ

ψ
(modus ponens)

Nec
ϕ

2iϕ
(necessitation)

Nec
ϕ

CB(ψ,ϕ)
(necessitation)

In the mix axiom and the induction axiom EBϕ is an abbreviation of
∧

i∈B 2iϕ

(everybody knows ϕ). A proof consists of a sequence of formulas such that each is
either an instance of an axiom, or it can be obtained from formulas that appear
earlier in the sequence by applying a rule. If there is a proof of ϕ, we write ` ϕ. ¤

The soundness of the proof system can easily be shown by induction on the length
of proofs, and we do not provide it explicitly.

2.4 Completeness for the static language

To prove completeness for our extended static language, we follow [4]. We take
maximally consistent sets with respect to finite fragments of the language that form
a canonical model for that fragment. In particular, for any given formula ϕ we work
with a finite fragment called the closure of ϕ.

Definition 4 (Closure) The closure of ϕ is the minimal set Φ such that 1. ϕ ∈ Φ,
2. Φ is closed under taking subformulas, 3. If ψ ∈ Φ and ψ is not a negation, then
¬ψ ∈ Φ, 4. If CB(ψ, χ) ∈ Φ, then 2i(ψ → CB(ψ, χ)) ∈ Φ for all i ∈ B. ¤

Definition 5 (Canonical model) The canonical model Mϕ for ϕ is the triple
(Wϕ, Rϕ, Vϕ) where Wϕ = {Γ ⊆ Φ | Γ is maximally consistent in Φ}; (Γ,∆) ∈ Rϕ(i)
iff ψ ∈ ∆ for all ψ with 2iψ ∈ Γ; and Vϕ(p) = {Γ|p ∈ Γ}. ¤

Next, we show that a formula in such a finite set is true in the canonical model
where that set is taken to be a world, and vice versa.

Lemma 1 (Truth Lemma) For all ψ ∈ Φ, ψ ∈ Γ iff (Mϕ,Γ) |= ψ. ¤

Proof (A sketch:) By induction on ψ. The cases for propositional variables, nega-
tions, conjunction, and individual epistemic operators are straightforward. There-
fore we focus on the case for relativized common knowledge.

1It is also helpful to write CB(ϕ,ψ) as a sentence in PDL: [?ϕ; (
S

i∈B
i; ?ϕ)∗]ψ. Our proof system

below essentially follows the usual PDL-axioms for this formula.

3



From left to right. Suppose CB(ψ, χ) ∈ Γ. If ψ 6∈ Γ, then by the induction
hypothesis (Mϕ,Γ) 6|= ψ, and by the semantics (Mϕ,Γ) |= CB(ψ, χ).

Otherwise, if ψ ∈ Γ, take any ∆ ∈ Wϕ such that (Γ,∆) ∈ (R(B) ∩ [[ψ]]2)∗. We
have to show that ∆ |= χ, but we can show something stronger, namely that ∆ |= χ

and CB(ψ, χ) ∈ ∆. This is done by induction on the length of the path from Γ to
∆ and the Mix axiom. We omit the details.

From right to left. Let (Mϕ,Γ) |= CB(ψ, χ). Now consider the set Λ =
{δ∆|(Γ,∆) ∈ (R(B)∩ [[ψ]]2)∗}, where δ∆ is

∧
{ψ|ψ ∈ ∆}.. Let δΛ =

∨
∆∈Λ δ∆ We can

show that ` δΛ → EB(ψ → δΛ). By necessitation then ` CB(ψ, δΛ → EB(ψ → δΛ)).
Applying the induction axiom, we get ` (ψ → δΛ) → CB(ψ, δΛ). Since ` δΛ → χ,
we also get ` (ψ → δΛ) → CB(ψ, χ). Now δΓ → δΛ, and hence ` δΓ → (ψ → δΛ).
Therefore CB(ψ, χ) ∈ Γ. ¤

This argument is an easy adaptation of the usual completeness proof for common
knowledge, reinforcing our idea that our language extension is a natural one: since
existing arguments yield more than is usually realized.

Theorem 1 (Completeness for RCL) If |= ϕ, then ` ϕ. ¤

Proof Let 6` ϕ, i.e. ¬ϕ is consistent. One easily finds a maximally consistent set
Γ in the closure of ¬ϕ with ¬ϕ ∈ Γ, as only finitely many formulas matter. By the
Truth Lemma, (M¬ϕ,Γ) |= ¬ϕ, i.e., (M¬ϕ,Γ) 6|= ϕ ¤

2.5 Reduction axioms

Next, let RCL+ be the epistemic dynamic logic with both relativized common knowl-
edge and public announcements. Its semantics combines those for PAL and RCL.
RCL+ is no more expressive than RCL by a direct translation.

Definition 6 (Translation) The translation function t takes a formula from the
language of RCL+ and yields a formula in the language of RCL.

t(p) = p

t(¬ϕ) = ¬t(ϕ)
t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)
t(2iϕ) = 2it(ϕ)
t(CB(ϕ,ψ)) = CB(t(ϕ), t(ψ))

t([ϕ]p) = t(ϕ) → p

t([ϕ]¬ψ) = t(ϕ) → ¬t([ϕ]ψ)
t([ϕ](ψ ∧ χ)) = t([ϕ]ψ) ∧ t([ϕ]χ)
t([ϕ]2iψ) = t(ϕ) → 2it([ϕ]ψ)
t([ϕ]CB(ψ, χ)) = CB(t(ϕ) ∧ t([ϕ]ψ), t([ϕ]χ))
t([ϕ][ψ]χ) = t([ϕ]t([ψ]χ))

¤

Lemma 2 (Translation Correctness) For all dynamic-epistemic formulas ϕ and
all models (M,w), (M,w) |= ϕ iff (M,w) |= t(ϕ). ¤

This observation underlies the soundness of the following reduction axioms, with
C-Red the crucial reduction of relativized common knowledge.

Definition 7 (Proof system for RCL
+) The proof system for RCL+ is that for

RCL plus the following reduction axioms:

At [ϕ]p↔ (ϕ→ p) (atoms)
PF [ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ) (partial functionality)
Dist [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ) (distribution)
KA [ϕ]2iψ ↔ (ϕ→ 2i[ϕ]ψ) (knowledge-announcement)
C-Red [ϕ]CB(ψ, χ) ↔ CB(ϕ ∧ [ϕ]ψ, [ϕ]χ) (common reduction)

as well as an inference rule of necessitation for all announcement modalities. ¤
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The formulas on the left of these equivalences are of the form [ϕ]ψ. In At the an-
nouncement operator no longer occurs on the right-hand side. In the other reduction
axioms formulas within the scope of an announcement are of higher complexity on
the left than on the right.

Theorem 2 (Completeness for RCL
+) If |= ϕ, then ` ϕ. ¤

Proof The proof system for RCL is complete (Theorem 1), and every formula in
L

RCL
+ is provably equivalent to one in LRCL. ¤

2.6 Model comparison games

The notion of relativized common knowledge is of independent interest, just as irre-
ducibly binary general quantifiers (such as Most A are B) lead to natural completions
of logics with only unary quantifiers. We provide some more information through
characteristic games.

Definition 8 (Relativized common knowledge game) Let two models M =
(W,R, V ) and M ′ = (W ′, R′, V ′) be given. Starting from each w ∈W and w′ ∈W ′,
the n-round relativized common knowledge game between Spoiler and Duplicator is
given as follows. In each round Spoiler can initiate one of two scenarios:

2i-move Spoiler chooses a point x in one model which is an i-successorof the current
w or w′, and Duplicator responds with a matching successor y in the other
model. Play continues with the new link x, y.

CB-move Spoiler chooses a B-path x0 . . . xn in either of the models with x0 the
current w or w′. Duplicator responds with a B-path y0 . . . ym in the other
model, with y0 = w′. Then Spoiler can (a) make the end points xn, ym the
output of this round, or (b) he can choose a world z on the M ′-path, and
Duplicator must respond by choosing a matching world u on the M -path, and
z, u becomes the output. ¤

The game continues with the new output states. If these differ in their atomic
properties, Spoiler wins – otherwise, a player loses whenever he cannot perform a
move while it is his turn. If Spoiler has not won after all n rounds, Duplicator wins
the whole game.

Definition 9 (Modal depth) The modal depth of a formula is defined by: d(⊥) =
d(p) = 1, d(¬ϕ) = d(ϕ), d(ϕ∧ψ) = max(d(ϕ), d(ψ)), d(2iϕ) = d(ϕ)+1, d(CB(ϕ,ψ)) =
max(d(ϕ), d(ψ)) + 1 If two models (M,w) and (M ′, w′) have the same theory up to
depth n, we write (M,w) ≡n (M ′, w′). ¤

The following result holds for most logical languages.

Lemma 3 (Propositional finiteness) For every n, up to depth n, there are only
finitely many different propositions up to logical equivalence. ¤

Theorem 3 (Adequacy) Duplicator has a winning strategy for the n-round game
from (M,w), (M ′, w′) iff (M,w) ≡n (M ′, w′). ¤

Proof The argument is by induction on n. The base case is obvious, and all in-
ductive cases are also standard in modal logic, except that for relativized common
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knowledge. As usual, perspicuity is increased somewhat by using the dual existential
modality ĈB(ϕ,ψ).

First, suppose that Duplicator has a winning strategy in games of length n+ 1,
and that (M,w) |= ĈB(ϕ,ψ), a formula of depth n+1. By the truth definition, there
is a finite sequence of ϕ-worlds inM starting from w, and ending in a world v where ψ
holds. Suppose this sequence is picked by Spoiler as his opening move. Duplicator’s
winning strategy produces a matching sequence in M ′, starting at w′ and ending
in some world v′. Suppose now that Spoiler outputs the end points v, v′ as the
new link. Duplicator’s winning strategy then works for the n-round game starting
from M, v, M ′, v′, and by the inductive hypothesis, (M ′, v′) |= ψ. Suppose next
that Spoiler chooses any s′ on the finite M ′-sequence. Then Duplicator’s winning
strategy yields a matching point s on Spoiler’s initial sequence, and again Duplicator
has an n-round winning strategy left for (M, s), (M ′, s′). Once more by the inductive
hypothesis, then, (M, s′) |= ϕ. Thus, (M ′, w′) |= ĈB(ϕ,ψ).

Conversely, suppose that (M,w) ≡n+1 (M ′, w′). A winning strategy for Dupli-
cator in the (n + 1)-round game can be described as follows. If Spoiler makes an
opening move of type [2i-move], then the usual modal argument works. Next, sup-
pose that Spoiler opens with a finite sequence in one of the models, say M , without
loss of generality. By the Finiteness Lemma, we know that there is only a finite
number of complete descriptions of points up to logical depth n, and each point s in
the sequence satisfies one of these: say ∆(s, n). In particular, the end point v sat-
isfies ∆(v, n). Let ∆(n) be the disjunction of all formulas ∆(s, n) occurring on the
path. Then, the initial world w satisfies the following formula of modal depth n+1:
ĈB(∆(n),∆(v, n)). By our assumption, we also have (M ′, w′) |= ĈB(∆(n),∆(v, n)).
But any sequence witnessing this by the truth definition is a response that Duplica-
tor can use for her winning strategy. Whatever Spoiler does in the rest of this round,
Duplicator always has a matching point that is n-equivalent in the language. ¤

Thus, games for LRCL are straightforward. But it is also of interest to look at
the extended dynamic language L

RCL
+ with announcement modalities. Here, the

shift modality passing to definable submodels requires a new type of move, where
players can decide to change the current model. The following description of what
happens is ‘modular’: a model changing move can be added to model comparison
games for ordinary epistemic logic (perhaps with common knowledge), or for our
relativized common knowledge game. By way of explanation: we let Spoiler propose
a model shift. Players first discuss the ‘quality’ of that shift, and Duplicator can win
if it is deficient; otherwise, the shift really takes place, and play continues within the
new models. This involves a somewhat unusual sequential composition of games,
but perhaps one of independent interest.

Definition 10 (Public announcement move) Let the setting be the same as for
the n-round game in Definition 9.

[ϕ]-move Spoiler chooses a number r < n, and sets S ⊆ W and S ′ ⊆ W ′, with the
current w ∈ S and likewise w′ ∈ S′. Stage 1 : Duplicator chooses states s in
S ∪ S′, s in S ∪ S′. Then Spoiler and Duplicator play the r-round game for
these worlds. If Duplicator wins this subgame, she wins the n-round game.
Stage 2 : Otherwise, the game continues in the relativized models M |S,w and
M ′|S′, w′ over n− r rounds. ¤

The definition of depth is easily extended to formulas [ϕ]ψ as d([ϕ]ψ) = d(ϕ) +
d(ψ). For the sake of illustration, assume that the new move has been added to the
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relativized common knowledge game.

Theorem 4 (Adequacy) Duplicator has a winning strategy for the n-round game
on (M,w) and (M ′, w′) iff (M,w) ≡n (M ′, w′) in L

RCL
+ . ¤

Proof We only discuss the inductive case demonstrating the match between an-
nouncement modalities and model-changing steps.

First, let Duplicator have a winning strategy in the n-round game between M,w

and M ′, w′. Suppose that (M,w) |= 〈ϕ〉ψ, with total modal depth n. Consider the
case where Spoiler chooses r = d(ϕ) and sets S, S ′ equal to the extensions of ϕ in
the two models. Then Spoiler has a winning strategy in all r-round games in Stage
1, exploiting the ϕ,¬ϕ-difference between whatever points Duplicator chooses: by
the inductive hypothesis for r = d(ϕ). Suppose that Spoiler plays such a strategy.
In that case, the n − r-round subgame for the relativized submodels is reached,
and Duplicator must have a winning strategy there. But that means, now by the
inductive hypothesis for n− r, that (M ′|ϕ,w′) |= ψ, and hence (M ′, w′) |= 〈ϕ〉ψ.

Next, suppose that (M,w), (M ′, w′) are equivalent up to depth n. We need to
describe Duplicator’s winning strategy. Consider any opening choice of r, S, S ′ made
by Spoiler. Case 1 : Duplicator can choose two points s, s in Stage 1 giving her a
winning strategy in the initial r-round game. Then we are done. Case 2 : Duplicator
has no such winning strategy, which means that Spoiler has one – or equivalently
by the inductive hypothesis, there is some formula of depth r distinguishing s from
s. In that case, we can find a formula A defining both set S in M and S ′ in M ′. To
find this, consider any point x in S. Using the preceding observation, we can find a
formula δx of depth n which holds at x but at no world in M −S or M ′ −S′. (Note
that there can be infinitely many worlds involved in the comparison, but finitely
many difference formulas will suffice by the Finiteness Lemma, which also holds for
this extended language.) Let ∆S be the disjunction of all these δx. A formula ∆′

S

is found likewise, and we let A be the disjunction of ∆′
S and ∆S . It is easy to see

that this formula of depth r defines S in M and S ′ in M ′. Now we use the given
language equivalence between M,w and M ′, w′ with respect to all depth n-formulas
〈A〉ψ where ψ runs over all formulas of depth n− r. We can conclude that M |A,w
and M ′|A,w′ are equivalent up to depth n− r, and hence Duplicator has a winning
strategy for the remaining game, by the inductive hypothesis. ¤

Finally, our two games must be related, since L
RCL

+ has the same expressive power
as LRCL. This means that players who can win one of our games should also be
able to win the other, given suitable game lengths. An explicit description of the
relevant strategy conversion is beyond the scope of this paper.

2.7 Complexity

Update logics are about processes that manipulate information, and hence they raise
natural questions of complexity. In particular, all of the usual complexity questions
concerning a logical system make sense:

Model checking : When is a formula true in a model, i.e., when do agents know
given propositions in an information state, or when do specific epistemic actions in
the model produce specified effects?

Satisfiability testing : When does a formula have a model, or more generally:
when can we find an informational setting realizing given epistemic specifications?
Or, in terms of validity : e.g., when will a given epistemic action always produce
some global specified effect?
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Model comparison: When do two given models satisfy the same formulas, or
equivalently, when can Duplicator win any game over them - or: when do two
representations describe the same information about some group of agents?

Now technically, the translation of definition 6 combined with known algorithms
for model checking, satisfiability, validity, or model comparison for epistemic logic
yield similar algorithms for public announcement logic. But, worst case, the length
of the translation of a formula is exponential in the length of the formula. E.g.,
the translation of ϕ occurs three times in that of [ϕ]CB(ψ, χ), and hence a direct
complexity analysis is worth-while.

Lemma 4 Deciding whether a model (M,w) satisfies a formula ϕ ∈ LRCL is com-
putable in polynomial time in the length of ϕ and the size of M . ¤

Proof Let ‖M‖ be the cardinality of the set of worlds of M plus that of the ac-
cessibility relation of M , and | ϕ | the length of ϕ. A formula ϕ has at most | ϕ |
subformulas. We make a list ϕ0, . . . , ϕn (where ϕn = ϕ) of these such that for all
formulas ψ, their subformulas occur earlier. We process the list by successively la-
beling the worlds in the model where the list formulas ϕi hold. The two crucial
cases are as follows. For 2iψ, we check for a given world in the model whether ψ
holds in every accessible world. Since we have already labeled the states where the
subformula ψ holds, this can be done in ‖M‖ steps. For CB(ψ, χ) we proceed as
follows. First label all those worlds with ¬ψ as worlds where CB(ψ, χ) holds, and
label worlds where ψ and ¬χ hold as worlds where CB(ψ, χ) fails. Then iterate the
following step until the labeled set does not grow anymore: pick an unlabeled world
that can reach a world labeled with ¬CB(ψ, χ) in a single i-step (for any i ∈ B) and
also label it as a world where CB(ψ, χ) fails. Each round takes at most ‖M‖ steps
for checking accessibilities, and the total set of labelled worlds can grow at most
‖M‖ steps. When the set stops growing, all still unlabelled worlds are labelled with
CB(ψ, χ). By induction of formula complexity, this algorithm can be proved correct.
So, the complexity of model checking for RCL is in time O(|ϕ | ×‖M‖2). ¤

This algorithm does not suffice for the case with public announcements. The truth
values of ϕ and ψ in the given model do not fix that of [ϕ]ψ. We must also know
the value of ψ in the model restricted to ϕ worlds.

Lemma 5 Deciding whether a model (M,w) satisfies a formula ϕ ∈ LRCL+ is com-
putable in polynomial time in the length of ϕ and the size of M . ¤

Proof Again there are at most |ϕ | subformulas of ϕ. Now we make a binary tree
of these formulas which splits with formulas of the form [ψ]χ. On the left subtree
all subformulas of ψ occur, on the right all those of χ. This tree can be constructed
in time O(| ϕ |). Labeling the model is done by processing this tree from bottom
to top from left to right. The only new case is when we encounter a formula [ψ]χ.
In that case we first label those worlds where ψ does not hold as worlds where [ψ]χ
holds, then we process the right subtree under [ψ]χ where we restrict the model to ψ
worlds. After this process we label those worlds that were labeled with χ as worlds
where [ψ]χ holds and the remaining as worlds where it does not hold. We can see
by induction on formula complexity that this algorithm is correct.

Also by induction on ϕ, this algorithm takes time O(| ϕ | ×‖M‖2). The only
difficult step is labeling the model with [ψ]χ. By the induction hypothesis, restricting
the model to ψ takes time O(| ψ | ×‖M‖2). We simply remove (temporarily) all
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worlds labelled ¬ϕ and all arrows pointing to such worlds. Again by the induction
hypothesis, checking χ in this new model takes O(|ψ | ×‖M‖2) steps. The rest of
the process takes ‖M‖ steps. So, this step takes over-all time O(| [ψ]χ | ×‖M‖2). ¤

Moving on from model checking, the satisfiability and the validity problem of epis-
temic logic with common knowledge are both EXPTIME-complete. In fact, this
is true for almost any logic that contains a transitive closure modality. Satisfiabil-
ity and validity for PDL are also EXPTIME-complete. Now there is a linear time
translation of the language of RCL to that of PDL. Therefore the satisfiability and
validity problems for RCL are also EXPTIME-complete. For L

RCL
+ and even PAL,

however, the complexity of satisfiability and validity are still unknown.
Finally, the complexity of model comparison for finite models is the same as

that for ordinary epistemic logic, viz. PTIME. The reason is that even basic modal
equivalence on finite models implies the existence of a bisimulation, while all our
extend languages are bisimulation-invariant.

2.8 Other logics with relativization

Languages with relativizations are very common in logic. Indeed, closure under rel-
ativization is sometimes stated as a defining condition on logics in abstract model
theory. Basic modal or first-order logic as they stand are closed under relativizations
[A]ϕ, often written (ϕ)A. And the same is true for logics with fixed-point construc-
tions, like PDL (cf. [6]) or the modal µ-calculus. E.g., computing a relativized least
fixed-point [A]µp.ϕ(p) yields the same result as µp.ϕ(p) ∧ A. Relativization looks
much like restricting quantifiers, as in the earlier-mentioned shift from unary “Most
objects are ψ” to binary “Most ϕ are ψ”. By ‘Conservativity’ for generalized quan-
tifiers, ”Most ϕ are ψ” is equivalent to ”Most ϕ are ψ ∧ ϕ. But note that the latter
principle does not relativize ψ to evaluation wholly inside the ϕ-area! Thus, the
expressive power of the two sorts of extension is not evidently the same. A similar
issue arises in our setting. We defined LRCL as an extension with binary common
knowledge in the second sense. We have shown how this allows us to define all rel-
ativizations and all ordinary common knowledge operators, i.e., the language PAL.
But the converse is still open.

Question: Do LRCL and LPAL have the same expressive power?

If the answer to this question is negative, we would have two competing relativization-
closed versions of epistemic logic with common knowledge, even though LRCL seems
the more elegant one of the two.

3 Logic of epistemic actions

Our proposed methodology for epistemic logic with announcements also works more
generally. In this section, we make the same move in the general dynamic logic of
epistemic actions, which also lacks a reduction axiom for common knowledge. In
Section 3.1 we introduce the logic of epistemic action LEA. In Section 3.2 we briefly
introduce a variant of PDL, called automata PDL, which is our technical tool for cre-
ating a suitably enriched base language for LEA that allows for perspicuous reduction
axioms for common knowledge. These axioms are introduced in Section 3.3.
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3.1 Language and semantics

Dynamic actions with epistemic aspects, such as communication or other information-
bearing events, are quite similar to static epistemic situations. In [1] this analogy is
used as the engine for general update of epistemic models under epistemic actions. In
particular, individual actions come with preconditions holding only at those worlds
where they can be performed.

Definition 11 (Action models) An action model for a finite set of agents N with
a language L is a triple A = (W,R, pre) where W 6= ∅ is a set of actions; R : N →
℘(W × W) assigns an accessibility relation to each agent, and pre : W → L assigns
a precondition in L to every action. A pair (A,w) is an action model with a
distinguished actual action w ∈ W. ¤

Here L can be any language that can be interpreted in the models of definition 1.
The effect of executing an action is modeled by the following product construction.

Definition 12 (Execution) Given a static epistemic model (M,w) and an action
model (A,w) with (M,w) |= pre(w), we say that the result of executing (A,w)
in (M,w) is the static model (M · A, (w,w)) = ((W ′, R′, V ′), (w,w)) where W ′ =
{(v, v) | (M, v) |= pre(v)}, R′(i) = {((v, v), (u, u)) | (v, u) ∈ R(i) and (v, u) ∈ R(i)},
and V ′(u, v) = V (u). ¤

Definitions 11 and 12 provide a semantics for the logic of epistemic action LEA of
[1]. The basic epistemic language LLEA is extended with dynamic modalities [A,w]ϕ,
where a A is any finite action model for LLEA. These say that “every execution of
(A,w) yields a model where ϕ holds”:

(M,w) |= [A,w]ϕ iff (M,w) |= pre(w) implies that (M · A, (w,w)) |= ϕ

[1] presents a proof system for this logic with a complicated completeness proof, and
without reduction axioms for common knowledge (which were already lacking for
public announcement actions). So, we must extend this language to get reduction
axioms after all. Again, the semantic intuition about the crucial case (M,w) |=
[A,w]CBϕ is clear. It says that, if there is a B-path w0, . . . , wn (with w0 = w) in
the static model and a matching B-path w0, . . . ,wn (with w0 = w) in the action
model with (M,wi) |= pre(wi) for all i ≤ n, then (M,wn) |= ϕ. To express all
this in the initial static model, it turns out convenient to choose a representation of
complex epistemic assertions that meshes well with action models. Now, the relevant
finite paths in static models involve strings of agent accessibility steps and tests on
formulas, as programs in dynamic logic are associated with regular string languages.
These are the sort of object that can be recognized by a finite automaton. But
action models resemble finite automata, too, with regular languages of accessibility
transitions and tests for preconditions. All this leads us to automata PDL a variant
of PDL where finite automata tag modalities, rather than programs.

3.2 Automata PDL

The system for APDL presented here is taken from [3, Section 10.3], where relevant
basic references can be found for what follows. Here, in our epistemic perspective,
atomic programs will be viewed as agents.

Definition 13 (Finite automata) Let Σ be an alphabet. A finite automaton for

Σ is a quadruple A = (S, I, F, δ), where S is a finite set of states; I, F ∈ S are the
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initial state and the final state of the automaton respectively; and δ ⊆ S ×Σ× S is
the set of transitions. ¤

Intuitively, if (s0, σ, s1) ∈ δ, then s1 is reachable from s0 by symbol σ. A path from
the initial state to the final state yields a string, which is said to be accepted by the
automaton. Ordinary finite automata theory allows more than one final state, but
our set-up loses no generality (cf. [3]).

Definition 14 (Acceptance) A string σ1 . . . σn ∈ Σ∗ is accepted by A = (S, I, F, δ)
iff there exists a sequence of states s0, . . . sn such that for all i < n it holds that
(si, σi, si+1) ∈ δ, where s0 = I and sn = F . ¤

In APDL, automata feature as modal operators. Their alphabet consists of the
atomic programs together with tests on formulas of the language itself.

Definition 15 (Language of APDL) Let a set of atomic programs Π be given.
The language LAPDL is given by the following BNF:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | [i]ϕ | [?ϕ1]ϕ2 | [A]ϕ

where i ∈ N and A is an automaton over Π ∪ {?ϕ | ϕ ∈ LAPDL}. ¤

A formula of the form [A]ϕ should be read as “ϕ holds after every execution of a
string accepted by A”.

Definition 16 (Semantics of APDL) Let (M,w) be any model withM = (W,R, V ).
Let i ∈ Π, and ϕ,ψ ∈ LAPDL. For atomic propositions, negations, and conjunctions
we take the usual definition. Next, we set

(M,w) |= [i]ϕ iff (M, v) |= ϕ for all v such that (w, v) ∈ R(i)
(M,w) |= [?ϕ]ψ iff (M, v) |= ϕ implies that (M, v) |= ψ

(M,w) |= [A]ϕ iff (M, v) |= ϕ for all v and ~σ such that (w, v) ∈ [[~σ]]
and ~σ is accepted by A

[[i;~σ]] = R(i) ◦ [[~σ]]
[[?ϕ;~σ]] = {(w,w)|(M,w) |= ϕ} ◦ [[~σ]]
[[ε]] = {(w,w) | w ∈W}

where ε is the empty string. ¤

APDL and PDL have the same expressive power [3], but the former system offers
a more convenient ‘intensional’ description of actions, which we will exploit in our
account of reduction axioms. In particular, given the earlier-mentioned connection
between epistemic logic and PDL, one can also translate epistemic logic into APDL.
Agents’ accessibility relations become atomic programs, and e.g., common knowledge
among group B involves a single-state automaton ACB

= ({0}, 0, 0, δ) with δ =
{0} ×B × {0}. Henceforth, we will think of APDL in this epistemic guise.

3.3 Reduction axioms

[3] has a sound and complete proof system for APDL by itself. Now we show that
adding epistemic actions to this static language does not increase expressive power,
while we can also find a complete proof system with reduction axioms.

11



p ¬p

>

p
¬p

>

Figure 1: A three-state epistemic action model and its six-node automaton. The middle
nodes are only reachable by executing the appropriate preconditions, which label
the arrows. Solid lines are transitions for i, dashed lines for j.

Definition 17 (Language of APDL
+) Let a finite set of propositional variables

P and a finite set of atomic programs Π be given. The language L
APDL

+ is given
by the following BNF:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | [i]ϕ | [?ϕ1]ϕ2 | [A]ϕ | [A,w]ϕ

where p ∈ P , i ∈ Π, A is an automaton over N ∪ {?ϕ | ϕ ∈ L
APDL

+} and (A,w) is
an action model for L

APDL
+ . ¤

To translate formulas of the form [A,w]ϕ to the language without epistemic ac-
tions, we can use reduction axioms from the logic of epistemic actions without com-
mon knowledge, but now there is an extra case, namely for sentences of the form
[A,w][A]ϕ, with complex epistemic postconditions [A]ϕ such as common knowledge
statements. Our idea is to merge the two modalities using a product of two automata:
one being the epistemic [A], and one for the action model [A,w].

As to the latter, we construct automata A(A,w,v) for each reachable action world
, v, making paths in A(A,w,v) and (A,w) correspond. By way of explanation, action
worlds play two roles: their preconditions determine whether the action can be
executed, but they are also serve as epistemic alternatives for agents. A path in our
automaton takes both roles into account by having two copies of each world. Agents
can reach only one sort of copy, from which the other is accessible by executing the
right precondition. From the latter, agents can again reach other states.

Definition 18 (Automata for action models) Let A = (W,R, pre) be an action
model, with worlds w, v. The automaton A(A,w,v) is the four-tuple (S, I, F, δ) where
S = W × {0, 1}, I = (w, 0), F = (v, 1), and δ = {((u, 0), ?pre(u), (u, 1)) | u ∈
W} ∪ {((u, 1), i, (t, 0)) | (u, t) ∈ R(i)} for all agents i. ¤

For instance, consider an epistemic action model for two agents i and j where nothing
happens or agent i is informed about the the truth of p. Agent i knows exactly what
is going on, but j does not know what is going on at all. This action model is shown
on the left in Figure 1. Its automaton is shown on the right.

Now we must combine the two sorts of automata. In the simple case of epistemic
common knowledge, the automaton for the action model itself would be virtually
what we want, but in general, the desired paths, and hence the combined automaton
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must be restricted. For this we use a kind of multiplication, which is actaully not
unlike product update.

Definition 19 Let an action model A, two action worlds w, v ∈ W, and an automa-
ton A be given. Then the automaton A(A,w,v) ⊗ A = (S′, I ′, F ′, δ′) is defined as
follows: S′ = W × {0, 1} × S, I ′ = ((w, 0, I), F ′ = ((v, 1, F ) and

δ′ = {((u, 1, sj), i, ((t, 0, sk) | (u, t) ∈ R(i) and (sj , i, sk) ∈ δ}∪
{((u, 0, s), ?ϕ, ((u, 1), s) | pre(u) = ϕ}∪
{((u, 1, si), ?〈A, u〉ϕ, ((u, 1, sj) | (si, ?ϕ, sj) ∈ δ)

As a special case, multiplication with the epistemic automaton for common knowl-
edge yields nothing new, i.e. AA,w,v ⊗ ACN

= AA,w,v. Now we can translate the
language of APDL+ to the language of APDL.

Definition 20 (Translation) The translation map t takes a formula or automaton
from the language of APDL+ and yields a formula of APDL:

t(p) = p

t(¬ϕ) = ¬t(ϕ)
t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)
t([i]ϕ) = [i]t(ϕ)
t([?ϕ]ψ) = t(?ϕ) → t(ψ)
t([A]ϕ) = [t(A)]t(ϕ)
t([A,w]p) = t(pre(w)) → p

t([A,w]¬ϕ) = t(pre(w)) → ¬t([A,w]ϕ)
t([A,w](ϕ ∧ ψ) = t([A,w]ϕ) ∧ t([A,w]ψ)
t([A,w][i]ϕ) = t(pre(w)) →

∧
(w,v)∈R(i)[i]t([A, v]ϕ)

t([A,w][?ϕ]ψ) = t([A,w](ϕ→ ψ))
t([A,w][A]ϕ) =

∧
v∈W

t([A(A,w,v) ⊗A][A, v]ϕ)

t([A,w][A′,w′]ϕ) = t([A,w]t([A′, αwone′]ϕ))

where t(A) is the automaton where every occurrence of a formula as a condition has
been replaced by its t-translation. ¤

Every formula is provably equivalent to its translation. This is essentially the sound-
ness of the following proof system.

Definition 21 (Proof system for APDL
+) The proof system for APDL+ con-

sists of all the axioms and rules of APDL plus the following axioms:

At [A,w]p↔ (pre(w) → p) (atoms)
PF [A,w]¬ψ ↔ (pre(w) → ¬[A,w]ψ (partial functionality)
Dist [A,w](ψ ∧ χ) ↔ ([A,w]ψ ∧ [A,w]χ) (distribution)
KA [A,w][i]ϕ↔ (pre(w) →

∧
(w,v)∈R(i)[i][A, v]ϕ (knowledge-action)

Red [A,w][A]ϕ↔
∧

v∈W
[A(A,w,v) ⊗A][A, v]ϕ (reduction axiom)

plus necessitation for action model modalities. ¤

The difficult case for the soundness of these axioms is the reduction axiom.

Lemma 6 [A,w][A]ϕ is equivalent to
∧

v∈W
[A(A,w,v) ⊗A][A, v]ϕ ¤
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Proof (Sketch only:) From left to right. By contraposition. Suppose (M,w) |=∨
v∈W

〈A(A,w,v) ⊗A〉〈A, v〉ϕ. Let 〈A(A,w,v) ⊗A〉〈A, v〉ϕ be a disjunct that makes the
formula true. Therefore there is a string ~σ = σ1 . . . σn accepted by A(A,w,v) ⊗A such
that some path w0, . . . , wn runs from w to v with (w, v) ∈ [[~σ]] and (M, v) |= 〈A, v〉ϕ.
Let ((w, 0, I), . . . , (v, 1, F ) be the path in A(A,w,v) ⊗ A that yields ~σ. We can now
make two strings: a string σA(A,w,v)

that is accepted by A(A,w,v) and a string σ′A(A)

that is accepted by A. These can be “read” from the path ((w, 0), I), . . . , ((v, 1), F ).
In particular, (w, v) ∈ [[σA(A,w,v)

]], because of the path w0, . . . , wn. In the product
update model M ·A this path becomes ((w0,w0), . . . , (wn,wn)). Along this path σA
can be executed. Therefore (M,w) |= 〈A,w〉〈A〉ϕ.

From right to left. Suppose (M,w) |= 〈A,w〉〈A〉ϕ. Then (M ·A, (w,w)) |= 〈A〉ϕ.
Therefore some string ~σ = σ1 . . . σn is accepted by A such that ((w,w), (v, v)) ∈
[[~σ]]M ·A and (M ·A, (v, v)) |= ϕ. Therefore there is a path w0, . . . wn from w to v and
a path w0, . . . ,wn from w to v such that (M,wi) |= pre(wi). Let ~σ′ = σ′1 . . . σ

′
n be the

string obtained by replacing every ψ in ~σ with 〈A, u〉ψ. Then (w, v) ∈ [[~σ′]]M . Let
~σ′′ be the string obtained from ~σ′ by prefixing it with ?pre(w), while every σ′

i of the
form i is replaced by i; ?pre(wi). It can be shown that ~σ′′ is accepted by A(A,w,v)⊗A
and that (w, v) ∈ [[~σ]]. Therefore (M,w) |=

∨
v∈W

〈A(A,w,v) ⊗A〉〈A, v〉ϕ. ¤

Theorem 5 (Completeness) If |= ϕ, then ` ϕ. ¤

Proof The proof system for APDL is complete and every formula in L
APDL

+ is
provably equivalent to a formula in LAPDL. ¤

4 Conclusion and further research

Dynamic-epistemic logics provide excellent means for studying exchange of factual
and higher-order information. In this many-agent setting, common knowledge is an
essential concept. We have presented two extended languages for dynamic-epistemic
logic that admit explicit action/common knowledge reduction axioms: one (PAL) for
public announcement only, and one (APDL) for general action update. These systems
make proof and complexity analysis more perspicuous than earlier attempts in the
literature. Still, PAL and epistemic APDL are just two extremes on a spectrum, and
many further natural update logics may lie in between. For instance, we found an
open question of expressiveness of LRCL versus PAL.

In addition, our methods raise new model-theoric questions about languages that
admit of ‘update closure’ by reduction axioms and translation procedures. Exam-
ples are temporal UNTIL logic, fragments of the µ-calculus, or even first-order
logic and its fixed-point extensions. Also, our automata seem a natural setting for
generalizing other open questions, known mainly so far for public announcement
(cf. [7]). These include extensions of our current concerns, such as axiomatizing
the schematic validities of update languages, closed under arbitrary substitutions
for proposition letters– an issue which is not solved by our reduction axioms alone.
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