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Abstract— This paper is concerned with balanced realization
and model reduction for discrete-time nonlinear systems. Singu-
lar perturbation type balanced truncation method is proposed.
In this procedure, the Hankel singular values and the related
controllability and observability properties are preserved, which
is a natural generalization of both the linear discrete-time case
and the nonlinear continuous-time case.

I. INTRODUCTION

In linear control systems theory, balanced realization and
model reduction theory plays an important role in both
theoretical and practical research fields [11]. Motivated by
this, its nonlinear extension was investigated by many authors
[9], [5], [8], [4]. The authors have provided a new balanced
realization method based on singular value analysis of the
Hankel operator of the nonlinear plant [1], [2] as a precise
nonlinear counterpart of the linear case result. In those
former results, balancing and model reduction method for
continuous-time nonlinear systems was obtained, although
its discrete-time version was not investigated.

Balanced realization for discrete-time nonlinear systems
were also investigated by some authors [10], [6], [3]. How-
ever, though there is a strong similarity to the continuous-
time case, those results are not immediately obtained from
the continuous-time results. In particular, model reduction
theory based on balancing for discrete-time nonlinear sys-
tems was not obtained so far.

In this paper, we provide a balancing and model reduction
method for discrete-time nonlinear systems. This method is
a natural nonlinear generalization of the linear case as well
as a discrete-time counterpart of our continuous-time case
result. We prove that there exists a balanced realization for
nonlinear discrete-time systems which is quite similar to the
continuous-time case and that a model reduction method
based on this realization and a singular perturbation based
truncation approach derives a reduced order model which
preserves several important properties of the original system
such as controllability, observability and the gain property.

II. PROBLEM SETTING AND PRELIMINARIES

Consider an `2-stable discrete-time nonlinear system

Σ :

{

x(t + 1) = f(x(t), u(t))
y(t) = h(x(t), u(t))

(1)

with x(t) ∈ R
n, u(t) ∈ R

m and y(t) ∈ R
r. It’s controlla-

bility operator C : `m
2 (Z+) → R

n and observability operator
O : R

n → `p
2(Z+) are defined by

x0 = C(u) :

{

x(t − 1) = f(x(t), u(t)) x(∞) = 0
x0 = x(0)

y = O(x0) :

{

x(t + 1) = f(x(t), 0) x(0) = x0

y(t) = h(x(t), 0)
.

The Hankel operator is given by their composition

H = O ◦ C.

The corresponding controllability and observability functions
are defined by

Lc(x) =
1

2
‖C†(x)‖2

`2
(2)

Lo(x) =
1

2
‖O(x)‖2

`2
(3)

where C† is the norm-minimizing pseudo-inverse of C, that
is,

C†(x) = arg inf
u∈`m

2
C(u)=x

‖u‖`2 .

Balanced realization investigated in this paper (also bal-
anced realization for continuous-time systems in [1], [2]) is
closely related to the solution of singular value analysis of
the Hankel operator H as

(dH(u))∗ ◦ H(u) = λ u, λ ∈ R.

Solutions of this equation are important because they char-
acterize critical points of ‖H(u)‖/‖u‖, hence the gain max-
imizing input arg supu(‖H(u)‖/‖u‖) is also contained in
them.

In the authors’ former result, the following theorem was
proved.

Theorem 1: [3] Suppose that C, C† and O are differen-
tiable, and that there exist λ ∈ R and ξ ∈ R

n satisfying

∂Lo(ξ)

∂ξ
= λ

∂Lo(ξ)

∂ξ
. (4)

Then v ∈ `m
2 (Z+) defined by

v := C†(ξ)



satisfies the equation for singular value analysis of H

(dH(v))∗ ◦ H(v) = λ v. (5)

Suppose moreover that the Jacobian linearization of Σ has
non-zero and distinct Hankel singular values. Then there exist
n solutions curves ξ = ξi(s) ∈ R

n, s ∈ R satisfying ξi(0) =
0 for Equation (4) in a neighborhood of the origin.

Here we call the solution v of Equation (5) a singular
vector of H, and the corresponding input-output ratio

σ =
‖H(v)‖

‖v‖

a singular value of H, respectively. Singular value functions
and singular vector functions corresponding to ξi(s) are
defined as follows for convenience.

vi(s) := C†(ξi(s)) (6)

σi(s) :=
‖H(vi(s))‖

‖vi(s)‖
(7)

The curves in the state-space ξi(s) play the role of the
coordinate axes of the balanced realization. Balanced real-
ization and the corresponding model reduction method in the
continuous-time case was derived based on them. See [1], [2]
for the detail.

III. MAIN RESULTS

A. Observability and controllability functions
As a preparation for the model reduction of discrete-

time systems, we need to characterize the observability
and controllability functions Lo(x) and Lc(x) by algebraic
equations which are similar to the Hamilton Jacobi equations
in the continuous-time case.

Lemma 1: Suppose that x = 0 of the system

x(t + 1) = f(x(t), 0)

is asymptotically stable. Then a smooth observability function
Lo(x) in (3) exists if and only if

Lo(f(x, 0)) − Lo(x) +
1

2
h(x, 0)Th(x, 0) = 0, Lo(0) = 0

(8)
has a smooth solution Lo(x).

Proof: Sufficiency is proved first. Suppose that the
observability function Lo(x) exists. Then the definition of
the observability function (3) implies that

Lo(x(0)) =
1

2

∞
∑

t=0

h(x(t), 0)Th(x(t), 0)

=
1

2

∞
∑

t=1

h(x(t), 0)Th(x(t), 0)

+
1

2
h(x(0), 0)Th(x(0), 0)

= Lo(x(1)) +
1

2
h(x(0), 0)Th(x(0), 0)

= Lo(f(x(0), 0)) +
1

2
h(x(0), 0)Th(x(0), 0).

This equation has to hold for an arbitrary initial state x(0),
that is, it satisfies the equation (8) since Lo(0) = 0. This
proves sufficiency.

Next, necessity is proved. Suppose that the equation (8)
has a smooth solution L̄o(x). The equation (8) implies that

L̄o(x) = L̄o(F (x)) +
1

2
h(x, 0)Th(x, 0)

= L̄o(F (F (x)))

+
1

2
h(x, 0)Th(x, 0) +

1

2
h(F (x), 0)Th(F (x), 0)

= · · ·

= lim
k→∞

(

L̄o(F
k(x))+

1

2

k
∑

i=0

h(F i(x), 0)Th(F i(x),0)

)

= lim
k→∞

L̄o(F
k(x)) + Lo(x)

= Lo(x)

where F (x) := f(x, 0). The last equation holds because
the system x(t + 1) = F (x(t)) is asymptotically stable and
because L̄o(0) = 0. This completes the proof.

This result is a natural nonlinear generalization of the
linear case result. In the linear case, the dynamics (1) reduces
to

Σ :

{

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

with appropriate matrices A, B, C and D. Here the observ-
ability function is in a quadratic form

Lo(x) =
1

2
xTGox.

The algebraic equation (8) reduces down to

ATGoA − Go + CTC = 0

which is the Lyapunov equation for the observability Gram-
mian in the linear case.

A similar result for the controllability function is obtained
as follows. Let us consider an optimal control problem
minimizing a cost function

min
v∈`2(Z+)

x(∞)=0, x(0)=x0

∞
∑

t=0

‖u(t)‖2 (9)

for the dynamics of C

x(t + 1) = f−1(x(t), u(t))

where f−1 denotes the inverse of f(x, u) with respect to x,
that is,

f(f−1(x, u), u) = x

holds. Let us denote the input u achieving the minimization
in (9) by u = u?(x). Then the dynamics of C† : x0 7→ v
becomes

C† :

{

x(t + 1) = f−1(x(t), u?(x(t))) x(0) = x0

v(t) = u?(x(t))



Lemma 2: Suppose that x = 0 of the feedback system

x(t + 1) = f−1(x(t), u?(x(t)))

is asymptotically stable. Then a smooth controllability func-
tion Lc(x) in (2) exists if and only if

Lc(f
−1(x, u?(x))) − Lc(x) +

1

2
u?(x)Tu?(x), Lc(0) = 0

(10)
has a smooth solution Lc(x).

Proof: This lemma can be proved as a corollary of
Lemma 1 by identifying C† with O.

These results are natural generalization of the continuous-
time case results where the equations (8) and (10) are
Hamilton-Jacobi equations.

B. Balanced realization
As in the continuous-time case [2], we can prove the

existence of balanced realization for discrete-time nonlinear
systems.

Theorem 2: Consider the state-space system Σ in (1) and
suppose that its Jacobian linearization has non-zero and
distinct Hankel singular values. Then, in a neighborhood of
the origin, there exists a coordinate transformation convert-
ing Σ into a system whose controllability and observability
functions are described by

Lc(x) =
1

2

n
∑

i=1

x2
i

σi(xi)

Lo(x) =
1

2

n
∑

i=1

x2
i σi(xi)

with the singular value functions σi’s defined in (7). In
particular, if the above coordinate transformation is defined
globally, then

sup
u∈`2(Z+)

‖H(u)‖

‖u‖
= max

i
sup
s∈R

σi(s).

The proof follows along the same lines as the proof of
Theorem 5 in [2], and it is omitted for the reason of space.
This realization is a natural nonlinear generalization of the
linear case, because the balanced realization in the linear case
has the controllability and observability functions

Lc(x) =
1

2
xTG−1

c x, Lo(x) =
1

2
xTGox

with the controllability and observability Grammians Gc and
Go which are balanced as

Gc = Go = diag(σ1, . . . , σn)

with the Hankel singular values of the system. In Theorem
2, we have its nonlinear counterpart

Lc(x) =
1

2
xTGc(x)−1x, Lo(x) =

1

2
xTGo(x)x

with

Gc(x) = Go(x) = diag(σ1(x1), . . . , σn(xn))

with the singular value functions σi(·)’s of the Hankel
operator H.

C. Model reduction

This subsection gives a model reduction method based on
the balanced realization given in Theorem 2 with a singular
perturbation type balanced truncation technique.

Consider the system Σ in (1) and suppose that the system
is balanced in the sense of Theorem 2. Suppose moreover
that the singular value functions satisfy

max
±s

σi(±s) > max
±s

σi+1(±s).

Namely, the coordinate axis xi plays a more important role
than xj in the input-output mapping. Moreover we assume
that

max
±s

σk(±s) � max
±s

σk+1(±s)

holds for a certain k, and divide the state-space according to
k as

x = (xa, xb) ∈ R
k × R

n−k

f(x, u) =

(

fa(xa, xb, u)
f b(xa, xb, u)

)

∈ R
k × R

n−k.

Then, accordingly, we obtain two reduced order systems by
a singular perturbation based truncation method

Σa :







xa(t + 1) = fa(xa(t), xb(t), ua(t))
xb(t) = f b(xa(t), xb(t), ua(t))
ya(t) = h(xa(t), xb(t), ua(t))

Σb :







xa(t) = fa(xa(t), xb(t), ub(t))
xb(t + 1) = f b(xa(t), xb(t), ub(t))

yb(t) = h(xa(t), xb(t), ub(t))
.

Here we suppose that the equation

xa = fa(xa, xb, u) (11)

has a unique solution

xa = f̂a(xb, u), (12)

and that the equation

xb = f b(xa, xb, u) (13)

has a unique solution

xb = f̂ b(xa, u). (14)

Note that these equations always have solutions at least in
a neighborhood of the origin if the Jacobian linearization of



the system Σ is asymptotically stable. Then we obtain explict
forms

Σa :

{

xa(t + 1) = f̄a(xa(t), ua(t))
ya(t) = h̄a(xa(t), ua(t))

(15)

Σb :

{

xb(t + 1) = f̄ b(xb(t), ub(t))
yb(t) = h̄b(xb(t), ub(t))

(16)

with

f̄a(xa(t), ua(t)) := fa(xa(t), f̂ b(xa(t), ua(t)), ua(t))

h̄a(xa(t), ua(t)) := h(xa(t), f̂ b(xa(t), ua(t)), ua(t))

f̄ b(xb(t), ub(t)) := f b(f̂a(xb(t), ub(t)), xb(t), ub(t))

h̄b(xb(t), ub(t)) := h(f̂a(xb(t), ub(t)), xb(t), ub(t))

by substituting the equations (12) and (14) for Σ. For
those reduced order systems, we can prove the following
properties.

Theorem 3: Consider the system Σ in (1) and the trun-
cated systems Σa and Σb in (15) and (16). Then, in a
neighborhood of the origin, Σa and Σb are balanced in the
sense of Theorem 2 and

σa
i (xa

i ) = σi(x
a
i ) i ∈ {1, . . . , k}

σb
i (x

b
i ) = σk+i(x

b
i ) i ∈ {1, . . . , n − k}

hold with σa
i ’s and σb

i ’s the singular value functions of
the systems Σa and Σb, respectively. In particular, if those
functions are defined globally, then

sup
u∈`m

2 (Z+)

‖H(u)‖

‖u‖
= sup

s∈R

σa
1 (s).

Proof: Suppose that the system Σ in (1) is balanced in
the sense of Theorem 2. Then it implies that Lo(x) can be
divided into two parts

Lo(x) = La
o(x

a) + Lb
o(x

b) (17)

where

La
o(x

a) :=
1

2

k
∑

i=1

x2
i σi(xi)

Lb
o(x

b) :=
1

2

n
∑

i=k+1

x2
i σi(xi).

On the other hand, the equations (11) and (13) imply that

fa(f̂a(xb, u), xb, u) = f̂a(xb, u) (18)
f b(xa, f̂ b(xa, u), u) = f̂ b(xa, u). (19)

Let us substitute (14) for (8). Then we obtain

0 =

[

Lo(f(x, 0)) − Lo(x) +
1

2
h(x, 0)Th(x, 0)

]∣

∣

∣

∣

xb=f̂b(xa,u)

= Lo(f(xa, f̂ b(xa, 0), 0)) − Lo(x
a, f̂ b(xa, 0))

+
1

2
h(xa, f̂ b(xa, 0), 0)Th(xa, f̂ b(xa, 0), 0)

=
(

La
o(fa(xa, f̂ b(xa, 0), 0)) + Lb

o(f
b(xa, f̂ b(xa, 0), 0))

)

−
(

La
o(xa) + Lb

o(f̂
b(xa, 0))

)

+
1

2
h(xa, f̂ b(xa, 0), 0)Th(xa, f̂ b(xa, 0), 0)

= La
o(f̄

a(xa, 0)) − La
o(x

a) +
1

2
h̄a(xa, 0)Th̄a(xa, 0).

Here the third equation follows from (17), and the last
equation follows from (18) and (19). Then Lemma 1 implies
that La

o(x
a) is the observability function of the system

Σa. Further, it can be easily proved that Lb
o(x

b) is the
observability function of Σb by substituting (12).

In a similar way, as in the proof of Lemma 2, by identify-
ing C† with O, we can prove that the controllability functions
La

c (xa) and Lb
c(x

b) of the systems Σa and Σb are given by

La
c(x

a) :=
1

2

k
∑

i=1

x2
i

σi(xi)

Lb
c(x

b) :=
1

2

n
∑

i=k+1

x2
i

σi(xi)

which prove the former part of the theorem. The latter part
follows immediately. (See [2].) This completes the proof.

This theorem reveals several properties of the proposed
model reduction method:

• This model reduction derives balanced reduced order
models.

• Singular value functions are preserved and, in particular,
the gain of the related Hankel operator (which is called
Hankel norm) is preserved.

• Since singular value functions are preserved, some prop-
erties related to controllability and observability of the
original system is preserved.

This is both a natural nonlinear generalization of the linear
case result [7] and a natural discrete-time counterpart of the
continuous-time nonlinear systems case [1], though that was
based on balanced truncation, where here we use a singular
perturbation model reduction procedure so that we preserve
the structure.

IV. CONCLUSION

This paper was devoted to balanced realizations and model
reduction for discrete-time nonlinear dynamical systems
based on Hankel singular value analysis. Firstly, we proved
the existence of a balanced realization similar to continuous-
time case result. Secondly, a balanced truncation method



based on a singular perturbation approach was proposed.
In this method, several important properties of the original
system such as controllability, observability and the gain
property are preserved.
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