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6
Two-pion exchange contributions:
results

Numerical results of the model for the NN strong interaction described in the previous
chapter will be presented here. Models describing the same physics based upon chiral
perturbation theory, such as the works of Entem et al . [38, 39], Kaiser et al . [33] and
Epelbaum [164, 165] will be used for comparison. The higher partial waves are only
sensitive to medium and long range physics. The latter is given by the one-pion-exchange
(OPE) contribution as is long known. The medium range nucleon-nucleon interaction is
dominated by correlated two-pion-exchanges (TPE). It thus makes sense to consider first
the results for the high partial waves. This also provides a qualitative test for the chiral
dynamics in the two nucleon interaction. For the reproduction of the lower partial waves
a proper description of the short range part of the NN interaction is required. In our
model this is achieved by the inclusion of the ω meson, responsible for the short range
repulsion, the ρ meson which ensures the proper splitting of the coupled waves and a few
other heavy mesons. Within the one-boson-exchange model (OBE) the introduction of a
scalar isoscalar boson was necessary in order to reproduce the attractive medium range
NN central potential. An important part of the TPE contributions mimics the exact
same physics which should lead to a sizable decrease of the σ-nucleon coupling constant
(gε). In the following the direct and crossed boxes supplemented by the c0 football and
triangle diagrams will be called NLO diagrams or terms, while the c1, c3 and c4 triangles
plus the c0c4 football will be called NNLO diagrams or terms. However, our diagrams
contain, besides the corresponding chiral perturbation theory terms, higher order recoil
and relativistic corrections.

6.1 Phenomenological interpretation of the LECs

The values of the low energy coupling constants ci (LECs) are not constrained by chiral
symmetry and they have to be determined from a fit to the experimental πN or alterna-
tively NN elastic data. In chiral perturbation theory based models for the pion-nucleon
elastic scattering the c1, c3 and c4 coupling constants enter already at order Q2 and
from an analysis based on such a model the following values have been obtained [166]:
c1=-0.64 GeV−1, c3=-3.90 GeV−1, c4=2.25 GeV−1. At order Q3 the analysis of the πN
data is performed by considering observables that receive contributions only from tree
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82 Chapter 6: Two-pion exchange contributions: results

LEC πN NN this work
c1 -0.87 . . . -1.53 -0.76 -0.81
c3 -5.25 . . . -6.20 -4.78 . . . -5.08 -4.70
c4 3.47 . . . 3.61 3.92 . . . 4.70 3.40

Table 6.1: The ranges of the LECs (in GeV−1) extracted from πN and NN scattering data

compared with the values used in this thesis.

graphs containing the ci couplings and finite one-loop corrections but no contributions
from the a priori unknown terms in L(3)

πN . The range of the LECs as determined from
such Q3 analysis [78, 150, 166, 167] is shown in Table (6.1).

The extraction of the LECs from elastic NN scattering data has been performed
by the Nijmegen group and collaborators [122, 77]. In their approach, the chiral two-
pion-exchange component of the long-range nucleon-nucleon interaction derived from the
chiral Lagrangian together with the full electromagnetic interaction and the one-pion-
exchange potential are used to solve the relativistic Schrödinger equation with boundary
conditions. The model is fitted to the pp Nijmegen data base and in the process the ci
coupling constants are extracted. The value of the c1 coupling is determined from its
relation to the pion-nucleon sigma term σ(0) for which a low value is chosen, σ(0)=35±5
MeV. Extracting it via a fitting procedure is unreliable, even though consistent with
values obtained from the πN analysis: c1=-4.4±3.4 GeV−1. Results from this analysis
are shown Table (6.1), along with the values we have adopted for the LECs in this thesis,
namely the ones used in Ref. [164]. The statistical errors on the extracted values are of
the order of 0.2. . .0.3 GeV−1 and are not included in the presented ranges.

The phenomenological interpretation of the values of the LECs has been presented
by Bernard et al . in [78]. An effective Lagrangian with resonances chirally coupled to
nucleons and pions has been employed. Local pion-nucleon operators can be generated by
letting the resonance masses become very large while keeping the ratio of coupling con-
stants to masses fixed. In this way the resonance degrees of freedom are decoupled from
the effective theory keeping however the information about these particles in the numer-
ical values of the LECs. By considering both baryonic (B) and mesonic (M) excitations,
one can write

ci =
∑

B=∆,N∗,...

c
(N)
i +

∑
M=σ,ρ,...

c
(M)
i . (6.1)

The contribution of a isoscalar-scalar meson to the c1,3 coupling constants can be
deduced from a chiral model for ππ scattering, which contains two two-pion scalar-meson
interactions: one chiral symmetric and one breaking the chiral symmetry spontaneously.
Their coupling constants are denoted by c̄d and c̄m respectively. The contribution to the
c1 LEC has the form

cσ1 = −gσ c̄m
m2

σ

= −0.81 GeV−1, (6.2)
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where gσ is the coupling constant of the isoscalar-scalar meson to nucleons with the
numerical value g2

σ/4π= 7.6 (Fleischer-Tjon OBE model value); here c̄m=30 MeV. As-
suming that the value of c1 is entirely due to the scalar meson exchange (i.e. cσ1 = c1) the
mass of that meson, mσ, can be determined from the above relation: mσ=602 MeV. This
value is reasonably close to the value used in the Fleischer-Tjon OBE model: mσ=570
MeV. The scalar meson contribution to c3 is given by

cσ3 = −2gσ c̄d
m2

σ

= 2
c̄d
c̄m

cσ1 = −1.22 GeV−1, (6.3)

using c̄d=23 MeV. The ρ vector-meson contribution to c4 amounts to

cρ4 =
κ

4M
= 1.81 GeV−1 , (6.4)

where M is the nucleon mass and for the vector meson magnetic moment the value κ=6.8
has been used. The contributions of the ∆ isobar to the LECs has been determined by
using the isobar model and the SU(4) coupling constant relation. It is summarized by
the expression

c∆3 = −2 c∆4 = − g2
A (m∆ −M)

2[(m∆ −M)2 −m2
π]

= −3.83 GeV−1. (6.5)

This value bares sizable uncertainties, since by using the Rarita-Schwinger formalism
and varying the value of the off-shell parameter Z changes up to 20% are found. In the
mentioned reference [78] contributions of the N∗ (Roper) baryon resonance have also
been evaluated but found to be numerically small. We summarize by listing the values
of the LECs obtained by adding up the various contributions to each of them

c1 = cσ1 = −0.81 GeV−1 ,

c3 = cσ3 + c∆3 = −5.05 GeV−1 , (6.6)
c4 = cρ4 + c∆4 = 3.73 GeV−1 .

6.2 Potential in coordinate space

The relativistic matrix elements of the elastic scattering matrix T or of the quasipotential
W can be reduced to a non-relativistic form (matrix elements in a two component spinor
space) by making use of the expression of the Dirac spinors in terms of Pauli spinors.
One can then pass from momentum space to coordinate space representation and obtain
the expression of the NN interaction in the form of non-relativistic potentials. This is
achieved by Fourier transforming momentum space amplitudes that are well behaved.
Otherwise the finite range part of the interaction in the coordinate space can be obtained
as a superposition of Yukawa potentials via a spectral function representation of the
momentum space amplitudes [15, 33]. The general expression of the on-shell scattering
amplitude in the center of mass frame of two nucleons has the general form

T (~r, s, t) = VC(r) + ~τ1 · ~τ2WC(r) + [VS(r) + ~τ1 · ~τ2WS(r)]~σ1 · ~σ2 (6.7)
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+[VT (r) + ~τ1 · ~τ2WT (r)]S12 + [VSO(r) + ~τ1~τ2WSO(r)]~L · ~S
+[VQ(r) + ~τ1 · ~τ2WQ(r)]Q12

S12 = 3(~σ1 · r̂)(~σ2 · r̂)− (~σ1 · ~σ2) (6.8)

Q12 =
1
2
[(~σ1 · ~L)(~σ2 · ~L) + (~σ2 · ~L)(~σ1 · ~L)] (6.9)

with s and t denoting the spin and respectively isospin variables. Contributions to the
two-pion exchange potential have been determined starting with the 50’s [168, 169, 170,
171] and the 70’s [13]. Terms originating in the direct or crossed box and sometimes the
c0 loop diagrams have been considered in these older studies while in [15] the starting
point has been the elastic πN scattering amplitude. In the last decade the form of two-
pion-exchange potential has been studied taking into account the constraints set by chiral
symmetry on the allowed form of the interaction [30, 155, 172, 173]. The most compre-
hensive work in this direction has been done by Kaiser and collaborators [33, 36, 37] who
have determined the nucleon-nucleon potential up to order N3LO in chiral perturbation
theory. Among other contributions, the one-loop two-pion exchange potential has been
determined up to 1/M2 corrections for the NLO diagrams and 1/M corrections for the
NNLO ones. Dimensional regularization has been used to extract the finite part of the di-
vergent loop integrals. Polynomial terms in the momentum transfer have been neglected
since they only give rise to zero range potentials. Their result for the two-pion-exchange
potential will be used in this section for a comparison with the one-boson-exchange po-
tential generated by the mesons that have been considered in the model of Fleischer and
Tjon. This comparison will also serve as a quantitative illustration of the phenomenolog-
ical interpretation of the LECs. The coordinate space form of the one-boson-exchange
potential can be obtained, for example, from the work of Partovi and Lomon [13]. In that
reference a local expression for the OBE potential is derived by making an expansion in
terms of ~q 2/M2 of the relativistic amplitudes, where ~q is the relative three-momentum
of the two nucleons in their center of mass system. The first two terms of this expansion
are kept (static term plus 1/M2 corrections) and all terms proportional with the total
energy (non-local terms) are ignored. The values of the coupling constants of mesons to
nucleons are the ones listed in the line labeled OBE in Table (6.4). In the calculations of
the phase shifts, in the later sections, the fully relativistic amplitudes are employed. The
difference between them and those of Kaiser is given by higher order terms in the 1/M
expansion as well as non-local terms, their magnitude being assumed to be reasonably
small.

We start with the isoscalar central potential, which is given by [33]

VC(r) =
g2

A

32π2f4
π

{
3e−2x

r6

[
2c1x2(1 + x)2 + c3(6 + 12x+ 10x2 + 4x3 + x4)

]
− 1
πMr

[12mπc3
r5

[(30x+ 12x3)K0(2x) + (30 + 27x2 + 4x4)K1(2x)]

+6(2c1 + c3)m6
πK0(2x)

]}
, (6.10)

with x = mπr, mπ the pion mass while M is the nucleon mass and Kn(x) is the modified
Bessel function. In order to avoid lengthy expressions not all the terms are shown here,
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Figure 6.1: The isoscalar central potential VC(r) (left panel) and the isovector tensor potential

WT (r) (right panel) generated by the one-loop two-pion exchange graph compared with the

respective one-boson exchange potentials.

just the ones that are most important quantitatively. For example among the omitted
terms are 1/M and 1/M2 contributions from the direct and crossed boxes and some 1/M
corrections to the c1 and c3 triangles. The shown terms account for a strong short range
attraction (first line) and strong short range repulsion (second line) and a long range
repulsion (third line). This results in a net short range attraction which mimics very
well the σ phenomenological short range attraction, while at long ranges the potential is
repulsive, with a repulsion that amounts to 1 MeV at r=2.1 fm (see Fig. (6.1)). This last
feature is opposite to the OBE model, which displays an attraction over the whole range
of r. At N2LO in chiral perturbation theory the dimensional regularized isoscalar central
potential is far more attractive than the one presented here, at r=1 fm the attraction
amounts to about 300 MeV. Epelbaum et al . [164] has shown that by using a sharp
cut-off procedure to regularize divergent integrals, the resulting coordinate space central
potential is in good agreement with the OBE one (σ + ω) provided that the value of the
cut-off is chosen in the range Λ=500. . .800 MeV.

The main contribution to the isovector-tensor potential comes from the c4 triangle
diagram and is attractive. Small corrections originating from the direct and crossed boxes
and the c0 diagrams are of the order of a few MeV. Compared with its phenomenological
counterpart from the ρ meson the net attraction displayed by the TPE diagrams is about
a factor 2 too small (Fig. (6.1)); 1/M corrections to the c4 triangle are repulsive and
quite large, of the order of 15 MeV at r = 1 fm. Comparing again with the finite cutoff
result of [164] the attraction decreases even further when the value of the cutoff is chosen
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Figure 6.2: The isovector spin-spin potential WC(r) (left panel) and the spin-orbit potentials

VSO(r) and WSO(r).

as before. The dominant part of the two-pion isovector-tensor potential is given by

WT (r) = − c4g
2
A

48π2f4
πr

6

{
e−2x(1 + x)(3 + 3x+ x2) (6.11)

− 7mπ

3πM

[
3x(8 + x+ 2x2)K0(2x) + (24 + 21x2 + 2x4)K1(2x)

]}
.

Turning to the isovector spin-spin potential, the c4 triangle gives here the dominant
contribution and as in the case of the isovector tensor potential the 1/M correction is
important too. Smaller corrections, of the order of 1-2 MeV at r=1 fm, coming from
the direct and crossed boxes and from the c0 triangle and football graphs are included
in Fig. (6.2). There is a large difference with respect to the OBE potential for which the
ρ meson gives a strong repulsive spin-spin potential at short ranges. Nevertheless both
potentials are repulsive and the difference between them reduces at bigger r given the
shorter range of the ρ potential. Including a sharp cut-off [164] decreases the repulsion
of the TPE potential at NLO in chiral perturbation theory. The c4 triangle graphs
contribution to the spin-spin potential has the following expression

WS(r) =
c4g

2
A

48π2f4
πr

6

{
e−2x(1 + x)(3 + 3x+ x2) (6.12)

− 7mπ

3πM

[
6x(5 + 2x2)K0(2x) + (30 + 27x2 + 4x4)K1(2x)

]}
.

The isoscalar spin-orbit TPE potential receives contributions only from the direct
and crossed box diagram. Besides these, in chiral perturbation theory at N3LO, there is
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Figure 6.3: The isoscalar tensor (VT (r)) and spin-spin (VS(r)) potentials (left panel) and the

isovector central potential WC(r).

an 1/M correction to the c2 diagram which gives an important repulsive contribution to
the isoscalar spin-orbit potential [36]. It has not been taken into account here (together
with a repulsive 1/M term contributing to the isoscalar scalar potential) since the c2
interaction it not a part of our interaction Lagrangian. The considered terms give rise
to a net attractive spin-orbit potential with a magnitude close to that of the σ meson
(Fig. (6.2)). At short ranges (r < 1.5 fm) the ω leads to further attraction. The expression
of the spin-orbit potential reads

VSO(r) = − g4
A

128π2f4
πr

6

{
6e−2x(1 + x)(2 + 2x+ x2) (6.13)

−mπ

πM

[
x(165 + 52x2)K0(2x) + (165 + 132x2 + 16x4)K1(2x)

]}
.

The main contributions to the isovector spin-orbit potential comes from 1/M correc-
tions to the c0c4 football and the c4 triangle. The latter dominates and is numerically
close the ρ contribution (the contribution of the δ meson is negligible in this channel)
to WSO (Fig. (6.2)). The 1/M and 1/M2 corrections to the direct and crossed boxes
and c0 diagrams lead to a net attraction of about 2 MeV at r=1 fm [33]. The following
expression is found for the dominating terms:

WSO(r) =
3c4mπ

4π3Mf4
πr

6

{[
xK0(2x) + (3 + 2x)K1(2x)

]
(6.14)

+g2
A

[
x(15 + 4x2)K0(2x) + (15 + 12x2)K1(2x)

]}
.
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These are the only TPE exchange potentials that in coordinate space show a clear
connection with the corresponding one-boson potentials (σ, ω, ρ). For completeness we
will present the expressions for the remaining two-pion-exchange potentials together with
plots where the corresponding one-boson exchange potentials are also shown.

The one-boson-exchange isoscalar tensor potential comprises an attractive ω meson
contribution and a repulsive η term which cancel each other to a large extent. The
attractive net result is plotted in Fig. (6.3). At the two-pion exchange level there are
only contributions from the direct and crossed boxes which are also attractive. Their
expression is given by

VT (r) =
g4

Amπ

128π3f4
πr

4

{
− 12xK0(2x)− (15 + 4x2)K1(2x) (6.15)

+
3πe−2x

8Mr
(
12
x

+ 24 + 20x+ 9x2 + 2x3)

+
1

6M2r2

[
x(510 + 162x2 + 8x4)K0(2x) + (510 + 417x2 + 44x4)K1(2x)

]}
The situation is somewhat similar in the case of the isoscalar spin-spin potential with

both the ω and η mesons giving repulsive contributions. The TPE potential is again
given by the contributions from the direct and crossed boxes which are repulsive this
time. Their expression reads

VS(r) =
g4

Amπ

32π3fπr4

{
3xK0(2x) + (3 + 2x2)K1(2x) (6.16)

−2πe−2x

16Mr

[ 6
x

+ 12 + 11x+ 6x2 + 2x3
]

+
1

6M2r2

[
x(90 + 36x2 + 4x4)K0(2x) + (90 + 81x2 + 14x4)K1(2x)

]}
The isovector central potential is numerically small Fig. (6.3) due to a strong cancella-

tion of attractive contributions originating in the direct and crossed boxes and a repulsive
one due to the c4 coupling. Both of these terms have an absolute magnitude of about 20
MeV. On the phenomenological side the repulsive ρ vector meson terms is dominating
the small attractive contribution from the δ meson. The TPE isovector central potential
has the form

WC(r) =
g2

Amπ

128π3f4
πr

4

{
− g2

A(23 + 12x2)K1(2x)− g2
Ax(23 + 4x2)K0(2x) (6.17)

+
πe−2x

4Mr

[
2(3g2

A − 2)(
1
x

+ 12 + 10x+ 4x2 + x3) + g2
Ax(2 + 4x+ 2x2 + 3x3)

]
− g2

A

3M2r2

[
6x(135 + 43x2 + x4)K0(2x) + (810 + 663x2 + 70x4 + 4x6)K1(2x)

]
+

c4
Mr2

[
12x(25 + 8x2)K0(2x) + 4(50 + 41x2 + 4x4)K1(2x)

]}
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To conclude this section we summarize the main similarities observed between the one-
boson-exchange and the two-pion exchange. The σ meson potential is well reproduced
in the isoscalar central channel by the c1 and c3 terms. The direct and crossed boxes
contributions mimic to some extent the form of the ω potential in the isoscalar spin-orbit,
tensor and spin-spin channels. Turning to the isovector potentials the c4 terms give rise
to a potential which has the right sign, but often the magnitude is a few times off (with
the exception of the spin-orbit potential). It agrees with the presented results of the
last section according to which only half of the value of c4 has origin in the ρ meson
physics . The quadratic spin-orbit terms have not been considered in this section. We
have considered local one-boson-exchange potentials for which only the leading and next
to leading local terms have been kept. To this order the one-boson-exchange potential
has no quadratic spin-orbit terms. The TPE potential to N3LO has only an isoscalar
quadratic spin-orbit term coming from a 1/M2 correction to the direct+crossed boxes
with a magnitude of about 1 MeV at r=1 fm [37]. The long range behavior of the TPE
potential can be easily found by making use of the asymptotic behavior of the modified
Bessel functions: Kn(2x) ∝

√
π
2

e−2x
√

2x

[
1 +O(1/2x)

]
.

6.3 Peripheral waves

Kaiser et al . [33] have shown that at NNLO in chiral perturbation theory, using dimen-
sional regularization to extract the finite part of one-loop integrals, the peripheral waves
for elastic scattering are reasonably reproduced up to 50 MeV for the D waves and up to
150 MeV for the higher partial waves. This poor convergence of the chiral expansion has
been identified with the improper short range behavior of the NNLO diagrams, due es-
pecially to a strong central attraction caused by the c3 triangle diagrams. This is mainly
visible in the D and F waves, while the G waves and higher are dominated by one-pion-
exchange. Epelbaum et al . [164] has shown that by using a sharp cut-off procedure with
Λ = 500 . . . 800 MeV the spurious short-range strong attraction of the NN potential at
NNLO can be removed leaving a central potential which is of the same order of magni-
tude as the one obtained from the one-boson-exchange models. In the previous section,
by putting together the NNLO [33] and N3LO [36, 37] contributions to the one-loop two-
pion-exchange potential is has been seen that at that order the strong attraction of the
central potential has been reduced to values close to the σ meson contributions in the
OBE model. This is however twice the size of the combined σ+ω attraction at r=1 fm.
It is expected that by considering the full relativistic amplitudes the short-range central
attraction to be milder.

We present the results for the peripheral waves for NN scattering for the model
described in the previous chapter. The finite part of the loop integrals has been extracted
via both dimensional and cut-off regularization. For the latter case a dipole form-factor
has been chosen and the value of the cut-off Λ has been varied in the 632. . .782 MeV (the
squares of these values expressed in nucleon masses ”look simpler”) range. With such
values for the cut-off, contributions of ranges shorter than 0.5 fm are effectively left out.
A disadvantage of a dipole form-factor with respect to a sharp one is that if a low value for
the cut-off Λ is chosen the long range pieces of the potential are distorted to some extent.
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Figure 6.4: D-wave phase shifts and the mixing angle ε2 as a function of the nucleon kinetic

energy in the laboratory frame. The dotted, dashed and full curves are the dimensional regular-
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respectively. The PWA93 [121] experimental np phase shifts are shown for comparison.



6.3. Peripheral waves 91

Our choice here for a dipole cut-off is a necessity due to the particular way in which the
diagrams are evaluated and due to a necessary compatibility with the one-boson-model
to which the TPE potential will be added to determine the lower partial waves phase
shifts. We remind here that the values used here for the LECs are the ones presented
in Table (6.1). The value of the pion decay constant fπ=90.24 MeV has been determined
from the Goldberger-Treiman relation using gA=1.2573 and gπ/4π2=13.6. To determine
the phase shifts the matrix elements of the pseudo-potential W have been used, rather
then the iterated T matrix. This is commonly accepted to be a good approximation
for the higher partial waves as long as the value of the phase shift is small enough. At
the Born level the scattering amplitude is real and extracting phase shifts (imposing a
unitarity condition) introduces further approximations. We have extracted the phase
shifts from the unitary representation of the partial wave amplitudes in Eq. (5.79)

T J
J =

1
2ik

[ exp(2iδJ)− 1 ] (6.18)

T J
J±1 =

1
2ik

[ cos(2εJ) exp(2iδJ±1)− 1 ]

T J
J,J±1 =

1
2k

sin(2εJ) exp(iδJ−1 + iδJ+1)

by first computing tan δ in order to avoid problems with inverse trigonometric functions.
Our prescription is close to the one used by Kaiser [33], T J

J = δJ/k, when the value of
the extracted phase shift is small enough. The difference between the two amounts to at
most 0.5◦ for the cases presented in this section.

We will start with the D waves, plotted in Fig. (6.4). The OPE result is a reasonable
approximation only to the 3D1 wave and to some extent to the 3D2 wave. For the
other waves the agreement is only qualitative: 1D2 and ε2 for which the sign is correctly
reproduced but it is too weak and respectively too strong. In the case of the 3D3 partial
wave even the sign is different. These discrepancies are due to the sensitivity to TPE
contributions and to iterations of the potential. The NLO contributions change the
leading-order result with at most few degrees at Tlab=300 MeV for both the cut-off (CO)
and dimensional regularization (DR) procedures. Main contributors at NLO are the
direct (3D2,3D1 and 3D3) and crossed (1D2 and ε2) boxes. The c0 diagrams are generally
small, the only exception to that is in the 3D1 where their repulsion increases the phase
shifts with about 2◦ at 300 MeV. For the 3D2 and 3D3 partial waves these contributions
are even in the wrong direction, most notably for the latter wave. A notable improvement
is the values of ε2 at higher energies while for the remaining waves the improvement is
only marginal.

At NNLO a clear distinction has to be made between the CO and DR results. The
former brings a notable improvement in all the partial waves with the exception of 3D1

and perhaps 3D2 which even though goes in the right direction the change is too small.
The experimental values for 2D1 and ε2 fall now within the Λ =632. . .782 MeV bands
and the results for the 3D3 phase shifts have greatly improved. It is noteworthy that
an improvement of the 3D2 and 3D3 would require a higher cut-off. The c1 gives a
isoscalar central attraction (see previous section) which has only a marginal impact on
the D waves phase shifts. Important contributions to these waves at NNLO come from
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Figure 6.5: The same as in Fig. (6.4) but for the F waves and the ε3 mixing angle.
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OPE +DB +CB +c0 +c1 +c3 +c4 +c0c4
3D1 -16.03 -18.45 -18.37 -17.38 -17.23 -14.68 -9.63 -8.80
1D2 1.40 1.37 2.54 2.42 2.69 6.83 7.70 7.74
3D2 17.95 17.22 16.88 17.34 17.51 20.02 19.44 19.55
3F2 1.92 1.84 1.80 1.71 1.77 2.44 2.09 2.05
ε2 -4.06 -3.96 -3.62 -3.56 -3.57 -3.98 -3.21 -3.16

1F3 -3.94 -3.43 -3.59 -3.52 -3.46 -2.67 -3.20 -3.22
3F3 -3.25 -3.28 -3.11 -3.15 -3.09 -2.34 -2.30 -2.31
3D3 -4.10 -5.64 -5.94 -5.65 -5.37 -0.62 0.38 0.29
3G3 -2.24 -2.41 -2.40 -2.35 -2.34 -2.19 -2.01 -1.99
ε3 6.44 6.63 6.59 6.56 6.56 6.51 6.18 6.16

1G4 0.70 0.70 0.76 0.76 0.77 0.94 0.97 0.97
3G4 4.77 4.71 4.68 4.71 4.73 4.88 4.86 4.87
3F4 0.58 0.54 0.67 0.65 0.72 1.61 1.55 1.55
3H4 0.33 0.32 0.32 0.32 0.32 0.35 0.34 0.34
ε4 -1.14 -1.14 -1.12 -1.12 -1.12 -1.12 -1.10 -1.10

3G5 -0.80 -0.89 -0.91 -0.90 -0.88 -0.70 -0.66 -0.67

Table 6.2: Contributions of the individual TPE diagrams at Tlab=200 MeV with the cut-off

Λ2=616 MeV2. The result of each column is obtained by adding the mentioned contribution to

the one in the neighboring left column. These manipulations were done at the level of scattering

amplitudes and only then phase shifts were extracted. DB stands for the irreducible part of the

direct box, c0c4 for the corresponding football diagram, etc.(see Section (5.6)).

the c3 and c4 diagrams which contribute most notably to central and respectively tensor
potentials. It is the c4 tensor attraction which is responsible for most of the discrepancy
in the 3D1 channel while for ε2 the same attraction leads to agreement. The notable
improvements in the 1D2 and 3D3 partial waves are due to the attraction generated by
the c3 term. A quantitative comparison of the contributions of each individual diagrams
we have considered here is presented in Table (6.2). Phase shifts were extracted from
the amplitude containing contributions from the diagram labeling the respective column
plus all the diagrams labeling the columns to the left. By comparing the values in two
neighboring columns the relative importance of each of the considered contributions at
Tlab=200 MeV can be deduced. Turning to the DR results the first observation to be
made is that they are far more attractive at higher energies than their CO counterpart.
This statement holds for each D wave with the mention that in the case of 3D2 and ε2 this
supplementary attraction leads to an agreement with the experimental phase shifts at
high energies. Our DR results are qualitatively similar (i.e. show similar strong attraction
at high energies) to earlier results of Kaiser [33] and Epelbaum [164] but quantitatively
the differences are important. Both authors find the attraction to be so strong that the
phase shifts reach 40◦ already at 200 MeV for most of the D waves. Our CO result is
similar to the one of Epelbaum, the differences originating in the extra terms we include
(relativistic and recoil corrections) and to the different cut-off scheme.
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Turning to the F-waves (Fig. (6.5)) the first observation to be made is that the DR
result does not show the strong attraction at high energies we have noticed in the case
of the D-waves. The same feature has been observed by Kaiser [33] and Epelbaum [164]
with the mention that their results show a high energy attraction for the 3F3,3F2 and 3F4

that overshoots our own by 2◦-3◦. The DR for the 1F3 partial wave is close to the OPE
result due to an almost perfect cancellation between the NLO and NNLO diagrams.

The OPE is a good approximation for all of these waves up to an energy of 100
MeV and for some of them even higher. NLO diagrams are unimportant up to 200 MeV
and they only contribute at most half a degree at 300 MeV. An important attraction is
generated in each of the F partial waves by the c3 term which is compensated to some
extent in the 1F3 and 3F4 channels by an isovector tensor repulsion originating in the c4
diagrams. Out of the NNLO terms only these two show a noteworthy contribution. The
mixing angle ε3 suffers a decrease with respect to its NLO value of about 1◦ at 300 MeV
due to the c4 repulsion. Furthermore the cut-off dependence at high energies is far more
reduced than for the D waves, in some case to almost no sensitivity as is the case of the
3F2 and 3F3 waves. With the exception of the latter all the F-waves (+ε2) are in good
agreement with the experimental np phase shifts.

The G-wave phase shifts and the mixing angle ε4 are plotted in Fig. (6.6). The
difference between the DR and CO calculations has reduced even further. As expected
the OPE is the major contributor, while the effect of the NLO diagrams is negligible,
about 0.2◦ at 300 MeV. NNLO diagrams that have a visible impact on these waves are, as
expected, the ones proportional with the c3 and c4 couplings constants. The value of the
ε4 mixing angle is determined reliably by the one-pion-exchange term. When comparing
with the experimental values differences are found in the 3G3 and 3G5 channels. The
differences, as relative values, are important and are due to the nonperturbative character
of these waves. We will come back to this issue in a later section.

We have checked the results for even higher partial waves, namely H and I. At such
a high value for the angular momentum contributions from short- or intermediate-range
parts of the potential are expected to be marginal. This is what has been actually been
observed: all of the partial waves and mixing-angles are determined with a high degree of
accuracy by the long range part of the OPE potential. There is only one exception, the
3H6 partial wave which receives an attractive contribution from the c3 triangle diagram
that increases the value of the corresponding phase shift by 60%. The resulting values of
the phase shift are in excellent agreement with the experimental ones.

In the presented plots we have compared calculations obtained via dimensional- and
cut-off regularization. To study the effect of a low cut-off on the short range part of the
potential, strictly speaking, one should compare such a calculation with the one obtained
by letting Λ grow to infinity, or at least to a large value. We have performed such a
calculation too and present the cut-off sensitivity of the peripheral waves in Table (6.3).
To demonstrate the sensitivity, results for phase shifts at Tlab=200 MeV for three values
for the cut-off, Λ2=1.67, 1.01 and 0.62 GeV2, are shown. The last value corresponds to
one of the limits of the low cut-off variation bands in the previous plots, while the first
is high enough such that it corresponds to an almost pointlike (Λ → ∞) pion-nucleon
interaction. Two feature are readily observable: a higher sensitivity towards lower values
of the cut-off (according to expectations) and that the main part of the cut-off sensitivity
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Figure 6.6: The G waves and the ε4 mixing angle. The curves have the same meaning as

in Fig. (6.4).
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OPE NLO NNLO
Λ2(GeV2) 1.67 1.01 0.62 1.67 1.01 0.62 1.67 1.01 0.62

3D1 -16.96 -16.67 -16.03 -18.63 -18.24 -17.38 -3.44 -6.43 -8.80
1D2 1.98 1.77 1.40 3.26 2.96 2.42 10.93 9.63 7.74
3D2 19.52 19.81 17.53 18.78 18.32 17.34 21.61 20.94 19.56
3F2 1.91 1.92 1.92 1.67 1.69 1.71 1.92 2.00 2.05
ε2 -4.73 -4.50 -4.06 -4.11 -3.93 -3.56 -3.74 -3.55 -3.17

1F3 -3.56 -3.53 -3.39 -3.69 -3.66 -3.52 -3.39 -3.35 -3.22
3F3 -3.26 -3.28 -3.25 -3.18 -3.19 -3.15 -2.27 -2.29 -2.31
3D3 -4.06 -4.09 -4.10 -6.17 -5.97 -5.65 3.38 1.89 0.29
3G3 -2.17 -2.20 -2.24 -2.27 -2.31 -2.35 -1.91 -1.94 -1.99
ε3 6.55 6.55 6.44 6.68 6.68 6.56 6.23 6.24 6.16

1G4 0.69 0.69 0.70 0.74 0.75 0.76 0.95 0.96 0.98
3G4 4.64 4.70 4.77 4.58 4.64 4.71 4.74 4.80 4.87
3F4 0.56 0.57 0.58 0.64 0.64 0.65 1.69 1.65 1.56
3H4 0.31 0.32 0.33 0.30 0.31 0.32 0.33 0.33 0.34
ε4 -1.12 -1.13 -1.14 -1.09 -1.11 -1.12 -1.07 -1.08 -1.10

3G5 -0.77 -0.78 -0.80 -0.87 -0.88 -0.90 -0.64 -0.65 -0.67

Table 6.3: Cut-off dependence of the peripheral-waves phase-shifts at Tlab=200 MeV. Results

at the OPE, NLO and NNLO are shown.

originates in the NNLO diagrams. The Λ→∞ and the DR calculations are not identical.
As explained in [164] one has

WDR = W
(non−pol.)
DR +W

(pol.)
DR ,

WCO = W
(non−pol.)
CO +W

(pol.)
CO , (6.19)

W
(non−pol.)
CO

Λ→∞−→ W
(non−pol.)
DR .

The two polynomial terms have a similar structure, with the cut-off mass Λ and the
renormalization scale µ interchanged and different coefficients for the monomials. The
difference between the two is given by short range contact potentials. The difference
between the Λ2=1.672 GeV2 and DR calculations is sizeble for the D waves, which are
sensitive to contact potentials with four derivatives or more, amounting up to half of the
observed difference between the DR and low-cut-off calculations (3D1 and 3D3). The
situation is totally different for the F waves and higher for which this difference is small
(with the exception of the 3F2 wave).
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Figure 6.7: Selected waves for which the effect of the iteration of the quasipotential is shown

(dark-grey band). The Born term result is represented by the light-grey band. The effect of

adding the once iterated one-pion exchange term to W is also shown (grey band).

6.4 Effect of the iteration of the potential on the
phase shifts

In the previous section the phase shifts have been computed by approximating the scat-
tering matrix by the Born term. As already mentioned this is expected to be a reasonable
approximation when the value of the phase shift is small and for the higher partial waves.
Nevertheless, for certain waves (3D2,3D1, 3F2 and 3G5) differences with respect to the
experimental np phase shifts were observed, some of the phase shifts being numerically
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small. In this section we address the question whether this difference can be explained
by a nonperturbative character of those channels. We have therefore iterated the BSLT
equation and extracted the resulting phase shifts, some of them being plotted in Fig. (6.7).

Besides the effect of iteration, the effect of adding only the once iterated one-pion
exchange term to the quasipotential has also been plotted. It can have an important
impact on the value of the phase shifts of certain waves, contrary to what is stated
elsewhere [164]. Adding it results in a improvement of all phase shifts for which the Born
approximation showed a difference when compared with the experimental values. Three
such examples are plotted in Fig. (6.7): compare the light-grey and grey bands. Not
shown here is the case of the 3D1 partial wave for which the inclusion of the iterated one-
pion exchange leads to a dramatic change in the value of the phase shift which decreases
by 20◦ at 300 MeV.

Iterating the potential increases somewhat its value to reach the value δ3D1=-20 ◦ at
300 MeV, a much better situation than the one presented in Fig. (6.4). Other waves that
show a closer resemblance to the experimental data after the quasipotential equation is
solved are: 3D3,3F3,3G3 and 3G5. For 3F2, another problematic partial wave, although
the change is in the good direction it is only marginal, while for the 3D2 the situation
has worsened (see Fig. (6.7)). This is the only partial wave that at this stage still shows
a sizable difference with the experimental data.

6.5 Numerical accuracy of the results

In our calculation numerical inaccuracies can originate from two sources: first the finite
accuracy to which the scalar loop integrals are computed using the ff libraries and
second our method for treating the cut-off integrals. Of course, in the case of DR only
the former source appears.

The ff [128] libraries have been developed for the evaluation of scalar loop integrals
one encounters in particle-physics calculations. It is based on more refined numerical
algorithms than its predecessor FORMF [126] written by M. Veltman to perform the
same task. The ff package is delivered with built in error evaluation routines. Unfortu-
nately these routines have proved unreliable in our case and to determine the numerical
accuracy we have resorted to an explicit comparison between the outputs of ff and
FORMF . This has been done for a few relevant kinematical cases characteristic for our
particular model. In all cases the outputs of the two programs have been identical up to
8 digits or more.

The second source of inaccuracies has proved to be the most severe one. We remind
that in our model each meson propagator is multiplied with a dipole form factor. Since
the ff program can only handle four-point functions or lower the following reduction has
to be applied to each of the them:

1
k2 −m2

π

[
Λ2

k2 − Λ2

]2

≈ 1
k2 −m2

π

Λ2

k2 − (Λ2 − ε)
Λ2

k2 − (Λ2 + ε)
(6.20)

=
Λ4

Λ2 −m2
π

[
1
2ε

(
1

k2 − (Λ2 + ε)
− 1
k2 − (Λ2 − ε)

)
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Figure 6.8: The sensitivity of the phase shifts to the variation of the ε parameter. NLO and

NNLO results are shown separately.

− 1
Λ2 −m2

π

(
1

k2 − Λ2
− 1
k2 −m2

π

)]
.

The approximation in the first line becomes an identity when ε approaches zero. As
can easily be seen from the second line this limit leads to strong cancellations which can
lead to a severe loss of accuracy. Very small values for ε are thus counterproductive,
but so are ”large” values since in that case the approximation in the first line becomes
poor. Varying ε from very small to ”large” for a specific range of values, a plateau can
be reached where the accuracy is maximal. In the actual calculations the value ε=0.044
GeV2 has been used. This value is towards the right edge of the maximum accuracy
plateau and has been proved that this can be used with reasonable accuracy for all the
cases of interest here. To show the sensitivity of our results with respect to the variation
of this parameter we have varied it in the range 0.022. . .0.066 GeV2. In Fig. (6.8) the
differences between these to extreme cases and the ε=0.044 GeV2 one has been plotted
for two representative phase shifts for the NLO and the full result. The difference grows
with energy (similar to the cut-off sensitivity) and is biggest for the the D waves (up
to 0.1◦). It is much smaller for F waves and for the higher waves is practically zero.
Modifying the range of variation for ε to 0.009. . .0.088 GeV2 the difference shows an
important increase indicating that the maximum accuracy plateau has been left.

6.6 The lower partial waves

For the description of the lower partial waves a proper consideration of the short-range
nucleon-nucleon interaction is required. In effective field theories for the NN interaction,
like chiral perturbation theory, short range effects are introduced via contact terms. They
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Fit g2
π/4π g2

η/4π g2
ε/4π gV 2

ρ /4π gT
ρ /g

V
ρ g2

ω/4π g2
δ/4π Λ2

OPE Λ2
TPE

OBE 14.20 3.09 7.34 0.43 6.80 11.00 0.33 1.32 −
Fit1 13.60 3.09 1.90 0.43 5.20 9.00 0.33 2.11 0.53
Fit2 13.60 3.09 3.16 0.60 4.57 8.62 0.33 1.67 0.44
Fit3 13.60 3.09 4.40 0.61 4.64 9.16 0.33 1.67 0.35

Table 6.4: Coupling constants of the original one-boson-exchange model of Fleischer and Tjon

(OBE) and for the three fits presented in this section. The values of the cut-offs Λ2
OPE and

Λ2
TPE are given in GeV2. For the three fits the values of the LECs given in Table (6.1) have

been used.

consist of four-fermion interactions with an even number of derivatives acting upon the
nucleon fields. Due to power-counting, at each order in the effective field expansion the
number and the form of the contact terms is unambiguously determined. There are two
such terms at leading order (LO), corresponding to spin singlet and triplet scattering,
seven at NLO and 24 at N3LO. Their matrix elements in momentum space are polyno-
mials of degree 0, 2 respectively 4 in the momentum transfer between nucleons. They
will therefore only contribute to the lower partial waves (S,P and respectively D) leaving
the peripheral waves unaffected. Because of these terms, a good description of the low
partial waves of the NN potential in the chiral models for the strong force is possible.
Due to their large number, the values of the contact term coupling constants can be
determined from a fit of each partial wave separately or from the effective range expan-
sion (for the 1S0 and 3S1 channels) [32]. Using the NNLO TPE derived by Kaiser [33],
Entem et al . [174, 175] have shown that for a good reproduction of the NN phase shifts
below 300 MeV short range contact interactions are required in the D waves. Once the
N3LO contact terms were used (which contradicts the philosophy of chiral perturbation
theory) a reproduction of all partial waves was possible. Later [38, 39], the consideration
of all the N3LO contributions to the potential, derived by Kaiser [34, 35, 36, 37, 176]
(which besides one loop TPE contributions also contains two-loops terms), has allowed
the construction of a charge-dependent chiral potential of similar quality [39] as the more
conventional ones [19]. In [165] Epelbaum has shown that using a sharp cut-off proce-
dure, which removes the unnatural short range part of the chiral NN potential at NLO,
a qualitatively good description can be achieved for all the partial waves, provided the
values of both the cut-off used to regularize the two-pion exchange loops and the one used
to regularize the Lippmann-Schwinger equation are chosen in the 500. . .800 MeV range.
It is stated [165] that partial waves with deficiencies at NNLO are improved if within the
same formalism also the N3LO terms of the potential are included. A pioneering work in
this direction has been performed by Ordónez and coworkers [30] who have included at
NNLO both TPE and ∆ isobar contributions and then solved the Schrödinger equation
in coordinate space.

A second possibility for representing the short range physics lies in the OBE represen-
tation of the nucleon-nucleon potential. The short range repulsion of the nucleon-nucleon
is mimicked by the exchange of the ω meson. In Section (6.2) similarities of the TPE po-
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Figure 6.9: The S waves obtained from solving the BSLT equation are plotted for a comparison

with the experimental phase shifts of the PWA93 analysis (full circles) and the OBE model of

Fleischer and Tjon (dotted line). The three parameter sets presented in Table (6.4) (Fit1,Fit2

and Fit3) give rise to results plotted here by the full, dashed-dotted and short dashed-dotted

lines respectively.

tential and that of the σ and ω mesons have been presented. It is expected that the TPE
potential will be a substitute for the medium range contributions of these two mesons to
some extent. In an attempt to describe the low partial waves of NN scattering it is thus
natural to consider the nucleon-nucleon potential as the sum of the OBE and TPE terms.
In order to achieve agreement with the experimental phase shifts the meson-nucleon cou-
pling constants and cut-off values have been varied, with the expectation that coupling
constants like the one of the σ meson will substantially decrease, given the fact that the
medium range attraction is now included via TPE terms. Approaches similar to ours
have been used before. We have already mentioned the work of Partovi and Lomon [13]
who have considered the direct and crossed box contributions to the potential. More
recently, Zuilhof [127, 177] has considered besides the two-pion direct and the crossed
box the corresponding π-ω boxes. These latter contributions were included in order to
weaken the short range effects of the two-pion diagrams. In particular, they play an
important role in obtaining the correct S waves splitting. Kaiser et al. [178] has added
tree-level contributions from the ω, ρ and η mesons along with two-pion exchange loops
with intermediate ∆ isobar states to the two-pion-exchange diagrams and studied the
peripheral waves. Unfortunately a significant improvement of the D waves with respect
to [33] has not been achieved.

Returning back to our model, we should first mention that the BSLT equation has
been iterated by keeping only the positive intermediate states, i.e. the matrix elements
of the potential between negative and mixed negative-positive energy states has been
set to zero. Nevertheless in evaluating the one-loop terms representing the TPE po-
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Figure 6.10: The same as in Fig. (6.9) but for the P waves and the mixing-angle ε1.
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tential, propagation of the intermediate negative-energy states has been allowed. The
corresponding terms are expected to contribute little, due to the pseudovector nature
of the pion-nucleon coupling (negative energy states are suppressed at πN vertices). At
the level of quasipotential there are now three cut-off parameters: ΛOPE for the OPE
potential, ΛTPE used to regularize the TPE one-loop contributions and ΛH used in the
construction of the heavy-meson potential. The last one has been kept fixed, Λ2

H=1.32
GeV2, while the other two have been varied (see Table (6.4)). Due to the wrong short-
range behavior of the potential the BSLT equation is regularized by a second form-factor,
of dipole form, with the value of the cut-off kept fixed at Λ̃2=1.32 GeV2. In line with
the observed sensitivity for the peripheral waves (especially D waves) the value of the
cut-off needed to regularize the one-loop contributions has been varied. Varying any of
the cut-off parameters necessitates a refit of the whole model, since the values of the low
energy NN scattering parameters (scattering lengths and effective ranges) are modified
by this operation. We have not varied ΛTPE continuously but rather picked three distinct
values Λ2=0.35, 0.44 and 0.53 GeV2 for which we show results.

The results we present in this section are preliminary, i.e. we have not performed a full
scale fit of the model to the experimental data but rather used the following procedure.
The value of the S waves phase shifts has been first brought in close agreement with
the experiment at an arbitrary chosen lab energy, usually Tlab=200 MeV, by varying the
gε, gV

ρ and gT
ρ and if necessary gω ”by hand”. The first three couplings are important

for the determination of the overall strength and splitting of the S waves. Then an
automatic search, similar to the χ2 fitting method, for the meson coupling constants was
performed. Because of the appreciable CPU time required only the above mentioned
couplings have been varied in the process. The remaining (gπ, gη and gδ) as well as the
LECs have been kept fixed. The values in [127] (fit A) for g2

η/4π and g2
δ/4π have been

used while for the pion-nucleon coupling constant the more recent value g2
π/4π=13.60

has been chosen (see Table (6.4)). Only the S and P waves have been fitted to the
corresponding experimental data at three values for Tlab: 20, 100 and 200 MeV. The
values of the coupling constants for these three fits (labeled Fit1, Fit2 and Fit3) are
shown in Table (6.4). Each of these fits corresponds to a different value of the pion-loop
cut-off ΛTPE , chosen in line with the observed cut-off dependence of the peripheral waves
(especially D waves).

The first thing to remark from Table (6.4) is the considerable decrease of the gε

coupling constant with respect to the OBE model value, especially for higher values of
ΛTPE . When it ΛTPE is decreased too much of the attractive central piece of the TPE
potential is cut off leading to the need for an increase of gε. The maximum value for the
pion-loop cut-off is correlated with the σN coupling constant. Choosing a too high value
for the former results in g2

ε/4π=0.0 in the early stages of the fit and in the impossibility of
reproducing the experimental values of the phase shifts. Values for Λ2

TPE starting at 0.7
GeV2 have been found to be problematic. The changes of the ρ meson coupling constants
are not of the same relative magnitude, due to the fact the the isovector tensor and spin-
spin potentials produced by the TPE contributions are relatively not as important as the
isoscalar central with respect to their OBE counterparts. We also note the reduction of
the gω coupling constant with 20%.

The resulting phase shifts for the three different fits are shown in Fig. (6.9), Fig. (6.10)
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Figure 6.11: D waves and the mixing-angle ε2. The meaning of the curves is the same as

in Fig. (6.9).
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Figure 6.12: Selected higher partial waves.

and Fig. (6.11) for the S, P and D waves respectively. For comparison the OBE phase
shifts are also plotted. The S waves are reproduced rather well especially for the Fit1 and
Fit2 set of parameters. The Fit3 set shows deviations of the order of 5◦ for both waves.
The deviations of the OBE model from the data is of similar magnitude. We remind that
the low energy parameters of the NN force have not been fitted here and deviations even
at low energy are normal under these circumstances, given the nonperturbative character
of these two channels.

In spite of the fact that the P waves have been among those fitted, their reproduction is
only qualitatively. All of them (with the exception of 3P0) deviate with 5-10◦ at 300 MeV.
The quality of the TPE+OBE potential is similar to that of the OBE model. Moreover,
the ε1 mixing parameter as described by Fit1 is in remarkable agreement for such a simple
fit. Taking any of the set of parameters in Table (6.4) and modifying ΛTPE within the
range used for the peripheral waves, while keeping all the other coupling constants fixed,
shows a great sensitivity for all P waves with the experimental points within or close
proximity of these bands. S waves are extremely sensitive to this procedure too. It
suggests that a careful fit might lead to an important improvement of their description.
The OBE description of the 1P1, 3P2 and ε1 is equally modest.The NNLO chiral model
of Epelbaum et al . shows a similar strong cut-off dependence of the P waves, with some
of them (1P1,3P0 and ε1) reproduced only qualitatively. The N3LO version of the chiral
model [38, 39] manages to easily reproduce all these waves accurately partly due to the
abundance of contact terms that correct the short range potential and their associated
free parameters (LECs) being determined in the process of fitting.

D waves have not been among the fitted ones, since the effects of the heavy mesons
is supposed to be less important. This is not completely true since by looking at the
curves produced by Fit1 and important improvement of 15◦ is noted for the 3D2 partial
wave as compared with the pure TPE results. For this particular fit also 3D3 is in
excellent agreement with the experimental values. Out of the D waves 3D1 shows the
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Fit1 Fit2 Fit3
OPE+TPE FULL OPE+TPE FULL OPE+TPE FULL

3D1 −17.79 -15.25 −16.58 -13.33 −17.25 -13.42
1D2 8.20 7.27 7.10 7.90 5.94 7.93
3D2 34.25 24.83 32.49 26.67 31.70 27.26
3F2 1.70 0.78 1.66 0.91 1.64 1.00
ε2 -1.58 -2.06 -2.61 -1.92 -3.38 -1.99

1F3 -3.38 -3.92 -3.39 -3.77 -3.41 -3.67
3F3 -2.43 -2.77 -2.50 -2.65 -2.57 2.60
3D3 5.23 3.55 4.32 4.56 3.52 5.05
3G3 -2.61 -2.47 -2.62 -2.44 -2.60 -2.40
ε3 5.97 5.69 6.00 5.60 6.04 5.71

1G4 0.94 0.97 0.93 1.00 0.92 1.02
3G4 4.95 4.90 4.97 4.97 4.95 4.99
3F4 1.56 1.38 1.49 1.55 1.37 1.64
3H4 0.31 0.30 0.31 0.30 0.31 0.35
ε4 -1.08 -1.06 -1.09 -1.07 -1.09 -1.07

3G5 -0.39 -0.36 -0.40 -0.33 -0.42 -0.31

Table 6.5: The importance of the heavy-meson-exchange contributions to the peripheral waves

can be determined from a comparison between the full model (OPE+TPE+OBE) and the model

restricted pions exchanges only (OPE+TPE). Phase shifts for each of the three new parameter

sets in Table (6.4) at Tlab=200 MeV are shown.

poorest description. It has been possible to bring it close to the experimental value at
the expense of worsening the description of the 1P1 (which is already poorly described)
and of the ε1 parameter. In the case of Ref. [165] all the D waves with the exception of
3D3 are reasonably described. Out of the higher partial waves we have selected only two
of them, presented in Fig. (6.12). 3F2 was one of the partial waves that has not been
properly described by the pure TPE potential Fig. (6.5), the experimental value being
overshot by theory. Including the OBE provides too much attraction in this channel,
the experiment being now underestimated by a similar amount. The new theoretical
values resemble the old OBE model, meaning that the TPE potential is canceled by the
change in the OBE model (mainly σ attraction reduction). The other high partial waves
shown here, 3G5, differs very little from the TPE result of the previous section. Similar
conclusions hold for the other high partial waves as can be seen from Table (6.5) in which
the importance of the heavy-meason exchanges at Tlab=200 MeV is shown. We present
phase shifts extracted from the full model (for each of the three fits) and the model with
contributions only from the pion (OPE and TPE). Heavy-meson contributions are still
sizeble for the D waves and for the 3F2 partial wave. The behavior of the latter can be
understood from the fact that it belongs to a coupled channel, together with 3P2.
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6.7 Summary

Results for the elastic NN scattering phase shifts below 300 MeV have been presented
in this chapter. The peripheral waves (D and higher) are described reasonably well by
the chiral symmetry constrained TPE interaction as soon as a low value for the one-loop
cut-off is adopted. This is necessary in order to reduce to appreciable isoscalar central
attraction generated by the irreducible two-pion exchange graphs. A few of the peripheral
waves show a nonperturbative character, contrary to common belief, and all of them, with
the exception of 3D3, are being improved upon the iteration of the potential. The TPE
potential mimics the isoscalar central potential generated by the fictitious σ meson and
to a lesser extent the isovector tensor and spin-spin potential. This is supported by the
conclusion resulting from a resonance saturation model that the values of the low energy
parameters c1, c3 and c4 are determined by mesons (σ and ρ) and baryons (∆), degrees of
freedom which are integrated out. In support of that the OBE potential is added to the
TPE one and the resulted model is ”fitted” using a simple parameter search procedure
to the experimental low partial waves (S and P). This proves difficult and while the S
waves are reproduced with reasonable accuracy, most of the P waves are reproduced
only qualitatively (difference of up to 10◦ at 300 MeV). An important decrease of the
gε coupling constant is observed, in support of the conclusion that the medium range
attraction is properly generated by the chiral two-pion exchange loops with a low cut-off.
Similarly the TPE graphs give about half of the needed medium range isovector tensor
and spin-spin potential judging from the change in the ρ meson coupling constants during
the process of fitting. The resulting model is of similar quality as the OBE model of
Fleischer and Tjon. For an accurate description important improvements are required,
unlikely to come just from an improvement of the preliminary fit presented here.
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