7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

K-MEANS CLUSTERING FOR HIDDEN MARKOV MODEL
Perrone, M.P.; Connell, S.D.

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/lUMCG research database

Citation for published version (APA):
Perrone, M. P., & Connell, S. D. (2004). K-MEANS CLUSTERING FOR HIDDEN MARKQOV MODEL. In
EPRINTS-BOOK-TITLE s.n..

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/lUMCG research database (Pure): http.//www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 13-02-2023

https://research.rug.nl/en/publications/e198d751-42bd-4a4b-b857-494dddae906e

K-Means Clustering for Hidden Markov Models

Michael P. Perrone and Scott D. Connell®
Pen Technologies Group, IBM T.J. Watson Research Center
mppQus . ibm.com

Abstract

An unsupervised k-means clustering algorithm for hidden Markov
models is described and applied to the task of generating subclass models
for individual handwritten character classes. The algorithm is compared
to a related clustering method and shown to give a relative change in the
error rate of as much as 8% on a 30,000-word vocabulary, unconstrained-
style, on-line, writer-independent handwriting recognition task.

1 Introduction

One aspect of unconstrained-style handwriting which makes recognition more
difficult is the existence of a large degree of variation among instances of any
given handwritten word or character. These variations can be categorized as
either noise inherent to the writing process, or differences among writing styles.
Models (e.g., character models) to be used in classification must represent both
of these variations as accurately as possible, to achieve good recognition accu-
racy. Due to the existence of disparate styles of writing any given character,
individual character classes may be more adequately represented by a set of
character subclass models, rather than a single model per character class. The
problem of automatically determining these character subclasses, which we will
refer to as allographs, remains difficult.

Previous methods for allograph identification fall into two categories: those
which cluster and perform classification in different spaces®2:3 and those which
cluster and perform classification in the same space®5. Those algorithms which
use the same space for clustering and classification rely on very simple classifiers
such as k-nearest neighbors and template matching and therefore may not be
appropriate for large, real-world problems. Those algorithms which cluster
and classify in different spaces are free to use more sophisticated classification
techniques; however they cannot be certain that the allographs found in their
clustering space will correspond to well-formed clusters in their recognition
space.

%This author is now at the Dept. of Comp. Sci. & Eng., Michigan State University:
connell@cse.msu.edu

229

In: L.R.B. Schomaker and L.G. Vuurpijl (Eds.), Proceedings of the Seventh International Workshop on Frontiers in Handwriting Recognition,
September 11-13 2000, Amsterdam, ISBN 90-76942-01-3, Nijmegen: International Unipen Foundation, pp 229-238

One example of such a method was used by Bellegarda et al. and Subrah-
monia et al.b? to initialize HMM training:® Each exemplar from each character
class is size-normalized and resampled to a fixed number of equispaced points
along the strokes. Local features are extracted for each point and concate-
nated to make a high-dimensional feature vector for each exemplar. The top
few principal components are used to generate a subspace for clustering. A
fixed, but large, number of initial clusters is selected and k-means clustering is
performed to identify allographs. After each clustering, the mean correspond-
ing to the cluster with the smallest population was removed and the whole set
was reclustered using the remaining means. This mean removal process was
iterated until the iteration’s drop in the probability of the training data ex-
ceeded a preset threshold. Visual inspection of the resultant allograph classes
shows them to be reasonable though not perfect. Note that this algorithm
was used to generate allograph labels for data which was subsequently used to
train HMMs using a different feature space. Therefore, this algorithm has the
problem that it does not perform clustering in the same space as classification.

In this paper we avoid this problem by proposing an allograph identifica-
tion method that uses the same space for clustering and classification while at
the same time using a more sophisticated classification method than, for ex-
ample, k-nearest neighbors. The core idea of this approach is to use a standard
k-means clustering algorithm in which the distance metric used is the proba-
bility that a given allograph model generates a given instance of a character.
In our case, the same HMMs are used in clustering and classification.

2 K-Means HMM Allograph Clustering Algorithm

The clustering algorithm can be summarized:

1. Generate initial allograph labels for training data.
Train allograph HMMs using labeled data 2.
Relabel training data using newly-trained HMMs.

Compare the new labels to the previous labels.

A

Terminate if:

(a) No labels have changed (i.e., converged to a fixed point), or

(b) The new labels match the labelings of any previous iteration (i.e.,
converged to a limit cycle).

6. Go to Step 2.

bThis method was used to label one of the data sets used in this paper (HandSeg, see Sec. 4.)

230

In Step 1, initial labels may be chosen randomly or generated by some
other clustering algorithm. The relabeling in Step 3 is performed for each
character, C, by choosing the label of the most probable allograph model, thus
at time ¢, the label, l;(z), for some exemplar, z € C, is given by

li(z) = argmaxP(w|Mft_1), Vi=1,...,J¢ (1)
3

where Mft is the j-th allograph model at time ¢ from character C, P(ac|Mft)
is the probability of exemplar = given allograph model Mft, and J¢ is the
number of allograph models for character C.

3 Clustering Experiments
To test the algorithm, we performed the following experiments.
3.1 Single-Character Allograph Clustering

For a single character class and a fixed number of allographs, we randomly
assigned allograph labels to each exemplar. This labeling was used as the
initial training set for our clustering algorithm. The results in Fig. 1 show the
typical behavior of the average over exemplars of the log of the probability
density of the most likely allographs

N

1

LY max Pla|))
=1

for t at convergence. Note that the single allograph case has no variance since
it consists of a single possible arrangement of labels (i.e., all the same). It is
included to show the log-prob improvement due to multiple-allograph character
models relative to a single character model.

3.2 Differentiating Two Character Classes

Another basic question is how well this algorithm separates categories that
humans distinguish. To test this, we considered four different character pairs:
“17/%07,) /<7, “R”/“B” and “O”/“U”. For each paired set, each exemplar
was randomly assigned an allograph, labeled as if it had come from a sin-
gle character class with two allographs. Allograph clustering was performed to
test the clustering algorithm’s ability to “discover” character class distinctions.
For the 1/0 and)/(pairs, clustering always resulted in allographs that exactly
corresponded to the original character classes. For the more confusable R/B
and O/U pairs, clustering resulted in allographs that had on average 98.9%
and 97.4% correspondence, respectively, to the original character classes. The

231

-55-

O OO

5.6 §
-5.6- § 8
o
o
_5_77 §
% g
—~ § o
8 -5.8- o o
o @
=
5 29 :
> ©
2
6- °
8
_G.l,
62- ©
I I I I I I I I I
1 2 3 4 5 6 7 8 9

Number of Allographs

Figure 1: Average log probability density of a set of 655 examples of a single-stroke “B”
character written by 68 writers. Results are shown for 9 random initializations for each
number of allographs. Point spread corresponds to convergence to various suboptimal local
maxima.

characters that were mapped to a different character class correspond to cases
where the character exemplars were visually more ambiguous. This suggests
that the models are sensitive to subtle differences that human labeling disre-

gards.
3.8 Choosing the Number of Allographs

One effect of increasing the number of allograph models is the corresponding
slowdown in recognition speed as more models must be evaluated. Therefore
in order to trade off between speed and accuracy, one may look for a sharp
“shoulder” in the models’ log-probability curve. To check whether the pro-
posed algorithm would generate a sharp shoulder when one is clearly expected
to exist, we combined three character classes, “1”, “0” and “R”, chosen since
they are visually very distinct and therefore are probably well-separated in
probability space. Randomly-initialized allograph clustering resulted in Fig. 2,
which shows a clear shoulder at three allographs. It is interesting to note that
the two-allograph solutions found three local minima corresponding to the
three different possible groupings of these three characters into two groups:

(1)(OR), (0)(1R), and (R)(01). However, distinct shoulders were not generally

232

observed (see for example Fig. 1) making it difficult to select an optimal num-
ber of allographs and suggesting that the optimal number is potentially much
higher than the numbers that we investigated. For this reason, we turn to
cross-validation to help us determine the optimal number of allograph models.

4-

>3

@ @
OO
QDO

4.2 -

°
O ®

4.4 - 8
4.6 -

-4.8 - ©

Avg. In(P(x))

‘58 - | | | | | | | | |
1 2 3 4 5 6 7 8 9
Number of Allographs

Figure 2: Optimal cluster number selection from a set of 9 random initializations for each
number of clusters. Shoulder occurs at 3 clusters. Additional clusters increase the log
probability further due to additional variability within each of the three constituent character
classes.

3.4 Cross-Validation

When recognition speed is not an issue, one can use cross-validation to choose
the optimal number of allographs per character class. Fig. 3 shows training
and testing results for the “-” (hyphen) character class with 2-, 5- and 10-
fold cross-validation. In each case, the data were randomly split into the
appropriate number of folds and trained from random initialization with each
subset held out in turn. Each line on the graph corresponds to an average
over 30 training runs versus the number of allograph clusters. A surprising
observation from Fig. 3 is that even for a character as simple as a hyphen,
the optimal number of allographs is at least eight and possibly higher. One
question which needs further investigation is whether the improved modeling

¢For technical reasons unrelated to the algorithm, we did not run cross-validatory allograph
clustering experiments with more than nine allographs per character.

233

within a character will lead to improved recognition accuracy when compared
to other models.

75-
-
6.5-
= 6-
kS
o e
k= 5.5/ T e T o
o . e
= o SR
< 5- 7.7 e Train2 —
o Train 5 -
- L Train 10 -
4.5- CV 10
CV5 -
a- CcV2 -
3.57 | | | | | | | |
1 2 7 8 9

4 5 6
of Allographs

Figure 3: Cross-validation graphs for a set of 639 examples from 68 writers of the “-”

character for fixed numbers of allographs ranging from 1 to 9. The sequence of graphs is in
the same order from top to bottom as in the graph key.

3.5 Algorithm Convergence Properties

For the data sets examined, we found that convergence of the clustering al-
gorithm was fairly quick. Fig. 4 shows the dependence of the mean number
of training iterations on the number of allographs and on the data. The fig-
ure shows that convergence speed slows slightly as the number of allographs
increases; however convergence appears to depend more strongly on the com-
plexity of the character data being clustered. Note that single-allograph models
always have a single iteration and that 17.3% of these convergence results are
runs which converged to limit cycles. The average length of these limit cy-
cles was 2.3 iterations. The number of exemplars per allograph (see Fig. 5)
varied greatly with the average percentage difference between the largest and
the smallest being 18.7% of the total population and was fairly independent
of the number of allographs and the character class. Out of 324 random ini-
tializations of clustering. no clusters were observed to have zero membership.
Thus the number of allographs generated can never increase and usually do
not decrease.

234

Avg. # of Train Iterations to Convergence

0 A | | | | | | |
1 2 3 4 5 6 7 8 9
of Allographs

Figure 4: Average number of clusteringiterations to convergence as a function of the number
of allograph clusters for four different character classes.

4 Large Vocabulary Experiments

The goal of these preliminary, large-vocabulary experiments was to determine
whether iterative k-means allograph clustering can find allograph models which
improve recognition accuracy on real-world, handwriting data. The large-
vocabulary experiments used the following training data sets, where “isolated”
means not written as part of a word:

UncWords - 52,212 unconstrained-style words from 100+ writers

HandSeg - 122,423 isolated exemplars of 93 character classes and exem-
plars from hand-segmented unconstrained-style words from 100+ writers

Natural- 55,883 isolated exemplars of 93 character classes from 125 writ-
ers in their “natural” styles

Predefined - 84,960 isolated exemplars of 93 character classes from 136
writers, written to match a predefined set of 326 visually distinct allo-
graphs

Cursive - 42,068 isolated cursive exemplars of 93 character classes from
98 writers

235

25-

% of Data in Allograph

0 A | | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
Clustering Iteration

Figure 5: Population of 7 clusters vs. number of clustering iterations for a set of 629 exemlars
from 125 writers of the “B” character.

e Discrete - 101,293 isolated printed exemplars of 93 character classes from
224 writers

The test set consisted of 4920 unconstrained-style words written as sentences
from 188 writers. Each experiment included the UncWords data set for HMM
training but not for allograph clustering. All results are reported on the Test
set.? The zeroth iteration corresponds to the first set of models trained.

The results in Fig. 6 marked as Baseline correspond to using the HandSeg
data set with allograph labels from the allograph clustering algorithm used by
Bellegarda et al. and Subrahmonia et al.!:? as the initialization to the k-means
allograph clustering algorithm. The result labeled Naturalcorresponds to com-
bining the Natural and HandSeg data sets, using the HMMs from the zeroth
iteration of the Baseline experiment to label the combined data set, and then
using those labels as the initialization to the k-means HMM allograph clus-
tering. An analogous process produces the results labeled Predefined, Cursive
and Discrete.

The results mentioned so far depend on another allograph clustering algo-
rithm for their initial allograph labels. One question to ask is how dependent

dFor expedience, none of the large vocabulary runs were allowed to converge and no checking
for cycling of the allograph labels was performed.

236

the proposed k-means HMM clustering algorithm is on these initial labelings.
To answer this question, we ran an experiment which was independent of any
other clustering algorithm: The result labeled Random corresponds to us-
ing the HandSeg data set with uniformly distributed random allograph labels,
where the number of allographs per character class is the same as for the
Baseline results, and then using those random labels as the initialization to
the k-means HMM allograph clustering.

The results in Fig. 6 show that for all but one data set, allograph relabeling
improves the recognition accuracy on an independent test set. It is interesting
to note that random labeling in the Random experiment performs much better
than the labeling used in the Baseline experiment, which suggests that if an
initial labeling is near a suboptimal solution it may be difficult to escape from
it, as appears to be the case for Baseline. This further suggests that the
algorithm might benefit from the introduction of noise in the labels, as in
simulated annealing. It is not clear why the Natural data set performed poorly,
but it seems reasonable to assume that it may be because that data set does
not well represent the allographs found in the test set. This point deserves
further investigation. Also, there appears in some cases to be a subsequent
drop in accuracy if too much training occurs, suggesting possible over-fitting.

6 —-
Natural —
4- Baseline ------
Cursive -
Discrete
2- Random ----
Predefined ----

Relative % Change in Error

Training Iteration

Figure 6: Relative % change in character error rate as a function of training iteration for
several training sets.

237

5 Discussion

This paper describes a method for combining kmeans clustering and HMMs
to address the problem of handwritten character allograph determination. The
method has been shown to work well in simple cases, and preliminary results
on a large-vocabulary, writer-independent, unconstrained-style, handwriting
recognition task show that this method can improve recognition accuracy. In
particular, we were pleasantly surprised to see that in the large-vocabulary
recognition tests, random initialization may perform better than starting from
a previously chosen “good” initial-condition allograph labeling. This will be
investigated further in conjunction with the use of cross-validation to select the
optimal number of allograph models. Also, we plan to investigate replacing
our current use of max P(z|M) approximation with the unapproximated form

2. P(z|M)P(M|C).

6 Acknowledgements

The authors gratefully acknowledge the help of Millie Miladinov, John Pitrelli,
Gene Ratzlaff and Jayashree Subrahmonia.

7 References

1. J. Bellegarda, D. Nahamoo and K. Nathan, “Supervised Hidden Markov
Modeling of On-Line Handwriting recognition,” ICASSP’94, vol. b, pp.
149-152, 1994.

2. J. Subrahmonia, K.S. Nathan and M.P. Perrone, “Writer Dependent
Recognition of On-Line Unconstrained Handwriting,” ICASSP’96, vol.
6, pp. 3478-3481, 1996.

3. S. Connell and A.K. Jain, “Learning Prototypes for On-Line Handwrit-
ten Digits,” Proc. 14th International Conference on Pattern Recognition,
Brisbane, Australia, pp. 182-184, Aug. 1998.

4. L. Prevost and M. Milgram, “Non-supervised Determination of Allo-
graph Sub-classes for On-line Omni-scriptor Handwriting Recognition,”
Proc. 5th International Conference on Document Analysis and Recogni-
tion, Bangalore, India, pp. 438-441, Sept. 1999.

5. P. Scattolin and A. Krzyzak, “Weighted Elastic Matching Method for
Recognition of Handwritten Numerals,” Vision Interface’9, pp. 178-185.

238

