7%
university of 59/,
groningen L

i

University Medical Center Groningen

University of Groningen

CASCADING MULTIPLE CLASSIFIERS AND REPRESENTATIONS FOR OPTICAL AND
PEN-BASED HANDWRITTEN DIGIT RECOGNITION

Alpaydin, E.; Kaynak, C.; Alimoglu, F.

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Alpaydin, E., Kaynak, C., & Alimoglu, F. (2004). CASCADING MULTIPLE CLASSIFIERS AND
REPRESENTATIONS FOR OPTICAL AND PEN-BASED HANDWRITTEN DIGIT RECOGNITION. In
EPRINTS-BOOK-TITLE s.n..

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://research.rug.nl/en/publications/52e168b9-7e93-4e9a-9435-6dc2daeecdcc

CASCADING MULTIPLE CLASSIFIERS AND
REPRESENTATIONS FOR OPTICAL AND PEN-BASED
HANDWRITTEN DIGIT RECOGNITION

E. ALPAYDIN, C. KAYNAK, F. ALIMOGLU
Department of Computer Engineering
Bogazi¢i University
TR-80815 Istanbul, Turkey
E-mail: alpaydin@boun.edu.tr

Abstract
We discuss a multistage method, cascading, where there is a sequence
of classifiers ordered in terms of complexity (of the classifier or the repre-
sentation) and specificity, in that early classifiers are simple and general
and later ones are more complex and are local. For building portable,
low-cost handwriting recognizers, memory and computational require-
ments are as critical as accuracy and our proposed method, cascading,
is a way to gain from having multiple classifiers, without much losing
from cost. Simulation results on optical and pen-based handwriting
digit recognition indicate that when compared with voting, mixture of
experts and stacking, our proposed method, cascading, does stand out
as the most realistic combination scheme.

1 Introduction

In recent years with computation getting cheaper, there is an increasing interest
in schemes for combining multiple learning systems. The idea is that since
learning from a finite sample is an ill-posed problem, each learning algorithm
depending on its assumptions, finds a different explanation for the data and
converges to a different classifier. If these classifiers make errors on different
cases, they complement each other and an ensemble scheme can outperform
the individual classifiers.

To get different classifiers, one may use different learning algorithms, which
correspond to making different assumptions about the data source, i.e., the in-
ductive bias of the learning method. For example, one classifier may be a
neural network method like the multilayer perceptron (MLP) trained with
backpropagation and another may be a nonparametric, instance-based, statis-
tical method like the k-nearest neighbor (k-NN). MLP’s inductive bias is that
the class discriminants, separating the instances of one class from the instances
of other classes, is a nonlinear function written as a weighted sum of nonlinear
sigmoidal basis functions. MLP is attractive in that it has a small number

453

In: L.R.B. Schomaker and L.G. Vuurpijl (Eds.), Proceedings of the Seventh International Workshop on Frontiers in Handwriting Recognition,
September 11-13 2000, Amsterdam, ISBN 90-76942-01-3, Nijmegen: International Unipen Foundation, pp 453-462

of parameters (low memory complexity) and once it has been trained, it is
very fast to use (low computational complexity), and it is a good generalizer.
k-NN’s inductive bias is much simpler: It only assumes that instances that are
close in the input space (according to an appropriate metric) belong to the
same class. k-NN is also quite accurate; 1-NN has been proved to be never
worse than twice the Bayesian risk*, implying that half of the classification in-
formation in an infinite sample set is contained in the nearest neighbor, which
supports the inductive bias of k-NN. But being a nonparametric method, it
requires the storage of the whole training set (high memory complexity) and
given a test instance, its distance to all the training instances is computed to
choose the k closest (high computational complexity).

Another way to get different classifiers is by using different representations
of the same input. Different representations make different features apparent
and provide supplementary information. For example in pen-based handwrit-
ing recognition, there is the dynamic movement of the pen tip while writing
the character, represented as a temporal sequence of tablet coordinates. There
is also the static image once the writing of the character is over, represented
as a two dimensional binary image.

Orthogonal to these algorithmic and representational dichotomies, there
are two architectural methodologies: In multiexpert methods, the classifiers
work in parallel. All the classifiers are trained together and given a test pat-
tern, they all give their decisions and a separate combiner computes the final
decision from these. Examples are voting, mixture of experts "2 and stacked
generalization''. Multistage methods '° use a serial approach where the next
classifier is only trained by/consulted for patterns rejected by the previous
classifier(s). Multistage combination is more interesting in that costlier classi-
fiers are not used, or costlier representations are not extracted, unless they are
actually needed, i.e., when previous classifiers’ predictions are not ambiguous.

In this work, we aim building a low-cost, possibly portable, system for
optical or pen-based handwriting recognition and thus accuracy is not the
only concern but complexity (as it determines the cost) is also very important.
In such a scenario, combining tens of classifiers may not be feasible, due to the
increased memory and computation needs. Thus we aim for a combination of
small number of — two or three — classifiers, gaining from accuracy, but not
losing much in terms of cost.

We advocate multistage methods where an early simple classifier handles
a majority of cases and a complex classifier is only used for a small percentage,
thereby not significantly increasing the overall complexity. A classifier may be
simpler than another due to its algorithm; for example, MLP is simpler than
k-NN because given an instance to classify, the memory and computational

454

complexity is less. A classifier may also be simpler than another one due to
the representation it uses. In pen-based recognition, as we will see shortly,
the static image representation is more costly than the dynamic pen move-
ment representation as the image is two dimensional and preprocessing the
image through several filters takes more time and computation than the one
(temporal) dimensional signal of pen coordinates.

This paper is organized as follows: In Section 2, we formalize cascading
and in Section 3, we detail two variants of cascading on the two tasks of optical
and pen-based handwritten digit recognition. We conclude in Section 4.

2 Cascading

Multistage classifiers are ensembles having individual classifiers with reject

option 1%, In any stage, a classifier either accepts its output or rejects it based

on its certainty of its own decision. If it rejects, then the classifier at the next

stage is applied to the pattern. The next classifier in the cascade is a more

accurate but costlier classifier, maybe due to using another representation.
We propose two variants of cascading:

1. In cascaded-algorithms?, the first classifier is a simple classifier learning a
general rule over the input space. The next classifier is a costly classifier
learning local exceptions to the general rule. In our implementation, the
first rule-learner is MLP which is fast and has small number of parame-
ters and the second exception-learner is k-NN. Thus during test, a large
percentage of the cases are handled by the rule-learner resorting to the
costlier k-NN only in a small number of cases. The algorithm has the
following inductive bias: Underlying the data, there is a simple rule and
there are also a small number of exception instances, not covered by the
rule with enough confidence. It is also possible to cascade a sequence of
increasingly more complex rule-learners before the final exception-learner
is employed 2.

2. In cascaded-representations ', the first classifier uses a simple represen-
tation and the second classifier uses a representation that is costlier to
extract. There is the following inductive bias: A large percentage of the
examples from different classes are separable in the space defined by the
simple representation; a smaller percentage of ambiguous instances are
distinguishable in the space defined by the more complex representation.
One can also envisage a setting where a sequence of increasingly costlier
representations is extracted from the input each feeding to a different

455

classifier. Thus costlier representations are not extracted unless previ-
ously extracted simpler representations do not suffice to classify with
confidence.

There is a sequence of learners g; which provide g;;(z) = P(Cj|z,j), the
posterior probability estimate of class i for input 2 by learner j 3. It is the
case that g; 11 is a costlier method than g; or uses features that are costlier to
extract. Associated with each learner is a confidence function §; such that we
say g; is confident of its output and can be used if §; > 6; where 0 < 8; <1
is the confidence threshold. We use the output of learner g; (class with max
posterior) if all the preceding learners are not confident

r = argmax g;; if §; > 0; and Vk < 7,0, < O (1)
2
The confidence in classification is the maximum posterior probability
dj () = max g;(z) (2)

Note that 1 — J; is the probability of error and thus the higher §; is,
the more confidence we have in the prediction. During training, after having
trained learner g;, g;j+1 should be trained on a training set where the patterns
are drawn with probability proportional to 1—¢;. Thus g;41 will focus more on
patterns misclassified, or ones classified without enough confidence. At stage
j + 1, the probability that instance with index ¢ is drawn for training is

1—4;(z")
ooy 1= (™)

For j = 1, these probabilities are all equal, i.e., P;(z*) = 1/N where N is the
number of training examples. Note also that as we would like to have better
(less erroneous, thus more confident) learners as we go from stage j to j + 1,
we need to have ;1.1 > 0;. At the same time, the classifiers are moving from
general to more specific as they get trained on subsets of the original dataset.

The cascading method seems similar to the AdaBoost® algorithm but there
are certain differences. First, cascading is intended to combine a small number
of different classifiers whereas AdaBoost combines a large number (typically
50-100) classifiers using all the same learning method or representation. Sec-
ond, AdaBoost is multistage during learning but uses voting for decision and
thus is multiexpert during test, whereas cascading is multistage both during
training and test. Third, in AdaBoost training replicate construction is based
on misclassification whereas in cascading we use the error probability, 1 — d;,

P (fﬂt) = (3)

456

which gives more information than just misclassification and distributes its
focus more appropriately. It can be said that cascading also takes into ac-
count the margin, the distance to the discriminant, whereas misclassification
error, as used by AdaBoost, just checks if the input is on the right side of the
discriminant or not.

3 Applications
3.1 Cascaded Algorithms on Optical Handwritten Digit Recognition

optdigits was created using the set of programs made available by NIST 6
for optical handwritten digit recognition. The 32 by 32 normalized bitmaps
were low-pass filtered and undersampled to get 8 by 8 matrices where each
element is an integer in the range 0 to 16. 44 people filled in forms which
were randomly divided into two clusters of 30 and 14 forms. From the first 30,
three sets were generated: A training set, a validation set on which to tune
hyperparameters (number of hidden units of the MLP, k of k-NN, etc) and a
writer-dependent set. The other 14 forms containing examples from distinct
writers make up the writer-independent test set which we use as the real test
set. We have recently donated the dataset to the UCI repository.

We used cascaded-algorithms where a multilayer perceptron (MLP) with
20 hidden units is the first rule-learner and k-nearest neighbors (k-NN) with
k = 9 is used as the exception-learner. We use two-fold cross-validation in
training as follows: We divide the training set into two parts and first train
the MLP with the first half of the training set. Then we take the second part
and feed it to the MLP and all the patterns that the MLP rejects (the highest
posterior is less than 6) are taken as exceptions and stored. We then do the
same with the role of the two halves exchanged. The final list of exceptions
define the lookup table of the k-NN. During test, an instance is first given to
the MLP and if the highest posterior is greater than @, it is taken as the output.
Otherwise, k-NN is done over the table of exceptions to give the output.

Let us say that d is the number of input dimensions and ¢ is the number
of classes. If there are h hidden units, the time and space complexity of MLP
is

CMLP:O(dXh)+O(hXC) (4)

If N denotes the size of the training set, the time and space complexity of

k-NN is
Cinn = O(N x d) (5)

If p is the probability that an instance is not rejected by the MLP during
test, 1 — p is the probability that k-NN is used; MLP is always used. The

457

complexity of a two-stage cascade of MLP and k-NN is therefore
Ceas2 = Cyurp + (1 —p) x Cynn (6)

During training, if ¢ denotes the probability that MLP is confident, given a
set of size N, approximately (1 — q) x N of them will be stored as exceptions.
Normally we would expect 1 — p, test reject probability, to be close to 1 — g,
training reject probability, though in real life ¢ may be an optimistic estimator
of p.

Then C}, n, the complexity of k-NN on a reduced set, is O((1—g) x N xd).
Substituting the complexities, we have

Cras2 =0(dxh)+O0(hxec)+0((1—p)x(1—q) x N xd) (7

On our dataset, the accuracy of cascading, the percentage of exceptions
stored, and complexities as a function of § are given in Fig. 1. We see for
example that 85% of the cases are classified with 0.99 confidence by the MLP,
storing 15% as exceptions (¢ = 0.85). During test, only 23% of the cases are
not classified with 0.99 confidence by the MLP (p = 0.77) and we use k-NN.
23% of 15% makes 3%, which is the complexity of cascading as opposed to
doing k-NN over the whole set, all the time. In a combination scheme like
voting and stacking where both classifiers are always used, the complexity is
Curp + Crnn!

In Fig. 2, we compare the single classifiers and various combination schemes
in terms of their accuracies on the writer independent test set and the number
of bits required to store the parameters. MLP is fast and simple but is not
as accurate as 9-NN which is costly in terms of memory and computation.
In voting and stacking, both are used so the memory (and computational)
requirement is high. Cascading here seems ideal as it gives high accuracy with
only a small increase in memory without much additional complexity.

3.2 Cascaded Representations on Pen-Based Handwritten Digit Recognition

pendigits is a dataset on pen-based handwritten digit recognition. We collect
250 samples from 44 writers'. The samples written by 30 writers are used for
training, validation and writer dependent testing, and the digits written by the
other 14 are used for writer independent testing. We have also donated this
dataset to the UCI repository.

The primary goal is to construct a high-performance system that exploits
the difference between two different representations of the same handwritten
digit. One representation is dynamic; the movement of the pen as the digit

458

digit

95
20
he]
3 94.5
o
% 15 .
g 3
172} —_ +
o 3 94 knn
£ 10 <
[
< 93.5
5 +mlp
93
0.9 0.95 1 0.9 0.95 1
0 0
digit
35 6
2
£
30 §5
>
825 § 4
3 £
=z [0}
2 20 g3
[l
S 15 22
5
10 21
R
5 0
0.9 0.95 1 0.9 0.95 1
0]

Figure 1: On the optdigits dataset with cascading, average percentage of exceptions stored
during training and accuracy on the test set as a function of § are shown with one standard
deviation error bars. Accuracy of MLP and k-NN alone are also shown. On the second
line, percentage of calls to the exception learner during testing and the number of distance
measurements done as a function of § are shown. The number of distance measurements is
the product of the percentage of calls to the exception learner and the number of exceptions.

is written on a pressure-sensitive tablet. The other representation is static;
the image generated as a result of the movement of the pen tip. Two dif-
ferent hand movements for the same character may lead to similar images or
different images of the same character may be generated by similar hand move-
ments. Therefore, combining the two representations may improve recognition
accuracy.

The simplest approach is concatenating all data vectors and treat as one
large vector from a single source. This does not seem theoretically appropriate
as this corresponds to modelling data as sampled from one multivariate statis-
tical distribution. The approach we take is to make separate predictions using
different sources and then combine these predictions. We train two MLPs with

459

digit

96
95 + Voting
0.99 0.995 + Stacking
9409 Cascading 4+ K=NN
% 0.95
] + Mip
5 93F
Q
£ +ME
92
91
90 L L L L L L L
2 4 6 8 10 12 14
Memory (bits) X 10*

Figure 2: On optdigits, accuracy vs memory requirement of MLP, k-NN and four ways
of combining the two (voting, stacking, mixture of experts and cascading) is shown. The
results by cascading are given for different values. We use eight bits to store each real
value.

Table 1: Error percentages of the two classifiers and of both. If we have an oracle to choose
which classifier to use, error can be reduced to 1.70%.

Set Dynamic | Static | Both
Training 1.02 1.24 | 0.25
Validation 1.67 3.76 | 0.46
Writer-dependent 1.74 4.27 | 0.70
Writer-independent 4.74 5.75 1.70

ten hidden units on each of the representations. Dynamic representation has
eight (z,y) coordinates thus is 16 dimensional. Static representation is a 8 x 8
matrix of elements in the range 0 to 16 and thus is 64 dimensional. We no-
tice that the two classifiers make mistakes for different samples and investigate
ways to combine them efficiently (Table 1).

We test voting, mixture of experts and stacking to combine the two MLPs
and compare with cascading. In cascading, we use the dynamic MLP as the
simple classifier and static MLP as the complex one. This is because the pre-
processing required to form the image, blur and downsample is time consuming.
Cascading is a way to avoid doing this for all patterns.

Let us denote by Carr.payn and Carrpstq, the complexities of the dynamic
and static MLP classifiers. Note that MLPsta is more complex because it has
four times as many inputs. Let us denote by Cprepsta, the complexity of the

460

Memory Requirements vs. Writer Independent Test Success
98 T T T T T

97.5F 3
Voting
X

Concat

Stacking

X
Cascading

X

%6} : .

95.5 pyn MLP 1
X

Writer Independet Test Success

94.51 Sta MLP 1
X

L L L L
0 500 1000 1500 2000 2500 3000
Number of Parameters

Figure 3: Average accuracy on writer independent test set versus the number of parameters.

preprocessing done to get the image from the dynamic information, blur, and
downsample it. If p denotes the probability that dynamic MLP is certain, with
probability (1 —p), we also need to generate the image and use the static MLP.
Then cascading has complexity

CVcas = c’MLden + (1 - p) X (CMLPsta, + Cp’repsta,) (8)

We again use two-fold cross-validation to train the two classifiers with
6 = 0.99 where 30% are rejected by the dynamic MLP (p = 0.7) and train
the static MLP. When 6 is less, the accuracy on the writer dependent set is
higher but there are not enough patterns to train the static MLP and thus the
accuracy on the writer independent set is less. In Fig. 3, we plot the accuracy
vs the number of parameters of different combination methods. Though static
MLP has an overall performance worse than the static MLP, because they do
not make the same errors (Table 1), combining them the accuracy increases.
Among the various combination methods, cascading is the fastest as it uses the
costlier static MLP only in 30% of the cases whereas the other combination
methods use it all the time.

461

4 Conclusions

In building low-cost, real-world handwriting recognizers, combining a large
number of classifiers may require too much memory and computation. We
propose a new multistage combination method, cascading, that takes the ad-
vantage of multiple classification algorithms and/or representations without
significantly increasing memory and computational complexities. The idea is
to cascade a small number of classifiers ordered in terms of complexity (of the
classification algorithm or representation) and specificity, in that early classi-
fiers are simple and general and later classifiers are locally accurate. Thus later,
complex, classifiers/representations are not used unless actually necessary.

Acknowledgment

This work is supported by Bogazici University Research Fund grant 00A101D.

References

1. F. Alimoglu and E. Alpaydin, “Combining Multiple Representations and
Classifiers for Pen-based Handwritten Digit Recognition,” ICDAR 97,
Ulm, Germany, August (1997).

2. E. Alpaydin and M. L. Jordan, “Local Linear Perceptrons for Classifica-
tion,” IEEE Trans. NN, 7, 788-792 (1996).

3. E. Alpaydin and C. Kaynak “Cascaded Classifiers,” Kybernetika, 34(4),
369-374, (1998).

4. T. M. Cover, “Estimation by the Nearest Neighbor Rule,” IEEE Trans.
IT, 14(1), 50-55, (1968).

5. Y. Freund and R. E. Schapire, “Experiments with a New Boosting Al-
gorithm,” Proceedings of the 13th ICML, 148-156, (1996).

6. M. D. Garris et al, NIST Form-Based Handprint Recognition System,
NISTIR 5469, (1994).

7. R. A. Jacobs et al, “Adaptive Mixtures of Local Experts,” Neural Com-
putation, 3, 79-87, (1991).

8. C. Kaynak and E. Alpaydin “Multistage Cascading of Multiple Classi-
fiers,” Proceedings of the 17th ICML, (2000).

9. J. Kittler et al, “On Combining Classifiers,” IEEE PAMI, 20, 226239,
(1998).

10. P. Pudil et al, “Multistage Pattern Recognition with Reject Option,”
11th IAPR PatRec 11, 92-95 (1992).

11. D. H. Wolpert, “Stacked Generalization,” Neural Networks, 5, 241-259,
(1992).

462

