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An Improved Volume-of-Fluid Method for Wave Impact Problems

K.M. Theresa Kleefsman, Geert Fekken, Arthur E.P. Veldman

Dept. of Mathematics and Computing Science, University of Groningen

Groningen, the Netherlands

ABSTRACT

In this paper, a calculation method for wave impact problems is
presented. This method is based on the Navier-Stokes equations
and uses an improved volume-of-fluid (VOF) method for the
displacement of the free surface. Results are shown for a
dambreak simulation for which experimental results are available
for comparison. Also drop tests have been simulated with
wedges and circular cylinders. The results are very promising
for the further development of the method.

KEYWORDS: Wave loading; moving body;
simulation; Cartesian grid; volume-of-fluid.
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INTRODUCTION

There is a great need for calculation methods for local phenom-
ena of wave impact loading and loading from green water on the
deck of a ship. Most of the existing methods are not capable
of predicting the local loads. Part of the Joint Industry Project
SafeFLOW, initiated in January 2001, is devoted to the develop-
ment of a method which is able to predict local wave impact on
floaters operating in the offshore industry.

The development of the method, called COMFLOW, has started
in 1995 with the simulation of liquid-filled spacecraft, that are
tumbling in space [Gerrits, 2001]. In this application where the
surface tension is the driving force, a good handling of the free
surface is crucial. The method has also been applied to blood
flow through (elastic) arteries, where no free surface was present
[Loots, 2003]. A rather new application was found in the mar-
itime world where sloshing inside anti-roll tanks has been simu-
lated. In 1999 a pilot study of the simulation of green water on
the deck of an FPSO has been performed, to investigate if the
method is capable of capturing the local flow details on the deck
[Buchner, 1999]. Because of promising results, it was decided to
move on in this direction in the SafeFLOW project.

The simulation of fluid flow in COMFLOW is based on the
Navier-Stokes equations for an incompressible, viscous fluid. The
equations are discretised using the finite volume method. For the
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displacement of the free surface the VOF method has been used
adapted with a local height function which is essential for a good
simulation of the free surface flow. To simulate wave impact in a
robust and accurate way, a good choice of the discrete boundary
conditions at the free surface turns out to be very important.

In this paper, the model used in COMFLOW is described. Re-
sults are shown of simulations for a dambreak with a box in the
flow. This simulation can be seen as a model of the water flow
on the deck of a ship due to green water. Also results have been
shown of water entry of two-dimensional objects. Comparison
with theory and experiments is available.

GOVERNING EQUATIONS

Flow of a homogeneous, incompressible, viscous fluid is described
by the continuity equation and the Navier-Stokes equations.
The continuity equation describes conservation of mass and the
Navier-Stokes equations describe conservation of momentum. In
conservative form, they are given by

%u~nd§ = 0, 1)

oV

ou .
EdV—l—?{uu -ndS =
1% ov

—lj{(pn—uVu-n)dS—&-/FdV. (2)
pav v

Here, OV is the boundary of volume V, u = (u,v,w) is the
velocity vector in the three coordinate directions, 71 is the normal
of volume V| p denotes the density, p is the pressure, V is the
gradient operator. Further p denotes the dynamic viscosity and
F = (F,, F,, F,) is an external body force, for example gravity.
In the case that moving rigid bodies are present in the domain
V', the above equations still hold, with the additional condition
that the fluid velocity at the boundary of the object is equal to
the object velocity.
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Boundary conditions

At the solid walls of the computational domain and at the objects
inside the domain, a no-slip boundary condition is used. This
condition is described by u = 0 for fixed boundaries, and u = uy
for moving objects with u; the object velocity.

Some of the domain boundaries may let fluid flow in or out of the
domain. Especially, when performing wave simulations, an inflow
boundary is needed where the incoming wave is prescribed and at
the opposite boundary a non-reflecting outflow condition should
be used. In our method, the wave on the inflow boundary can be
prescribed as a regular linear wave or a regular 5th order Stokes
wave. Also a superposition of linear components can be used
which results in an irregular wave. At the outflow boundary, a
Sommerfeld condition is very appropriate in cases where a regular
wave is used. In the case of an irregular wave or a much deformed
regular wave (e.g. due to the presence of an object in the flow)
a damping zone is added at the end of the domain.

Free surface

If the position of the free surface is given by s(z,t) = 0, the
displacement of the free surface is described using the following
equation

Ds  0s

Dt 0Ot
At the free surface, boundary conditions are necessary for the
pressure and the velocities. Continuity of normal and tangential
stresses leads to the equations

+ (u-V)s=0. (3)

O
-p+ 2#% = —po +2vH (4)
mn
Oup  Oug\
2 (W + %) =0 ©)

Here, u,, is the normal component of the velocity, pg is the at-
mospheric pressure, 7 is the surface tension and 2H denotes the
total curvature.

NUMERICAL MODEL

To solve the Navier-Stokes equations numerically, the computa-
tional domain is covered with a fixed Cartesian grid. The vari-
ables are staggered, which means that the velocities are defined
at cell faces, whereas the pressure is defined in cell centers.

The body geometry is piecewise linear and cuts through the fixed
rectangular grid. Volume apertures (F°) and edge apertures (A%,
AY, and A7) are used to indicate for each cell which part of the
cell and cell face respectively is open for fluid and which part is
blocked by solid geometry. To track the free surface, the volume-
of-fluid function F'® is used, which is 0 if no fluid is present in
the cell, 1 if the cell is completely filled with fluid and between 0
and 1 if the cell is partly filled with fluid.

The Navier-Stokes equations are solved in every cell containing
fluid. Cell labeling is introduced to distinguish between cells of
different characters. First the cells which are completely blocked
by geometry are called B(oundary) cells. These cells have vol-
ume aperture F?=0. Then the cells which are empty, but have
the possibility of letting fluid flow in are labeled E(mpty). The
adjacent cells, containing fluid, are S(urface) cells. The remain-
ing cells are labeled as F(luid) cells. Note that these cells do not
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have to be completely filled with fluid. In Figure 1 an example
of the labeling is given.

Figure 1: Cell labeling: dark grey denotes solid body, light grey
is liquid

Discretisation of the continuity equation

The continuity and Navier-Stokes equations are discretised us-
ing the finite volume method. The natural form of the equations
when using the finite volume method is the conservative formula-
tion as given in Eq. (1) and (2). In this paper, the discretisation
is explained in two dimensions. In most situations, this can be
extended to three dimensions in a straightforward manner. In

AZ&J: Un
B e —
Afu&yI Uy
Fb5xsy . Yb
I AZdy —> U
Up
>
Agéa: Vs

Figure 2: Conservation cell for the continuity equation

Figure 2 a computational cell is shown, which is cut by the body
geometry. When applying conservation of mass in this cell, the
discretisation results in

uAZ0y + v AYdr — u,ALdy — v.AYdx +
up(AL — AL)oy + vp(AY — AY)ox = 0, (6)

where the notation is explained in Figure 2.

Discretisation of the Navier-Stokes equations

For the discretisation of the Navier-Stokes equations, control vol-
umes are defined containing velocities which are defined on cell
faces. In the case of uncut cells, the control volume of a velocity
simply consists of the right half of the cell left of the velocity and
the left half of the cell right of the velocity. In case of cut cells
the procedure to define control volumes has been explained in
detail in [Gerrits, 2001].

The time derivative in the Navier-Stokes equations is discretised
in space using the midpoint rule. This results in

ou L Oue
EdV =% F.éx.0y. 7

v
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Here, 1, is the central velocity around which the control volume
is placed and F28x.0y is the volume of the control volume.
The convective term is discretised directly from the boundary
integral which is given by

7{ uu - ndS. (8)
ov

Note, that this integral contains two different velocities: the
scalar velocity u is advected with the velocity vector w. This
integral is evaluated along all boundaries of the control volume
by multiplying the scalar velocity u with the mass flux through
the boundary w-ndS. Finally, the convective term discretisation
results in a matrix that is skew symmetric, which is also a prop-
erty of the continuous convective operator [Verstappen, 2003].
The diffusive term, which for the Navier-Stokes equation in -
direction is given by

1 Ju
o P Pon ds, )
oV

is discretised along all boundaries of the control volume. To en-
sure stability, the term g—;% is discretised in cut-cells as if the cells
are uncut. The error introduced this way is small and has no
influence in the convection-dominated simulations. The discreti-
sation results in a symmetric matrix which is negative definite.
The pressure term is discretised as a boundary integral, resulting
for the Navier-Stokes equation in x-direction in

;f PadS = (pe — pu)A%Sy. (10)
ov

Here, p. and p,, are the pressure in the eastern and western cell
respectively, AY is the edge aperture of the cell face where the
central velocity is defined.

The external force is discretised similar to the time derivative,
resulting for the z-direction in

/ F,dV = F, F’x.6y. (11)
1%

Here, I, is the force at the location of the central velocity.
A detailed explanation of the discretisations described in this
section is given in [Gerrits, 2001].

Temporal discretisation

The continuity and Navier-Stokes equations are discretised in
time using the forward Euler method. This first order method
is accurate enough, because the order of the overall accuracy is
already determined by the first order accuracy of the free surface
displacement algorithm. Using superscript n for the time level,
the temporal discretisation results in

Mu?tt =0, 12
h

1 n n n
+ C(up)up = _;(MTPhH — pDuy) + Fj.
(13)

The continuity equation is discretised at the new time level to
ensure a divergence free velocity field. The spatial discretisation
is written in matrix notation where M is the divergence operator,
) contains cell volumes, C' contains the convection coefficients
(which depend on the velocity vector) and D contains diffusive
coefficients.
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Solution method

To solve the system of equations, the equations are rearranged
to

1
uzﬂ =y + 5thleTpZ+1, (14)
where
al = ul — 5t (O (ul)ul — %DUZ —FT).  (15)

First, an auxiliary vector field @), is calculated using Eq. (15).
Next, Eq. (14) is substituted in Eq. (12) which results in a Pois-
son equation for the pressure. From this equation the pressure
is solved using the SOR (Successive Over Relaxation) method
where the optimal relaxation parameter is determined during
the iterations [Botta, 1985]. Once the pressure field is known,
the new velocity field is calculated from @} using the pressure
gradient.

Free surface displacement

After the new velocity field has been calculated, the free surface
can be displaced. This is done using an adapted version of the
volume-of-fluid method first introduced by [Hirt, 1981]. A piece-
wise constant reconstruction of the free surface is used, where
the free surface is displaced by changing the VOF-value in a cell
using calculated fluxes through cell faces.

The original VOF method has two main drawbacks. The first
is that flotsam and jetsam can appear, which are small droplets
disconnecting from the free surface. The other drawback is the
gain or loss of water due to rounding of the VOF function. By
combining the VOF method with a local height function as intro-
duced in [Gerrits, 2001], these problems do not appear any more.
The resulting method is strictly mass conservative.

FREE SURFACE BOUNDARY CONDITIONS

At the free surface, boundary conditions are needed for the pres-
sure and the velocities. The pressure in surface cells is calculated
as an interpolation or extrapolation from the pressure in an ad-
jacent fluid cell and the boundary condition at the free surface.

The velocities in the neighbourhood of the free surface can be
grouped in different classes (see Figure 3). The first class contains

FF, FS, SS: momentum equation

SE: extrapolation

EE: tangential free surface condition

Figure 3: Different characters of velocities near the free surface

the velocities between two F-cells, between two S-cells and be-
tween an S- and F-cell. These velocities are determined by solving
the momentum equation, so the velocities are called momentum
velocities. The second class consists of the velocities between an
S- and an E-cell. These velocities are determined using boundary
conditions which will be described below. The last class consists
of velocities between two E-cells which are sometimes needed to
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solve the momentum equation. These are determined using the
tangential free surface condition.

SE-velocities

The choice for the method to determine the velocities at the cell
faces between surface and empty cells is very important for the
robustness and the accuracy of the flow model. Furthermore,
this has an influence on the occurrence of numerical spikes in the
pressure signal (see Figure 11 where numerical spikes occur). The
reason for pressure spikes is that there is not always conservation
of mass in a surface (or empty) cell (depending on the boundary
conditions). When such a cell becomes a fluid cell, the pressure
reacts with a spike to restore mass conservation.

In the following paragraphs two methods will be described for
the definition of free surface velocities.

Method 1: conservation of mass in S-cells The first method de-
mands conservation of mass in surface cells. The SE-velocity or
velocities at the faces of a surface cell are chosen such that con-
servation of mass is satisfied in that cell. The advantage of this
method is that no spikes will occur in the pressure signal, be-
cause conservation of mass is already satisfied if this surface cell
changes to a fluid cell. There are two disadvantages. The first
one is that this method is not always robust. In the case of Fig-
ure 4 the SE-velocity will become very large. If this configuration
does not change during a number of time steps, the method will
diverge.

-+

Figure 4: Very large SE velocity when using method 1

The other disadvantage is that the method does not give accurate
results in wave simulations. This is shown by the dashed line of
Figure 5.

Method 2: extrapolation from direction of fluid In the second
method, the SE-velocities are calculated as an extrapolation
from the direction of the fluid. Using a linear extrapolation gives
very accurate results for steep wave simulations (see Figure 5).
But linear extrapolation can lead to instability of the method
when the velocity field is not smooth. In that case constant
extrapolation is a better choice.

In practice, a method has been chosen which is an engi-
neering mix between the two methods described above. To
prevent spikes in the pressure signal, the mass conservation
principle has been chosen when a cell changes label from
surface cell to fluid cell. In all other cases linear or constant
extrapolation is used from the direction of the main body of the
fluid, which gives a high accuracy and a very robust method.
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time is 375 s
201

- - treatment SE-vel: mass conservation
—— treatment SE-vel: extrapolation
151 * model test

wave elevation (m)

. . . . . |
0 200 400 600 800 1000 1200
x—axis (m)

Figure 5: Different methods for free surface velocities in a steep
wave simulation

STABILITY

In the case of uncut cells with fixed objects, the stability of the
equation containing the time integration term and the convective
term is given by the CFL-restriction % < 1. Here, h is the
size of the uncut cell. When cut cells are present, this criterion
is not changed. This result is not directly straightforward when
looking at the equation containing the time derivative and the
convective term

Ju = —Q71C(u, up)u (16)
ot
where uy, is the object velocity. The matrix 2 is a diagonal matrix
containing the volumes of the cells, so these entries can become
arbitrary small for cut cells. So the elements in the matrix Q!
can become arbitrary large. But, when estimating the eigenvalues
of the convective matrix using Gerschgorin circles by being order
O(%u), it can be concluded that the same stability criterion is
needed as for the uncut-cells case.
When moving objects are present, the story becomes somewhat
different. Now, the CFL-criterion does not guarantee stability
anymore, because the eigenvalues of Q~1C (u,up) are of order
O(2~ huy) which means that they can become arbitrary large.
To cancel the effect of €} a formulation based on a weighted av-
erage of the fluid velocity and the boundary velocity should be
applied in the cells cut by the moving object. To avoid smearing
of the interface in cases where it is not necessary to stabilise the
convective term, the following discretisation is used

un+1 _ QnJrl(QnJrl + |AQ|)71(un + 6t(Qn+1)71
(=C™"u™) + (I = Q"+ [AQ)) D™t (17)

where AQ = Q"1 — Q" is the difference between Vs at two
different time steps. The factor Q" T1(Q" 1 +|AQ|)~! is chosen
because then the stabilising term is only used when the body is
moving; note that it equals unity for fixed objects. The maximal
stabilisation is required when the object is moving normal to its
boundary, whereas no stabilisation is needed when the object is
moving tangential to its boundary (see Figure 6). A detailed
explanation of the stability of the convective terms is given in
[Fekken, 2004].
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i T u u

Figure 6: Left: boundary moving normal to itself: maximal sta-
bilisation is required; right: boundary moving tangential to itself:
no stabilisation is required

From the diffusive term, also a stability criterion follows with a
restriction on the time step. In the case of uncut cells, this cri-
terion is given by dt < %, where v denotes kinematic viscosity.
Because the diffusive term is discretised as if all cells were un-
cut (’staircase’ approach), the above criterion is also valid in our
model.

DAMBREAK SIMULATION

At the Maritime Research Institute Netherlands (MARIN), ex-
periments have been performed for breaking dam flows. These
experiments can be seen as a simple model of green water flow
on the deck of a ship. The dambreak is a very popular valida-
tion case, because the set up is easy, no special in- or outflow
conditions are needed. A large tank of 3.22 by 1 by 1 meter is
used with an open roof (scale 1:15). The right part of the tank
is first closed by a door. Behind the door, 0.55 meter of water
is waiting to flow into the tank when the door is opened. At a
certain moment, a weight is released which opens the door. In
the tank, a box is placed which is a scale model of a container on
the deck of a ship.

q Hi H2
£05-
0.
05 - ‘/
05 " 05
y-axis 05 0

Figure 7: Measurement positions for water heights and pressures
in the dambreak experiment

During the experiment, measurements have been performed of
water heights, pressures and forces. In Figure 7, the positions of
the measured water heights and pressures are shown. In the tank,
four vertical wave probes have been used. One in the reservoir
and the other three in the tank. The box was covered by eight
pressure pick-ups, four on the front of the box and four on the
top. The forces on the box were also measured. To determine the
velocity of the water when entering the tank, a horizonal wave
probe is used near the side wall of the tank.

As starting configuration of the simulation with COMFLOW, the
water in the right part of the domain is at rest. When the sim-
ulation is started, the water starts to flow into the empty tank
due to gravity. In Figure 8 two snapshots of the early stages of

Paper No. 2004-JSC-365

Kleefsman

the simulation are shown together with images of the video of the
experiment (at the same moments in time). The smaller pictures

Figure 8: Snapshots of a dambreak simulation with a box in the
flow compared with experiment at time 0.4 and 0.56 seconds

inside the snapshots show the water in the reservoir. There is
a very large agreement between the simulation and experiment.
The moment in time when the water is first hitting the box is
the same. The shape of the free surface, bending a bit forwards
in the second picture, is seen in both experiment and simulation.
In the simulation, the free surface has some ripples, and these
are due to the computational grid.

06 =
.
-
05 |
7
EM
803
=
=02
of — ComFLOW
o ---- experiment
0 1 2 3 4 5 6

time(s)

Figure 9: Horizontal wave probe along the side of the tank

In Figure 9 the time history of the horizontal wave probe is shown,
compared with the simulation. The first stage of the simulation
compares very well with the experiment, the velocity with which
the water is flowing into the tank is predicted very well. By the
time the water hits the box, there is a difference between the
experiment and the simulation. In the experiment, the water is
slowed down, the wave probe is totally covered by water only
after 2 seconds. In the simulation this is the case after 0.5 sec-
onds. When looking at the movie of simulation and experiment,
this difference is not present, suggesting an inconsistency in the
wave probe measurements. The flow reaches the end wall at the
same time in simulation and experiment. So the appearing differ-
ence in Figure 9 is not a real difference between simulation and
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experiment.

In Figure 10, the water height at two locations is shown: in the
reservoir, and in the tank just in front of the box. The agreement
in both pictures is very good until the water has returned from
the back wall (after about 1.8 seconds). After that some differ-
ences occur, but the global behaviour is still the same. When the
water has returned from the wall, the water height at probe H2
is largest. The water flows back to the reservoir, where it turns
over again at about 4 seconds. The moment that this second
wave meets the wave probe at H2 again is almost exactly the
same in simulation and experiment.

— ComFLOW | 08y
-~ experiment |

T — ConFLOW |
05 === experiment |

o
=

o

=

water height (m)
S

water height (m)
b

o
~
o
s

e

o

==
o
o
o

3
3 "
time(s) tmets)

Figure 10: Vertical water heights in the reservoir H4 (left) and
the tank H2 (right)
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Figure 11: Pressure time histories of P1 (upper left), P3 (upper
right), P5 (lower left), and P7 (lower right)

The moment the wave hits the box is perfectly captured by the
simulation as can be seen from Figure 11. Here the pressure at
point P1 and P3 at the front of the box and at the top of the
box, P5 and P7 (see Figure 7), are shown. The magnitude of
the impact pressure is the same for simulation and experiment
at pressure point P1 (the lowest on the box), but is underpre-
dicted by the simulation at point P3. The moment the return
wave hits the box again (at about 4.7 seconds) is again visible in
the graphs. In the bottom graphs of Figure 11, where the time
history of pressure transducers at the top op the box are shown,
a clear difference occurs between simulation and experiment. Af-
ter about 1.3 seconds, there is a wiggle in the simulation with a
duration of 0.5 seconds, which is not present in the experiment.
Before this point, the water hits the top of the box when the wave
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coming back from the wall is overturning. This difference is a real
difference which cannot be explained properly at the moment.
Several spikes appear in the pressure signals, which are spikes in
all the graphs at the same moment. These spikes occur, because
some water enters an empty cell which is completely surrounded
by cells with fluid. Then, this empty cell changes to a fluid cell
in one time step without being a surface cell in between. This
change in label results in a pressure spike over the whole pressure
field.

The results of the dambreak simulation are in good agreement
with the experiment. The global behaviour of the fluid is the
same and the impact peak of the pressure agrees well, especially
at the lowest part of the box.

WATER ENTRY AND EXIT

In this section, validation results of water entry and exit of two-
dimensional objects are presented. The simulations have been
carried out in two dimensions. The objects are moving according
to a constant prescribed motion.

Figure 12 presents free surface profiles for the entry of two
wedges. The wedges have deadrise angles of 30 and 45 degrees,
respectively. The simulation results have been compared with
photographs of experiments by Greenhow [Greenhow, 1983]. The

Figure 12: Snapshots of wedge entry with deadrise angles 30 de-
grees (up) and 45 degrees (down)

simulations have been performed on a grid of 300x280 computa-
tional cells. The visual comparison between the experiments and
the simulations is very good. The jets which are formed aside
of the wedge are created by COMFLOW to a certain extent, but
the small details of the jets and the spray are not reproduced,
mainly due to the limited number of grid cells.

A visual comparison of the free surface development of cylinder
entry is presented in Figure 13. The simulation has been per-
formed on a grid of 400x400 points. The same can be concluded
for the cylinder as for the wedges: the details of the spray are
not reproduced by COMFLOW.

The total hydrodynamic force on the cylinder during the first
stage of the impact has been calculated and compared with ex-
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Figure 13: Snapshots of the water entry of a circular cylinder

perimental results of Campbell and Weynberg [Campbell, 1980],
also reported in [Battistin, 2003]. In Figure 14 the slamming co-
efficients of the cylinder entry with different entry velocities have
been plotted versus the nondimensional penetration depth. The
slamming coefficient is given by Cy = F/pRV? with F the total
vertical hydrodynamic force, R the radius of the circular cylin-
der and V' the entry velocity. Besides the experimental result of
Campbell and Weynberg, also the theory of Von Karman (1929),
reported by Faltinsen [Faltinsen, 1990], has been included. This
theory is based on potential theory. For the very initial stage of
the entry of a circular cylinder, the vertical hydrodynamic slam-
ming force can be estimated by

F= Vpg(QVR —2v%), (18)

where t denotes time with £ = 0 at the moment of first impact.

The comparison between the experiments of Campbell and Weyn-
berg and the simulations is reasonable. It can be seen that the
initial impact is a bit underpredicted by COMFLOW for all en-
try velocities. The initial impact is more in agreement with the
theory of Von Karman. In a later stage, the results are in good
agreement with the experiments of Campbell and Weynberg. The
results of COMFLOW are almost similar for different entry ve-
locities, which confirms near perfect scaling with V2.

To study the convergence of the method under grid refinement,
the circular cylinder entry simulations have been run with dif-
ferent grids also. The results are presented in Figure 15. It can
be seen that the coarseness of the grid has a very large influ-
ence on the formation of the jets aside the cylinder. A very fine
grid is needed to capture the jets. However, the formation of
the jets does not have a large influence on the total hydrody-
namic force, because of the almost zero pressures inside the jets
[Battistin, 2003].

In Figure 16, snapshots of simulations of cylinder exit are com-
pared with photographs of experiments [Greenhow, 1983]. The

Froude number, defined by Fr = ;—;, is taken 0.41. The sim-
ulation has been performed on a grid of 300x280 points. The

visual comparison between simulation and experiment is very

Paper No. 2004-JSC-365

Kleefsman

T
—— ComFLOW, V=1.0 m/s
==+ ComFLOW, V=2.0 m/s
=== ComFLOW, V=4.0 m/s
5 -6~ experiment, Campbell & Weynberg 1980 ||
—— theory, Von Karman 1929

~

~

Slamming coefficient Cs [-]
w

© e

o

0.2 0.4
Penetration depth (V t/R) [-]

Figure 14: Slamming coefficient of the entry of a circular cylinder
compared to the experiments of Campbell & Weynberg and the
theory of Von Karman
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Figure 15: Effect of grid refinement on the jets formed during
water entry of a circular cylinder: from left to right 100x100,
200x200 and 400x400 grid cells

good. The free surface development is well resolved by CoM-
FLOW, also the very thin layer of fluid around the cylinder is
present.

CONCLUSIONS

In this paper, a numerical method is described for the prediction
of local impact loads on floating structures. The method is based
on a cut-cell approach on a fixed Cartesian grid, and is stable
even when very small cells appear. For the displacement of the
free surface, an improved VOF method is used, which results in
full mass conservation. The determination of the free surface
boundary conditions have shown to have a large influence on
the accuracy of wave simulations. To improve this further, the
method will be extended to a two-phase fluid flow model, in which
these boundary conditions will not be needed any more.

The method has been validated using two kinds of simulations.
The first simulation is a dambreak simulation with a box in the
flow. Time series of pressure and water height have been com-
pared with measurements from MARIN. The results are satisfy-
ing, especially when considering that the flow is very violent. The
global behaviour of the fluid is very much the same. The second
kind of validation consists of water entry and exit of wedges and
cylinders. The development of the free surface has been com-
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Figure 16: Snapshots of cylinder exit at t=0.9 seconds and t=1.06
seconds, with exit velocity V=1 m/s

pared with experimental results, where a good comparison has
been found. Also the jets appearing at the sides of the wedges
and cylinders are resolved by COMFLOW, although the details of
the spray are not reproduced. Using a finer grid gives a large im-
provement for the reproduction of the jets. The hydrodynamic
forces during the impact of a cylinder entering the water have
been compared with experiments and theory, which show a rather
good agreement.

The next step in the validation of the method will be to simu-
late green water due to large waves which flow over the deck of a
floating vessel. In the coming years, the method will be extended
with a coupling to an outer domain where waves are generated
using a much cheaper diffraction code. In this way, the CoMm-
FLOW domain can be limited to the close surroundings of the
places of impact.
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