

 University of Groningen

SC@RUG 2004 proceedings
Smedinga, Rein; Terlouw, Jan

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Smedinga, R., & Terlouw, J. (Eds.) (2004). SC@RUG 2004 proceedings: 1st Student Colloquim 2003-
2004. Rijksuniversiteit Groningen. Universiteitsbibliotheek.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 13-02-2023

https://research.rug.nl/en/publications/c226d813-c87e-45a0-8026-7dff637dc048

Proceedings 1st Student Colloquim 2003-2004
Computing Science

University of Groningen

Rein Smedinga Jan Terlouw

19 and 20 January

2 Proceedings 1st Student Colloquim 2003-2004Computing ScienceUniversity of Groningen

ISBN: 90-367-2126-1
Publisher: Bibliotheek der R.U.
Title: Proceedings 1st Student Colloquim 2003-2004
Computing Science, University of Groningen
NUR-code: 980

Introduction

StudColl is a course that master students in computing science follow in the first
year of their master study at the University of Groningen.

In the academic year 2003-2004 StudColl was organized for the first time as
a conference. Students wrote a paper, participated in the review process, gave a
presentation and were session chair during the conference.

The organizers Rein Smedinga and Jan Terlouw would like to thank all col-
leagues, who cooperated in this StudColl by collecting sets of papers to be used
by the students and by being expert reviewers during the review process. They
would also like to thank Angeniet Kam and Yvette Meinema from the Faculty of
Arts for their help in organising this course.

In these proceedings all accepted papers are published. One chapter is devoted
to organizational matters, list of participants et cetera.

Rein Smedinga
Jan Terlouw

3

4 Proceedings 1st Student Colloquim 2003-2004Computing ScienceUniversity of Groningen

Organizational matters

StudColl 2004 was organized as follows. Students were expected to work in
teams, consisting of two persons. Angeniet Kam and Yvette Meinema of the
Faculty of Arts gave an introductory lecture about general aspects of presentation
techniques. After this, the student teams could choose between 15 sets of papers,
that were made available through Nestor, the digital learning environment of the
university. Each set of papers consisted of three papers about the same subject
(within Computing Science). Soms sets of papers contained conflicting meanings.
Students were instructed to write a survey paper about this subject including the
different approaches in the given papers. The paper should also include ideas and
conclusions about the subject students had developed themselves.

After submission of the papers individual students were assigned one paper
to review using a standard review form (see Appendix A). The colleagues who
had provided the set of papers were also asked to fill in such a form. Thus, each
paper was reviewed three times. Each review form was made available to the
authors of the paper through Nestor.

All papers could be rewritten and resubmitted, independent of the conclusions
from the review. After resubmission each reviewer was asked to rereview the same
paper and to conclude whether the paper had improved. Rereviewers could accept
or reject a paper. All accepted papers can be found in these proceedings. All
students were asked to present their paper at the conference.

Students were graded both on the writing process, the review process and the
presentation. Writing and rewriting counted for 50% (here we used the grades
given by the reviewers and the rereviewers), the review process itself for 15% and
the presentation for 35%.

On January 19th and 20th, the actual conference took place. Of each writing
team one author presented the results on Monday, the other presented the results
on Tuesday. Both days, we had seven presentations. Six papers were accepted to
be published in these proceedings.

5

6 Proceedings 1st Student Colloquim 2003-2004Computing ScienceUniversity of Groningen

Day 1: monday January 19th, 2004

List of participants

Eldering, B.
Es, E. van der
Neeteson, D.P.
Maneschijn, N.A.
Simonides, B.J.
Slagter, R.
Westerhof, A.C.

Program

9:00-9:10 opening
9:10-9:50 Simonides, B.J.

The many definitions of computability
chair: Neeteson, D.P.

9:50-10:30 Slagter, R.
Making LR Parsing Easier
chair: Maneschijn, N.A.

10:30-11:00 coffee break
11:00-11:40 Westerhof, A.C.

A survey of Bridging the Gab Between SE and HCI
chair: Eldering, B.

11:40-12:20 Maneschijn, N.A.
An overview of several noise removal methods
chair: Westerhof, A.C.

12:20-13:20 lunch break
13:20-14:00 Es, E. van der

Introduction to various color segmentation methods and their ap-
plications
chair: Simonides, B.J.

14:00-14:40 Neeteson, D.P.
ERP: Does it live up to its promises?
chair: Slagter, R.

14:40-15:20 paper is not accepted
15:20-15:30 closing

Organizational matters 7

Day 2: tuesday January 20th, 2004

List of participants

Hofstra, M.
Kelder, M.
Noorlander, G.
Rossing, R.
Schotanus, A.
Starre, L.J. van der
Visser, W.T.

Program

9:00-9:10 opening
9:10-9:50 Schotanus, A.

ERP: Does it live up to its promises?
chair: Kelder, M.

9:50-10:30 Rossing, R.
The many definitions of computability
chair: Hofstra, M.

10:30-11:00 coffee break
11:00-11:40 Visser, W.T.

Introduction to various color segmentation methods and their ap-
plications
chair: Noorlander, G.

11:40-12:20 Starre, L.J. van der
Making LR Parsing Easier
chair: Schotanus, A.

12:20-13:20 lunch break
13:20-14:00 Noorlander, G.

An overview of several noise removal methods
chair: Visser, W.T.

14:00-14:40 Kelder, M.
A survey of Bridging the Gab Between SE and HCI
chair: Rossing, R.

14:40-15:20 paper is not accepted
15:20-15:30 closing

8 Proceedings 1st Student Colloquim 2003-2004Computing ScienceUniversity of Groningen

Contents

Making LR Parsing Easier 11
Robert Slagter,
Laurens van der Starre
An overview of several noise removal methods 21
Gijs Noorlander,
Niels Maneschijn
A Survey of Bridging the Gap Between SE and HCI 33
Alex Westerhof,
Martijn Kelder
Introduction to various color segmentation methods and their applications 41
Wicher Visser,
Egbert van der Es
The many definitions of computability 51
Binne Simonides,
Rowan Rossing
ERP: Does it live up to its promises? An overview of implementation
strategies and system disadvantages

63

Daniel Neeteson,
Auke Schotanus

Appendix 69
review forms

9

10 Proceedings 1st Student Colloquim 2003-2004Computing ScienceUniversity of Groningen

Making LR Parsing Easier

Laurens van der Starre, csg0017@wing.rug.nl
Robert Slagter, csg0057@wing.rug.nl

University of Groningen
The Netherlands

Submitted for the StudColl2004 conference

Keywords: LL-parsing, LR-parsing, top-down, bottom-up, recursive descent, push-down, sets-of-
items, Pepper, 1NF, 2NF, 3NF, differences, alternative, easier, combining, comparison.

1 Abstract

The two most commonly used parsing techniques, LL and LR parsing, are generally considered to
be entirely different approaches to parsing. In this paper we show that the methods are actually
not that different, using a transformation of the underlying grammar. The disadvantages and
advantages of this alternative approach are then discussed.

2 Introduction

LL and LR parsing are almost always described as two different parsing methods. LL parsing is
often associated with terms like recursive descent, top-down approach and ease of construction. LR
parsing on the other hand is more often found to be difficult to understand, and is associated with
push-down automata and a bottom-up approach. In this paper we will show that in fact the “gap”
between the two parsing methods is not that big, by creating a top-down approach (classically
associated with LL parsing) for LR parsing. A number of methods for constructing such a parser
have been devised (see for example [Pep99], [SB95], [Pij93], [Bea82]), but we will follow the approach
found in [Pep99]. We will then evaluate whether parsing LR grammars using LL techniques is a
better approach to LR parsing than the classical approach, using push-down automata.

3 Short recapitulation and definitions

The reader is assumed to have some basic knowledge on compiler construction and formal grammars,
see for example [GBJL00]. We will shortly recapitulate some definitions we will need in this paper.

11

Definition 1 (Context-free Grammar) A context-free grammar (CFG) is a four-tuple (T ,N , S,P),
where T is the set of terminals, N the set of non-terminals, S ∈ N the start symbol and P the set
of production rules P ⊆ N × (N ∪ T)∗.

Definition 2 (LL(k)-grammar) Let G be a CFG, k is a natural number.

S
∗=⇒lm uY α =⇒lm uβα

∗=⇒lm ux and S
∗=⇒lm uY α =⇒lm uγα

∗=⇒lm uy

k-level prefixes of x and y coincide. This implies β = γ. In words: the choice of the alternatives
for the current non-terminal Y for the fixed left context u is uniquely determined by the first k
symbols. This definition was taken and modified from [WM95].

Definition 3 (LR(k)-grammar) Let G be a CFG, G is LR(k) from the conditions:

1. S
∗=⇒rm u1A1v1 =⇒rm u1x1v1

2. S
∗=⇒rm u2A2v2 =⇒rm u2x2v2 = u1x1v3

3. k-level prefixes of v1 and v3 coincide.

One can always deduce u1 = u2, A1 = A2, x1 = x2, v2 = v3. This definition was taken from [Tom].

In the remainder of this paper, we use capital characters (e.g. S, N, Z5) as non-terminals and
small characters (e.g. a, b, k) as terminals.

4 The classical view of LL and LR parsing

4.1 LL Parsing

LL-parsing is classically associated with a top-down approach and a recursive descent implemen-
tation. Parsers of this kind predict the input based on the production rules. This gives an almost
“natural” conversion from a production rule to a procedure which implements the parser for that
particular production rule. For example, consider the rule A → abC. In a programming language,
this will often be implemented as a combination of matching and recursive calls:

procedure procA();
begin
match(’a’);
match(’b’);
procC();

end;

As one can see there is a clear mapping from (non)terminals to code fragments:

• Every terminal t maps to a call to match(t).

• Every non-terminal N maps to a call to a procedure procN.

An LL-parsing of a grammar leads to a pre-order traversal of the parse tree, and grammars which
have left-recursive production rules cannot be parsed by a LL-parser. If we look at a schematic
view of the parse tree construction, we see that the tree is built up from the top, traversing down
to the bottom, as shown in figure 1.

12

E T

E

+

T T *

a b

c

F

F Tree

Figure 1: Parse tree

4.2 LR Parsing

LR parsing is much more powerful than LL parsing, as it also accepts left-recursive grammars.
Unfortunately, creating a LR parser is more difficult, less “natural” than creating an LL parser.
LR parsers do not predict the input based on production rules, instead they continuously search
for non-terminals to which the input can be reduced. In order to do this, a table-driven parser is
created, in combination with a stack. The table tells the parser which state to go to next, based
upon the current state and the symbol on top of the stack. The stack on the other hand is used to
push symbols and states on. The order in which a parse tree is traversed in LR parsing is post-order.
Shown in figure 2 is a schematic view of a parse tree contruction. The tree is constructed from
bottom to top.

a

E

T

F F

a

+

T

E

T * F

c

Tree

Figure 2: Parse tree

13

5 Combining LL and LR parsing

What we would like to have is a parser with the power of an LR parser, but which is constructed
just as easy as an LL parser. Because LL and LR have for a long time been thought of as two
different methods, this was never thought of as a possibility. But research in recent history has
shown otherwise, and in fact there is a relationship between LL and LR parsing. The strategy is to
add extra information to the LL parse tree or grammar and to obtain by using that strategy the LR
parse order and power, while retaining the easiness of an LL implementation. There are a number
of methods available but the one we will describe is explained in [Pep99]. The idea is to convert
the grammar to a normal form which is better suited for parsing. The first step in this process is
to add rule numbers, that is to add special non-terminals ©i , i ∈ {1, 2, 3, . . .}. Each alternative
of each production rule gets a unique non-terminal ©i . Note that these non-terminals derive the
empty string (ε), and are used only internally in the parser. Because these non-terminals derive ε,
the language which the grammar generates, does not change compared to the original grammar.
The grammar is then consecutively transformed to 1NF, 2NF and 3NF, again preserving equality
between the grammars. The definitions are as follows:

Definition 4 (1NF) A CFG is said to be in 1NF, if every production is of one of the three forms:
X → Y Z, X → Y©i or X → ©i , with X ∈ N ∪ Z, Z ∈ Z, Y ∈ N ∪ T . Z is a set of auxiliary
non-terminals.

Definition 5 (2NF) A CFG is said to be in 2NF, if every production is of one of the two forms:
Z → tz ∧ |z| ≥ 1 or Z → ©i z ∧ |z| ≥ 0, with Z ∈ Z, t ∈ T , z ∈ (Z ∪ A)∗. A is the set of action
symbols ©i .

Definition 6 (3NF) A CFG is said to be in 3NF, if it is in 2NF and there are no two productions
Z → xu|xv the right-hand sides of which start with the same symbol.

So in short: 1NF reduces the length of each alternative of each production rule to a maximum of
two symbols, 2NF converts the original grammar to a grammer whose heads of the production rules
consist only of auxiliary non-terminals (set Z), and 3NF ensures that no two alternatives of the
same production rule start with the same symbol. Different techniques can be applied to convert
a grammar to 1NF, 2NF and 3NF (see for example [Pep99]), and we will use some of them in the
next section, where we will compare a “standard” LR parser with a parser constructed using a
3NF-grammar.

6 Comparison

In this section we will construct an LR parser using both the classical and the alternative method as
explained in section 5. We will then compare the two resulting parsers and come to the conclusion
that the parsers are equivalent. The grammar we will use throughout the example is the following
context-free grammar G :
A → aB
B → b
B → AC
C → c

14

6.1 Construction using the classical method

In order to create the parser, we calculate the states needed using the “Sets Of Items” method, which
is (for example) described in [GBJL00]. The result of this algorithm is presented in table 1, and
the corresponding ACTION/GOTO definitions in table 2. Note that we have added the production
S → A ⊥, where the symbol ⊥ indicates a succesful parse. The start symbol of the grammar is S.
Fortunately we don’t have any reduce/reduce or shift/reduce conflicts (so the grammar is LR(0)).
We have kept the grammar this simple deliberately to make the example easy to understand.

State 0: Shift State 1: Accept State 2: Shift
S → .A ⊥ (Goto 1) S → A. ⊥ A → a.B (Goto 3)
A → .aB (Goto 2) B → .b (Goto 4)

B → .AC (Goto 5)
A → .aB (Goto 2)

State 3: Reduce State 4: Reduce State 5: Shift
A → aB. B → b. B → A.C (Goto 6)

C → .c (Goto 7)
State 6: Reduce State 7: Reduce
B → AC. C → c.

Table 1: Sets of Items for the push-down automaton for G.

State a b c A B C Action
0 2 1 Shift
1 Accept
2 2 4 5 3 Shift
3 Reduce using A → aB
4 Reduce using B → b
5 7 6 Shift
6 Reduce using B → AC
7 Reduce using C → c

Table 2: Combined ACTION/GOTO table for the push-down automaton for G.

6.2 Construction using the alternative method

Adding rule numbers

The first step is to add rule numbers to the production rules of G. Doing so yields:
A → aB©1
B → b©2
B → AC©3
C → c©4

15

Converting to 1NF

To ensure that the grammar conforms to 1NF, we make sure that the length of each alternative of
each production rule is at most 2. We therefore introduce a number of auxiliary non-terminals Zi:
A → aZ1

B → b©2
B → AZ2

C → c©4

Z0 → A©0
Z1 → B©1
Z2 → C©3

Note that we added a ©0 symbol and a corresponding production rule (Z0 → A©0). The ©0
symbol is used to indicate a succesful parse, just like we did in the classical construction using the
⊥ symbol. The start symbol in this grammar is Z0.

Converting to 2NF

In this second conversion step we are going to use unfolding to create a grammar in which the heads
of the production rules consist only of auxiliary symbols Zi. Unfolding is defined as follows:

Definition 7 (Unfolding) The unfolding of a non-terminal N is accomplished by replacing every
occurence of N in the right-hand sides of other production rules in the grammar by the right-hand
side of N .

We start by unfolding all applications of C:
Z2 → c©4©3

Continuing by unfolding all applications of A we get:
Z0 → aZ1©0
B → b©2
B → aZ1Z2

Finally, unfolding all applications of B yields:
Z1 → b©2©1
Z1 → aZ1Z2©1

We throw away the original and intermediate production rules for S, A, B and C, and also the
intermediate Zi production rules, keeping only the final production rules. We have now transformed
the original grammar G to G’, consisting only of auxiliary symbols Zi:
Z0 → aZ1©0
Z1 → b©2©1
Z1 → aZ1Z2©1
Z2 → c©4©3

16

Converting to 3NF

Note that G’ is, by definition 6, already in 3NF, because no two alternatives of any production
rule start with the same symbol. So we don’t need this third conversion step. In case there are
alternatives of a production rule A which do start with the same symbol, we can apply full left
factoring (as defined in definition 8) before the 2NF construction. After all non-terminals have
been unfolded (as described by definition 7), we apply full left factoring to all terminals in all
productions. By applying this method, we get a grammar which conforms to 3NF (definition 6).

Definition 8 (Left factoring) Let G be a CFG that contains one or more productions of the form
as seen in the table below (where some of the wi may be empty). Then left factoring extracts the
common part v into a new production using a new nonterminal Z.

A → vw1 A → vZ
A → vw2 Z → w1

A → vw3 ; Z → w2

...
...

A → vwn Z → wn

Full left factoring is defined as left factoring with subsequent unfolding of the leading non-terminal
(if such a non-terminal is generated).

In the next subsection we are going to compare a recursive descent parser for G’ to the standard
LR(0)-parser (push-down automaton) for G’.

4 3 8 7
b B c C

6 6 6 5 5 5 3
a a a A A A B

2 2 2 2 2 2 2 2 1
a a a a a a a a A

0 0 0 0 0 0 0 0 0 0

Figure 3: Sequence of stack contents when parsing aabc using the push-down automaton for G.

6.3 Comparison of the classical and the alternative parser

First consider the push-down automaton for G. It has a stack on which it pushes states and symbols
while searching for a rule to reduce the symbols on the stack to. We will use the standard push-
down automaton algorithm from [GBJL00]. When we parse the string aabc we get the sequence of
stack contents which is shown in figure 3 (from left to right, and the top of the stack is at the top
of the picture). The parse tree as constructed by this push-down automaton is shown step by step
in figure 4. Consider now the alternative, recursive descent parser. This parser is implemented as
a set of procedures which recursively call each other as defined by the production rules (see section
4.1).

17

a a b

B

A

a a b

B

A

c

C

a a b

B

A

c

C

B

a a b

B

A

c

C

B

a a a a a b a a b

B

a a b

B

A

c

A

Figure 4: The parse tree constructed by the push-down automaton for G.

We can view the calls from the various procedures as a stack, and for parsing the string aabc, this
stack initially looks like:
Z0(aabc)

This means, procedure Z0 is called with input aabc. When we continue tracing the procedure
calls, we get the following sequence of stack contents:
aZ1 ©0 (abc)
aaZ1Z2 ©1 ©0 (bc)
aab©2 ©1 Z2 ©1 (c)
aab©2 ©1 c©4 ©3 ©1 ©0

We can see the action symbols are still in the string resulted by this parser. Remember that
the action symbols derive ε (the empty string), so actually the parsed string is aabc, which is, of
course, correct. But the action symbols carry more information, they indicate which production
rule from G was used to derive the preceeding terminal symbol(s). Using the action symbols, we
can construct a parse tree. For example, when we have parsed the b from the input string, the
procedure for the action symbol ©2 gets called. The symbol tells us “Reduce using B → b”, so
we can reduce the b we’ve just parsed to B, and continue parsing. The next procedure which gets
called is the one for ©1 , which says “Reduce using A → aB”. It turns out that the way the parse
tree is constructed using this method, and the decisions the parser makes, are exactly the same as
the push-down automaton for G, so the resulting parse tree looks exactly like the one in figure 4.

7 Theoretical Results

We have shown in our example that a traditional push-down parser for G, and a recursive descent
parser for G′, are equivalent in their computation processes. Formally, this is defined in [Pep99] as
the “Main theorem”:

Theorem 1 (Main theorem) Consider a grammar G and its transformed 3NF version G′. The
original grammar is LR(k) if-and-only-if the transformed grammar G′ is LL(k).

Note that the reverse also holds: a non-LR(k) grammar will be non-LL(k) when transformed. In
[Pep99] this theorem is proved, but we only list the most important aspects here:

18

• There is a strong relationship between LL and LR parsers.

• The resulting parser has the power of a LR parser, but (almost) the efficiency of a LALR
parser.

A problem with the approach in [Pep99] is that the 3NF construction in its standard form does not
always terminate. However solutions are described in [Pep99].

8 Conclusion

In the previous sections, we have shown that a LR(k) grammar can be parsed with LL(k) ease. The
resulting parser is almost as efficient as a LALR(k) parser. The example we used in the section 6
is very simple, as its grammar is LR(0). But the parsing method actually works for all LR(k) and
LL(k) context-free grammars. Special look-ahead non-terminals can be added (just like the action
symbols ©i), which derive ε as well. Error signalling/recovery can be added also.

We believe this method for LR parsing using LL techniques is easier than the classical approach,
since each step in the parser creation is simple and yields a natural implementation from grammar
to code. Also, applying the grammar transformation algorithms is less time consuming than first
using the “Sets of Items”-method, deriving the ACTION/GOTO table and finally creating a table-
driven parser for that ACTION/GOTO table.

But can we forget about the “Sets of Items”-method? We cannot, because scanners (also very
important in compiler construction) also rely on a (modified) version of this technique. So the
method remains important. Another problem with the alternative method is the fact that the
grammar transformation procedures may not always terminate. Although solutions have been
found, one might prefer to use the “Sets of Items” construction, which always does terminate.

References

[Bea82] John C. Beatty. On the Relationship Between the LL(1) and LR(1) Grammars. Journal
of the Association for Computing Machinery, 29(4), 1982.

[GBJL00] Dick Grune, Henri E. Bal, Ceriel J.H. Jacobs, and Koen G. Langendoen. Modern Com-
piler Design. John Wiley & Sons, 2000.

[Pep99] Peter Pepper. LR Parsing = Grammar Transformation + LL Parsing. Technical Report,
(99-5), 1999.

[Pij93] Wim Pijls. Unifying LL and LR parsing. 1993.

[SB95] James P. Schmeiser and David T. Barnard. Producing a Top-Down Parse Order with
Bottom-Up Parsing. Technical Report, (95-378), 1995.

[Tom] Mati Tombak. Formal languages and compilers.

[WM95] Reinhard Wilhelm and Dieter Maurer. Compiler Design. Addison-Wesley, 1995.

19

20

An overview of several types of noise removal

Gijs Noorlander & Niels Maneschijn

jan 6th, 2004

1 Abstract

After a short introduction into the characteristics of noise, an overview is given
of several methods of noise reduction, with the purpose of improving upon edge
detection. Also, the possibility of suppressing the effects of noise directly in the
edge detection process is explored.

2 Introduction

The goal of this article is to explore different ways of removing noise from images,
with the intended purpose of improving upon methods of edge detection.
Images and logos can be represented in many different ways, depending on the
technique used to print the image. Normally we are used to see images captured
with a camera. These images have a very large amount of (colour) shades. Some
printing techniques however are not suitable for displaying shades.
When such a technique is to be used, you have to convert your image to an image
containing only the available shades (this will often be a small number, like two
or three shades). Printing techniques like these are often used to print on very
large surfaces, like a flag. Therefore the image should have an almost infinite
resolution, which can be represented by a vector format. A vector describes the
outer lines of a surface, used in the image.
To make a graphical designer’s work easier, one could try using the computer to
detect the different edges and surfaces automatically and generate the vectors
describing the image using an automated process.
Figure (1) is an example to show the difference between the human interpreta-
tion of an image and how the computer will trace the same image. The manually
traced image will often be significantly smaller in the amount of objects used
and therefore faster to process.

original manually traced automated trace automated trace
320*200 pixels 20 vector objects 80 vector objects 135 vector objects

Figure 1: Different approaches for tracing an image

21

In reality the source picture may contain a lot of detail and noise which can
make the resulting vector-image too complex to handle (e.g. the resulting vec-
tor image may contain as many as 100.000 objects, which have to be redrawn
each time the image is edited).

One way of removing noise from images is using connected operators for de-
tecting area closings and openings, for example using the Max-Tree method. In
this article, we will also suggest other methods for removing noise. After an
overview of these methods, we will discuss how edges are detected, and how the
effects of noise can be minimized directly by choosing the right parameters for
the edge detection.

3 What is noise?

To understand the different methods of noise removal, one has to know some
characteristics of noise.
A simple description of noise is “Random fluctuations in a stream of data”. It
can be characterized by both its amplitude and its spectral distribution. This
spectral distribution can be constant in the whole frequency band (white noise),
or it can be more apparent in certain frequency bands.

There are several properties of noise, which together characterisize a specific
noise:

• Additive noise Random noise n(i, j) added to pixel value I(i, j) yields
a new image
Î(i, j) = I(i, j) + n(i, j)
The noise n(i, j) is often zero-mean and described by its variance σ2

n. The
impact of the noise on the image is often described by the signal-to-noise

ratio (SNR), which is given by SNR= σs

σn
=

√
σ2

f

σ2
n
− 1 where σ2

s and σ2
f

are the variances of the true image and the recorded image, respectively.

• Gaussian noise Each pixel in the noisy image is the sum of the true pixel
value and a random, Gaussian distributed noise value. This noise value

has a zero-mean. The Gaussian distribution is p(x) = 1
σ
√

2π
e−

x2

2σ2

• Impulsive noise - also called peak, spot, or salt and pepper noise, caused
by transmission errors, faulty image sensor sites, etc.
The corrupted pixels are either set to the maximum value (which looks
like snow in the image) or have single bits flipped over. In some cases,
single pixels are set alternatively to zero or to the maximum value, giving
the image a ‘salt and pepper’-like appearance. Unaffected pixels always
remain unchanged. The noise is usually quantified by the percentage of
pixels which are corrupted.

These types of noise are considered to be independent of the image-data.

22

Original Gaussian noise (σ2 = 20) Impulsive noise (σ2 = 20)

Figure 2: Examples of Gaussian- and Impulsive noise

4 Noise reduction techniques

To suppress this noise, several noise reduction techniques are available. We will
discuss a few common ones in short.

4.1 Connected Operators using the Max-Tree method

Description: The idea of connected operators is to divide the objects in an
image in zones with the same intensity value or colour, and sorting these zones
according to their sizes. This way, the structure of objects shown in a picture
can be reconstructed. By removing the smallest objects it is possible to remove
noise. A convenient method for sorting is using a tree, which is used in the
’Max-Tree’ method.

How it works: The datastructure used in this method is a tree. In this
tree, groups of pixels are inserted, in such a way that the largest object, or
zone of pixels of (approximately) the same colour, is at the root of the tree.
The zones are defined as groups of pixels having intensities within a certain
(usually small) threshold. The image can be reconstructed by reading back all
zones, starting from the root of the tree, and adding these to the target image.
This way, smaller objects are painted on top of the background. Because the
smallest objects, including these consisting of noise, are located at the leaves of
the tree it is easily possible to remove these objects by removing the leaves of
the tree representing objects beneath a certain size threshold.This method of
noise removal is mainly applicable for impulsive noise.[11][12][13]

4.2 Conservative Smoothing

Description:
Conservative smoothing is a noise reduction technique that derives its name
from the fact that it employs a simple, fast filtering algorithm that sacrifices
noise suppression power in order to preserve the high spatial frequency detail
(e.g. sharp edges) in an image. It is explicitly designed to remove noise spikes
— i.e. isolated pixels of exceptionally low or high pixel intensity (e.g. salt and
pepper noise) and is, therefore, less effective at removing additive noise (e.g.
Gaussian noise) from an image.[4][9][14]

How it works:
Like most noise filters, conservative smoothing operates on the assumption that
noise has a high spatial frequency and, therefore, can be attenuated by a local

23

operation which makes each pixel’s intensity roughly consistent with those of
its nearest neighbours. However, whereas mean filtering accomplishes this by
averaging local intensities and median filtering by a non-linear rank selection
technique, conservative smoothing simply ensures that each pixel’s intensity is
bounded within the range of intensities defined by its neighbours.

4.3 Crimmins Speckle Removal

Description:
Crimmins Speckle Removal[5] reduces speckle from an image using the Crimmins
complementary hulling algorithm. The algorithm has been specifically designed
to reduce the intensity of salt and pepper noise in an image. Increased iterations
of the algorithm yield increased levels of noise removal, but also introduce a
significant amount of blurring of high frequency details.

How it works:
Crimmins Speckle Removal works by passing an image through a speckle re-
moving filter which uses the complementary hulling technique (raising pixels
that are darker than their surrounding neighbours, then complementarily low-
ering pixels that are brighter than their surrounding neighbours) to reduce the
speckle index of that image. The algorithm uses a non-linear noise reduction
technique which compares the intensity of each pixel in an image with those
of its 8 nearest neighbours and, based upon the relative values, increments or
decrements the value of the pixel in question such that it becomes more in line
with its surroundings. The noisy pixel alteration (and detection) procedure
used by Crimmins is more complicated than the ranking procedure used by the
non-linear median filter. It involves a series of pairwise operations in which the
value of the ‘middle’ pixel within each neighbourhood window is compared, in
turn, with each set of neighbors (N-S, E-W, NW-SE, NE-SW) in a search for
intensity spikes.

4.4 Gaussian smoothing

Description:
The Gaussian smoothing operator is a 2-D convolution 1 operator that is used
to ‘blur’ images and remove detail and noise. In this sense it is similar to the
mean filter, but it uses a different kernel that represents the shape of a Gaussian
(‘bell-shaped’) hump. This kernel has some special properties which are detailed
below.[6][7]

How it works:
The idea of Gaussian smoothing is to use this 2-D distribution as a ‘point-
spread’ function, and this is achieved by convolution. Since the image is stored
as a collection of discrete pixels we need to produce a discrete approximation
to the Gaussian function before we can perform the convolution. In theory, the
Gaussian distribution is non-zero everywhere, which would require an infinitely
large convolution kernel, but in practice it is effectively zero at more than about
three standard deviations from the mean, and so we can truncate the kernel at

1Convolution provides a way of ‘multiplying together’ two arrays of numbers, generally of
different sizes, but of the same dimensionality, to produce a third array of numbers of the
same dimensionality. This can be used in image processing to implement operators whose
output pixel values are simple linear combinations of certain input pixel values.

24

this point. Figure (3) shows a suitable integer-valued convolution kernel that
approximates a Gaussian with a sigma of 1.0.

1
273

1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

Figure 3: Discrete approximation to Gaussian function with σ = 1.0

4.5 Mean filtering

Description:
Mean filtering is a simple, intuitive and easy to implement method of smoothing
images, i.e. reducing the amount of intensity variation between one pixel and
its neighbours. It is often used to reduce noise in images.

How it works:
The idea of mean filtering is simply to replace each pixel value in an image with
the mean (‘average’) value of its neighbors, including itself. This has the effect of
eliminating pixel values which are unrepresentative of their surroundings. Mean
filtering is usually thought of as a convolution filter. Like other convolutions it is
based around a kernel, which represents the shape and size of the neighborhood
to be sampled when calculating the mean. Often a 3x3 square kernel is used,
as shown in Figure 4, although larger kernels (e.g. 5x5 squares) can be used
for more severe smoothing. (Note that a small kernel can be applied more than
once in order to produce a similar but not identical effect as a single pass with
a large kernel).

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

Figure 4: 3x3 averaging kernel often used in mean filtering

Computing the straightforward convolution of an image with kernel in figure
(4) carries out the mean filtering process.

25

Common variants:
Variations on the mean smoothing filter discussed here include Threshold Av-
eraging in which smoothing is applied subject to the condition that the center
pixel value is changed only if the difference between its original value and the
average value is greater than a preset threshold. This has the effect that noise
is smoothed with a less dramatic loss in image detail.[14] [6] [4]

5 Edge detectors

It is also possible to directly remove noise when detecting edges. This way an
eventual first noise removal step can be skipped.
To understand how noise can be removed while performing edge detection, it
is important to know how edge detection works. In this section we will discuss
the principle of edge detection, followed by the implementation using a ’zero
crossing detector’. At the end of the section we will discuss how the smoothing
parameters of the zero crossing detector can be used to directly remove the ef-
fect of noise.

Edges are regions in the image with strong intensity contrast. Since edges
often occur at image locations representing object boundaries, edge detection is
extensively used in image segmentation when we want to divide the image into
areas corresponding to different objects. Representing an image by its edges
has the further advantage that the amount of data is reduced significantly while
retaining most of the image information.
Since edges consist of mainly high frequencies, we can, in theory, detect edges
by applying a highpass frequency filter in the Fourier domain or by convolving
the image with an appropriate kernel in the spatial domain. In practice, edge
detection is performed in the spatial domain, because it is computationally less
expensive and often yields better results.
Since edges correspond to strong illumination gradients, we can highlight them
by calculating the derivatives of the image. This is illustrated for the one-
dimensional case in Figure 1.

Figure 5: 1st and 2nd derivative of an edge illustrated in one dimension

We can see that the position of the edge can be estimated with the maximum

26

of the 1st derivative or with the zero-crossing of the 2nd derivative. Therefore
we want to find a technique to calculate the derivative of a two-dimensional
image. For a discrete one-dimensional function f(i), the first derivative can be
approximated by d f(i)

d(i) = f(i + 1) − f(i)
Calculating this formula is equivalent to convolving the function with [-1 1].
Similarly the 2nd derivative can be estimated by convolving f(i) with [1 -2 1].
Different edge detection kernels which are based on the above formula enable
us to calculate either the 1st or the 2nd derivative of a two-dimensional image.
There are two common approaches to estimate the 1st derivative in a two-
dimensional image, Prewitt compass edge detection and gradient edge detection.
Prewitt compass edge detection involves convolving the image with a set of
(usually 8) kernels, each of which is sensitive to a different edge orientation.
The kernel producing the maximum response at a pixel location determines
the edge magnitude and orientation. Different sets of kernels might be used:
examples include Prewitt, Sobel, Kirsch and Robinson kernels.
Gradient edge detection is the second and more widely used technique. Here,
the image is convolved with only two kernels, one estimating the gradient in
the x-direction, Gx, the other the gradient in the y-direction, Gy. The absolute

gradient magnitude is then given by |G| =
√

G2
x + G2

y and is often approximated

with |G| = |Gx| + |Gy|.
In many implementations, the gradient magnitude is the only output of a gra-
dient edge detector, however the edge orientation might be calculated with
θ = arctan(Gy

Gx
) − 3π

4 .
The most common kernels used for the gradient edge detector are the Sobel[2],
Roberts Cross[1] and Prewitt[3] operators. After having calculated the magni-
tude of the 1st derivative, we now have to identify those pixels corresponding
to an edge. The easiest way is to threshold the gradient image, assuming that
all pixels having a local gradient above the threshold must represent an edge.
An alternative technique is to look for local maxima in the gradient image, thus
producing one pixel wide edges. A more sophisticated technique is used by
the Canny edge detector. It first applies a gradient edge detector to the image
and then finds the edge pixels using non-maximal suppression and hysteresis
tracking.
An operator based on the 2nd derivative of an image is the Marr edge detector,
also known as zero crossing detector. Here, the 2nd derivative is calculated using
a Laplacian of Gaussian (LoG) filter. The Laplacian has the advantage that it is
an isotropic measure of the 2nd derivative of an image, i.e. the edge magnitude is
obtained independently from the edge orientation by convolving the image with
only one kernel. The edge positions are then given by the zero-crossings in the
LoG image. The scale of the edges which are to be detected can be controlled
by changing the variance of the Gaussian.
A general problem for edge detection is its sensitivity to noise, the reason being
that calculating the derivative in the spatial domain corresponds to accentuating
high frequencies and hence magnifying noise. This problem is addressed in the
Canny and Marr operators by convolving the image with a smoothing operator
(Gaussian) before calculating the derivative.

27

5.1 Edge detection using a Zero Crossing Detector

(or Marr edge detector, Laplacian of Gaussian (LoG) edge detector)
Description:

The zero crossing detector looks for places in the Laplacian of an image where
the value of the Laplacian passes through zero — i.e. points where the Lapla-
cian changes sign. Such points often occur at ‘edges’ in images — i.e. points
where the intensity of the image changes rapidly, but they also occur at places
that are not as easy to associate with edges. It is best to think of the zero
crossing detector as some sort of feature detector rather than as a specific edge
detector. Zero crossings always lie on closed contours, and so the output from
the zero crossing detector is usually a binary image with single pixel thickness
lines showing the positions of the zero crossing points.

The starting point for the zero crossing detector is an image which has been
filtered using the Laplacian of Gaussian filter. The zero crossings that result
are strongly influenced by the size of the Gaussian used for the smoothing stage
of this operator. As the smoothing is increased, fewer and fewer zero crossing
contours will be found, and those that do remain will correspond to features of
larger and larger scale in the image.[8]

How it works:
The core of the zero crossing detector is the Laplacian or Gaussian filter, some
knowledge of that operator is assumed here. As described above, ‘edges’ in
images give rise to zero crossings in the LoG output. For instance, Figure (6)
shows the response of a 1-D LoG filter to a step edge in the image.

Figure 6: Response of 1-D LoG filter to a step edge. The left hand graph shows
a 1-D image, 200 pixels wide, containing a step edge. The right hand graph
shows the response of a 1-D LoG filter with a Gaussian standard deviation of 3
pixels.

The behavior of the LoG zero crossing edge detector is largely governed by the
standard deviation of the Gaussian used in the LoG filter. The higher this value
is set, the more small features will be smoothed out of existence, and hence fewer
zero crossings will be produced. Hence, this parameter can be set to remove
unwanted detail or noise as desired. The idea that at different smoothing levels
different sized features become prominent is referred to as ‘scale’.

28

5.2 Effects of smoothing and usage for noise reduction

We illustrate this effect using figure 7(a), which contains detail at a number of
different scales.

(a) original (b) LoG σ2 =
1.0

(c) LoG σ2 =
2.0

(d) LoG σ2 =
3.0

Figure 7: LoG filter with Gaussian σ2

Figure 7(b) is the result of applying a LoG filter with Gaussian standard de-
viation 1.0. Note that in this and in the following LoG output images, the
true output contains negative pixel values. For display purposes the graylevels
have been offset so that displayed graylevel 128 corresponds to an actual value
of zero, and rescaled to make the image variation clearer. Since we are only
interested in zero crossings this rescaling is unimportant.

(a) ZC

σ2 = 1.0 and
threshold

(b) ZC σ2 =
1.0

(c) ZC σ2 =
2.0

(d) ZC σ2 =
3.0

Figure 8: Zero crossings with Gaussian σ2

Figure 8(b) shows the zero crossings from this image. Note the large number
of minor features detected, which are mostly due to noise or very faint detail.
This smoothing corresponds to a fine ‘scale’.

Figure 7(c) is the result of applying a LoG filter with Gaussian standard devi-
ation 2.0.

Figure 8(c) shows the zero crossings. Note that there are far fewer detected
crossings, and that those that remain are largely due to recognizable edges in

29

the image. The thin vertical stripes on the wall, for example, are clearly visible.

Figure 7(d) is the output from a LoG filter with Gaussian standard deviation
3.0. This corresponds to quite a coarse ‘scale’.

Figure 8(d) is the zero crossings in this image. Note how only the strongest
contours remain, due to the heavy smoothing. In particular, note how the thin
vertical stripes on the wall no longer give rise to many zero crossings.

All edges detected by the zero crossing detector are in the form of closed curves
in the same way that contour lines on a map are always closed. The only ex-
ception to this is where the curve goes off the edge of the image.

Since the LoG filter is calculating a second derivative of the image, it is quite
susceptible to noise, particularly if the standard deviation of the smoothing
Gaussian is small. Thus, it is common to see lots of spurious edges detected
away from any obvious edges. One solution to this is to increase the smoothing
of the Gaussian to preserve only strong edges. Another is to look at the gradient
of the LoG at the zero crossing (i.e. the third derivative of the original image)
and only keep zero crossings where this is above a certain threshold. This will
tend to retain only the stronger edges, but it is sensitive to noise, since the third
derivative will greatly amplify any high frequency noise in the image.

Figure 8(a) is similar to the image obtained with a standard deviation of 1.0,
except that the zero crossing detector has been told to ignore zero crossings of
shallow slope (in fact it ignores zero crossings where the pixel value difference
across the crossing in the LoG output is less than 40). As a result, fewer spuri-
ous zero crossings have been detected. Note that, in this case, the zero crossings
do not necessarily form closed contours.

Marr[10] has suggested that human visual systems use zero crossing detectors
based on LoG filters at several different scales (Gaussian widths).

6 Conclusion

An overview is given of the characteristics of noise, and of several methods of
noise reduction. It is also demonstrated that by choosing the right parameters,
it is possible to reduce the effects of noise directly in an edge detection process.

The performance of edge detection algorithms can be substantially improved
upon. By applying noise removal techniques, the amount of detected compo-
nents can be reduced significantly. One major disadvantage of removing noise
is the loss of detail.

One has to find a trade-off between the loss of detail and the accuracy of the
edge detection. This ratio may be different for each situation, depending on the
image-data and the desired level of detail.

30

Sometimes, the detection can be improved by applying noise removal, even
though the image contains almost no noise. By doing so, it is possible to set
the level of detail found by the edge detection.
It appears the best way is still to have the image as clean as possible in the
original image, despite all the advanced noise removal techniques.

References

[1] http://www.ii.metu.edu.tr/~ ion528/demo/lectures/6/2/1/index.html.

[2] http://www.ii.metu.edu.tr/~ ion528/demo/lectures/6/2/2/index.html.

[3] http://www.ii.metu.edu.tr/~ ion528/demo/lectures/6/2/3/index.html.

[4] Boyle, R., and Thomas, R. Computer Vision: A First Course. Black-
well Scientific Publications, 32–34, 1988.

[5] Crimmins, T. The geometric filter for speckle reduction, may 1985.

[6] Davies, E. Machine vision: Theory, algorithms and practicalities, 1990.

[7] Gonzalez, R., and Woods, R. Digital Image Processing. Addison-
Wesley Publishing Company, 191, 1992.

[8] Gonzalez, R., and Woods, R. Digital Image Processing. Addison-
Wesley Publishing Company, 442, 1992.

[9] Jain, A. Fundamentals of digital image processing, 1986.

[10] Marr, D. Vision, 1982.

[11] Meijster, A., and Wilkinson, M. A comparison of algorithms for
connected set openings and closings, april 2002.

[12] Monasse, P., and Guichard, F. Fast computation of a contrast-
invariant image representation.

[13] P. Salembier, A. O., and Garrido, L. Anti-extensive connected oper-
ators for image and sequence processing, april 1998.

[14] Vernon, D. Machine vision, 1991.

31

32

A Survey of Bridging the Gap Between SE and HCI

Alex Westerhof, Martijn Kelder
University of Groningen, Department of Mathematics and Computing Science

a.c.westerhof@wing.rug.nl, m.kelder@wing.rug.nl

The goal of this paper is to give the reader a good
impression of the current state of the research to bridge the
gap between SE and HCI.

Abstract
The usability of many information systems is very poor. In
this paper we describe the gap, which is the main cause of
the lack of usability, between software engineering and
human-computer interaction. First we outline the SE and
the HCI disciplines. After that we describe the causes of
the gap. Then we show three possible methods to bridge
the gap. We discover that both SE and HCI are working to
bridge this gap. We also see that in education they are
trying to coordinate two courses on SE and HCI in order
to realize a better cooperation.

The rest of the paper is organized as follows. Section 2
outlines the software engineering discipline. Section 3
describes the human computer interaction discipline. In
section 4, we describe the causes of the gap between the
two disciplines. Section 5 gives solutions, which can help
to bridge the gap. Section 6 concludes the paper.

2. Software Engineering
First, we will give a short overview of the software
engineering discipline. We start with some definitions of
software engineering [11]:

1. Introduction
Information systems play an important role. A society
without information systems is unthinkable. Therefore, as
a matter of course, interaction between an information
system and human users is very important.

• The establishment and use of sound engineering

principles (methods) in order to economically
obtain software that is reliable and works on real
machines.

Usability is a significant factor of the system’s quality. The
most cited attributes amongst authors in the usability field
are [1]: • The application of a systematic, disciplined,

quantifiable approach to the development,
operation, and maintenance of software; that is,
the application of engineering to software.

• learnability
• efficiency of use

• The technological and managerial discipline
concerned with systematic production and
maintenance of software products that are
developed and modified on time and within cost
estimates.

• reliability
• satisfaction

Actually, the usability of many information systems is
very poor [2]. Partly, this is the result of gaps between
software engineers and human computer interaction
engineers. Both disciplines design and implement
information systems, from very different perspectives [7].

We can identify some standard activities in a generic
development process. We only mention activities affecting
usability. This table is based on the SWEBOK (SoftWare
Engineering Body Of Knowledge) [2].

In this paper, we will look for a way to bridge the gap
between SE and HCI. We try to answer the question:

 How can the gap between software engineering and

human-computer interaction be narrowed?

 To answer this question, we first describe the two

disciplines and the causes of the gap. Finally, we give a
survey of three different methods to bridge the gap.

 33

Req. Elicitation
Develop
Product
Concept
Problem
Understanding

Req.
Analysis

Modeling for
Specifiaction of
the Context of
Use

Req. Specification

Analysis
(Requirements
Engineering)

Req. Validation
Design Interaction Design

Usability
Testing
Expert
Evaluation

Evaluation Usability
Evaluation

Follow-Up
Studies of
Installed
Systems

In order to develop useful and usable systems we have to
understand user needs and contexts, represent them in user
requirements and maintain a focus on user requirements
throughout the development [3].

As said in the introduction, software is very important
today. All software ultimately serves human needs and
interests, hence provision for effective interaction between
human users and software would reasonably be expected
to be integral to all software engineering. Such has not
been the case, historically. Until recently, software
engineering methods and practice have focused primarily
or exclusively on the internal structure and functioning of
computer programs, leaving the interaction with users and
the user interface that supports that interaction to other
disciplines and professionals [4]. Usability is not addressed
in software development as often as would be necessary to
output highly usable software [5]. In some projects the
user and customer requirements were not actually gathered
or documented. Gathering user information was sometimes
passive, methods were informal, and the gathered
information was not documented at all [3].

When usability issues have to be solved, the reality is that
average developers make the majority of the numerous
decisions that determine the ultimate usability of a
software product [2]. Software developers often identify
usability with just the design of the graphical user

interface, a part of the system that is developed at the end
of the software development process. This kind of
approach is responsible for the development of systems
with a very low usability level [2]. Most usability issues
are only discovered late in the development process,
during testing and deployment. This late detection of
usability issues is largely due to the fact that in order to do
a usability evaluation, it is necessary to have both a
working system and a representative set of users present.
This evaluation can only be done at the end of the design
process. It is therefore expensive to go back and make
changes at this stage [1].

At the same time software engineering professionals want
to produce quality products, which will be used by end
users, but their syllabus is not driven by a focus on
usability [6]. Mostly, the object oriented analysis and
design (OOA/D) methodology is used. The methodology
uses the UML notation and applies many of the same ideas
as the Unified Process. The OOA/D methodology divides
analysis and design into five main steps: definition of
system scope and purpose, development of a model of the
system’s problem domain, analysis and definition of
functionality and interface requirements, architectural
design, and object design. The methodology emphasizes a
layered architecture and the use of analysis and design
patterns. It explicitly recognizes that some of the activities
in the methodology – particularly definition of system
scope and purpose, and determination of interaction
requirements and functionality – depend on skills and
techniques not covered by the methodology. These skills
and techniques are briefly mentioned and some short
examples of their use are given but in general they are
treated as belonging to activities ‘outside’ the
methodology [7].

3. Human Computer Interaction
HCI in the large is an interdisciplinary area that is
concerned with the design, evaluation and implementation
of interactive computing systems for human use and with
the study of major phenomena surrounding them. HCI is
emerging as a specialty concern within several disciplines,
each with different emphases:

• Computer Science (application design and
engineering of human interfaces)

• Psychology (the application of theories of
cognitive processes and the empirical analysis of
user behavior)

 34

HCI engineers have to communicate with software
engineers. For the HCI engineer it is important to
understand the software engineer's attitude in order to be
able to cope with the situation. This is less complicated for
usability experts that have their roots in computer science
than for those who come from graphics design or
psychology. The latter may not speak the same language as
the software engineers.

• Sociology and Anthropology (interactions between
technology, work and organization)

• Industrial Design (interactive products)

HCI is concerned with:

• The joint performance of tasks by humans and
machines

HCI engineers need competence and substantiality. They
have to take into account that some colleagues have no
conception of the techniques of usability engineering while
at the same time maintaining their point of view. This is a
challenge for HCI engineers. They have to continuously
propagate the benefits of usability. They also have to
explain the way in which they come to their design
proposals in order to demonstrate a professional attitude
[9].

• The structure of communication between human
and machine

• Human capabilities to use machines (including the
learnability of interfaces)

• Algorithms and programming of the interface
itself

• Engineering concerns that arise in designing and
building interfaces

• The process of specification, design and
implementation of interfaces 4. Causes of the Gap

• Design trade-offs
Software engineers and human computer interaction
architects have to cooperate with each other to create a
computer system. Usability is an important quality
attribute. Today, we see computer systems that are less
usable than they should be. This is partially the result of
gaps between software engineers and human computer
interaction engineers. In this section we will give the
important causes for the gaps.

Because HCI studies a human and a machine in
communication, it draws from supporting knowledge on
both the machine and the human side. On the machine
side, techniques in computer graphics, operating systems,
programming languages, and development environments
are relevant. On the human side, communication theory,
graphic and industrial design disciplines, linguistics, social
sciences, cognitive psychology, and human performance
are relevant. And, of course, engineering and design
methods are relevant [8].

One of the causes of the gap is that it took some time
before the two disciplines recognized the significance of
each other and even adopted the approaches developed by
each other. SE did not realize that usability is an important
attribute of a software system. User’s needs were taken
into serious consideration. Also HCI is changing, they look
deeper into software development and software analysis
issues than before [10].

The engineering of the interfaces between humans and
software requires solving design problems in three
intimately interrelated areas: architecture, presentation,
and interaction. The architecture of the interface refers to
the overall and large-scale organization of the interface,
that is, the way in which the interface as a whole is
partitioned into distinct and recognizable regions or parts,
how these parts are related and interconnected, and how
the user navigates among these parts. Presentation design
addresses the specification of how information is presented
to users by visual, audible, or other means. Interaction
design addresses the specification of the means by which
users interact with a system and includes the organization
of discrete steps in processes, the selection or specification
of gestures or idioms for interaction, the sequencing of
actions, and workflow. These three aspects of interface
design interact strongly and are ultimately inseparable,
even if some designers and methods strive to address them
independently [4].

Software engineering and human computer interaction
both are modules, which are given to students who study
computer science. The software engineering module
doesn’t pay much attention to usability. Interaction
between systems and human users are briefly mentioned,
but in general they are treated as belonging to activities
outside the course. The purpose of the human computer
interaction module is to state that human interaction with
systems and products require more than a flawless
technical design [7].

It is difficult to transfer HCI techniques to the formalized
SE processes. As said before, both fields speak different
languages, and they approach software development from

 35

a very distinct perspective. The HCI is multidisciplinary;
HCI foundations come from the disciplines of psychology,
sociology, industrial design, graphic design and etcetera.
Software engineers have a typical engineering approach
[2] [5]. The software process must be an iterative approach
to use HCI techniques. It is almost impossible to create a
correct design at once because the human side in human-
computer interaction is very complex [7]. It is therefore
not possible to use HCI techniques in non-iterative SE
processes.

Traditionally, usability of a software system is evaluated at
the end of the software engineering process. It is also a fact
that quality attributes of a software system are, to a large
extent determined by the architecture. The lack of an
assessment to evaluate whether a given architecture meets
the usability requirements is also bad for the usability of a
software system [1] [4].

5. Bridging the Gap
A software development process should be iterative to be
considered user-centered. It is the most important
requirement for an existing development process to be a
candidate for the introduction of usability techniques and
activities. There are also two other characteristics: active
user involvement and a proper understanding of user and
task requirements [5]. We will describe three methods that
intend to narrow the gap between SE and HCI. The
backgrounds of the methods are respectively SE, HCI and
education.

SE point of view
The usability of software has traditionally been evaluated
on completed systems. Evaluating usability at completion
introduces a great risk of wasting effort on software
products that are not usable. A scenario based assessment
approach has proven to be successful for assessing quality
attributes such as modifiability and maintainability.
In [1] a scenario based assessment method is described to
evaluate whether a given software architecture (provided
usability) meets the usability requirements (required
usability) based on the conjecture that scenario based
assessment can also be applied for usability assessment.
The advantage of this approach compared with traditional
SE approaches is that you don’t have to develop the
complete system in order to check the usability.
The Scenariobased Architecture Level UsabiliTy
Assessment (SALUTA) method consists of five main
steps: goal selection, usage profile creation, software
architecture description, scenario evaluation and

interpretation. We will in short describe the five main
steps.

• In the first step the results that will be delivered by
the assessment are determined. The three goals
that are distinguished are:

o predict the level of usability
o risk assessment
o software architecture selection

• In the second step a usage profile describes
usability requirements in terms of a set of usage
scenarios. A usage scenario is defined as an
interaction between the users and the system in a
specific operation context.

• The third step, architecture description, concerns
the information about the software architecture
that is needed to perform the analysis. The result
of this step is a description of the provided
usability.

• Three different types of scenario evaluation
techniques have been defined in the fourth step.
The assessment techniques are complementary.
Pattern based assessment, in which an expert
assesses the architecture’s support of usability, can
be applied in most cases. Design decision based,
where design decisions are evaluated, and use case
map based assessment, in which use case maps are
used to describe the architecture, may give
additional information for the architectural support
analysis.

• The last step is to interpret the results to draw
conclusions concerning the software architecture.
If the architecture proves to have sufficient
support for all quality attributes the design process
is ended. Otherwise architecture transformations
or design decisions to improve certain quality
attribute(s) need to be applied.

HCI point of view
Another model for narrowing the gap between SE and HCI
is described in [4]. It is based on usage-centered design,
which is a systematic, model driven approach to human
interface engineering for software. It has evolved into a
sophisticated process that has proved itself on projects of
widely varying scope and scale in a variety of application
areas.
Usage-centered design differs from its older and better-
established counterpart user-centered design in several
important ways. As the name suggests, the center of
attention is not users but usage, that is, the tasks intended

 36

by users and how these are accomplished. This difference
in emphasis is reflected in differing practices that have a
significant impact on the development life cycle and on
integration with software engineering. Usage-centered
design emerged directly from software engineering and
particularly from object-oriented SE.
Precisely because usage-centered design is built around
extensions and refinements to well established software
engineering models and techniques, such as actors and use
cases, integration with SE is more straightforward. Usage-
centered design is conceived as an integrated concurrent
engineering process aimed at producing an initial design
that is essentially right in the first place. This is not to say
that refinement and improvement through evaluation and
feedback are not employed, but these are not the driving
forces in the design process. Instead, usage-centered
design is driven by interconnected models from which a
final visual and interaction design are derived more or less
directly by straightforward transformations. Iterative
refinement applies more to the models from which the
final design is derived than to the design.
The process is based on concurrent engineering, it is
divided into concurrent but interdependent threads, one
primarily focused on designing the human interface, and
the other primarily focused on designing the internal
software. A number of variants to this process and its
models have been devised to suit various contexts and
varying degrees of formality. In the usage-centered
process, the presentation and interaction designs derive
directly from the contents of the three tightly integrated
core models:

• The user role model focuses exclusively on salient
aspects of the relationships between users and the
system as represented by the various roles users
assume.

• In a user task model task cases are used. A task
case is almost the same as a use case, but is a more
abstract, modeling user intentions rather than
actions and system responsibilities rather than
responses.

• The interface content model consists of a set of
abstract prototypes representing the contents of the
various parts of the user interface and a navigation
map representing the interconnections among all
these parts.

The process models form the bridge between HCI and SE,
providing traceability and interdependence and serving as
the means for coordinating concurrent processes. For a
usage-centered approach, non-human actors, referred to as

system actors, are distinguished from user actors. User
actors interact with the interface within the roles they play
in relation to the system. Task cases support user roles. A
given role typically requires a number of task cases.
On the SE side, the picture is more straightforward: system
actors are supported by system use cases. Both task cases
and system use cases become input for the object design,
which must support them all to meet requirements.
However, many details of the required software may not
be determined until the presentation and interaction design
are complete. The presentation and interaction designs are
based on abstract prototypes of the various interaction
contexts and the navigation map modeling the
interrelationships among distinct contexts. Particular user
interface components with specific behavior and
appearance are chosen or designed to realize the abstract
components. Abstract components are incorporated into
abstract prototypes based on the particular tools and
materials needed to realize each step in those task cases to
be supported together within a given part of the user
interface. The partitioning of the total user interface into
subparts, as represented by the navigation map, is
determined based on the interrelationships among task
cases. A task case map in its most specific form models
inclusions, extensions, and specializations relating task
cases.
The domain model, which captures the core concepts of
the application, is developed and refined concurrently and
collaboratively throughout the process and serves to link
the various design models. From this overview it should be
clear that use cases, as task cases or system use cases, form
the common thread that interconnects the various models
and activities in the process. Indeed, task cases can directly
guide the organization and contents of documentation and
online help, thus providing uniform and comprehensive
traceability throughout the delivered system.

The usage-centered software engineering process outlined
here is not a proposal but an already well-established
“industrial strength” process that has proved successful in
numerous projects ranging up to 50+ person years
completed by organizations around the world. Current
areas of continued investigation include refinement in
notation, compilation and elaboration of patterns based on
canonical abstract components and task cases, and
continued work on common theory and metrics, such as
cohesion and coupling, underlying both object design and
human interface design.
Perhaps most pressing is the need for tools that support
usage-centered software engineering by incorporating its

 37

models and exploiting their interconnections for flexible
concurrent modeling and systematic requirements tracing.

Educational point of view
Yet another approach to narrowing the gap between SE
and HCI is to teach students both interaction design and
systems development in parallel. This method is described
in [7]. There is no attempt made trying to share a new
language between SE and HCI, instead creating a software
prototype practices the coordination between the two
approaches. The prototype makes the implicit assumptions
behind the HCI and SE methods more explicit, e.g.
assumptions of the power of modeling tools or the
precision of usability design principles.
The integration of the two courses in one course
curriculum faces several difficulties and challenges. Not
only will it require a considerable effort to reconcile the
differences in terminology and approaches to systems
development, but there is also a risk that a joint or shared
curriculum becomes disengaged from the underlying
theories and perspectives of one or both of the disciplines.
Practical software development on the other hand also
requires a careful balancing of the two areas to avoid the
danger of one approach becoming dominant. The
challenge facing the teacher is of course how to combine
the two disciplines in practical systems development. It is
important to constantly emphasize the relations between
the two areas when teaching. When teaching OOA/D, for
example, emphasize that the use cases produced during
interaction design and function specification are the visible
end-result of a complex analysis of human users’ work
processes and interaction requirements. Conversely, when
teaching the interaction design module emphasize how
some of the artifacts produced when studying users and
experimenting with various interface designs relate to the
more ‘formal’ modeling activities in OOA/D.
It is the intention that the students are going to make two
prototypes. A horizontal prototype, which demonstrates
the user interface of a complete system. The prototype
should be the end-result of systematically applying
theories, tools and techniques taught in the interaction
design module and it should conform to accepted user
interface design principles. They also have to develop a
vertical (running) prototype that implements a small subset
of the (intended) final system’s functionality. The
prototype and its associated analysis and design
documentation should be developed according to the
methodology and conform to general software engineering
analysis, design and programming principles. Thus, the
vertical prototype demonstrates the students’ ability to
systematically apply the OOA/D methodology and

produce a running program that is consistent with their
analysis and design. The prototypes allow the students to
apply the theories and techniques from each of the
modules taught within the framework of an assignment of
a reasonable size. By deliberately letting the students work
in a ‘grey zone’ between the two clearly different
approaches, we enable them -through their own practical
experience- to realize how the fields of interaction design
and software engineering together contribute to the
construction of a system. Thus, they can either choose to
make two independent prototypes and describe in words
how they are related, or they can choose to develop one
prototype that combines an implementation of a subset of
the system’s functionality with ‘dummy’ design of the
user’s interaction with a full system. Either way, they need
to reflect on how to coordinate the two approaches.

6. Conclusions
In this paper we’ve tried to answer the question:

How can the gap between software engineering and
human-computer interaction be narrowed?

We also gave the reader an impression of the current state
of the research that has been done to bridge the gap
between SE and HCI.
To achieve this, we outlined the SE and the HCI
disciplines. After that we described the causes of the gap.
Finally, we gave a survey of three different methods to
bridge the gap.
We discovered that both SE and HCI are working together
to design and implement computer systems with high
usability. Despite the fact that both SE and HCI are
working hard to bridge the gap, no ultimate solution has
been found yet. So, a lot of research still has to be done to
further narrow the gap.

7. References
[1] Eelke Folmer, Jilles van Gurp, Jan Bosch, "Scenario-
based Assessment of Software Architecture Usability",
University of Groningen, Department of Mathematics and
Computing Science
http://www.se-
hci.org/bridging/icse/accepted/09_Folmer_Groningen.pdf

[2] Xavier Ferre, Ana M. Moreno, "Improving Software
Engineering Practice with HCI Aspects", Universidad
Politecnica de Madrid
http://www.ls.fi.upm.es/udis/miembros/xavier/papers/integ
rHCI.pdf

 38

[3] Sari Kujala, Marjo Kauppinen, Sanna Rekola,
"Bridging the Gap between User Needs and User
Requirements"
http://www.soberit.hut.fi/~skujala/PublicationIV.pdf

[4] Larry Constantine, Robert Biddle, James Noble,
"Usage-Centered Design and Software Engineering:
Models for Integration"
http://www.foruse.com/articles/models.pdf

[5] Xavier Ferre, "Integration of Usability Techniques into
the Software Development Process", Universidad
Politecnica de Madrid
http://www.ls.fi.upm.es/udis/miembros/xavier/papers/integ
ration.pdf

[6] Ronan Fitzpatrick, "The Software Quality Star: A
conceptual Model for the Software Quality Curriculum",
Dublin Institute of Technology, School of Computing
http://www.se-hci.org/bridging/interact/Fitzpatrick.pdf

[7] Torkil Clemmensen, Jacob Nørbjerg, "Separation in
Theory - Coordination in Practice", Copenhagen Business
School, Department of Informatics
http://www.cbs.dk/staff/noerbjerg/publications_files/Clem
mensen_Norbjerg_2003.pdf

[8] Hewett, Baecker, Card, Carey, Gasen, Mantei,
Perlman, Strong, Verplank, "Curricula for Human-
Computer Interaction", Association for Computing
Machinery - Special Interest Group on Computer Human
Interaction (ACM SIGCHI)
http://sigchi.org/cdg/cdg2.html

[9] Matthias Müller-Prove, "Mind the Gap! Software
Engineers and Interaction Architects", Sun Microsystems
http://www.se-hci.org/bridging/interact/p100-101.pdf

[10] Effie Lai-Chong Law, "Bridging the HCI-SE Gap:
Historical and Epistemological Perspectives",
Eidgenössische Technische Hochschule Zürich, Computer
Engineering and Networks Laboratory
http://www.se-hci.org/bridging/interact/Law.pdf

[11] Carnegie Mellon Software Engineering Institute,
"What Is Software Engineering?"
http://www.sei.cmu.edu/about/overview/whatis.html

 39

 40

Introduction to various color segmentation methods and their
applications

Wicher Visser Egbert van der Es

Department of Computing Science
State University of Groningen

Blauwborgje 3
Groningen 9747 AC

The Netherlands

{w.t.visser,e.van.der.es}@wing.rug.nl
Abstract
Segmentation is a technique that is widely used in low-level image processing. Images
obtained from a camera need some processing before higher-level decision operations can
be made. Often, objects have to be recognized which influence the behavior of the over-
all system.Examples of such operations are car steering systems, autonomous robots and
security systems based on human visual features.
As a lot of the applications in which segmentation is involved are implemented in hardware,
the segmentation methods used have to be robust; i.e. they have to be insensible to noise
fluctuations. Due to this requirement, developers of such systems have to take into account
the quality of the hardware and the performance of the selected methods and their properties.

Keywords: Color segmentation; Texture segmentation; Color space; Features; Object con-
text; Histogram; Threshold; Split and merge; Region growing; Markov Random Field; Edge
detection; Snakes; Neural network; Motion tracking; Real-time

1 Introduction

Segmentation is the process of partitioning an im-
age into disjoint and homogeneous regions. These
regions are generally called objects as they often
represent real-life things or creatures [Lucchese and
Mitra, 2001].

There has been done an enormous amount of re-
search on image segmentation. However, this re-
search limited itself to grey-scale images. Due to
the immense (and fast) speed increase of computers
and the price-drop of color imaging devices, color
segmentation have only recently become interest-
ing and feasible to implement. However, color im-
ages contain more information than grey-scale im-
ages and are therefore useful in areas where recog-

nition or segmentation is a difficult issue. Examples
of such situations are general robot vision [Heisele
et al., 1997] and melanoma recognition [Hamarneh
et al., 2000]. Nowadays, as computing power has
grown beyond the required limits and color imaging
devices have become cheaper, color segmentation
has become an important field in computer vision.
Fortunately, a lot of grey-value techniques can, with
some adjustments, be applied to color images with
great success.

This paper presents various color segmentation
methods and their field of applications. An in-
depth description of the algorithms will not be of-
fered. Rather, we aim to present a general overview
of the several techniques. The majority of tech-
niques originate from the closely related area of

41

grey-scale segmentation. Most of these techniques
can be easily adapted to cope with color informa-
tion. However, this is outside the scope of this pa-
per. In the first section, various applications of
color segmentation methods are given. The sec-
ond section discusses some preliminaries on color
images. Section three contains various color seg-
mentation methods grouped by basis of operation,
such as edges or regions. We then discuss the use
of some color segmentation techniques in motion
tracking in section four. Hardware aspects of the
various segmentation methods are treated in the
fifth section.

Where color segmentation focuses on reducing
the image to uniform colored regions, texture seg-
mentation also tries to identify color patterns in the
image.

2 Applications

In this section we will discuss the various appli-
cations of segmentation. Segmentation plays an
important roll in low-level image processing. In
virtually all situations where a computer needs to
interpret an image, it is one of the most basic oper-
ations to be performed. The most important reason
to apply color segmentation is to simplify the im-
age at hand so that operations further on in the
processing pipeline can focus on major objects in
the scene. By removing as much insignificant fea-
tures as possible a computer can initially interpret
the image in a broad sense. When all the larger ob-
jects are located and maybe even identified in the
abstract image, the computer can concentrate on
the smaller objects in the non segmented image.

One of the areas where segmentation is impor-
tant is robotics. Especially in cases where some au-
tonomous behavior is expected and the robot needs
to interpret its environment in order to orient itself
and decide what his next move will be. A robot
might want to know its position relative to other
objects or find a specific object that needs to be
handled. An interesting case where both apply is
robocup, where multiple autonomous robots play
a game of soccer against each other in two teams.
The ball needs to be found within the playing field
so that it can be approached and the direction in
which it’s rolling can be changed and the ball ulti-
mately finds its way into the goal. The robot also

needs to know its position in the playing field to
find the goal and the position of his team mates
and his opponents. Otherwise he wouldn’t be able
to prevent the ball from being lost to a member of
the opposite team or pass the ball to one of his team
mates. Of course you don’t want the robots to run
into each other or the boundaries of the field all the
time. By marking the ball and the players in the
field by specific colors and placing colored markers
around the field, color segmentation can be used to
achieve all this. But there are many more practi-
cal situations where robots need to have an idea on
what is around them, for example scouting robots
in the military.

In the medical world color segmentation can be
helpful to process images captured by x-ray, MRI
or ECG. The computer can aid humans by locating
anomalies (like tumors), arteries, bones, bone frac-
tures and organs and thereby making it easier for
doctors to state a diagnosis and reducing the risk
anomalies are overlooked. Another example where
computer vision can reduce human effort and in-
crease safety is in car steering systems. By keeping
track of markings on the road a computer can cor-
rect the trajectory of the car to keep it on the road.
By keeping track of the cars surrounding the car the
computer can prevent collisions. One system that
can already be found in use is a warning system
which alerts the driver when the car is going off
track. Color segmentation plays an important role
here.

More applications of segmentation are in the se-
curity business. Especially interesting is the con-
cept of face recognition. In the first stage com-
puters try to locate faces in the picture. You can
however go one step further by trying to recognize
facial features. Using these features for a query in
a face database might result in the identification of
a certain person. This can be useful on the streets
or on airports to recognize criminals or in a system
where face recognition is used to provide limited
access to secure areas.

Color segmentation is used in quality control of
for instance fruit and vegetables. Because nature
does not always provide us with the same high
quality products a quality check is expected. By
locating fruit on the transport belt and inspect-
ing the color, rotten or immature ones, which are
represented by a specific color region distinct from
healthy fruit, can be picked out.

42

3 Preliminaries

3.1 Color space

A decision one has to make when using color seg-
mentation is what color space to use. Making the
right choice is important because it plays an impor-
tant role in the quality of the final result of the seg-
mentation. First has to be determined what color
characteristics are the most important distinguish-
ing factor between the color regions. Color regions
that differ on these characteristics can easily be sep-
arated in the right color space, whereas in an inap-
propriate color space they might be lying very close
together or even overlap. This will make it hard or
even impossible to separate the color regions from
each other, which results in poor segmentation.

The most common color spaces will be discussed
briefly in this section. It would be out of the scope
of this document to discuss all the different kinds
of color spaces in use, simply because there are
too many of them. The most common is the RGB
space where the colors are represented by the red,
green and blue components. This color space is
related to the human visual system where there
are three different kinds of photo-receptors on the
retina whose responds are tuned to the wavelengths
of these three colors. The same three color compo-
nents are used to visualize images on displays and
in digital cameras.

Figure 1: Cartesian coordinate system for RGB color
space

There are drawbacks to color representations
that are essentially the decomposition of the color
in separate color components. This representation
does not lend itself to distinguish between charac-
teristics other than the intensity of the color com-
ponents, unlike the perception of color of the hu-
man visual system. In this sense, the color can
better be represented by hue, saturation and inten-

sity. The HSI space is an well known example of
this kind of representation. Using certain formulas
RGB color space can be mapped upon HSI space
and visa versa.

Figure 2: Cylindrical coordinate system for HSI color
space

The HSV color space is also very common and
strongly related to the HSI space since it uses only
a slightly different color mapping.

Figure 3: Cylindrical coordinate system for HSV
color space

However, RGB and HSI are not perceptually uni-
form, meaning that differences perceived by the hu-
man eye do not result in similar distances in these
color spaces. To solve this problem the uniform
color spaces were introduced. The most common

43

uniform spaces are the Luv and Lab color spaces.
There are several more color spaces that are two
dimensional rather than three dimensional.

3.2 Features

Before segmenting the image into objects, it is
needed to extract the various features on which the
segmentation is based. Most often, color intensity
or value is used as main feature. However, other
features can be important as well. The location of
a pixel relative to an other (possibly already defined
object) can be a significant feature in case of sub-
segmentation (i.e. segmenting an object retrieved
from previous segmentation, e.g. identifying nose,
eyes and mouth in a face). Other features are the
number of holes (character recognition), size of a
uniform color region [Ganster et al., 2001] and the
number of connected components.

The n features can be collected in a n-
dimensional feature space. Significant features in
the image correspond to high density regions in this
space. To retrieve the objects from the image, the
high density regions in the feature space should be
found.

For large n, the feature space should be reduced
to make it computationally efficient. However, re-
ducing the feature space is only an option if there
exist features that are linear dependent on the oth-
ers. As the feature space is discrete rather than
continuous, groups of feature vector can be cre-
ated based on their similarity. Hereby, the range of
the feature space is reduced [Comaniciu and Meer,
1997]. For instance, assume a 3-dimensional feature
space consisting of the length, width and square of
objects from which we know they are rectangular.
In such a specific case, the square surface does not
add any additional information, as it can be com-
puted (it is linearly dependent) from the length and
the width. It therefore can re removed without los-
ing a lot of information.

3.3 Object context

The methods used for image segmentation depend
largely on the context in which the application
should function. If the application is used in situa-
tions where a static background is used, this prior
knowledge can be used to create simpler and better
applications. However, if the method has to func-

tion in a dynamic surrounding (e.g. an automatic
car driving system [Heisele et al., 1997]) in which
the background as well as the illumination varies,
a more robust application has to be built.

Face recognition system often focus on skin color
to segment the face from the background. It is easy
if the developers can use a single color (band) such
as pink to represent the skin color [Fritsch et al.,
2002]. The application then only functions on white
people, whereas negroids and Asians are treated as
background. If their skin colors should be treated
as well, the segmentation method has to be ad-
justed. The implementation therefore depends on
the context of the application.

4 Segmentation methods

Various segmentation methods have been devel-
oped to segment objects in images. These meth-
ods can be classified into (more or less distinct)
groups. Note that, besides the methods and groups
presented in this paper, there are many more tech-
niques that can be used to obtain the required re-
sult. We aim at summarizing the most frequent
used methods, which form the basics of computer
vision.

4.1 Global-based segmentation

In order to segment images properly, mostly some
preprocessing is needed. For this case, histograms
and thresholds are often used.

4.1.1 Histograms

A histogram is a graphic representation of the fre-
quency distribution of a property of the image. For
grey-scale images, a histogram of the grey value
distribution can easily obtained by counting the
number of pixels of a certain intensity (grey value).
A histogram of a colored image can be produced
in various ways, depending on the preferred fea-
ture. Assumed the pixels color are represented
by HSV values, a cellular decomposition method
(fig. 4) can be used to dynamically select the col-
ors needed to process the image [Chen and Chen,
2001]. A hexagon represents the colors needed for
processing. The two dimensions of the hexagon are
represented by the hue and the saturation. The
V (color value) component is divided into three

44

ranges, yielding 21 initial colors. For a pixel, the
Euclidean distance between each pixel and the col-
ors present in the hexagon is computed. The pixel
is assigned the color which has the minimum dis-
tance to the pixel. The square error for each color
is computed and the color with the largest error is
decomposed into a new hexagon. Decomposition
stops when the maximum level or the maximum
number of colors is reached. After this splitting,
similar colors are merged.

The dynamically obtained colors can then be
used to create a histogram representing the color
distribution in the image. If the histogram is nor-
malized, statistical methods can be used to reason
about the probability of an image fitting into a cat-
egory.

Varying lightning conditions in images, such
as shadows or reflections of light sources can be
compensated for using histograms. Basically, such
a method creates a uniform distribution of the
intensity levels of the pixels in the image based
on the intensity histogram [Fritsch et al., 2002].
Histograms can also be used as features for higher
order segmentation methods.

Figure 4: A color decomposed into a hexagonal
structure with seven colors.

4.1.2 Thresholding

An easy and fast method to find objects in an image
which have a single color (range) is global thresh-
olding [Fritsch et al., 2002]. Color thresholding is
mainly done by selecting bands in the three dimen-
sional color space [Bruce et al., 2000]. Only those
pixels that are within the selected range are filtered
out; all the others are blackened. The resulting pix-
els may then represent objects. Unfortunately, this
method is not very useful in daily situations where
objects may consists of many separate colors. How-
ever, in laboratory setting and in special cases (such
as a manufacturing process) this method can be ef-
fective.

In case of varying illumination in the image, stan-
dard thresholding is not an option. Here, dynamic
thresholding can be used [Ganster et al., 2001]. The
threshold level then depends on local properties of
the image, such as brightness of a region. If the
variation of illumination is strong, local threshold-
ing will be a better strategy.

Histograms can be effectively used to select the
color bands of the threshold. The regions of the
color space which potentially represent an object
can be identified by selecting a color band which
histogram value is larger than the minimum ex-
pected size of the object.

4.2 Region-based segmentation

In region based algorithms new regions are formed
by combining homogeneous pixels or regions. This
is in contrast to edge based algorithms where re-
gions are formed inside boundaries defined by dif-
ferences between pixels. Region based algorithms
fit mostly in one of the two categories being re-
gion growing techniques and split and merge tech-
niques. Another popular method is Markov Ran-
dom Fields, which is discussed as final topic.

4.2.1 Split and merge

The basic idea behind the split and merge tech-
nique is pretty easy to grasp. You start initially
with an inhomogeneous area and split this area re-
cursively until you are left with homogeneous par-
titions. After splitting the area, the neighboring
homogeneous partitions are merged satisfying the
requirement the two merged regions are still homo-
geneous. This process is repeated until no regions

45

can be merged together. The homogeneous condi-
tion can be based on the color information of the
image. E.g., if the image is represented in the HSI
color space, the intensity value I can be used to sep-
arate the bright and dark areas. For the splitting
phase the quad-tree [de Berg et al., 2000] is a much
used data-structure and for the merging phase the
region adjacency graph [Tremeau and Colantoni,
2000] is very common. Nevertheless there are many
other methods and structures in use. Some meth-
ods incorporate Delauney triangulations or Voronoi
Diagrams [de Berg et al., 2000]. Other adjustments
have been made to optimize the merging phase by
using stochastic methods, to optimize smoothness
and continuity. By searching for patterns during
the splitting phase you can expand the method with
texture segmentation capabilities.

4.2.2 Region growing

Using region growing, a region can be found by
starting of with a region of one single point and con-
tinuously adding homogeneous neighboring points.
This process goes on until no more pixels satisfy the
homogeneous condition. Region growing is mostly
used for single regions, but by combining subse-
quent growth processes one can grow regions un-
til all points fall in a region. Region growing is
a sequential process, thus the results depend on
the order in which the points are processed. An
advantages is that clusters are compact and, for
sure, connected. For color images some advance-
ments have been made to the algorithm. Examples
are seed finding based on the color image gradient
and region growing based on color and intensity
information. Some algorithms take small gradual
changes into account during the growing process,
making the algorithm an edge and region based hy-
brid. Another way of growing regions is by using
the watershed method [Angulo and Serra, 2003].

4.2.3 Markov Random Fields

In real-life, objects in an image are often repre-
sented by their texture. A Markov Random Field
can be used to model the texture. Markov Random
Fields can be used to characterize the statistical
relationship between a pixel and its neighbors. A
pixel is said to be part of a texture region if the fea-
tures of its local neighborhood (random field) have

a high enough probability to represent the targeted
texture [Liévin and Luthon, 2001].

4.3 Edge-based segmentation

Another way of segmentation is the detection of
edges surrounding regions. There are several edge
detection methods called chromatic edge detectors
or detectors that require gradient information by
using the Sobel operator. There are also predictive
models that try to predict change in color. Regions
can contain colors that differ greatly, because if the
change between the colors is gradually there may
never be an edge detected between them. A dis-
advantage of this method is that some edges may
be disconnected and that after the edge detection-
phase you are not left with clean cut edges and have
to add another linking phase in order to connect all
dangling edges.

4.3.1 Snakes

A snake, also known as active contour model, is an
energy minimizing curve which changes its shape
under the control of internal and external forces.
Snakes try to model objects in the image using
edges representing the object. These edges are of-
ten based on the gradient of the intensity levels in
the image. The minimum energy state of the snake
should be the location of the edge to be detected.
A snake consists of a string of connected vectors
that can move through an image. The vectors how-
ever are unable to penetrate certain edges and are
forced to hold their position. By using a shrink-
ing or expanding ring of vectors you can detect re-
gion outlines. For snakes to work, the boundary of
the targeted object should be inherently connected
and smooth [Hamarneh et al., 2000] to a certain de-
gree. Several optimizations exist where the number
of vectors on the snake dynamically adapts to the
situation at hand, or big snakes can split up into
smaller snakes to detect multiple regions. Often,
the gradient in each of the main color components
(e.g. HSV) is computed and merged together to
form a single ’color gradient’ on which the snake
operates.

If illumination is uniform throughout the image,
object boundaries are well matched. However, if
the illumination varies due to e.g. shadows or high-
light, the color gradient does not represent the tar-

46

geted contour properly. One way to prevent this
performance degradation is to apply snakes to the
gradient of each color component and then merge
the results into a unified snake [Schaub and Smith,
2003]. A different solution is to assign positive pres-
sure values to regions that are statistically similar
to a seed region.

Another problem arises when objects in an im-
age do not have a color transition where an inten-
sity gradient is found. When using intensity levels
as the feature used by the snake, the image seg-
mentation can be negatively affected by the imag-
ing process. (e.g. shadows, shading or highlights).
To overcome this problem, color invariant gradient
information can be used for the contour modeling
[Geversa et al., 1998].

4.4 Neural networks

Some segmentation methods are based on neu-
ral networks [Chen and Wang, 2001] [Ong et al.,
2002b]. Neural networks consist of a large num-
ber of massively interconnected elementary proces-
sors or cells. They try to imitate the biological
neural cells. Neural networks offer some important
properties in pattern recognition: neural networks
lend themselves to be parallelized, which makes
very fast computational performances possible and
is therefor suitable for real-time applications. Neu-
ral networks are also very reliable, because the per-
formance of the network suffers only mildly from
disturbances in a relatively small number of cells.
Neural networks can also be programmed to adapt
to changing situations.

A network has to be prepared for recognizing seg-
ments by training. In a supervised learning stage
one has to have some a priori knowledge in order to
give the network examples it can learn from. There
are also unsupervised methods where the network
learns by itself. Different methods exist, but most
of the time pixels of the image are fed into the net-
work which produces pixels with a limited color
depth. Pixels with the same color can then be
grouped into regions. The number of segments the
network can produce is limited by the number of
colors it can reproduce as output. Therefore it must
be known at forehand what the maximum number
of segments is that are to be found in the images
before the network is designed.

5 Motion tracking

Snakes are well suited for motion tracking. Given
the first image of the sequence, the snake of the
targeted object is computed. The resulting snake
is then put on the next image and the minimum
energy state is again computed. One important
constraint is that subsequent images do not dif-
fer to much, as snakes might then loose the object
[Sobottka and Pitas, 1996].

Natural objects are often non-rigid: they do not
have smooth or connected contours. Therefore,
snakes cannot be properly used for this applica-
tion. Another solution is to segment images based
on regions. The initial color image is segmented
into clusters of relatively the same color, also called
fuzzy color clusters. For every consecutive image,
a prototype, representing the center of the cluster,
is shifted in the feature space (e.g. x and y coordi-
nate of the prototype in the image) by clustering it
[Heisele et al., 1997].

As we described in section 3.1, snakes can be
color invariant. However, snakes are computation-
ally expensive and can therefore mostly not be used
in real-time applications. If the objects in the
image suffer from intensity fluctuations indepen-
dent of the color gradient, fuzzy color clusters are
no option. Texture, if present, can then be used
in addition to increase the segmentation perfor-
mance. Markov Random Fields can be used for this
method. Their joint probability density functions
(PDF) are computed and based here-on the seg-
mentation is performed [Liévin and Luthon, 2001].

6 Hardware aspects

Segmentation methods are often embedded in hard-
ware or run in software on special purpose hard-
ware. Therefore, to keep the cost small, these meth-
ods should be computationally cheap. To satisfy
this requirement while keeping a robust and reli-
able method, extra attention to the design process
has to be made. In this chapter we will first di-
rect our attention towards real-time segmentation
methods. Second, image capturing devices will be
discussed.

47

6.1 Real-time

Real-time processing of data is important in fields
where a constant flow of data exists which should
be monitored continuously. Examples of such fields
are robotics [Bruce et al., 2000], automatic car
steering [Heisele et al., 1997] and object tracking
[Batavia and Singh, 2001].

To assure real-time segmentation methods to be
robust, multiple cues (i.e. multiple method) can
be used [Ozyildiz et al., 2001]. With this tech-
nique, multiple segmentation methods are used
which have the same purpose: recognizing the ob-
ject. After segmentation, the various outcomes of
the methods are merged into a single result. The
goal of this approach is to compensate for the areas
in which certain cues perform badly. The final re-
sult can therefore be represented as the maximum
of the performances of every segmentation method
given a certain input pattern.

Another useful technique is parallelization. Neu-
ral networks are a good example of this approach
[Ong et al., 2002a]. As cells in each level of the
network are independent of each other, the cells
in each level can be arranged in parallel, optimiz-
ing it for speed. Similar, color segmentation can
be made parallel. Assume a robot soccer game in
which team mates, opponents, ball and goal are all
represented by a uniform color. Although the ob-
jects in the image taken by a robot can be affected
by lighting, they can be identified by looking at a
color region. A threshold indicates whether a ob-
ject belongs to a certain class. Inspecting the color
of a pixel, it can be assigned to multiple groups by
checking the thresholds for all classes in parallel. A
blue pixel can therefore belong to a corner flag and
a goal. Other features can then be used to select
the correct class.

As hardware performance increases every year,
segmentation methods currently out of scope of
real-time processing (e.g. 3D object recognition)
will be used for this purpose in the nearby future,
making better and more complicated segmentation
possible.

6.2 Static time processing

A lot of segmentation methods do not aim at real-
time processing. Examples of fields in which real-
time segmentation is not a requirement are face

analysis systems [Sobottka and Pitas, 1996], lesion
or melanoma detection [Hamarneh et al., 2000] and
automatic photo enhancement. Applications using
this type of processing do not need to be fast. How-
ever, consumers still demand their applications to
be fast. Therefore, the trade-off between perfor-
mance and speed is harder to make in contrast to
real-time applications, where the limit is more ap-
parent.

6.3 Capturing

Segmentation is applied on digital images using
computers. There are different ways to capture
these digital images from the real world. The choice
which capture device to use depends on aspects as
cost, required information, available technique and
speed requirements. It is common to try to keep
cost as low as possible and choose for the cheap-
est device. A relatively cheap device may however
not produce images of the required quality which
results in unsatisfactory computer vision capabil-
ities. For example, in order to recognize text on
number plates, the resolution of the image needs to
be fine enough to capture the individual characters.
A high resolution camera on a real-time processor
might on the other hand overload the system. A
limitation on the available number of devices is the
required information. Trying to take images of a
persons intestents with a normal digital camera is
pointless, unless the person is pretty messed up. In
this case you need a device that can penetrate the
skin like x-rays or a MRI scanner. The available
techniques determines how much choice you have.

The used capture device has big influence on the
quality and sort of information you acquire and has
therefore great influence on the decision what seg-
mentation method to use. Normal digital photo
cameras and x-ray cameras deliver totally different
kind of images. In observation satellites one might
have different separate cameras present for different
wavelengths. Depending on noise, contrast, color
space and the color distribution within this color
space, some segmentation methods are preferable
over other.

7 Conclusion

With this paper an attempt has been made to give
an introduction to color and texture segmentation.

48

Besides a basic explanation of these concepts and
some strongly related issues, most of the paper is
dedicated to segmentation methods. It is not easy
to give a broad overview and place these methods in
clearly distinguishable groups. Many segmentation
publications are focusing on very specific segmenta-
tion tasks where different techniques are combined
to achieve optimal results in bounded cases. There
is also still a lot of active research on this subject.
Most of these specific or new methods are however
variations or refinements on methods we have men-
tioned here or can be decomposed to these meth-
ods. Therefore we believe that this paper may con-
tribute to the understanding of the basics of color
and texture segmentation and aid the learning of
more advanced and recent methods.

References

Angulo, J. and Serra, J. (2003). Color segmentation
by ordered mergings. IEEE conference.

Batavia, P. and Singh, S. (2001). Obstacle detec-
tion using adaptive color segmentation and color
stereo homography. Proceedings of the IEEE in-
ternational conference on robotics and automa-
tion, 1–6.

Bruce, J., Balsch, T., and Veloso, M. (2000). Fast
and inexpensive color image segmentation for in-
teractive robots. 1–6.

Chen, K. and Chen, S. (2001). Color texture seg-
mentation using feature distributions. Pattern
recognition letters, 756–757 and 769–770.

Chen, K. and Wang, D. (2001). Image segmenta-
tion based on a dynamically coupled neural os-
cillator network.

Comaniciu, D. and Meer, P. (1997). Robust anal-
ysis of feature space: color image segmentation.
1–8.

de Berg, M., Schwarzkopf, O., van Kreveld, M.,
and Overmars, M. (2000). Computational Ge-
ometry: Algorithms and Applications. Springer-
Verlag, 2nd edn.

Fritsch, J., Lang, S., Kleinehagenbrock, M., Fink,
G. A., and Sagerer, G. (2002). Improving adap-
tive skin color segmentation by incorporating re-
sults from face detection. 1–7.

Ganster, H., Pinz, A., Rohrer, R., Widling, E.,
Binder, M., and Kittler, H. (2001). Automated
melanoma recognition. IEEE transactions on
medical imaging, vol. 20 , 233–239.

Geversa, T., Ghebreab, S., and Smeulders, A.
(1998). Color invariant snakes. 1–11.

Hamarneh, G., chodorowski, A., and Gustavsson,
T. (2000). Active contour models: applications
to oral lesion detection in color images. IEEE
conference on systems, man and cybernetics, 1–
6.

Heisele, B., Kressel, U., and Ritter, W. (1997).
Tracking non-rigid, moving objects based on
color cluster flow. 1–5.

Liévin, M. and Luthon, F. (2001). A hierarchical
segmentation algorithm for face analysis; appli-
cation to lipreading. 1–5.

Lucchese, L. and Mitra, S. (2001). Color image
segmentation: a state-of-the-art survey. 1–15.

Ong, S., Teo, N., Lee, K., Venkatesh, Y., and Cao,
D. (2002a). Segmentation of color images using
a two-stage self-organizing network. Image and
Vision Computing 20 , 279–289.

Ong, S., Yeo, N., Lee, K., Venkatesh, Y., and
D.M.Cao (2002b). Segmentation of color images
using a two-stage self-organizing network. Image
and Vision Computing .

Ozyildiz, E., Krahnstöver, N., and Sharma, R.
(2001). Adaptive texture and color segmentation
for tracking moving objects. 1–36.

Schaub, H. and Smith, C. (2003). Color snakes for
dynamic lighting conditions on mobile manipu-
lation platforms. Proceedings of the IEEE/RSJ
international conference on intelligent robots and
systems, 1–6.

Sobottka, K. and Pitas, I. (1996). Segmentation
and tracking of faces in color images. 1–6.

Tremeau, A. and Colantoni, P. (2000). Regions
adjacency graph applied to color image segmen-
tation. IEEE Transactions on image processing .

49

50

The many definitions of computability

Binne Simonides
B.J.Simonides@student.rug.nl

Rowan Rossing
R.Rossing@student.rug.nl

Keywords

Computability theory, Turing machines, Lambda calculus, Recursion theory, Abacus, FEM.

Summary

There are many models of computation introduced to define the notion of computable function.
All these characterisations describe the same set set of computable functions. In this paper we
study a number of definitions of computability and compare them on a number of properties.
All the different systems have their own bad and good properties. Some systems are very useful
for educational purposes, and some systems have great theoretical possibilities while others have
more practical use.

1 Introduction

The goal of this paper is to study a number of definitions of the notion of computability and to
compare them on a number of properties.

In section 2 we give a general introduction to the notion computability. In sections 3 to 7 we
describe a some well known definitions of computability. Then, in section 8, we show that these
definitions are all equivalent. We conclude the paper with a comparison between the different
definitions on some of their properties in section 9.

In this paper we restrict our study to the following characterisations of computability: Turing
computable, recursive functions, lambda-definable, abacus computable and FEM-implementable.

2 Computability in general

The informal notion of a computation as a sequence of steps performed according to some kind
of recipe goes back to ancient times. Yet for a very long time there was not a precise definition
of what it means for a function to be computable, or for a problem to be solvable. This was
probably because the absence of such a definition did not cause any difficulties.

In 1900, the mathematician David Hilbert presented a list of 23 problems that he hoped would
be solved in the next century. The tenth problem on this list called for a decision procedure for

51

Diophantine equations or a demonstration that no such procedure exists. Later in that century
the problem was solved. It was shown that there exists no such procedure. To show that
something is computable, is much easier: we only have to give an algorithm that computes it.
To show that no computational procedure can solve a certain problem, we need a characterisation
of all possible computational procedures; we need a formal model of computation.

It was not until the 1930’s that such formal models of computation began to arise. At that time
a lot of models were developed. Turing provided a notion of mechanical computability, Gödel
and Herbrand characterised computability in terms of recursive functions, Church presented the
notion of lambda definability and so on. Today, there are even more characterisations like abacus
computable and programmability in any number of programming languages.

Although these descriptions of computability are all quite different and were all developed by
different people, exactly the same functions can be computed by each model. This is part of the
evidence that these definitions capture the intuitive notion of computability. That this is the
case is stated in the well-known and widely accepted Church-Turing thesis.

An undecidable problem is one that cannot be solved by any algorithm, even given unbounded
time and memory. Many undecidable problems are known. One example is the Entschei-
dungsproblem: given a statement in first-order predicate calculus, decide whether it is universally
valid. Another example is the halting problem: given a program and inputs for it, decide whether
it will run forever or will eventually halt.

3 Turing computable

Let us first introduce the informal notion of algorithm or ”effective method of computation”. An
effective method is generally assumed to satisfy the following conditions:

1. The method consists of a finite set of simple and precise instructions that are described
with a finite number of symbols.

2. The method will always produce the result in a finite number of steps.

3. The method can in principle be carried out by a human being with only paper and pencil.

4. The execution of the method requires no intelligence of the human being except that which
is needed to understand and execute the instructions.

The above description is intuitively clear, but certainly not formal definition.

In his 1936 paper On Computable Numbers, with an Application to the Entscheidungsproblem
Alan Turing tried to formally define the intuitive notion of effective method with the introduction
of Turing machines. He showed in that paper that the Entscheidungsproblem could not be solved.

The Turing machine is an abstract model of computer execution and storage; it is mathemat-
ically precise definition of algorithm or effective method.

The notion Turing machine can be defined in many different ways, depending on the answers
to such questions as the following. ‘Is the tape endless in both directions or just in one? How
many tapes are there? Do the squares into which the tape is divided have addresses?’ And so
on. However, the same set of functions is computable regardless of how the details are filled in.

52

For a nice definition we refer to Computability and Logic [11]. We shall only give the formal
definition.

The formal definition is: a Turing machine M is a 7-tuple (Q, Σ, Γ, δ, q0, S0, F), where:

• Q is a finite set of states,

• Σ is a finite set of symbols, the input alphabet,

• Γ is a finite set of symbols, the tape alphabet,

• δ is the partial transition function (Q× Γ → Q× Γ× {L,R}),

• q0 ∈ Q is the initial state,

• S0 ∈ Γ is a symbol called blank,

• F ⊆ Q is a set of final states.

A function is Turing computable if there exists some Turing machine that computes the
function in a finite number of steps. Turing’s model can be used for proving that a certain
function is uncomputable or that a certain problem is unsolvable. That is in fact why Turing
created this model of computation: to prove that the Entscheidungsproblem is unsolvable.

As an example let us consider the busy beaver problem. It can be proved, using Turing
machines, that the busy beaver problem is unsolvable. The proof is by reductio ad absurdum.
An absurdity (0 ≥ 1) is deduced from the assumption that the busy beaver problem is solvable
(that there is a Turing machine that computes a certain function p). For a description of the
busy beaver problem and the proof we refer to Computability and Logic [11].

The halting problem can also be proved unsolvable with the use of Turing machines. Note
that this means that there is no Turing machine that computes a solution to the problem. Only
if the Church-Turing thesis is true (which is very plausible) there is no effective method in the
intuitive sense that solves the problem.

The control unit of a Turing machine can be seen as a finite state machine. This is another
benefit of the Turing machine model, because it facilitates the use of the extensive theory on
finite state machines in computability theory.

Another good feature of Turing machines is the possibility to simulate a Turing machine on a
Turing machine. It is possible to build a Turing machine that accepts the description of another
Turing machine on it’s tape and computes what that Turing machine would have computed.
Such a machine is called a universal Turing machine.

4 Lambda-definable

A few months before Turing had proved the Entscheidungsproblem to be unsolvable (1936)
Alonzo Church had proved a similar result in A Note on the Entscheidungsproblem. He however
used the notions of recursive functions and lambda-definable functions to formally describe effec-
tive computability. Lambda-definable functions were introduced by Alonzo Church and Stephen
Kleene (Church 1932, 1936a, 1941, Kleene 1935).

53

However, the lambda calculus was not purposely designed for computability theory. Originally,
Church had tried to construct a complete formal system for the foundations of mathematics.
When he found out that this system was susceptible to Russel’s paradox he separated out the
lambda calculus and used it to study computability.

The lambda calculus is a way of defining functions. It is a formal system designed to investigate
function definition, function application and recursion.

Formally, we have a countably infinite set of identifiers I. The set of all lambda expressions
can then be defined by the following CFG in BNF:

1. <expr> → <identifier>

2. <expr> → (λ <identifier> . <expr>)

3. <expr> → (<expr> <expr>)

Rules 1 and 2 generate functions. Rule 3 describes the application of a function to an argument.
The parenthesis in rules 2 and 3 can be omitted if there is no ambiguity when following these
rules:

1. Function application is left-associative.

2. A λ binds to the entire expression following it.

The binding of occurrences of variables is (with induction upon the structure of the lambda
expression) defined by the following rules:

1. In an expression of the form V where V is a variable this V is the single free occurrence.

2. In an expression of the form λ V . E the free occurrences are the free occurrences in E
except those of V . In this case the occurrences of V in E are said to be bound by the λ
before V .

3. In an expression of the form (E E′) the free occurrences are the free occurrences in E and
E′.

There is an equivalence relation defined over the set of lambda expressions that captures the
intuition that two expressions denote the same function. This equivalence relation is defined
by the so-called α-conversion rule and the β-reduction rule. There is also a third rule, the
η-conversion rule which expresses the idea of extensionality. We will not define these rules here.

It is possible to define natural numbers and arithmetic operations in lambda calculus. The
natural numbers are most commonly defined by the so-called Church integers:

0 = λf.λx.x,
1 = λf.λx.fx,
etc.

And to give one example of an arithmetic function, addition can be defined as follows:

PLUS = λm.λn.λf.λx.mf(nfx).

54

The computability of a function can be defined with lambda calculus. A function F : N → N is
defined to be computable if there exists a lambda expression f such that for every pair of x, y ∈ N,
F (x) = y if and only if the expressions fx and y are equivalent. More detailed information on
lambda calculus can be found in [13].

The lambda calculus has had great impact on functional programming languages. In fact a lot
of functional programming languages are equivalent to lambda calculus extended with constants
and data-types. The programming language LISP is a well-known example. However only its
purely functional subset is really equivalent to lambda calculus. Nevertheless lambda calculus
seems to have much more practical use than for instance Turing machines.

Lambda calculus produced the historically first problem for which the unsolvability could be
proven. There is no algorithm that given two lambda expressions decides if they are equivalent.
To proof this Church needed a formal definition of the notion of algorithm. He used a definition
via recursive functions for this.

Church’s proof first reduces the problem to determining whether a given lambda expression has
a normal form. A normal form is an equivalent expression which cannot be reduced any further.
Then he assumes that this predicate is computable, and can hence be expressed in lambda
calculus. Then he deduces a contradiction from this and thus proves the uncomputability.

5 Recursive functions

The class of recursive functions exists of the basic functions and the functions that can be
obtained by the composition, primitive recursion and the minimisation operation on the basic
functions.

The basic functions are:

z(x) = 0 (zero function)

s(x) = x + 1 (succesor function)

idn
i (x1, . . . , xi, . . . , xn) = xi (identity function with index)

The three additional operations are: composition, primitive recursion and minimisation. The
following descriptions of these operations are from [11].

If f is a function of m arguments and each of g1, . . . , gm is a function of n arguments, then
the function h where

h(x1, . . . , xn) = f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) (composition)

is the function obtained from f, g1, . . . , gm by composition.

The second sort of operation for generating new recursive functions is primitive recursion.

h(x, 0) = f(x), h(x, s(y)) = g(x, y, h(x, y)) (primitive recursion)

Where h is said to be definable by primitive recursion from the functions f and g.

55

The third operation is minimisation. Applied to total function f of n + 1 arguments, the
operation of minimisation yields a function h of n arguments as follows.

h(x1, . . . , xn) =
{

the smallest y for which f(x1, . . . , xn, y) = 0, if any,
undefined if f(x1, . . . , xn, y) = 0 for no y

(minimization)

Recursion is best explained by an example which deduces an exponentiation into a multipli-
cation into an addition into a recursive form.

exp(x, y) = xy

53 = 52+1 = 51 ∗ 52 = 5 ∗ 5 ∗ 5 ∗ 50

53 = 1 + 1 + + 1 (*125 times*)

We have reduced the exponentiation to an addition problem. The only thing left to do is
define the addition operator as a recursive function, we can do this in the following way.

x + 0 = x, x + s(y) = s(x + y)

As an example we will put the above expressions in primitive recursive form.

sum(x, 0) = id1(x), where sum = h

sum(x, s(y)) = g(x, y, sum(x, y)) = s(id3(x, y, sum(x, y)))

For the product function we have to put the following equations in primitive recursive form.

prod(x, 0),prod(x, s(y)) = x + prod(x, y)

This can be done in the following manner.

prod(x, 0) = z(x), where prod = h and where sum = g

prod(x, s(y)) = g(x, y,prod(x, y)) = sum(id1(x, y, prod(x, y)), id3(x, y,prod(x, y)))

A benefit of the recursive functions is that it has a very small instruction set. This fact can
be used to develop extremely reliable systems, because we can test them thoroughly. A small
instruction set makes hardware errors easy to discover and recover.

The downside is it takes a lot of instructions even for simple computations; i.e. the computa-
tion 2+5 needs sssssss0 = 7 instructions in a recursive functions system while it would require
one instruction on a modern computer.

Of course we can optimise by building special hardware for the basic functions of recursion,
and we can add a few extra functions (like addition). This does make the instruction set more
complex so this is a trade-off we have to take into account.

56

6 Abacus computable

The first abacus machine was developed 5000 years ago, and was used by Greek and Chinese
tradesmen. The word abacus came from the Greek word abakos (for a board or a tablet) which,
in turn, was probably derived from the Hebrew abaq which means dust. The sand surface which
was used earlier for writing had evolved into a board with lines. The modern abacus is a wooden
frame fitted with rigid wires on which counters made of wood or plastic can slide.

The basic principle of the abacus is quite simple, it uses an infinite number of boxes (registers)
which can each contain an infinite amount of stones. The two basic operations are depicted in
figure 1.

Figure 1: Elementary operations in abacus.

These basic operations can be used to make an addition or a multiplication see figure 2. In
the addition registers m and n are added and the result is put in register n, register p is initially
empty. The multiplication uses the same principle where box m is used as a counter.

Figure 2: Addition on the left, multiplication on the right in abacus.

The above example can easily be extended to exponentiation, this is done in [11].

7 FEM-implementable

FEM is a relatively new abstract functional programming language. It is developed by Jan
Terlouw on the base what already had been done in literature concerning combinatory logic and

57

lambda-calculus. It is specifically designed for educational purposes and in particular for courses
on functional programming and the semantics of formal languages at the University of Groningen.
The name FEM is inferred from functional programming and semantics of formal languages. A
detailed description of FEM can be found in Terlouw’s syllabus [12]. More information on the
underlying theories can be found in [13].

This language is a rather abstract functional language which makes it useful for demonstrating
and studying the diverse aspects of functional programming in a pure form. The language is
very powerful and although it doesn’t look very high level it is surprisingly user-friendly. To
keep things compact we will give here a somewhat informal definition of a FEM-program. For
the formal definition we refer to Terlouw’s paper.

A FEM-term is constructed from constants and variables. There is an enumerable infinite set
of constants Con = {s,p, t, 0, 1, 2, . . .}. There is also an enumerable infinite set of variables with
Var ∩Con = ∅. The set of all FEM-terms Ter is inductively defined as:

1. A ∈ Con → A ∈ Ter

2. A ∈ Var → A ∈ Ter

3. A ∈ Ter ∧B ∈ Ter → (AB) ∈ Ter

The intuitive semantic of FEM-terms is:

1. The constants 0, 1, 2, . . . represent the natural numbers; the constants s and p represent
the successor and predecessor functions on the set of natural numbers. The constant t
represents a test for zero branching operation. The term tABC can be read as “if A = 0
then B else C”.

2. Variables have values defined by FEM-declarations.

3. In a composed FEM-term (AB) the function A is applied on argument B. The value
of (AB) is the result of the application. The parenthesis can be omitted; application is
left-associative.

A FEM-declaration is an expression of the form x~y = B where x is a variable, ~y a possibly
empty sequence of independent variables different from x and B a FEM-term. The variable x
is called the declared variable and the variables from ~y are called the formal parameters of the
declaration. With a declaration - possibly in combination with other declarations - the value of
a variable is defined. Declarations can be recursive.

A context is finite sequence of FEM-declarations. A FEM-program is a pair (Γ, A) where Γ
is a context and A a FEM-term (the main term of the program). The value of a FEM-program
(Γ, A) is the value of it’s main term A in which every variable gets a value defined in Γ.

Now we can define when a function is FEM-implementable. Let k ∈ N \ {0} and f : Nk → N.
The k-dimensional numerical function f is FEM-implementable if there is a FEM-program (Γ, A)
with the following property: for all n1, . . . , nk ∈ N the FEM-program (Γ, An1 · · ·nk) has value
f(n1, . . . , nk).

58

Figure 3: Correspondence between boxes and portions of the tape.

8 Equivalence proofs and the Church-Turing thesis

Now we have given the philosophy and characterisations of the following definitions of com-
putability: Turing computable, lambda-definable, recursive functions, abacus computable and
FEM-implementable. These definitions are just a few (although some very important) of the
many definitions of computability.

All these characterisations define their own formal model of computation. With that model
they describe a set of functions computable with that model. The interesting fact is: all these
models describe the same set of computable functions.

It was shown by Church and Kleene in 1936 that the formalisms of the lambda-definable
functions and the recursive functions describe the same set of functions. Shortly after that
Turing showed that this set of functions is equal to set of Turing computable functions. This
led to the Church-Turing thesis which states that Turing machines indeed capture the informal
notion of effective or mechanical method in logic and mathematics. The many systems that were
introduced after that were all shown to compute the same functions as Turing machines. These
systems are called Turing-complete.

The thesis can not be proven, so it does not have the status of a theorem. In theory the thesis
could be disproved with an algorithm that is generally accepted as an effective method but
cannot be performed on a Turing machine. But since all the different attempts at formalising
the notion of algorithm have yielded the same set of computable function, the thesis is now
generally accepted to be true. In fact, it is so widely accepted that modern mathematicians
often use the term Turing computable instead of the undefined terminology.

Now we briefly discuss the nature of the equivalence proofs.

It can be proved that abacus computable functions are Turing computable (A ⊆ T) by choosing
a standard format for both computations and presenting a method for converting the flow graph
of an abacus A into a Turing machine which computes the same functions. Figure 3 shows an
example for the format one can choose.

If we want to add a stone to a box (see left figure 1) we can do the following:

1. Start at standard position (leftmost position on the tape).

2. Find register n.

3. Add a ’1’ on the tape.

4. If there are filled registers on the right, then move them all 1 place to the right, if not go
back to the standard position.

59

For emptying a register n (see right figure 1) we do the same except we have to move all the
registers to the left and we need an exit in case the register is empty. This is done in detail in
[11].

To prove that the recursive functions are abacus computable (R ⊆ A) one first has to show
the abacus computation for the basic functions z(x), s(x), id(x). After that one must show how
given programs which compute functions f, g1, . . . , gm, how they can be arranged into a program
which computes their composition h = Cn[f, g1, . . . , gm]. And, given programs which compute
functions f and g, how they can be arranged into a program which computes the function h
obtained from them by primitive recursion, h = Pr[f, g]. This proof is also given in [11].

It can also be proved that Turing computable functions are recursive (T ⊆ R). This is also
done in [11]. We now have R ⊆ A ⊆ T ⊆ R which means that R = A = T . Similarly it can
also be proved that the set lambda-definable functions L and the set of FEM-implementable
functions F are also equal to R, A and T . Details on this can be found in [13]. Thus it can be
proved that R = A = T = L = F ; all these systems of computation describe the same set of
computable functions.

9 Conclusion: the comparison chart

All characterisations describe the same set of computable functions. So one could say that the
expression power of all models is the same. However these models also have their own specific
properties and some models could be more suitable for certain purposes than others.

Therefore we will introduce a number of properties on which we shall compare the different
systems. For completeness we have also included expression power. The properties are: expres-
sion power, theoretical power, practical power, educational power, compactness of algorithms,
compactness of theory, accessibility.

Theoretical power expresses the usefulness for studying computability theory, for instance
how well it can be used to prove the uncomputability of functions. Practical power expresses the
systems usefulness in practical computer science, such as it’s influence on programming languages.
Educational power indicates it’s use in education. How compact algorithms can be described with
certain system is expressed in the compactness of algorithms. Compactness of theory expresses
the compactness of the total definition of computability with that characterisation. Accessibility
means how accessible the characterisation is.

We have made a classification based on our study of different models of computation. We
have rated the properties of the systems with 1-3 stars, where three stars is best. Table 1 below
shows our results.

Motivation

• The expression power of all systems is the same (? ? ?), because they are all equivalent.

• The theoretical power of Turing machines and recursive functions is high (? ? ?), because
these two systems are used a lot for proving the uncomputability of functions. The theoret-
ical power of lambda calculus is slightly less (??), because it is more focused on functional
programming. Abacus and FEM have relatively low theoretical power (?); they are not
used in complicated theoretical applications.

60

Table 1: The comparison chart

Turing lambda recursive abacus FEM
machines calculus functions

Expression power ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
Theoretical power ? ? ? ?? ? ? ? ? ?
Practical power ?? ? ? ? ?? ?? ??
Educational power ? ? ? ?? ?? ? ? ? ?
Compactness of algorithms ? ? ? ? ? ? ? ? ? ? ?
Compactness of theory ?? ?? ?? ? ? ? ??
Accessibility ? ? ? ? ? ? ? ? ? ? ?

• Lambda calculus has very high (? ? ?) practical use,because of its great influence on func-
tional programming languages. The other systems have slightly less practical use (??); they
can all be simulated on modern computers though.

• Turing machines have a lot of educational power (???), because they are easy to comprehend
(we can easily make a mental picture of them). FEM too has great educational power
(? ? ?), because many aspects of functional programming can be studied with it in a pure
way and it still is reasonably user friendly. Lambda calculus and recursive functions have
less educational power because of their complexity; it takes some time and dedication to
get used to their formalisms. An abacus is useful for children to learn how to count (?).

• Lambda calculus, recursive functions and FEM have all three very compact notations
(? ? ?). Turing machines and abacus both have very large notations (flow-charts, finite
state machines and other diagrams) (?).

• The theory of abacus is by far the most compact (? ? ?); it only has two basic operations.
The other theories are also compact (??), but they need a few more operations/instructions.

• The accessibility of Turing machines and abacus is very good, because one can easily make
a mental picture of the workings of these systems. FEM is also easy to understand, because
it is more high level than lambda calculus and recursive functions (?? ?). Lambda calculus
and recursive functions are more difficult, because they have fewer but more complex
operations (?).

Looking at this chart, FEM-implementable appears to be the most all-round definition of
computability. However, we understand that there are many possible arguments for a different
distribution of the stars.

References

[1] Computability and Incompleteness, Lecture Notes, Jeremy Avigad (July 26, 2002)

[2] Wikipedia, the free encyclopedia, http://www.wikipedia.org/

[3] Turing, A., On Computable Numbers, With an Application to the Entscheidungsproblem,
Proceedings of the London Mathematical Society, Series 2, Volume 42, 1936; reprinted in

61

M. David (ed.), The Undecidable, Hewlett, NY: Raven Press, 1965; online:
http://www.abelard.org/turpap2/tp2-ie.asp

[4] Church, A., A note on the Entscheidungsproblem, Journal of Symbolic logic, 1 (1930), 40
- 41.

[5] Church, A. 1932. A set of Postulates for the Foundation of Logic. Annals of Mathematics,
second series, 33, 346-366.

[6] Kleene, S.C. 1936, Lambda-Definability and Recursiveness. Duke Mathematical Journal,
2, 340-353.

[7] Kleene, S.C., A theory of positive integers in formal logic, American Journal of Mathe-
matics, 57 (1935), pp 153 - 173 and 219 - 244.

[8] Church, A., An unsolvable problem of elementary number theory, American Journal of
Mathematics, 58 (1936), pp 345 - 363.

[9] Gödel, K. 1934. On Undecidable Propositions of Formal Mathematical Systems. Lecture
notes taken by Kleene and Rosser at the Institute for Advanced Study. Reprinted in Davis,
M. (ed.) 1965. The Undecidable. New York: Raven.

[10] Herbrand, J. 1932. Sur la non-contradiction de l’arithmetique. Journal fur die reine und
angewandte Mathematik, 166, 1-8.

[11] Boolos, G.S. and Jeffrey, R.C., Computability and Logic, Cambridge Universtiy Press, 3rd
edition, reprinted 1991.

[12] Terlouw, J., De abstracte functionele programmeertaal FEM, RuG-Informatica (September
1, 2003).

[13] H.P. Barendregt, The Lambda Calculus, Its Syntax and Semantics, Elsevier Science Pub-
lishers B.V., Amsterdam, revised edition, 1984.

62

ERP: Does it live up to its promises?
An overview of implementation strategies and system disadvantages.

Daniel Neeteson, Auke Schotanus

CS/SSE department

University of Groningen
January 2004

Abstract

Enterprise Resource Planning (ERP) is a management tool which is used to link several
departments within a company. This paper presents a layout of the benefits and problems
which companies encounter when implementing their enterprise systems. Strategies are
explored to maximise benefits from these enterprise systems in different ways. Thorough
analysis of both ERP software and organisational processes, in this article called system
exploration, has proven to be the most successful implementation strategy. However, there are
some disadvantages in implementing ERP. ERP does not cover all business processes in a
satisfactory manner, and many organisations have implemented human resource tools (HR-
tools) in addition to an existing ERP implementation. Another disadvantage is the limited
number of modules that are used by an organisation. This causes unused modules costing time
and money. Some organisations have expected too much from ERP, and careful analysis is
needed to achieve a return of investment within a few years.

1.0 Introduction
1.0.1 What is ERP?
ERP is an acronym for Enterprise Resource Planning. The definition of ERP is; the practice
of consolidating an enterprise’s planning, manufacturing, sales and marketing efforts into one
management system (CIO, 2003). The first of the three words encapsulates the main concept
of ERP. ERP focuses on trying to integrate departments and functions throughout a company.
It attempts to integrate everything into a single system that can serve every department’s and
function’s needs (The Simple ERP Site, 2003). The idea of ERP started in the 1960s. Back
then there really wasn't a name classification of this concept. Its concept was to integrate all
departments and functions to increase revenues and strengthen the business. In 1972, five
managers who came from IBM started a business in ERP, which was known as SAP (The
Simple ERP Site, 2003). The core strength of accounting and ERP software is in financial
reporting, inventory management, purchasing and order processing. As with any large
software application, ERP applications have been expanding their offering by adding more
features. Some of these new features include: supply chain management (SCM), customer
relationship management (CRM) and more recently professional services automation (PSA)
(Melik, 2002).

1.0.2 Overview and Research Question
In this article we will give you an overview of a model for maximising benefits from
enterprise systems, and the strategies involved. After that we will give you a short overview
of the disadvantages of using enterprise systems. The research question is: What is the best

 63

way to implement ERP considering the advantages, disadvantages and feasibility of such an
implementation?

2.0 How can organisations maximise benefit from
enterprise systems?
Many organisations have spent millions of dollars on packaged enterprise application
software from vendors such as SAP, Oracle, PeopleSoft, i2 and Arriba. Worldwide sales are
estimated at around US$ 21.4 billion in 2004 (E-Pay News Statistics, 2004). This amount
does not include additional implementation costs of hardware, networks and consultancy, so
the number may be inflated by a factor three to five (Smith, 1999). Even this is not enough:
think of all the hidden costs to companies of the internal resources deployed on projects and
the consequent loss of focus on the business (Smith, 1999). Considering these high costs it is
important for businesses to ask themselves how to maximise the benefits of these huge
investments. This part of the article will analyze different ways of enterprise system use in
order to make clear what the best practice is and why some companies fail to benefit from
ERP.

In this article, the term packaged enterprise application software (PEAS) refers to the
packaged software itself, and the term enterprise systems (ES) refers to the combination of
people, organisational processes, hardware, telecommunications networks, and software that
use PEAS (Shang, 2002).

Packaged enterprise application software products are highly flexible. They contain solutions
to the needs of many of the vendor's customers. Because these customers are from a very
broad range of industries, it is very hard for a specific organisation to find the right
combination of processes for its own changing needs and to implement those processes in its
own organisation (Shang, 2002). The challenge for an organisation implementing ERP is to
achieve an on-going fit between the evolving capability of the software and the changing
needs of the organisation. Of course, it is achieving this on-going fit what makes the
implementation of PEAS so hard and costly. The complexity of PEAS is such that, even when
the implementation is done very well, it is not likely that the first implementation will fit the
organisation's processes very well. Understanding the potential benefits of enterprise systems
takes time for the organisation, and the organisation's needs will change because the
organisation changes itself (strategy, markets, reorganisations). Meanwhile, new versions of
PEAS are delivered and new technologies are introduced by the vendors. Vendor firms
themselves could even merge or go bankrupt. To achieve on-going fit, understanding both the
organisation's processes and the capabilities of the PEAS is of great importance for managers.

PEAS are a semi-finished product that user organisations must tailor to their business needs
(Shang, 2002). Tailoring the software using parameters (e.g. base currency) provided by the
vendor is usually called configuration (Bancroft et al., 1998). The functionality of PEAS can
also be changed by altering the actual program code so that it fits the processes of the
organisations in a better way. This is usually called customisation (Shang, 2002).
Customisation is usually not recommended by vendors, because it imposes the risks of
software development itself and the possibility of having to re-customise new releases of the
software. Customisation can be avoided by changing business processes to match those
supported by the software. However, changing organisational processes is difficult and
processes supported by the software may not be in the interests of the organisation.

 64

The challenge for teams implementing PEAS is to find an optimum between configuration,
customisation and process change. This optimum should not be ad hoc, but it must last over
time, so finding out what processes are important now and in the future, and a thorough
understanding of the ES software is crucial. This problem can be compared to the partitioning
problem in hardware software co-design (de Micheli, 1999), where the problem is to find an
optimum between the flexibility of software and the speed of hardware.

2.1 A Model for maximising benefits from ES
In this article we will use the model as depicted in the article by Shang. This model is specific
for ES projects and leaves out all factors that could influence any other IT project. At the left,
four "Distinctive Characteristics of PEAS" are shown. Each of these characteristics needs to
be managed, because it can be a source of value or of problems for the implementing
organisation. Configuration activities are done at the left of the model. The goal of the
activities depicted in the middle of the figure is to achieve an on-going fit between the
evolving capabilities of the software and the changing needs of the organisation. Changes at

Figure 1: Taken from Shang & Seddon, p9, 2002

the left will cause new cycles in the middle of the figure. At the right of the model, you can
see five types of benefits from ES use. The graphs are based on the results of four Australian
companies that were investigated by Shang & Seddon with a time axis range of 3 years. The
fact that benefits were higher in year three is important because by year three all the
companies had adopted an implementation strategy Shang & Seddon call System Exploration,
which will be discussed later in this article.

 65

2.2 The four strategies for achieving fit
As stated before, achieving fit between the organisation and enterprise systems is a matter of
changing the software to the organisation's needs or changing the organisation's processes to
the functionality of the acquired software. Combining these two activities, there are four
strategies for achieving fit, depending on the presence or absence of preparedness to do these
activities, which will be discussed in the following subsections.

2.2.1 Process replication
Process replication is done when the preparedness of both changing PEAS and changing
organisational processes is low. Process replication means using the PEAS to duplicate or
automate existing business processes. This strategy is used by companies that want to reduce
costs and risks of software and organisational changes (Shang, 2002). Furthermore, because
of the boom market at the end of the 20th century, it was in the interests of implementation
partners to move to different clients quickly, without spending time to change things (Smith,
1999). Moreover, because the scale and complexity of implementation were underestimated,
many firms chose the simple route with this strategy (Smith, 1999).

2.2.2 Process Modification & Enhancement
When the organisation makes changes to organisational processes in order to adapt these
processes to be configurable within PEAS, it is called process modification & enhancement.
The main risk of this strategy is that the software may dominate the way they conduct their
business.

2.2.3 Software Modification & Enhancement
When the organisation makes changes to the PEAS by configuring and customising it to fit
the existing processes as closely as possible, it is called software modification &
enhancement. Vendors of PEAS usually do not recommend this strategy, because it will
probably mean reconfiguring and re-customisation when a new release is installed. However,
some organisations believe their most important processes are so unique that they have to
change the software to fit these special processes.

2.2.4 System Exploration
When an organisation explores all opportunities for better process performance by being
prepared to make changes to both business processes and the PEAS, it is called system
exploration. This strategy needs process managers that have a very good understanding of
both the PEAS and the organisational processes.

2.3 Evaluation of the different strategies
All these strategies have pros and cons. Process replication caused early automation benefits
(speed and cost), but previous process problems are not assessed and therefore persist (Shang,
2002; Smith, 1999). Process modification revolutionised business processes, but holds the
risks of data errors, work mistakes and user resistance (Shang, 2002). Software modification
made changeover to the new system relatively simple, but the costs are higher because of
software maintenance and upgrades. Finally, system exploration produced the most benefits,
but process owners have such a complex task that they suffered from work overload. All
companies investigated in the study by Shang & Seddon had changed their strategy to system
exploration by the third year of ES use, and rise of the benefits in the third year is compelling
evidence that system exploration is the most appropriate strategy. The model proposed by

 66

Shang & Seddon depicts the evolutionary-life-cycle as used by the process managers of the
companies.

2.4 Institutionalisation of process-improvement is necessary for
successfully implementing PEAS
In order to use system exploration in the best way, it is important to form Centers of
Excellence to institutionalise processes for achieving on-going fit (Shang, 2002). Both Shang
& Seddon and Mark Smith strongly recommend these teams to continue their work after the
implementation has gone live. It is important to articulate the benefits clearly so that they can
be measured for re-evaluation. Mark Smith emphasises the importance of the development of
detailed business cases, something which is supported by Shang & Seddon by stressing the
need for process managers to understand their organisation processes in a thorough way. It is
this long-term thorough analysis which produces the greatest benefits when implementing
PEAS.

3.0 Disadvantages of ERP implementation
The use of ERP has grown considerably at the end of the 20th century. Many companies have
implemented ERP just because everybody else was doing it, not considering the costs and
return of investment (Smith, 1999). This has led to many poor implementations within
organisations. These organisations did not achieve the on-going fit while spending huge
amounts of money.

Enterprise applications show strength in financial reporting, inventory management,
purchasing and order processing (Melik, 2002). ERP lacks support for project and people
management. Enterprise Resource Planning has more to do with accounting registering than
with planning. Sophisticated time scheduling and project planning are not supported by ERP.
Because of these shortcomings, many organisations have installed separate software packages
that support human resource management (HRM). The goal of an ERP system is to integrate
different organisational activities in one single system. This integration has clearly not been
achieved when companies acquire additional software packages (Melik, 2002).

Another disadvantage of ERP is the size of the product as delivered by the vendor. Most
companies use only a limited number of modules of the system. This leaves many unused
modules, that also have to be configured every time a new version is installed. This leads to
an unnecessary rise in implementation costs (Melik, 2002).

Considering the title of this article, ERP does not live up to its promises. It was presented as a
panacea, but turned out to be costly and difficult to implement for a lot of companies. It does
not cover all expected areas of business processes. However, a thoroughly and well-prepared
implementation does pay off in a few years.

4.0 Conclusion
Nowadays many organisations invest heavily in PEAS. These packages are highly costly and
incredibly complex. It takes a lot of time and effort and money to implement these systems.
The research question was: What is the best way to implement ERP considering the
advantages, disadvantages and feasibility of such an implementation? We have shown a
model from Shang and Seddon which shows an evolutionary spiral for achieving maximum
benefits. Achieving fit between organisations and enterprise system is an ongoing process.
For achieving this fit we have pointed out four strategies:

 67

 68

o 1. Process replication
o 2. Process modification and enhancement
o 3. Software modification and enhancement
o 4. System exploration

We have shown that system exploration is the most effective strategy to adapt the enterprise
system to an organisation. Organisations must realise what ERP can and cannot do, so that it
can meet its expectations. An important cause of implementation failure is short-term decision
making which is always done under severe time pressure. As we said before: it is this long-
term thorough analysis which produces the largest benefits when implementing PEAS.

5.0 References
BANCROFT, N.H., SEIP, H. & SPREGEL, A., Implementing SAP R/3, Greenwich, CT: Manning
Publications Inc., 1998.

EPAYNEWS STATISTICS: http://www.epaynews.com/statistics/ecappstats.html

MICHELI, G. DE, Hardware Software Co-Design. Proceedings of the IEEE, 1997:85(3), p349-
364

SHANG, S. & SEDDON, P.B., 2002, Maximising benefits from enterprise systems.

SMITH, M. Realising the benefits from investment in ERP. Management Accounting,
november 1999, p34.

CIO.COM, Executive summaries: Enterprise Resource Planning,
http://www.cio.com/summaries/enterprise/erp/index.html, September 8 2003.

THE SIMPLE ERP SITE, http://www.du.edu/~atanner/index.htm.

MELIK, R., 2002, Competitive disadvantages of ERP based project and human capital
management. http://www.tenroxpsa.com/en/downloads/whitepapers/ERP/index.htm.

http://www.epaynews.com/statistics/ecappstats.html
http://www.cio.com/summaries/enterprise/erp/index.html
http://www.du.edu/~atanner/index.htm
http://www.tenroxpsa.com/en/downloads/whitepapers/ERP/index.htm

Appendix A

This appendix contains the review forms that are used during the review process
of StudColl.

69

Review form (to be sent to programme committee and authors)

Paper no. (use the set number here)
Author(s)
title

Please note that this paper is sent to you only for the purpose of reviewing. It is to remain
confidential until it is actually published in the conference proceedings. You should not pass it on
or disclose it to anyone else. Delegation of the reviewing to someone else is not allowed.

Papers should be regarded as survey papers.

Rating is done according to the following scheme:

rating meaning
1 No Very bad Completely rewrite
2 No, but … Bad Adjust
3 Maybe Intermediate Neutral
4 Yes, but … Good Accept
5 Yes Very good Strongly accept

Short summary of the paper:

StudColl review paper page 1/4

Questions Rating
1. Does the title reflect the contents of the paper?

remarks:

2. Is the subject matter clearly within the scope of the StudColl conference?
(i.e., interesting and understandable for this particular audience)

remarks:

3. Is the paper clearly focused?

remarks:

4. Is the central thesis of the paper well founded and well discussed?

remarks:

5. Is the presentation (layout, style, grammar, spelling) acceptable?

remarks:

6. Should the paper be accepted for the studColl conference?

□ accept with minor changes
□ accept with major changes
□ completely rewrite
remarks:

Please motivate all answers (i.e., give ratings and fill in the remarks per question).

StudColl review paper page 2/4

Points in favour or against (sent to the author(s))
The remarks stated here will be sent to the author who may use them to improve the paper.

StudColl review paper page 3/4

StudColl review paper page 4/4

 Detailed textual remarks to be sent to the author
The remarks stated here will be sent to the author who may use them to improve the paper.

Review form (to be sent to the programme committee1 only)

Paper no. (use the set number here)
Author(s)
title

Remarks for the programme committee

The remarks stated here will only be used during the selection process. They will not be communicated to anybody
outside the programme committee.

1 Jan Terlouw and Rein Smedinga

Re-Review form (to be sent to programme committee1 only)

Paper no. (use the set number here)
Author(s)
Title
Reviewer

Please note that this paper is sent to you only for the purpose of reviewing. It is to remain
confidential until it is actually published in the conference proceedings. You should not pass it on
or disclose it to anyone else. Delegation of the reviewing to someone else is not allowed.

Papers should be regarded as survey papers.

Rating is done according to the following scheme:

rating meaning
1 No Very bad Strongly reject
2 No, but … Bad Reject
3 Maybe Intermediate Neutral
4 Yes, but … Good Accept
5 Yes Very good Strongly accept

For this re-review please use the second version of the paper and take into account the way the
paper has been improved according to the comments of all the reviewers (including your own
comments) in the first round of the reviewing process.

In the following table, please give the final ratings for each of the items. Use the remark-field that
comes with the last two questions to motivate your final ratings.

Short summary of the paper:

1 Jan Terlouw and Rein Smedinga

StudColl re-review paper page 1/2

StudColl re-review paper page 2/2

Questions Rating
1. Does the title reflect the contents of the paper?

2. Is the subject matter clearly within the scope of the StudColl conference?
 (i.e., interesting and understandable for this particular audience)

3. Is the paper clearly focused?

4. Is the central thesis of the paper well founded and well discussed?

5. Is the presentation (layout, style, grammar, spelling) acceptable?

6. Has the paper improved in comparison with the first version? In what way?

remarks:

7. Should the paper be accepted for the studColl conference?2

□ accept
□ reject

remarks:

Please motivate all answers (i.e., give ratings and fill in the remarks per question).

2 papers that are accepted will be published in the proceedings. All papers (both accepted and rejected) will be
presented during StudColl.

