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A Power-Based Perspective of Mechanical Systems

Dimitri Jeltsema and Jacquelien M.A. Scherpen

Abstract— This paper is concerned with the construction of a
power-based modeling framework for a large class of mechan-
ical systems. Mathematically this is formalized by proving that
every standard mechanical system (with or without dissipation)
can be written as a gradient vector field with respect to an
indefinite metric. The form and existence of the corresponding
potential function is shown to be the mechanical analogue of
Brayton and Moser’s mixed-potential function as originally
derived for nonlinear electrical networks in the early sixties. In
this way, several recently proposed analysis and control methods
that use the mixed-potential function as a starting point can
also be applied to mechanical systems.

I. Introduction andMotivation

IT IS WELL-KNOWN that a large class of physical sys-
tems (e.g., mechanical, electrical, electro-mechanical, ther-

modynamical, etc.) admits, at least partially, a representation
by the Euler-Lagrange or Hamiltonian equations of motion,
see e.g. [1], [6], [8], [9], [10], and the references therein.
A key aspect for both sets of equations is that the energy
storage in the system plays a central role. For standard
mechanical systems with n degrees of freedom, and lo-
cally represented by n generalized displacement coordinates
q = col(q1, . . . , qn) ∈ Q, the Euler-Lagrange (EL) equations
of motion are given by1

d
dt

(
∇q̇L(q, q̇)

)
− ∇qL(q, q̇) = τ, (1)

where q̇ = col(q̇1, . . . , q̇n) ∈ V denote the generalized veloci-
ties, and L : Q × V→ R represents the Lagrangian which is
defined by the difference between the kinetic co-energy and
the potential energy. Usually the forces τ are decomposed
into dissipative forces and generalized external forces.

The relation between the Euler-Lagrange equations and
the Hamiltonian equations is classically established as fol-
lows. Defining the generalized momenta p = ∇q̇L(q, q̇), with
p = col(p1, . . . , pn) ∈ P, the equations of motion, as origi-
nally described by the set of second-order equations (1), can
be written as a set of 2n first-order equations:

q̇ = ∇pH(q, p), ṗ = −∇qH(q, p) + τ. (2)

Here, H : Q × P→ R denotes the Hamiltonian which repre-
sents the sum of the kinetic and potential energy.

The relationship between (1) and (2) is graphically repre-
sented in the diagram shown in Fig. 1 (solid lines). Clearly,
the diagram suggests that there exists a dual form of (1) in the
sense that a mechanical system can be expressed in terms of
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1By ∇x we denote the partial derivative operator ∂∂x . When clear from the
context the subscript will be omitted.
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Fig. 1. Mechanical confi guration space quadrangle: The symbols Q, P,
V and F denote the spaces of the generalized displacements, momenta,
velocities and forces. The solid and dashed diagonal lines represent the
directions for the Legendre transformations of the Lagrangian and co-
Lagrangian, respectively, in relation to the Hamiltonian; the question marks
denote the fourth equation set to be explored in this paper. Notice that the
relation between the spaces Q and V, and similarly between P and F, is the
d/dt operator.

a set of generalized momenta and its time-derivatives, which
represent a set of generalized forces. Indeed, in [6] a de-
scription of the dynamics in the generalized momentum and
force spaces P and F, respectively, is called a co-Lagrangian
system, where the Lagrangian L in (1) is replaced by its dual
form L∗ : P × F→ R, representing the difference between
the potential co-energy and the kinetic energy, while the
forces τ are replaced by external velocities τ∗, i.e.,

d
dt

(
∇ṗL∗(p, ṗ)

)
− ∇pL∗(p, ṗ) = τ∗, (3)

with ṗ = col(ṗ1, . . . , ṗn) ∈ F. Hence, the co-Lagrangian sys-
tem (3) represents a velocity-balance equation.

So far we have considered three possible representations
describing the dynamics of a standard mechanical system.
The underlying relationship between the three sets of equa-
tions is the existence of the Legendre transformations be-
tween Q, V, P and F. Furthermore, the quadrangle of Fig. 1
also suggest a fourth equation set. Intuitively, at this point,
one could be tempted to call a dynamic description on the
spaces V and F the co-Hamiltonian equations of motion.
Starting from the Hamiltonian equation set, if both the Leg-
endre transformations of Q→ F and P→ V are considered
simultaneously, one obtains H ∗ : F × V→ R which appears
to be a bona-fide co-Hamiltonian candidate. Hence, based on
the latter observation, and in comparison to (2), this would
suggest that the ‘co-Hamiltonian’ equation set, should read:

v̇ = ∇fH ∗(v, f ), ḟ = −∇vH ∗(v, f ) + φ,

where v = q̇, and f = ṗ. However, the latter set of equations
is not correctly describing the dynamics since the units of
v̇ and ḟ do not coincide with the units of ∇fH ∗(v, f ) and
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∇vH ∗(v, f ), respectively.2 Furthermore, it is not clear how
the external signals, represented by φ, relate to the original
external signals τ and/or τ∗. Thus, the existence, form and
meaning of the fourth description remains to be clarified.

In this paper, it is our objective to identify the fourth equation
set (indicated by the question marks) in the quadrangle of
Fig. 1, and to formally complete the relationships between
the different sets of equations. It will be shown that the
fourth equation set constitutes a mechanical analogue of the
Brayton-Moser equations [2]. These equations constitute a
gradient system with respect to an indefinite metric defined
by the dynamic part of the network (capacitors and induc-
tors), and a mixed-potential function which describes the
static part (interconnection, resistors, and sources) of the
network and has the units of power. Besides the completion
of the quadrangle, the mechanical analogue of the Brayton-
Moser equations can be useful for other features like:

✦ Stability analysis along the lines of [2]. The mixed-
potential (and thus the power in the system) can be used to
construct Lyapunov-type functions to prove stability under
certain conditions — even in cases that the system contains
(regions of) negative resistance! Additionally, the stability
criteria stemming from this method can be used to find lower
bounds on the control parameters when applying Passivity-
Based Control3, see e.g., [5] for some recent results in the
field of electronic power converter control.

✦ Definition of new passivity properties along the lines
of [3]. This includes the definition of alternative conjugated
port-variables (inputs and outputs) with respect to an alter-
native storage function (i.e., the mixed-potential).

✦ The notion of the aforementioned new passivity proper-
ties have led to the paradigm of Power Shaping stabilization.
Some recent applications to nonlinear RLC circuits have
been reported in [7]. The Power-Shaping method is based
on a particular selection of the input signals (the controls)
as to shape the power flow (read: the mixed-potential).

✦ The Brayton-Moser equations seem to be a natural
equation set in relation with bond-graph theory since the
canonical state variables live in the flow and effort spaces.

Although there exists a widely accepted standard analogy
between simple mechanical and electrical system elements,
like for example, the ‘spring-capacitor’ and the ‘mass-
inductor’ analogy, the existence of a well-defined analogy
for more general mechanical systems is not straightforward.
One of the main reasons for making such analogy difficult is
the presence of the Coriolis and centrifugal forces, which do
not appear as such in the electrical domain. Another difficulty
is that, in contrast to electrical networks, mechanical systems
are in general not nodical. Hence, a mechanical system can

2Note that the units of ∇fH∗(v, f ) and ∇vH∗(v, f ) are displacement (or
position) and momenta, while the units of v̇ and ḟ are the time-derivatives
of velocity (i.e., acceleration) and force, respectively.

3Passivity-Based Control (PBC) is a control method that has its roots in
the fi eld robots and the closely related Lagrangian framework. For a detailed
elaboration on this subject the interested reader is referred to [8], and the
references cited therein.

not always be considered as an interconnected graph. For
these reasons, we can, in general, not equate the dynamics
of a mechanical system mutatis-mutandis along the lines
of [2]. For that, a more dedicated analysis is needed and
a dedicated transformation algorithm that goes beyond the
Legendre transformation needs to be developed.

The structure of the paper is as follows. Section II dis-
cusses the original form of the Brayton and Moser equations.
In Section III, a lemma will be introduced which forms the
key behind the main results presented in Section IV. The the-
ory is exemplified using a well-known nonlinear mechanical
system. The role of dissipative forces and velocities is studied
in Section V. Finally, in Section VI, possible extensions of
the theory and future research will be discussed.

II. The Brayton-Moser Equations

The Brayton-Moser (BM) equations as originally developed
for a large class of nonlinear electrical RLC networks take
the special gradient form⎛⎜⎜⎜⎜⎜⎝C(u) 0

0 −L(i)

⎞⎟⎟⎟⎟⎟⎠
︸�����������︷︷�����������︸

Qe(u,i)

d
dt

⎛⎜⎜⎜⎜⎜⎝u
i

⎞⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎝∇uPe(u, i)

∇iPe(u, i)

⎞⎟⎟⎟⎟⎟⎠ , (4)

where u ∈ U represents the voltages across the incremental
capacitors C(u), i ∈ I represent the currents through the
incremental inductors L(i), and Pe : U × I→ R is called the
mixed-potential function which usually takes the form

Pe(u, i) = iTγu + Ge(i) − J e(u). (5)

Here γ is a unit-less matrix derivable from Kirchhoff’s laws,
whereas the functions Ge : I→ R and J e : U→ R represent
the content and co-content, respectively. It will appear later
on that the (co-)content function plays a role similar to the
Rayleigh (co-)dissipation function in a mechanical system.
Note that if the network does not contain resistors and/or
sources, the mixed-potential reduces to

Pe(u, i) = iTγu. (6)

For ease of reference we introduce the definition:

Definition 1: A set of BM equations (4), defined on the
voltage and current space U and I, respectively, together with
a mixed-potential of the form (5), is called a canonical BM
description. Any other set of equations that admit structurally
the same mixed-potential (5), though not necessarily defined
on U and I, is called a homonymous BM description.

Adopting the ‘spring-capacitor’ and ‘mass-inductor’ anal-
ogy, the construction of the mechanical analogue of (4) will
basically be concerned with the construction of a mixed-
potential of the form (5) in terms of mechanical forces and
velocities, either directly in terms of F and V (i.e., canonical),
or indirectly in terms of e.g., Q and P (i.e., homonymous).
Additionally, the corresponding metric is desired to coincide
with a form comparable to:

Q(·) =
⎛⎜⎜⎜⎜⎜⎝ ‘springs’ ∗

∗ −‘mass’

⎞⎟⎟⎟⎟⎟⎠ . (7)
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III. Preliminaries

As discussed in Section I, a standard mechanical system can
be represented by the Hamiltonian equation set (2). For ease
of presentation, we set the external forces τ = 0 and rewrite
(2) in a more compact form as

ż = J∇H(z), (8)

where z = col(q, p), and J is a skew-symmetric matrix of the
form

J =

⎛⎜⎜⎜⎜⎜⎝ 0 In

−In 0

⎞⎟⎟⎟⎟⎟⎠ = −JT, (9)

with In the n × n identity matrix. The Hamiltonian function
H(z) = H(q, p) is assumed to be

H(q, p) = 1
2 pTM−1(q)p +V(q), (10)

where M(q) = MT(q) > 0 is the inertia matrix, and V : Q→
R is a twice-differentiable potential energy function.

Clearly, for standard mechanical systems J−1 = JT is well-
defined. Hence, the Hamiltonian equations (8) can be rewrit-
ten as

J−1ż = ∇H(z), (11)

which directly gives rise to the suggestion of a BM type
of gradient system (compare with (4)). However, apart from
the fact that the system is described in terms of displacement
and momenta instead of some force and velocity variables,
the matrix J−1 is skew-symmetric and dimensionless, while
the ‘potential’ function H(z) still represents the total energy.
On the other hand, since we now formally have two different
pairs,

{
J,H} and

{
J−1,H}, both describing the same dynam-

ics, the next question is whether there exists other pairs, say{
J̃, H̃} or

{
J̃−1, H̃}, that equivalently describe the system’s

dynamics. Borrowing inspiration from [2], such pairs can be
generated as illustrated in the following lemma.

Lemma 1: Consider a standard mechanical system repre-
sented by (11). If ∇2H(z) is full-rank, then for any constant
symmetric matrix K the dynamics of (11) can be equivalently
expressed by

J̃−1(z)ż = ∇H̃(z), (12)

where

H̃(z) = 1
2

(∇H(z)
)TK∇H(z), (13)

and

J̃−1(z) = ∇2H(z)KJ−1. (14)

Proof: The result follows directly by computing the gra-
dient of H̃(z) and substitution of (14) and (8). �

Having made these observations, our next task is to select
a constant and symmetric matrix K such that (13) coincides
with the mechanical equivalent of (6), while (14) represents
a metric similar to (7).

IV. Main Result

Theorem 1: Consider a standard mechanical system de-
scribed by the Hamiltonian equations (11). The dynamics of
(11) can be equivalently expressed as

Q(z)ż = ∇P(z), (15)

where

Q(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∇2

qV(q) + 1
2∇2

q

(
pTM−1(q)p

)
−∇q

(
pTM−1(q)

)

∇q

(
M−1(q)p

)
−M−1(q)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
(16)

and
P(z) =

(∇V(q)
)TM−1(q)p

+ 1
2

(
∇q

(
pTM−1(q)p

))T
M−1(q)p.

(17)

The pair (16) and (17) defines a homonymous BM descrip-
tion of mechanical type.

Proof: The key is to select in (13) and (14) of Lemma 1
a constant symmetric K-matrix such that

KJ−1 =

⎛⎜⎜⎜⎜⎜⎝ In 0

0 −In

⎞⎟⎟⎟⎟⎟⎠ , (18)

which means that K should be chosen as

K =

⎛⎜⎜⎜⎜⎜⎝ In 0

0 −In

⎞⎟⎟⎟⎟⎟⎠ J =

⎛⎜⎜⎜⎜⎜⎝ 0 In

In 0

⎞⎟⎟⎟⎟⎟⎠ = KT.

Hence, if we define P(z) � H̃(z) and Q(z) � J̃−1(z), then by
substitution of K into (13) and (14), we obtain (16) and (17)
from P(q, p) �

(∇qH(q, p)
)T∇pH(q, p) and

Q(q, p) �

⎛⎜⎜⎜⎜⎜⎝ ∇
2

q −∇q∇p

∇p∇q −∇2
p

⎞⎟⎟⎟⎟⎟⎠H(q, p),

respectively. The claim that the pair (16) and (17) defines a
homonymous BM description (in the light of Definition 1)
follows from the fact that, although expressed in terms of q
and p, the units and form of P(q, p) coincide with power, and
correspond to the mechanical analogue of a mixed-potential
for a lossless electrical network as given in (6). Indeed, this
is most easily seen from (11) since the generalized velocities
are defined by

q̇ = ∇pH(q, p) = M−1(q)p,

and the generalized forces4 by

ṗ = −∇qH(q, p) = − 1
2∇q

(
pTM−1(q)p

)
− ∇qV(q).

Thus, according to the latter equations, P(q, p) as defined in
(17), can be written in terms of q̇ ∈ V and ṗ ∈ F as

P(·) = −q̇T ṗ, (19)

i.e., P(·) = (minus) velocity × force = power. �
Regarding Theorem 1, we observe that the diagonal terms

4Note that the term 1
2∇q
(
pT M−1(q)p

)
is part of the centrifugal and Coriolis

forces [10].
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of the Q-matrix (16) correspond to the inverse of the diagonal
terms of (7). Hence, Q(q, p) in its present form is not (yet)
interpretable as the precise mechanical analogue of Qe(u, i) in
(4). This is due to the fact the dynamics are still expressed in
terms of the generalized displacements and momenta, instead
of the generalized forces and velocities, respectively (i.e., the
mechanical analogues to voltages and currents as adopted at
the end of Section II). Furthermore, the presence of the skew-
symmetric off-diagonal terms stem from the fact that the non-
symmetrical part of the system’s drift vector field J∇H(z)
is shifted to the left-hand side of the equations in order to
guarantee the integrability needed for the construction of the
mixed-potential function.

As is highlighted in [4], and according to Definition 1,
a precise mechanical analog (or, in a different parlance: a
canonical BM equation set of mechanical type) of the BM
equations (4) can only be obtained if the Legendre transfor-
mations from P→ V and Q→ F, and preferably vice-versa,
are well-defined relations. Unfortunately, in general this is
not always the case. For example, if a system operates under
the influence of a (constant) gravitational force, the mapping
q �→ f (recall that f represents the generalized forces) simply
does not exist.5 On the other hand, suppose for simplicity that
M(q) is constant, i.e., M(q) = M, then (16) reduces to

Q(q) =

⎛⎜⎜⎜⎜⎜⎝∇
2

qV(q) 0

0 −M−1

⎞⎟⎟⎟⎟⎟⎠ .
(Compare with Qe in (4).) Hence, Eq. (15), together with the
pair defined in (16) and (17), can be written as⎛⎜⎜⎜⎜⎜⎝∇

2
qV(q) 0

0 −M−1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝ q̇

ṗ

⎞⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎝∇qP(q, p)

∇pP(q, p)

⎞⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎝∇

2
qV(q)M−1 p

M−1∇qV(q)

⎞⎟⎟⎟⎟⎟⎠ .
(20)

Clearly, since M−1 is invertible by assumption (even in the
non-constant case!), the Legendre transformation of p �→ q̇
is well-defined, i.e., p = Mq̇, or equivalently, q̇ = M−1 p. Let
again v = q̇ ∈ V, denote the generalized velocities, then the
second equation in (20) can be written as

−Mv̇ = ∇qV(q). (21)

Moreover, if ∇2
qV(q) is full-rank and there exists a mapping

q �→ f , we have with

V∗( f ) � qT f −V(q), f = ∇qV(q),

that the first equation in (20) can be rewritten on the (V, F)-
space as ∇2

f V∗( f ) ḟ = v. Furthermore, elimination of the q-
dependency of ∇qV(q) in (21) by q = ∇fV∗( f ), gives

−Mv̇ = ∇qV(q)
∣∣∣∣
q=∇fV∗( f )

= f .

Hence, the precise mechanical analogue of (4) is given by⎛⎜⎜⎜⎜⎜⎝∇
2
f V∗( f ) 0

0 −M

⎞⎟⎟⎟⎟⎟⎠
︸����������������︷︷����������������︸

� Q̃( f )

⎛⎜⎜⎜⎜⎜⎝ ḟ

v̇

⎞⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎝∇fP( f , v)

∇vP( f , v)

⎞⎟⎟⎟⎟⎟⎠ , (22)

5Of course, we could treat gravity as an external force, input or distur-
bance. However, in Hamiltonian mechanics gravity is usually included using
the potential energy function.

q1

q2

m

�

mg

Fig. 2. A frictionless spherical pendulum.

where the associated mixed-potential is defined

P̃( f , v) �P(q, p)
∣∣∣∣ q = ∇fV∗( f )

p = M q̇
= vT f . (23)

Additionally, the previous observations indirectly clarify the
role played byH ∗( f , v), i.e., the co-Hamiltonian, as discussed
in Section I, since

⎛⎜⎜⎜⎜⎜⎝∇
2
f V∗( f ) 0

0 M

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝ ḟ

v̇

⎞⎟⎟⎟⎟⎟⎠ = d
dt

⎛⎜⎜⎜⎜⎜⎝∇fH ∗( f , v)

∇vH ∗( f , v)

⎞⎟⎟⎟⎟⎟⎠ .
A similar discussion hold for non-constant inertia matrices
M = M(q) > 0, but it yields a more complex analysis which
is omitted for sake of brevity. In conclusion for this part, we
summarize the latter discussion in the following corollary:

Corollary 1: Consider a standard mechanical system de-
scribed by the Hamiltonian equations (11). If the mapping
q �→ f is well-defined, then (15), together with the pair de-
fined in (16) and (17), is the canonical mechanical analogue
of the BM equations (4).

Let us next illustrate the application of Theorem 1 using
an example.

Example 1: Consider the frictionless spherical pendulum
shown in Figure 2. The system consists of a massless rigid
rod of length � fixed in one end by a spherical joint and
having a bulb of mass m at the other end. Let q1 and q2 denote
angles of the vertical and horizontal movements, and p1 and
p2 the corresponding momenta. The configuration space of
the system is S2, however we will assume that q1 and q2

remain inside the domain ]0, π[ and ]0, 2π[, respectively. The
Hamiltonian (i.e., the total stored energy) reads

H(q, p) = 1
2 pTM−1(q)p − mg� cos(q1),

where

M−1(q) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

m�2
0

0
1

m�2 sin2(q1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

The centrifugal and Coriolis forces are defined by the gradi-
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ent of the kinetic energy with respect to q1 and q2, i.e.,

1
2∇q

(
pTM−1(q)p

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
− cos(q1)

m�2 sin3(q1)
p2

2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
and the potential forces are

∇V(q) =

⎛⎜⎜⎜⎜⎜⎝mg� sin(q1)

0

⎞⎟⎟⎟⎟⎟⎠ .
Application of Theorem 1 yields that the homonymous
mixed-potential for the system is given by

P(q, p) =
g
�

sin(q1)p1 − cos(q1)

m2�4 sin3(q1)
p2

2 p1.

Furthermore, we compute the matrix Q(q, p) as

Q(q, p) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ(q, p) 0 0
2 cos(q1)

m�2 sin3(q1)
p2

0 0 0 0

0 0 − 1
m�2

0

− 2 cos(q1)

m�2 sin3(q1)
p2 0 0 − 1

m�2 sin2(q1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

Φ(q, p) �mg� cos(q1)p1

−
(

3 cos2(q1)

m�2 sin4(q1)
+

1

m�2 sin2(q1)

)
p2

2 p1.

We directly observe that the system is not minimal in the
sense that Q(q, p) is rank deficient. However, since q2 does
not explicitly contribute to the dynamics (also not in the
original Hamiltonian model), we may delete the second row
and column of Q(q, p) as to obtain a minimal homonymous
BM description. Also note that the mapping q �→ f is not
globally defined, and thus we can not obtain a canonical
BM equation set for this system.

V. On the Role of Dissipation

In the previous sections we have concentrated on standard
mechanical systems without any external disturbances or
dissipative forces. In this section we generalize our devel-
opments further by studying the effect of dissipative forces
and velocities working on the system. An ideal (translational
or rotational) mechanical dissipator is defined as an object
which exhibits no kinetic or potential effects. In the analysis
hereafter, we assume for simplicity that the dissipators are
linear and time-invariant.

A. Mechanical Content and Co-Content

As illustrated in [10], linear dissipation effects are included
into a Lagrangian or Hamiltonian equation set by applying a
constant negative gain feedback of the associated velocities
and forces. For a mechanical system of the form (8) this
means that the resulting (closed-loop) system takes the form:

ż =
(
J − D

)∇H(z), (24)

where

D =

⎛⎜⎜⎜⎜⎜⎝G 0

0 R

⎞⎟⎟⎟⎟⎟⎠ , (25)

with G = GT ≥ 0 and R = RT ≥ 0. We can define in a manner
analogues to the definition of electrical resistors

G(v) �
∫ v (

Rv′
)Tdv′ = 1

2 vTRv (26)

as the mechanical content associated to the dissipators con-
tained in mechanical ‘resistance’ matrix R. Note that (26)
coincides with the usual definition of the Rayleigh dissipation
function.

Conversely, the quantity

J( f ) �
∫ f (

G f ′
)Td f ′ = 1

2 f TG f (27)

is referred to as the mechanical co-content associated to
the dissipators contained in the mechanical ‘conductance’
matrix G. Consequently, the co-content (27) should then
be considered as some Rayleigh co-dissipation function.
This function, although (to our knowledge) only defined
conceptually in [6], can be argued to have some physical
significance as illustrated in the following example.

Example 2: Consider the linear mass-spring-damper sys-
tem depicted in Figure 3.

q1q2

v1v2

k1

k2

m1

d1

Fig. 3. Example system for mechanical co-content.

Although the equivalent damper velocity vd can be expressed
as vd = v1 − v2 (= q̇1 − q̇2), the problem, however, is that q2

(resp., v2) is not related to a mass element and can therefore
not serve as a displacement (resp., velocity) coordinate. As
a result, the damper can not be described in terms of a
Rayleigh dissipation (or content) function G(v), but needs
to be described by its dual form; the Rayleigh co-dissipation
function, or in the terminology used here: the co-content.
Let f j = k jq j, j = 1, 2, denote the forces related to the linear
springs with elasticity constants k j, then

J( f1, f2) =
1

2d

(
f2 − f1

)2
.

The Hamiltonian equations (24) can be used to obtain a
valid equation set for this system, however the corresponding
dissipation matrix D, as introduced in (25), should for this
particular example be changed to

D =

⎛⎜⎜⎜⎜⎜⎝G 0

0 0

⎞⎟⎟⎟⎟⎟⎠ , with G =
1
d

⎛⎜⎜⎜⎜⎜⎝ 1 −1

−1 1

⎞⎟⎟⎟⎟⎟⎠ = GT ≥ 0,

for all d > 0.
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This enables us to extend Theorem 1 to standard mechan-
ical system with (linear) dissipation.

Theorem 2: Consider a standard mechanical system with
dissipation described by (24). The dynamics of (24) can be
equivalently expressed by (15), where Q(z) is of the form
(16), while

P(q, p) =G(q, p) +
(∇qV(q)

)TM−1(q)p

+ 1
2

(
∇q

(
pTM−1(q)p

))T
M−1(q)p − J(p, q),

(28)

where

G(q, p) = 1
2 pTM−1(q)RM−1(q)p

J(q, p) = 1
2

(∇qV(q)
)TG∇qV(q)

+ 1
2

(
∇q

(
pTM−1(q)p

))T
G∇q

(
pTM−1(q)p

)
.

(29)

Proof: In this case, we select K in (13) and (14) such that

K(J − D)−1 =

⎛⎜⎜⎜⎜⎜⎝ In 0

0 −In

⎞⎟⎟⎟⎟⎟⎠ .
Hence,

K =

⎛⎜⎜⎜⎜⎜⎝ In 0

0 −In

⎞⎟⎟⎟⎟⎟⎠ (J − D) =

⎛⎜⎜⎜⎜⎜⎝−G In

In R

⎞⎟⎟⎟⎟⎟⎠ ,
which, since R = RT and G = GT, ensures that K = KT. The
remaining part of the proof follows along the same lines of
the proof of Theorem 1 and by noting that v = ∇pH(q, p) and
f = ∇qH(q, p). �

Corollary 2: Consider a standard mechanical system with
dissipation of the form (24). If the mapping q �→ f is well-
defined, then (15), together with the pair defined in (16)
and (28), is precisely the mechanical analogue of the BM
equations (4) and, hence, identifies the fourth equation set
— including dissipation — suggested by the quadrangle of
Figure 1. A description with the latter properties is referred
to as a canonical BM equation set of mechanical type.

B. External Signals

During our developments we have assumed that the exter-
nal signals (e.g., sources and disturbances), as modeled in
Section I by the vector τ, are zero. The previous analysis re-
mains unaffected if we include (possibly velocity-dependent)
external forces. Indeed, the expressions remain valid if we
replace G in (29) by a new content function of the form

G̃(q, p, τ) = G(q, p) −
∫ ∇pH(q,p)

τT(v′)dv′ (30)

A similar construction holds for the inclusion of (possibly
force-dependent) external velocity sources.

VI. Discussion

The results reported in this paper are the first steps towards
a general power-based modeling and analysis framework
for physical systems. The present work first shows that a
large class of mechanical systems (referred to as standard

mechanical systems) can be described by a homonymous
BM equation set. This set appears to be precisely the ‘miss-
ing link’ between the classical Lagrangian, co-Lagrangian
and Hamiltonian equation sets on the one-side (defined on
the (Q,V), (P, F) and (Q,P) spaces, respectively), and the
equation set defined on the (V, F) space — as is illustrated
by the quadrangle in Figure 1.

The analysis was carried out for standard mechanical sys-
tems with linear dissipation and a constant structure matrix
of the form (9). However, since the matrix J is in general
state-dependent, i.e., J(z) = −JT(z), it is necessary to extend
Lemma 1 with a state-modulated K-matrix. Consequently,
the new pair {J̃−1, H̃} is then obtained as follows:

J̃(z) = 1
2

[
∇2H(z)K(z) + ∇

((∇H(z)
)TK(z)

)]
J−1(z),

and
H̃(z) = 1

2

(∇H(z)
)TK(z)∇H(z).

For mechanical systems having a structure matrix of the form
J(z) = −JT(z), the corresponding Hamiltonian equation set is
usually referred to as a generalized Hamiltonian (or port-
Hamiltonian) system [10]. Besides the fact that the state-
space is (locally) not restricted to 2n (i.e., an even number
of) generalized coordinates (q, p), it can be argued to be
an excellent tool to describe a very large class of physical
models, ranging from standard mechanical systems treated
here to electrical, electro-mechanical or even distributed
parameter systems in various domains. For that reason, the
next step is the search for a general BM equation set, starting
from a port-Hamiltonian system description.
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