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SECOND-ORDER CONNECTED ATTRIBUTE
FILTERS USING MAX-TREES

Georgios K. Ouzounis and Michael H. F. Wilkinson

Institute of Mathematics and Computing Science
University of Groningen

(georgios, michael)@cs.rug.nl

Abstract The work presented in this paper introduces a novel method for second-order
connected attribute filtering using Max-Trees. The proposed scheme is generated
in a recursive manner from two images, the original and a modified copy by an
either extensive or an anti-extensive operator. The tree structure is shaped by
the component hierarchy of the modified image while the node attributes are
based on the connected components of the original image. Attribute filtering
of second-order connected sets proceeds as in conventional Max-Trees with no
further computational overhead.

Keywords: second-order connectivity, Max-Tree, attribute filters, clustering, partitioning

Introduction

The concept of second-order connectivity [6, 8] is a generalization of con-
ventional connectivity summarizing two perceptual conditions known as clus-
tering and partitioning. In brief, when clustering objects close enough to each
other in morphological terms, are considered as a single entity, while when
partitioning isolated object regions interconnected by thin elongated segments
are handled as independent objects. The theoretic framework developed to
formalize this [8, 1] defines the two cases by means of connected openings
that consider the intersection of the original image with the generalized con-
nectivity map. Extensions to a multi-scale approach employing a hierarchical
representation of connectivity have also been made. Two examples are con-
nectivity pyramids [2] and Connectivity Tree [9], which quantify how strongly
or loosely objects or object regions are connected.

Algorithmic realizations of this framework originally suggested the use of
generalized binary and gray-scale reconstruction operators [1] for recovering
the object clusters or partitions. This introduced a family of filters based on
topological object relations with width as the attribute criterion. Efficient al-
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gorithms for the more general class of gray-scale attribute filters using second-
order connectivity have not yet been proposed. In this paper we will present a
method based on Max-Trees [7].

Our method builds a hierarchical representation based on gray scale image
pairs comprising the original image and a modified copy by an increasing and
either extensive or anti-extensive operator. The algorithm, referred to as Dual
Input Max-Tree is inspired by [7, 10] and demonstrates an efficient way of
computation of generalized area openings . The results extend easily to other
attribute filters.

A presentation of our method is given in this paper which is organized as
follows: The first section gives a brief overview of the concept of connectivity
and attribute filters. A short description of second-order connectivities follows
in the second section where the two cases of clustering and partitioning are
described in a connected opening form. A review of the Max-Tree algorithm is
given in the third section complemented by a description of our implementation
while results and conclusions are discussed in the fourth section.

1. Connectivity and Connected Filters

This section briefly outlines the concept of connectivity from the classical
morphological prospective. For the purpose of this analysis we assume a uni-
versal (non-empty) set E and we denote by P(E) the collection of all subsets
of E. A set X representing a binary image such that X ⊆ E is said to be
connected if it cannot be partitioned into two non-empty closed or opened sets.
Expressing this using the notion of connectivity classes, Serra [8] derived the
following definition:

Definition 1 A family C ⊆ P(E) with E an arbitrary non-empty set, is
called a connectivity class if it satisfies:

1 ∅ ∈ C and {x} ∈ C for x ∈ E,

2 if CiCC ∈ C with i = 1, ...I and
⋂N

i=1 CiCC �=�� ∅, then
⋃

i∈I CiCC ∈ C

where {x} denotes a singleton.

The class C in this case defines the connectivity on E and any subset of C is
called a connected set or a connected component.

Given the connected sets CxCC ∈ C containing x ∈ X , the connected opening
connected, opening Γx can be expressed as the union of all CxCC :

Γx(X) =
⋃
{CxCC ∈ C|x ∈ CxCC and CxCC ⊆ X} (1)

With all sets CxCC containing at least one point of X in their intersection, i.e. x,
their union Γx(X) is also connected. Furthermore ∀x /∈// X , Γx(X) = ∅.
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Attribute Filters

Binary attribute openings attribute filter, opening [3] are a subclass of con-
nected filters incorporating an increasing criterion T . The increasingness of T
implies that if a set A satisfies T then any set B such that B ⊇ A satisfies T as
well. Using T to accept or reject a connected set C involves a trivial opening
ΓT which returns C if T is satisfied and ∅ otherwise. Furthermore, ΓT (∅) = ∅.
The binary attribute opening is defined as follows:

Definition 2 The binary attribute opening ΓT of a set X with increasing
criterion T is given by:

ΓT (X) =
⋃

x∈X

ΓT (Γx(X)) (2)

The binary attribute opening is equivalent to performing a trivial opening on
all connected components in the image. Note that if T is non-increasing we
have an attribute thinning rather that an attribute opening.

2. Second-Order Connectivity

The concept of second-order connectivity is briefly reviewed in this section
by visiting two characteristic cases. The clustering and partitioning operators
presented next, exploit the topological properties of image objects by modify-
ing the underlying connectivity while preserving the original shape.

Clustering Based Connected Openings

The first case concerns groups of image objects that can be perceived as
clusters of connected components if their relative distances are below a given
threshold. In morphological terms this is verified by means of an increas-
ing and extensive operator ψc which modifies the connectivity accordingly.
Merged objects in the resulting connectivity class Cψc define the morphology
of the clusters.

Definition 3 Let ψc be an increasing and extensive operator that modifies
the original connectivity from C to Cψc . The clustering based connected open-
ing Γψc

x associated with the generalized connectivity class Cψc is given by:

Γψc
x (X) =

{
Γx(ψc(X))

⋂
X if x ∈ X

∅ if x /∈// X
(3)

Thus Γψc
x extracts the connected components according to Γx in ψc(X), rather

than X , and then restricts the results to members of X [8, 1].
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Figure 1. First pair: original image and the clustered connectivity map ψc(X), Second pair:
the original image in front of a grid (background) and the partitioned connectivity map ψp(X).

Partitioning Based Connected Openings

Partitioning operators split wide object regions connected by narrow bridg-
ing segments which are often present due to image noise, background texture or
out of focus details. The corresponding generalized binary connected opening
extracts the intersection of the original image with the partitioned connectivity
map ψpψ (X), with ψpψ increasing and anti-extensive. To maintain the integrity
of the original shape, all object level regions discarded by ψpψ are preserved as
singletons in C:

Definition 4 Let ψpψ be an increasing and anti-extensive operator that mod-
ifies the original connectivity from C to Cψp . The partitioning based connected
opening Γψp

x associated with the generalized map Cψp is given by:

Γψp
x (X) =

⎧⎨⎧⎧⎩⎨⎨ Γx(ψpψ (X))
⋂

X if x ∈ ψpψ (X)
{x} if x ∈ X \ ψpψ (X)
∅ if x /∈// X

(4)

The problem that X \ψpψ (X) is fragmented into singletons is discussed in [11].

Second-Order Attribute Filters

Attribute filters as mentioned earlier apply a trivial opening ΓT on the out-
put of a binary connected opening Γx. Replacing Γx with a second-order con-
nected opening Γψ

x with ψ a generalizing operator (clustering or partitioning),
gives rise to the concept of second-order attribute filters which in the binary
case can be expressed as:

Definition 5 The binary second-order attribute opening of a generalized
set ψ(X) with increasing criterion T is given by:

ΓT
ψ(X) =

⋃
x∈X

ΓT (Γψ
x (X)) (5)

The increasingness of these operators makes it possible to extend them directly
to gray scale by threshold decomposition [4] of f , the mapping from the image
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domain M to R. Assuming that f can be decomposed to a set of binary images
ThTT (f) resulting from thresholding f at all levels h, given by:

ThTT (f) = {x ∈M|f(x) ≥ h} (6)

then superimposing them by taking their supremum leads to :

Definition 6 For a mapping f : M → R, the gray scale second-order at-
tribute opening γT

ψγγ (f) is given by:

(γT
ψγγ (f))(x) = sup{h|x ∈ ΓT

ψ(ThTT (f))} (7)

Thus, the second-order attribute opening of a gray scale image assigns each
point of the original image the highest threshold at which it still belongs to a
connected foreground component according to the second-order connectivity
class Cψ. Other types of gray scale generalizations can be found in [7, 10].

3. The Max-Tree Algorithm

The Max-Tree is a hierarchical image representation algorithm introduced
by Salembier [7] in the context of anti-extensive attribute filtering. The tree
structure reflects the connected component hierarchy obtained by threshold
decomposition of the given image with nodes and leaves corresponding to
peak components and regional maxima respectively. A peak component PhPP
at level h is a connected component of the thresholded image ThTT (f) while a
regional maximum MhMM at level h is a level component no members of which
have neighbors of intensity larger that h. A Max-Tree node Ck

hC (k is the node
index) corresponding to a certain peak component contains only those pixels in
P k

hPP which have gray-level h. In addition each node except for the root, points
towards its parent Ck′

hC ′ with h′ < h. The root node is defined at the minimum
level hmin and represents the set of pixels belonging to the background.

Node attributes are parameters stored in the tree structure and are computed
during the construction of the tree. In the case of the increasing attribute of
node area the connected component k at level h inherits the area of all the
peak components P k

hPP ′ connected to Ck
hC at levels h′ > h. Computing an area

opening reduces to removing all nodes with area smaller than the attribute
criterion λ from the tree. Note that the node filtering is a separate stage from
the computation of attributes and connected component analysis [7] therefore
consumes only a short fraction of the total computation time. Extensions to
other types of attributes are trivial [3, 5, 7, 10].

Construction Phase

Max-Trees are constructed in a recursive manner from data retrieved from
a set of hierarchical queues. The queues are allocated at initialization in the
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/* flood(h, thisAttribute) : Flooding function at level h */
attribute = thisAttribute /* accounts for child attributes */
while (not HQueue-empty(h)) /* First step: propagation */
{ p = HQueue-first(h) /* retrieve priority pixel */
STATUS[p] = NumberOfNodes[h] /* STATUS = the node index */
for (every neighbor q of p) /* process the neighbors */
{ if (STATUS[q] == "NotAnalyzed")

{ HQueue-add(ORI[q],q) /* add in the queue */
STATUS[q] = "InTheQueue"
NodeAtLevel[ORI[q]] = TRUE /* confirm node existance */
if (ORI[q] > ORI[p]) /* check for child nodes */
{ m = ORI[q]

child_attribute = 0
do{ /* recursive child flood */

m = flood(m,child_attribute)
} while (m != h)
attribute += child_attribute }}}}

NumberOfNodes = NumberOfNodes[h] + 1 /* update the node index */
m = h-1 /* 2nd step: defines father*/
while ((m >= 0) and (NodeAtLevel[m] = FALSE))

m = m-1
if (m >= 0){

i = NumberOfNodes[h] - 1; j = NumberOfNodes[m];
} else

The node C_i at level h has no father, i.e. its the root node
NodeAtLevel[h] = FALSE; node->Attribute = attribute;
node->Status = Finalized; thisAttribute = attribute;
return (m)

Figure 2. The flooding function of Salembier’s algorithm adopted for area openings. The
parameters h and m are the current and child node gray levels while attribute is a pixel count
at level h within the same connected component. The parameter thisAttribute is used to
pass child areas to parent nodes.

form of a static array called HQueue segmented to a number of entries equal
to the number of gray levels. Data are accessed and stored in a first in - first
out approach by the main routine (Fig. 2) which re-assigns priority pixels to
the Max-Tree structure and stores new pixels retrieved from the neighborhood
of the one under study, to the appropriate entries. The Max-Tree structure
consists of nodes corresponding to pixels of a given peak component P k

hPP at
level h. Each node is characterized by its level h and index k and contains
information about its parent node id, the node status and the attribute value.

The two structures are managed with the aid of three arrays; the STATUS[p],
the NumberOfNodes[h] and the NodeAtLevel[h]. STATUS is an array of im-
age size that keeps track of the pixel status. A pixel p can either be NotAna-
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lyzed, InTheQueue or already assigned to node k at level h. In this case STA-
TUS[p]=k. The NumberOfNodes is an array that stores the number of nodes
created until that moment at level h. Last, NodeAtLevel is a boolean array that
flags the presence of a node still being flooded at level h.

During initialization, the status of all image pixels is set to NotAnalyzed.
Similarly the NumberOfNodes is set to zero while NodeAtLevel is set to FALSE
for each gray level. After computing the image histogram, the HQueue and
Max-Tree structures are allocated accordingly while the first pixel at level hmin

is retrieved and placed in the appropriate queue. This pixel defines the root
node and is passed on to the main routine (flood) as the initial parameter.

The flooding routine is a recursive function involved in the construction
phase of the Max-Tree. It is initiated by accessing the first root pixel from the
queue at level hmin and proceeds with flooding nodes along the different root
paths that emerge during this process. The pseudo-code in Fig. 2 describes in
detail the steps involved. Note that ORI is an image-size array that stores the
pixel intensities. The construction phase terminates when all pixels have been
assigned to their corresponding nodes and the Max-Tree structure is complete.

Constructing the Dual Input Max-Tree

Our implementation of the construction phase requires two input images.
The first is the original image while the second is a copy modified by a clus-
tering or partitioning operator. The idea can be summarized as follows; image
data are loaded on the HQueue structure from the modified image to be mapped
on the Max-Tree which is shaped by the histogram of the original image.

Upon finalizing the initialization process with both histograms computed,
hmin is retrieved from the modified connectivity map ψ(X) and placed in the
corresponding queue while the three arrays are updated. The flooding function
proceeds as described earlier by inspecting the neighbors of the starting pixel
and distributes them to the appropriate queues. Within the while loop of Fig. 2
we add a test condition which checks for an intensity mismatch between the
same pixel in the two images (see Fig. 3). Denoting with P_ORIthe array
storing the pixel intensity in the modified image if ORI[p[ ] < P_ORI[p[ ] where p
is the pixel under study, the modified image is a result of an extensive operator
ψc while if the opposite is true it is due to an anti-extensive operator ψpψ (see
Fig. 3).

The first case involving clustering implies that p is a background pixel in
the original image therefore it is regarded as connected to the current active
node at level ORI[p[ ] through the connected component at level P_ORI[p[ ]; i.e.
it defines a peak component at level ORI[p[ ] to which p in the modified image
is connected. NodeAtLevel[ORI[p[ ]] is set and the status of p is updated to the
node id at level ORI[p[ ]. Additionally the node area is increased by a unit.
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/* flood(h, thisAttribute) : Flooding function at level h */
attribute = thisAttribute + node->Attribute /* node->Attribute is */
/* added to account for pixels found during other calls to flood */

while (not HQueue-empty(h)) /* First step: propagation */
{ p = HQueue-first(h) /* retrieve priority pixel */
STATUS[p] = NumberOfNodes[h] /* STATUS = the node index */
if(ORI[p]!=h){ /* Detect intensity mismatch */

NodeAtLevel[ORI[p]]=TRUE /* Same for both cases */
node = Tree + NodeOffsetAtLevel[ORI[p]] + NumberOfNodes[ORI[p]]
node->Attribute ++
if(ORI[p]>h){ /* Anti-extensive case */

node->Parent = NodeOffsetAtLevel[h] + NumberOfNodes[h]
node->Status = Finalized; node->Level = ORI[p]
NumberOfNodes[ORI[p]] += 1; NodeAtLevel[ORI[p]] = FALSE
attribute++ } /* Finalizing the singleton node */

} else
attribute++ /* If pixel intensity is the same in both images*/

/* The rest as in Figure 2 ... */
return (m)

Figure 3. The flooding function of the Dual Input Max-Tree algorithm.

In the case where partitioning is involved the detected mismatch between
the same pixel in the two images is of the form P_ORI[p[ ] < ORI[p[ ]. Pixel
p is therefore part of a discarded component according to Definition 4, and
consequently is treated as a singleton. Singletons define a node of unit area at
level ORI[p[ ] hence upon detection the node must be finalized before retrieving
the next priority pixel from the corresponding queue at level P_ORI[p[ ]. This
involves setting the node status to the node index at level ORI[p[ ] and detect-
ing the parent node id. The area is simply set to a unit and upon completion
NodeAtLevel[ORI[p[ ]] is set to FALSE indicating that this node is finalized.

The flooding function following this inspection proceeds with the neighbor-
ing pixels q updating the appropriate queues and setting the node flag for every
pixel at the current level P_ORI[p[ ]. If a neighbor with a higher level P_ORI[q]
is detected the process is halted at level P_ORI[p[ ] and a recursive call to the
flooding function initiates the same process at level P_ORI[q]. This is repeated
until reaching the regional maximum along the given root path. The Max-Tree
structure is completed when all nodes are finalized.

Filtering

Once the Max-Tree structure is computed, filtering which forms a separate
stage, is performed in a same way for both cases. Filtering the nodes based on
the attribute value λ involves visiting all nodes of the tree once. If the node
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Figure 4. Anabaena colony (left to right): original image; connectivity map using closing by
disc of radius 4; area opening (λ = 900) with Dual Input Max-Tree; area opening (same λ)
with conventional Max-Tree. Image size 459 × 400 pixels.

attribute is less than λ the output gray level is set to that of the parent node and
the comparison is repeated until the criterion is satisfied. The output image
Out is generated by visiting all pixels p, retrieving their node ids from ORI[p[ ]
and STATUS[p[ ] and assigning the output gray level of that node to Out[p[ ].

4. Discussion

The performance of the proposed algorithm was evaluated conducting a se-
ries of comparative experiments between the conventional and the dual input
Max-Tree on sets of TEM images of bacteria. To demonstrate our results we
chose two cases: one for clustering and one for partitioning. For a more exten-
sive discussion of the utility of these filters the reader is refered to [1].

The first case involving clustering is demonstrated in Fig. 4 where artifi-
cial objects were added on an Anabaena colony to verify the filter’s capability.
Using a conventional Max-Tree representation, the attribute filter aiming at
these additional objects, removes every connected component of area below
the chosen criterion λ (set to 900) which includes parts of the colony too. In
contrast to this, the same filter operated on the dual input Max-Tree consid-
ers the colony as a single object (as represented in the clustered connectivity
map) and therefore removes only the unwanted objects of area less than λ. The
second case considers partitioned objects and is demonstrated in Fig. 5. Es-
cherichia coli cells in the original image are linked by filaments. Attribute fil-
ters on the conventional Max-Tree representation simply lower the intensity of
these segments without eliminating the bridging effect. In the dual input Max-
Tree however, the same object regions removed in the partitioned connectivity
map (second from left), are converted to singletons in the original image hence
any area filter with λ greater than the unit area discards them. This means that
in the purely partitioning case, second-order connected attribute openings are
equivalent to attribute openings of the connectivity map, as proven in [11].

The computational efficiency of our implementation has minimal difference
from the conventional Max-Tree and this is due to loading two images and
computing two histograms instead of one. The major computation takes place
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Figure 5. E. coli (left to right): original image; connectivity map ontained by opening with
disc of radius 2; area opening using the dual input Max-Tree (λ = 100); area opening using
conventional Max-Tree (same λ). Image size 242 × 158 pixels.

within the flooding function which differs from the original implementation
in the two test conditions that verify the type of generalization. In both cases
the same number of input pixels have to mapped into the same size Max-Tree
structure therefore if the same image is used twice our algorithm performs as
a conventional Max-Tree. Our flooding function (Fig. 3) uses a single rou-
tine to handle both cases of generalization. This is primarily motivated by
our current investigation on increasing operators that are neither extensive nor
anti-extensive and the potential to manage image pairs in which the modified
connectivity map comprises sets of both clustered and partitioned objects. We
are studying the properties of such more general second-order connectivities.
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