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Bisimulation for Communicating Piecewise
Deterministic Markov Processes (CPDPs)

Stefan Strubbe and Arjan van der Schaft�

Twente University, PO BOX 217, 7500AE Enschede, The Netherlands
{s.n.strubbe, a.j.vanderschaft}@math.utwente.nl

Abstract. CPDPs (Communicating Piecewise Deterministic Markov
Processes) can be used for compositional specification of systems from
the class of stochastic hybrid processes formed by PDPs (Piecewise De-
terministic Markov Processes). We define CPDPs and the composition of
CPDPs, and prove that the class of CPDPs is closed under composition.
Then we introduce a notion of bisimulation for PDPs and CPDPs and we
prove that bisimilar PDPs as well as bisimilar CPDPs have equal stochas-
tic behavior. Finally, as main result, we prove the congruence property
that, for a composite CPDP, substituting components by different but
bisimilar components results in a CPDP that is bisimilar to the original
composite CPDP (and therefore has equal stochastic behavior).

1 Introduction

Many real-life systems nowadays are complex hybrid systems. They consist of
multiple components ’running’ simultaneously, having both continuous and dis-
crete dynamics and interacting with each other. Also, many of these systems
have a stochastic nature. An interesting class of stochastic hybrid systems is
formed by the Piecewise Deterministic Markov Processes (PDPs), which were
introduced in 1984 by Davis (see [1, 2]). Motivation for considering PDP systems
is two-fold. First, almost all stochastic hybrid processes that do not include dif-
fusions can be modelled as a PDP, and second, PDP processes have very nice
properties (such as the strong Markov property) when it comes to stochastic
analysis. (In [2] powerful analysis techniques for PDPs have been developed).
However, PDPs cannot communicate or interact with other PDPs and there-
fore, from a compositional modelling point of view, we should find a way of
opening the structure of PDPs to let them communicate/interact.

In [3], the automata formalism CPDP, which stands for Communicating
Piecewise Deterministic Markov Processes, is introduced. Basically, a CPDP
is a PDP-type system that can communicate (or interact) with other CPDPs.
In [3], this communication is formalized by means of a composition operator. In
this way, we may model complex stochastic hybrid systems (without diffusions)
as PDPs, based on the description of their components. Furthermore, in [4], it
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is proven that for any CPDP that is closed, i.e. does not communicate anymore
with the environment, we can construct a corresponding PDP that expresses the
same stochastic process. Therefore, analysis techniques for PDPs can be used
for analyzing CPDPs.

In this paper we give a slightly different definition of CPDPs than the defini-
tion in [3]. This new definition is more convenient in the context of composition.
As in [3], we formalize the communication between CPDPs by means of a com-
position operator, and we prove that the composition of two CPDPs is again a
CPDP. (A partial proof of this was already given in [3]).

The main part of this paper is about bisimulation for CPDPs. It is well-
known that the composition of multiple subsystems leads to state space explo-
sion. One tool that has proved to be effective in dealing with the state space
explosion problem is bisimulation. Bisimulation can be seen as a state space
reduction technique: By bisimulation we can find systems with smaller state
spaces, that still have the same external behavior. Two systems have the same
external behavior if they cannot be distinguished in any composition context.
The notion of bisimulation was introduced by Milner [5] in the context of dis-
crete state processes. Since then, bisimulation has also been established in the
context of probabilistic and stochastic automata [6, 7], continuous time interac-
tive Markov chains (IMC) [8], continuous dynamical systems [9, 10] and general
(non-stochastic) hybrid systems [11, 12].

In this paper, we define bisimulation in the context of CPDPs. In some sense,
this notion of bisimulation for CPDPs integrates the notions of bisimulation for
IMC, stochastic automata and continuous/hybrid systems.

An important point is that CPDPs have a stochastic processes semantics
(see [4]). This implies that we want to define bisimulation in such a way that
two bisimilar CPDPs express equivalent stochastic processes. Therefore, we de-
fine bisimulation such that certain analytical properties of stochastic processes
still remain in the quotient systems obtained by bisimulation (by factoring out
equivalence classes). In particular, we prove that two bisimilar CPDPs have the
same stochastic (PDP) behavior. We also prove the congruence property that, in
the composition of multiple CPDPs, substitution of a component by a different
bisimilar component does not change the stochastic behavior of the composite
system.

From an analysis point of view, we can then reduce the state space of a
composite CPDP in a compositional way by substituting components by state-
reduced bisimilar components. To analyze the original composite CPDP, we can
then (because of the equivalence result of CPDPs and PDPs) use the PDP
analysis techniques on the state reduced composite CPDP.

The organization of the paper is as follows. In Section 2 we give the definition
of the PDP stochastic process. In Section 3 we give the definition of the CPDP
model. In Section 4 we define composition for CPDP and we prove that, under
certain conditions, the composition of two CPDPs is again a CPDP. In Section 5
we prepare the bisimulation notion for CPDPs by first defining bisimulation for
PDPs with output functions (called weighted PDPs). We prove that bisimilar
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weighted PDPs have equivalent stochastic behavior. Then in Section 6 we extend
the PDP bisimulation notion to CPDPs. Using the results of Section 5, we prove
that weighted bisimilar CPDPs have equivalent stochastic behavior. After that,
we prove that, in the composition of multiple weighted CPDPs, substitution of
a component by a different bisimilar component does not change the stochastic
behavior of the composite system. In the final section conclusions are drawn and
future research directions are discussed.

2 Definition of the PDP

The state space and the dynamics of a PDP are defined as follows: K is a
countable set of locations. For each ν ∈ K, d(ν) ∈ IN denotes the dimension of
the continuous state space of location ν. For each ν ∈ K, let Eν be an open
subset of IRd(ν) and let gν : IRd(ν) → IRd(ν) be a locally Lipschitz continuous
function on Eν . The flow φν(t, ζ) is uniquely determined by the differential

equation ˙̂
ζ = gν(ζ̂) and equals ζ̂(t), assumed that ζ̂(0) = ζ. The hybrid state

space of the PDP is now defined as

E = {(ν, ζ)|ν ∈ K, ζ ∈ Eν}.

Remark 1. In fact, the state space E of the PDP is in [2] extended such that E
also contains the boundary points that are backward reachable (via flow φ) but
not forward reachable from the interior of E.

For x = (ν, ζ) ∈ E define

t∗(x) =
{

inf{t > 0|φν(t, ζ) ∈ ∂Eν},
∞ if no such time exists.

where ∂Eν = Ēν\Eν is the boundary of Eν , Ēν is the closure of Eν .
The jump mechanism of the PDP is determined by a jump rate function λ

and a transition measure Q. The jump rate λ : E → IR+ is a measurable function
such that for each x = (ν, ζ) ∈ E, there exists ε(x) > 0 such that the function
s → λ(ν, φν(s, ζ)) is integrable on [0, ε(x)[. With Γ ∗ we denote the boundary of
E that is reachable from the interior of E. The transition measure Q maps E∪Γ ∗

into the set P(E) of probability measures on the Borel space (E, E), where E is
the set containing all Borel sets of E (according to a ’natural’ topology, defined
in [2]), with the properties that for each fixed A ∈ E the map x → Q(A, x), where
Q(A, x) denotes the probability of A according to the probability measure Q(x),
is measurable, and Q({x}, x) = 0 for all x ∈ E ∪ Γ ∗.

A PDP process, starting from initial state x0 = (ν0, ζ0), can be ’executed’
as follows: The dynamics of xt from t = 0 is determined by the vectorfield gν0

until either the boundary (i.e. the set ∂Eν0) is hit at time t∗(x0) or until a point
is generated by the Poisson process that has density λ(xt). In either case, a
jump takes place and the target hybrid state is determined by the probability
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measure Q(·, (ν0, φν0(t̂, ζ0))), where t̂ is the jump time. From the target state
this execution procedure can be repeated.

For a PDP it is assumed that there are no explosions (i.e. |φν(t, ζ)| �→ ∞ if
t �→ ∞) and that there is no Zeno behavior (i.e. for every starting point x ∈ E,
ENt < ∞ for all t ∈ IR+, where Nt is a random variable ’counting’ the number
of jumps up to time t and ENt is the expectation of Nt).

3 Definition of the CPDP

A CPDP automaton is a tuple (L, V, v, Inv,G,Σ,A, P, S, C), where

– L is a countable set of locations
– V is a set of variables. With d(y) for y ∈ V we denote the dimension of

variable y. y ∈ V takes its values in IRd(y). We also say that IRd(y) is the
valuation space of y.

– v : L → 2V maps each location to a subset of V , which is the set of active
variables of the corresponding location

– Inv assigns to each location l and each variable y ∈ v(l) an open subset
of IRd(y), i.e. Inv(l, y) ⊂ IRd(y). With Invl we denote the subset of the
valuation space of v(l) that is built from (or loosely speaking: is the product
of) the invariants of the individual variables. With ∂Invl we denote the set
of boundary points of l, which is equal to the set of valuations of v(l) where
each y ∈ v(l) takes value in Inv(l, y) and at least one y ∈ v(l) takes value in
∂Inv(l, y) := Inv(l, y)\Inv(l, y).

– G assigns to each location l and each y ∈ v(l) a locally Lipschitz continuous
function from IRd(y) to IRd(y), i.e. G(l, y) : IRd(y) → IRd(y). This vectorfield
uniquely determines a flow φl,y(t, y0) along this vectorfield.

– Σ is the set of communication labels. Σ̄ denotes the ’passive’ mirror of Σ
and is defined as Σ̄ = {ā|a ∈ Σ}.

– B is a finite set of boundary hit transitions and consists of 4-tuples (l, a, l′, R),
denoting a transition from location l ∈ L to location l′ ∈ L with commu-
nication label a ∈ Σ and reset map R. This reset map R assigns to each
boundary point of l for each active variable y ∈ v(l′) a probability measure
on the invariant (and its Borel sets) of y for location l′. We will denote the
measure of R for variable y at boundary point ζ by Ry(ζ).

– P is a finite set of passive transitions and consists of 4-tuples (l, ā, l′, R),
denoting a transition from location l ∈ L to location l′ ∈ L with passive
communication label ā ∈ Σ̄ and reset map R. R assigns to each interior
point of location l for each active variable y ∈ v(l′) a probability measure on
the invariant (and its Borel sets) of y for location l′.

– S is a finite set of spontaneous (also called Poisson) transitions and consists
of 5-tuples (l, λ, a, l′, R), denoting a transition from location l ∈ L to location
l′ ∈ L with communication label a ∈ Σ, jump-rate function λ and reset map
R. The jump rate λ : Invl → IR+ is a measurable function such that for
each ζ ∈ Invl, there exists ε(ζ) > 0 such that the function s → λ(φl(s, ζ)) is
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integrable on [0, ε(ζ)[, where φl denotes the flow of the valuations of variables
v(l) for location l. R is defined on all interior points of l as it is done for
passive transitions.

– C is the choice function. C assigns to each boundary point (l, ζ) of the CPDP
a probability measure on the set of outgoing boundary hit transitions, i.e.
C(l, ζ) (with ζ ∈ ∂Invl) is a probability measure on Bl, where Bl is the set
of boundary hit transitions that have l as origin location. Furthermore, for
all l ∈ L and all ā ∈ Σ̄, such that for location l there is an outgoing passive
transition labelled ā, C assigns to each triplet (l, ζ, ā) (with ζ ∈ Invl) a
probability measure on the set of passive transitions leaving l and labelled ā.

We also impose the standard PDP conditions on a CPDP. For the details of
how this is done, we refer to [4].

Passive transitions are used to interact with the environment (see [3] for
an explanation of the communication mechanism established by the interplay
of boundary hit, spontaneous and passive transitions). The environment can
activate/trigger these passive transitions. When a CPDP does not have passive
transitions, then it can not be influenced by the environment, which means that
it is autonomous and can be executed ’on its own’.

Execution of a CPDP (L, V, v, Inv,G,Σ,A, P, S, C) without passive transi-
tions (i.e. P = ∅), starting from initial state x0 = (l0, ζ0), is done as follows:
The dynamics at t = 0 is determined by the vectorfield G(l0) until either the
boundary (∂Inv(l0)) is hit at time t∗(x0) (which is defined similarly as t∗ for the
PDP) or until a point is generated by a Poisson process of one of the spontaneous
transitions. For each spontaneous transition α = (l0, λα, l

′, Rα) a Poisson pro-
cess is ’running’ with density λα(xt). As soon as one of these Poisson processes
generates a point, the corresponding spontaneous transition will be taken. If the
first jump is caused by a boundary-hit at boundary point ζ, a boundary hit tran-
sition will be selected according to the probability measure C(l0, ζ). The new
continuous state in the target location of the active transition, will be selected
according to the probability measures of the reset map R of the boundary hit
transition. If the first jump is caused by one of the Poisson processes, the reset
map of the corresponding spontaneous transition will select the new continu-
ous state in the target location. From the new hybrid state on, this execution
procedure can be repeated.

4 Composition of CPDPs

In this section we define a composition operator for CPDPs. We prove that,
under certain conditions, the class of CPDPs is closed under this composition
operation. We also prove that the composition operator is commutative and
associative. For an explanation of the active/passive communication mechanism,
established by this composition operator, we refer to [3].

Suppose CPDPs Ai = (Li, Vi, vi, Invi, Gi, Σ,Bi, Pi, Si, Ci) are given. We as-
sume that the sets of communication labels are the same for A1 and A2 and we
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assume that V1 and V2 are disjoint. The composition A1||A2 of A1 with A2 is
defined as follows:

A1||A2 := (L, V, v, Inv,G,Σ,B, P, S, C), where L = L1 × L2, V = V1 ∪ V2,
v(l1, l2) := v(l1)∪v(l2), Inv((l1, l2), y) = Inv1(l1, y) if y ∈ V1 and Inv((l1, l2), y)=
Inv2(l2, y) if y ∈ V2, G((l1, l2), y) = G1(l1, y) if y ∈ V1 and G((l1, l2), y) =
G2(l2, y) if y ∈ V2. The sets B,P and S are determined by the following struc-
tural operational rules, where l1, l′1 ∈ L1 and l2, l

′
2 ∈ L2. For the boundary hit

transitions we have the rules

r1.
l1

a,R1−→ l′1, l2 � ā−→
(l1, l2)

a,R−→ (l′1, l2)
, r2.

l1
a,R1−→ l′1, l2

ā,R2−→ l′2
(l1, l2)

a,R−→ (l′1, l
′
2)

These rules should be interpreted as, r1: If (l1, a, l′1, R) ∈ B1 and there ex-
ist no l′2 and R2 such that (l2, ā, l′2, R2) ∈ P2, then ((l1, l2), a, (l′1, l2), R) ∈ B
(R will be defined next). r2: If (l1, a, l′1, R) ∈ B1 and (l2, ā, l′2, R2) ∈ P2, then
((l1, l2), a, (l′1, l

′
2), R) ∈ B. The rules r3 till r6 should be interpreted likewise. R

in rule r1 equals R1 for the variables of l′1 (and thus ignores the valuation of the
variables of l2 before the jump) and equals the ’identity’ map for the variables
in l2 (i.e. the values of the variables of l2 do not change with probability one).
R in rule r2 equals R1 for the variables of l′1 and equals R2 for the variables of
l′2. For the spontaneous transitions we have the rules

r3.
l1

a,R1,λ1−→ l′1, l2 � ā−→
(l1, l2)

a,R,λ−→ (l′1, l2)
, r4.

l1
a,R1,λ1−→ l′1, l2

ā,R2−→ l′2

(l1, l2)
a,R,λ−→ (l′1, l

′
2)

,

where R in rule r3 is derived from R1 as in rule r1 and R in rule r4 is derived
from R1 and R2 as in rule r2. For the passive transitions we have the rules

r5.
l1

ā,R1−→ l′1, l2 � ā−→
(l1, l2)

ā,R−→ (l′1, l2)
, r6.

l1
ā,R1−→ l′1, l2

ā,R2−→ l′2
(l1, l2)

ā,R−→ (l′1, l
′
2)
,

where R in rule r5 is derived from R1 as in rule r1 and R in rule r6 is derived
from R1 and R2 as in rule r2.

The reset maps of the boundary hit transitions (as a result of rules r1 and r2)
are defined well for boundary points where the variables of the second location l2
are in the interior of the invariant of l2. However, for ’double boundary points’,
i.e. for boundary points where both the variables of the first location and the
variables of the second location are on the boundaries of the invariants (of l1
and l2 respectively), the reset map is ill-defined because the target continuous
state is again a boundary state, which is not allowed for CPDPs. For now, we
say that the reset maps for these double boundary points are undefined.

Beside the rules r1 till r6, there are also the rules r1’ till r5’ which are the
mirrored versions of r1 till r5. This means that

r1’.
l1 � ā−→, l2

a,R2−→ l′2
(l1, l2)

a,R−→ (l1, l′2)
, r2’.

l1
ā,R1−→ l′1, l2

a,R2−→ l′2
(l1, l2)

a,R−→ (l′1, l
′
2)
,
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etc. For active transitions, the choice function C is defined as follows: If α ∈
B is derived from an active transition α1 ∈ B1 (via rule r1 or r2), then
C((l1, l2), (ζ1, ζ2))(α) equals C(l1, ζ1)(α1) (in case r1) and C(l1, ζ1) (α1) C(l2, ζ2,
ā) (α2) (in case r2 with passive transition α2) for ζ1 a boundary point and ζ2 an
interior point, equals zero for ζ1 an interior point and ζ2 a boundary point, and is
’undefined’ for ζ1 and ζ2 both boundary points. For the case that α ∈ B is derived
from an active transition α2 ∈ B2 (via rule r1’ or r2’), C((l1, l2), (ζ1, ζ2))(α) is
defined vice versa. For passive transitions, the choice function C is defined as
follows: If α ∈ P with label ā is derived from a passive transition α1 ∈ P1 (via
rule r5 or r6), then C((l1, l2), (ζ1, ζ2))(α) equals C(l1, ζ1, ā)(α1) (in case r5) and
C(l1, ζ1, ā)(α1)C(l2, ζ2, ā)(α2) (in case r6 with passive transition α2) for ζ1 and
ζ2 interior points. This ends the definition of composition of CPDPs.

In the definition of composition above, reset maps and choice function are not
defined for double boundary points. If our model would allow non-determinism
and the possibility to jump onto the boundary (like the more general CPDP model
of [13]), we expect that this ’problem’ can be solved in a more satisfactory way.

Theorem 1. The composition of two CPDPs is a CPDP that is undefined on
double boundary points assumed that there is no zeno-behavior. With other words,
if for the composition of two CPDPs we assign proper reset maps to the double
boundary points for the boundary hit transitions and properly define the choice
function for the double boundary points, then the composition is a CPDP as-
sumed that this completed composition is non-zeno.

Proof. It can directly be seen that the elements L,V ,v,Inv and G are proper
CPDP elements. It can also easily be seen that the transitions that are gen-
erated by the rules r1 till r6 (and their mirror rules) have proper reset maps
(except on the double boundary points) and are therefore proper CPDP tran-
sitions (except on the double boundary points). The only element that needs
a closer look is the choice function C. For C to be a proper CPDP element,
for each boundary point the values that C assigns to the boundary hit tran-
sitions should add up to one and also for each interior point (l, ζ) and each
passive label ā that is used by at least one transition of location l, the values
that C assigns to the passive transitions in l with label ā should add up to
one. Concerning the active transitions: At a boundary point (l1, ∂ζ1, l2, ζ2), with
∂ζ1 ∈ ∂Inv1(l1) and ζ2 ∈ Inv2(l2), the value of any active transition α of A1 with
label a is carried over to the corresponding active transition in A in case that
l2 � ā→ and in case that l2

ā→, this value is spread over the different active transi-
tions that are the result of α synchronizing with the passive ā-transitions in l2
(i.e. we get C(l1, ∂ζ1)(α1)C(l2, ζ2, ā)(α̃1)+ · · ·+C(l1, ∂ζ1)(α1)C(l2, ζ2, ā)(α̃n) =
C(l1, ∂ζ1)(α1), with α̃i the passive ā-transitions from l2). Therefore, because the
active transitions corresponding to active transitions in l2 get value zero, the
values add up to one. For boundary points (l1, ζ1, l2, ∂ζ2) we have the symmetric
case. For boundary points (l1, ∂ζ1, l2, ∂ζ2), C is undefined. Concerning the pas-
sive transitions: With a similar argument it can be shown that values of passive
transitions of Ai either carry over to passive transitions of A or are spread over
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a set of passive transitions of A such that the sum of the values does not change.
This ends the proof.

Remark 2. In the composition of CPDPs A1 and A2 we get for each joint location
(l1, l2) a combination of vectorfields from A1 and A1. In order to maintain the
PDP properties, this composition of vectorfields should be locally Lipschitz con-
tinuous. We also get a composition of reset-maps which should result in proper
reset maps etc. Because the CPDP is now, as opposed to [3], defined as having
multiple variables in one location, these ’properties maintained in composition’
are already proved in the PDP/CPDP-equivalence proof from [4].

Corollary 1. If the probability that two CPDPs (which are composed with each
other) reach their boundaries at the same time is zero, then the stochastic be-
havior of the composite system is fully specified and is equal to the behavior of a
PDP. Thus, if we then complete the composition of these two CPDPs to form a
new CPDP (which can always be done) in two different ways, then the stochastic
behaviors of these two completed CPDPs will be the same.

Theorem 2. The composition operator ||, which operates on the class of CPDPs,
is commutative and associative.

Proof. We identify joint locations (l1, l2) of A1||A2 with joint locations (l2, l1)
of A2||A1. It can directly be seen that the elements L,V ,v,Inv and G cause no
problems for commutativity and associativity. That the active/passive operator
|| generates the same transitions for A1||A2 as for A2||A1 and generates the same
transitions for (A1||A2)||A3 as for A1||(A2||A3) is proven in the case of labelled
transition systems in [14]. This result can easily be generalized to the case of
CPDPs.

5 Bisimulation for PDPs

In this section we introduce a notion of bisimulation for weighted PDPs (i.e.
PDPs together with a weight-function on the state space). Briefly said, two
PDP states x and y (in two different PDPs) are bisimilar if first, their piecewise
deterministic paths simulate each other (i.e. produce the same weight value for
each time instant). If second, at any time instant the states of the paths are again
bisimilar. If third, the jump intensities at states x and y are equal. If fourth, the
transition measures Q(x) and Q(y) are equivalent probability measures. (The
notion of equivalent measures will be defined below).

The state space of a PDP as defined in [2] is a standard Borel space. A mea-
surable space (E, E), with E the Borel sets of E, is called a standard Borel space,
if E is homeomorphic to a Borel subset of a complete separable metric space. In
order to prove stochastic equivalence of two bisimilar PDPs, we will need that
the quotient spaces (induced by a bisimulation relation) are also standard Borel
spaces.
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We define the equivalence relation on X that is induced by a relation R ⊂
X×Y with the property that π1(R) = X and π2(R) = Y as the transitive closure
of {(x, x′)|∃y s.t. (x, y) ∈ R and (x′, y) ∈ R}. We write X/R and Y/R for the
sets of equivalence classes of X and Y induced by R. We denote the equivalence
class of x ∈ X by [x]. We will now define the notion of measurable relations and
of equivalent measures, which we need for our notion of bisimulation for PDPs.

Definition 1. Let (X,X ) and (Y,Y) be standard Borel spaces and let R ⊂ X×Y
be a relation such that π1(R) = X and π2(R) = Y . Let X ∗ be the collection of
all R-saturated Borel sets of X, i.e. all B ∈ X such that any equivalence class
of X is either totally contained or totally not contained in B. It can be checked
that X ∗ is a σ-algebra. Let

X ∗/R = {[A]|A ∈ X ∗},
where [A] := {[a]|a ∈ A}. Then (X/R,X ∗/R), which is a measurable space, is
called the quotient space of X with respect to R. A unique bijective mapping
f : X/R → Y/R exists, such that f([x]) = [y] if (x, y) ∈ R. We say that the
relation R is measurable if for all A ∈ X ∗/R we have f(A) ∈ Y∗/R and vice
versa.

If a relation on X × Y is measurable, then the quotient spaces of X and Y
are homeomorphic (under bijection f from Definition 1). We could say therefore
that under a measurable relation X and Y have a shared quotient space. In
the field of descriptive set theory, a relation R ⊂ X × Y is called measurable if
R ∈ B(X × Y ) (i.e. R is a Borel set of the space X × Y ). This definition does
not coincide with our definition of measurable relation. In fact, many interesting
measurable relations are not Borel sets of the product space X × Y .

Definition 2. Suppose we have measures PX and PY on standard Borel spaces
(X,X ) and (Y,Y) respectively. Suppose that we have a measurable relation R ⊂
X×Y . The measures PX and PY are called equivalent with respect to R if we have
PX(f−1

X (A)) = PY (f−1
Y (f(A))) for all A ∈ X ∗/R (with f as in Definition 1 and

with fX and fY the mappings that map X and Y to X/R and Y/R respectively).

Suppose we have a PDP with state-space X and weightX is a real-valued
measurable function on X. Then we call the PDP together with weightX a
weighted PDP. The function weightX can be seen as a weight function on the
state-space. It can also be seen as an output at the state or as the observable
component. We call weightX the weight-function or the output-function. We
will now define a bisimulation notion for weighted PDPs. In this definition we
write Q(x) (or Q(y)) for the reset map of the PDP with state space X (or Y )
at state x (or y). We write φ(t, x) for the value of the state at time t when the
PDP with state space X starts at x at t = 0, etc.

Definition 3. Suppose we have two weighted PDPs with state-spaces X and Y
and weight-functions weightX and weightY . A measurable relation R ⊂ X × Y
is a bisimulation iff (x, y) ∈ R implies that
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– weightX(x) = weightY (y), t∗(x) = t∗(y) and λ(x) = λ(y).
– (φ(t, x), φ(t, y)) ∈ R for all t ∈ [0, t∗(x)[.
– Q(x) and Q(y) are equivalent probability measures with respect to R. Also
Q(φ(t∗(x), x)) and Q(φ(t∗(y), y)) are equivalent probability measures with
respect to R.

Two states x and y are bisimilar if they are contained in some bisimulation.

The following theorem shows that bisimilar PDPs exhibit equivalent stochas-
tic behavior. We make use of the Hilbert cube probability space, which has as
sample space Ω =

∏∞
i=1 Yi, where each Yi = [0, 1], and has the product Borel

sigma-algebra and product Lebesgue measure.

Theorem 3. If initial states x and y of two weighted PDPs (X,weightX) and
(Y,weightY ) are contained in bisimulation R, then, assumed that the quotient
spaces are standard Borel spaces, we can construct the stochastic processes xt

and yt on the Hilbert cube (Ω,A, P ) in such a way that for each ω ∈ Ω we have
weightX(xt(ω)) = weightY (yt(ω)).

Proof. Let R ⊂ X × Y be a bisimulation such that (x, y) ∈ R. Let (Ω,A, P )
be the Hilbert cube and Ui(ω) = ωi be the U [0, 1] distributed random variables.
We define for any z that has a corresponding survivor function F (t, z)

ψ1(u, z) =
{

inf{t|F (t, z) ≤ u}
+∞ if the above set is empty

We define the random variables S1,x, T1,x, S1,y and T1,y as S1,x(ω) = T1,x(ω) =
ψ1(U1(ω), x) and S1,y(ω) = T1,y(ω) = ψ1(U1(ω), y). Now we can define the
sample-functions up to the first jump. For z ∈ {x, y} we define: if T1,z(ω) = ∞
then zt(ω) = φ(t, z) for t ≥ 0, if T1,z(ω) < ∞ then zt(ω) = φ(t, z) for 0 ≤ t <
T1,z(ω).

Because (x, y) ∈ R, we have t∗(x) = t∗(y) and (φ(t, x), φ(t, y)) ∈ R for
t ∈ [0, t∗(x)[. We also have λ(φ(t, x)) = λ(φ(t, y)) for t ∈ [0, t∗(x)[. Now it can be
easily checked that F (t, x) = F (t, y) for all t ∈ IR and therefore ψ(u, x) = ψ(u, y)
and we have S1,x(ω) = S1,y(ω) and T1,x(ω) = T1,y(ω). Because (φ(t, x), φ(t, y)) ∈
R we have weightX(xt(ω)) = weightY (yt(ω)) up to T1,x(ω).

Now xT1(ω) and yT1(ω), where T1 := T1,x(ω) = T1,y(ω), need to be chosen in
accordance to Q(φ(T1, x)) and Q(φ(T1, y)) respectively. Because (x, y) ∈ R, we
have that Q′ := Q(φ(T1, x)) and Q′′ := Q(φ(T1, y)) are equivalent probability
measures with respect to R. Therefore, Q′ and Q′′ define the same probability
measure PZ on the quotient space (Z,Z). Let PX|z and PY |z be the conditional
probability measures of Q′ and Q′′ given the outcome z in Z. Because X, Y and
Z are all separable standard Borel spaces, these conditional probability measures
exist uniquely according to Th.8.1 in [15] and according to the same theorem
we have that for fixed A ∈ B(X) and B ∈ B(Y ) the maps z → PX|z(A) and
z → PY |z(B) are measurable.
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Let ψ2 : [0, 1]×X∪∂X → Z be a measurable mapping such that lψ−1
2 (A, x) =

PZ(A, x) for all x ∈ X ∪ ∂X. The existence of this mapping follows from Corol-
lary 23.4 in [2] and from the fact that the mapping x → PZ(A, x) is measur-
able for fixed A ∈ Z. Let ψ3,x : [0, 1] × Z → X and ψ3,y : [0, 1] × Z → Y
be measurable mappings such that lψ−1

3,x(A, z) = PX|z(A) for A ∈ B(X) and
lψ−1

3,y(A, z) = PY |z(A) for A ∈ B(Y ). The existence of these mappings fol-
lows from Corollary 23.4 in [2] and from the fact that for fixed A ∈ B(X)
and B ∈ B(Y ) the mappings z → PX|z(A) and z → PY |z(B) are measurable.
Now the processes xt and yt restart at time T1(ω) from the states xT1(ω) =
ψ3,x(U3(ω), ψ2(U2(ω), φ(T1(ω), x))) and yT1(ω) = ψ3,y(U3(ω), ψ2(U2(ω),φ(T1(ω),
x))) and we have (xT1(ω), yT1(ω)) ∈ R̄, where R̄ is defined as {(x, y)|
f([x]) = [y]} (see Definition 1). To continue the sample function from time
T1(ω), we define S2,x = ψ1(U4(ω), xT1(ω)), S2,y = ψ1(U4(ω), yT1(ω)), T2,x =
T1,x(ω) +S2,x(ω), T2,y = T1,y(ω) +S2,y(ω), and we repeat the procedure above.

It can be seen that the stochastic processes above are well defined and that
for all t ≥ 0 and all ω ∈ Ω we have (xt(ω), yt(ω)) ∈ R̄. This means that
weightX(xt(ω)) = weightY (yt(ω)). This ends the proof.

Corollary 2. Because weightX and weightY in Proposition 3 are measurable
mappings, we have that zt = weightX(xt) and z′

t = weightY (yt) are well-defined
stochastic processes. Because weightX(xt(ω)) = weightY (yt(ω)), the stochastic
processes zt and z′

t are indistinguishable. Thus, if two weighted PDPs have bisim-
ilar initial states (and the quotient spaces are standard Borel spaces) then there
is a realization of the stochastic processes of their outputs (on the Hilbert cube)
such that the stochastic processes are indistinguishable .

Remark 3. For sake of simplicity we assumed that weight-functions take value
in IR. However, all results still hold if we take any other euclidean space than IR
as codomain of the weight functions.

6 Bisimulation for CPDPs

We will now generalize the notion of bisimulation for PDPs to CPDPs. To do
that, we need to introduce the concept of weighted CPDPs.

Definition 4. A weighted CPDP is a CPDP together with a set of output vari-
ables W = {w1, w2, · · · , wn}, where each wi takes value in IRd(wi), with d(wi) the
dimension of wi, and an output function weight which assigns to each w ∈ W
and each CPDP state x a value weight(w, x) ∈ IRd(w). weight is such that for
fixed w the functions weight(w, x) are measurable.

For composition of two CPDPs with state spaces X1 and X2, with disjoint
sets of output variables W1 and W2 and with output functions weight1 and
weight2, the composed output function weight assigns to (w, (x1, x2)) the value
weight1(w, x1) if w ∈ W1 and weight2(w, x2) if w ∈ W2. In order to define
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bisimulation for CPDPs we also need to introduce the notions of combined reset
map and combined jump rate function:

For CPDP A = (L, V, v, Inv,G,Σ,B, P, S, C) with hybrid state space E, We
define R, which we call the combined reset map, as follows. R assigns to each
triplet (l, ζ, a) with (l, ζ) ∈ ∂E and with a ∈ Σ such that l a−→ (i.e. there exists
a boundary hit transition labelled a leaving l), a measure on E. This measure
R(l, ζ, a) is for any l′ and any Borel set A ⊂ Invl′ defined as:

R(l, ζ, a)(A) =
∑

α∈Bl,a,l′

C(l, ζ)(α)Rα(A),

where Bl,a,l′ denotes the set of boundary hit transitions from l to l′ with label
a. (This measure is uniquely extended to all Borel sets of E). Now, for A ∈
B(E), R(l, ζ, a)(A) equals the probability of jumping into A via a boundary hit
transition with label a given that the jump takes place at (l, ζ). Furthermore, R
assigns to each triplet (l, ζ, ā) with (l, ζ) ∈ E and with a ∈ Σ̄ such that l ā−→, a
measure on E, which for any l′ and any Borel set A ⊂ Invl′ is defined as:

R(l, ζ, ā)(A) =
∑

α∈Pl,ā,l′

C(l, ζ, ā)(α)Rα(A).

(This measure is uniquely extended to all Borel sets of E). Now, R(l, ζ, ā)(A),
with A ∈ B(E), equals the probability of jumping into A if a passive transition
with label ā takes place at (l, ζ). We define the combined jump rate function λ
for CPDP A as

λ(l, ζ) =
∑

α∈Sl→

λα,

with (l, ζ) ∈ E. Finally, for spontaneous jumps, R assigns to each (l, ζ) ∈ E such
that λ(l, ζ) �= 0, a probability measure on E, which for any l′ and any Borel set
A ⊂ Invl′ is defined as:

R(l, ζ)(A) =
∑

α∈Sl→l′

λα(l, ζ)
λ(l, ζ)

Rα(A).

Now we are ready to give the definition of bisimulation for CPDPs.

Definition 5. Suppose we have two weighted CPDPs with state-spaces X and Y
and weight-functions weightX and weightY on a shared set of output variables
W . A measurable relation R ⊂ X × Y is a bisimulation iff (x, y) ∈ R, with
x = (l1, ζ1) and y = (l2, ζ2), implies that

– weightX(w, x) = weightY (w, y) for all w ∈ W , t∗(x) = t∗(y) and λ(x) =
λ(y).

– (φ(t, x), φ(t, y)) ∈ R for all t ∈ [0, t∗(x)[.
– If λ(x) = λ(y) �= 0, then R(x) and R(y) are equivalent probability measures

with respect to R. For any ā ∈ Σ̄ we have that either both l1 � ā−→ and l2 � ā−→



Bisimulation for CPDPs 635

or else R(x, ā) and R(y, ā) are equivalent probability measures. Also, if we
define (l1, ζ∗

1 ) := t∗(x) and (l2, ζ∗
2 ) := t∗(y), then we have for any a ∈ Σ

that either both l1 � a−→ and l2 � a−→ or else R(l1, ζ∗
1 , a) and R(l2, ζ∗

2 , a) are
equivalent measures.

Two states x and y are bisimilar if they are contained in some bisimulation.

Theorem 4. The stochastic processes of the outputs of two bisimilar closed
CPDPs, whose quotient spaces are standard Borel spaces, can be realized such
that they are indistinguishable.

Proof. The stochastic process of a closed CPDP A with combined reset map R
and combined jump rate function λ is equivalent (i.e. indistinguishable) with the
stochastic process of the PDP Ã that has the same state space and vectorfields
as the CPDP and that has λ as its jump rate function and has transition measure
Q(l, ζ) that equals R(l, ζ) for interior points and that equals

∑
a∈Σ R(l, ζ, a) for

boundary points (see [4] for the proof of this stochastic equivalence). This PDP
Ã is called the corresponding PDP of CPDP A. We prove that the corresponding
PDPs of two bisimilar closed CPDPs are bisimilar PDPs, then the result follows
from Corollary 2:

The first two lines of Definition 3 follow directly from the first two lines of Def-
inition 5. The third line: The fact that Q(x) and Q(y) are equivalent probability
measures for bisimilar interior points x and y follows from the fact that Q(x) =
R(x) and Q(y) = R(y) and, according to Definition 5, R(x) and R(y) are equiv-
alent probability measures. Finally, Q(φ(t∗(x), x)) and Q(φ(t∗(y), y)) are equiv-
alent probability measures because Q(φ(t∗(x), x)) =

∑
a∈Σ R(φ(t∗(x), x), a) and

Q(φ(t∗(y), y)) =
∑

a∈Σ R(φ(t∗(y), y), a) and, according to Definition 5,
R(φ(t∗(x), x), a) and R(φ(t∗(x), x), a) are equivalent measures for all a ∈ Σ.
This ends the proof.

In order to prove the main theorem 5 about bisimulation in the context of
composition, we need that a measurable relation R ⊂ X1 ×X2 naturally induces
a measurable relation R′ on (X1 ×Y )×(X2 ×Y ) for any Y . This result is proved
in the following lemma. After that, the main theorem is stated.

Lemma 1. If R ⊂ X1 × X2 is a measurable relation such that π1(R) = X1,
π2(R) = X2 and X1/R and X2/R are standard Borel spaces, then

R′ := {((x1, y), (x2, y))|(x1, x2) ∈ R, y ∈ Y }

is a measurable relation on (X1×Y )×(X2×Y ) and (X1×Y )/R′ and (X2×Y )/R′

are standard Borel spaces.

Proof. From the proof of Theorem 3 we know that (because X1/R is a standard
Borel space) there exists a measurable ψ : [0, 1]×X1/R → X1, such that ψ([0, 1]×
[x]) = {x̃ ∈ X1|[x̃] = [x]}. We first proof that (X1 × Y )/R′ = X1/R × Y , which
is indeed a standard Borel space.
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Take B ∈ B∗(X1 × Y ) (i.e. B is Borel in X1 × Y and for any y we have: if
(x, y) ∈ B and [x] = [x̃] then (x̃, y) ∈ B). Now there exist Borel sets BX1

i and
BY

i such that
B = ∪∞

i=1B
X1
i ×BY

i .

Because ψ is measurable, we have that for all i that ψ−1(BX1
i ) ∈ B([0, 1]×X1/R).

This means that there exist Borel sets BX1/R
i,j and B[0,1]

i,j , such that

∪∞
i=1ψ

−1(BX1
i ) ×BY

i = ∪∞
i,j=1B

[0,1]
i,j ×B

X1/R
i,j ×BY

i

Because we have that if (x, y) ∈ B and [x] = [x̃] then (x̃, y) ∈ B), we can also
write

∪∞
i=1ψ

−1(BX1
i ) ×BY

i = ∪∞
i,j=1[0, 1] ×B

X1/R
i,j ×BY

i ,

from which we can see that R′ maps B to ∪∞
i,j=1B

X1/R
i,j ×BY

i , which is a Borel set
in X1/R × Y and therefore (X1 × Y )/R′ is a standard Borel space. Analogously
we get that R′ maps B ∈ B∗(X2 × Y ) to Borel sets in X2/R × Y . Measurability
of R′ can now, with the results above, easily be derived from the measurability
of R. This ends the proof.

Theorem 5. Suppose we have three weighted CPDPs with state spaces X1,X2
and Y , and with output functions weightX1 on WX , weightX2 on WX and
weightY on WY respectively. Suppose R ⊂ X1 ×X2 is a bisimulation and X1/R
and X2/R are standard Borel spaces. Then,

R′ := {((x1, y), (x2, y))|(x1, x2) ∈ R, y ∈ Y }

is a bisimulation on (X1 × Y ) × (X2 × Y ) and (X1 × Y )/R′ and (X2 × Y )/R′

are standard Borel spaces.

Proof. Suppose ((x1, y), (x2, y)) ∈ R′ with x1 = (l1, ζ1), x2 = (l2, ζ2) and y =
(ly, ζy). We have to prove the three lines of Definition 5 to be true.

First line: For w ∈ WX , weightX1||Y (w, x1, y) = weightX1(w, x1) =
weightX2(w, x1) = weightX2||Y (w, x1, y) and for w ∈ WY , weightX1||Y
(w, x1, y) = weightY (w, y) = weightX2||Y (w, x1, y). t∗(x1, y) = min{t∗(x1),
t∗(y)} = min{t∗(x2), t∗(y)} = t∗(x2, y). λ(x1, y) = λ(x1)+λ(y) = λ(x2)+λ(y) =
λ(x2, y).

Second line: The flow φ from states (x1, y) and (x2, y) consists of two parts,
the x-part: φ(t, x1) and φ(t, x2), and the y-part: φ(t, y). The x-part and y-part
flows are evolving independently. Then it follows from the fact that
(φ(t, x1), φ(t, x2)) ∈ R for all t ∈ [0, t∗(x1, y)[ that (φ(t, x1, y), φ(t, x2, y)) ∈ R′

for t ∈ [0, t∗(x1, y)[.
Third line (part one): Suppose λ(x1, y) �= 0 (and consequently λ(x2, y) �= 0).

Take arbitrary A1 ∈ B∗(X1) and B ∈ B(Y ). Let A2 be the element of B∗(X2)
that corresponds (according to R) to A1. Then A1 × B ∈ B∗(X1 × Y ) and
A2×B ∈ B∗(X2×Y ). Furthermore,A1×B andA2×B correspond with each other
(according to R′). It can be seen that R(x1, y)(A1×B) = λ(x1)

λ(x1)+λ(y)R(x1)(A1)+
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λ(y)
λ(x1)+λ(y)R(y)(B) = λ(x2)

λ(x2)+λ(y)R(x2)(A2) + λ(y)
λ(x2)+λ(y)R(y)(B) = R(x2, y)(A2 ×

B). It can be shown for i ∈ {1, 2}, that the σ-algebra B∗(Xi × Y ) is generated
by the collection of sets of the form Ai × B with Ai ∈ B∗(Xi) and B ∈ B(Y ).
Then it follows that R(x1, y) and R(x2, y) are equivalent measures with respect
to R′ (under the assumption that λ(x1, y) �= 0).

Third line (part two): It can be seen that if (l1, ly) ā−→, then also (l2, ly) ā−→
(and vice versa). Suppose (l1, ly) ā−→ and (l2, ly) ā−→. Take A1 ∈ B∗(X1) and
B ∈ B(Y ). Let A2 be the saturated Borel set of X2 corresponding to A1.
We distinct three cases: If l1

ā−→ and ly
ā−→ (case 1), then R(x1, y, ā)(A1 ×

B) = R(x1, ā)(A1)R(y, ā)(B) = R(x2, ā)(A2)R(y, ā)(B) = R(x2, y, ā)(A2 × B).
If l1

ā−→ and ly � ā−→ (case 2), then R(x1, y, ā)(A1 × B) = R(x1, ā)(A1)Iy(B) =
R(x2, ā)(A2)Iy(B) = R(x2, y, ā)(A2 × B) (here Iy(B) is the probability mea-
sure that equals one if y ∈ B and zero if y �∈ B). If l1 � ā−→ and ly

ā−→
(case 3), then R(x1, y, ā)(A1 × B) = Ix1(A1)R(y, ā)(B) = Ix2(A2)R(y, ā)(B) =
R(x2, y, ā)(A2 × B). We can now conclude that R(x1, y, ā) and R(x2, y, ā) are
equivalent probability measures.

Third line (part three): It can be seen that if (l1, ly) a−→, then also (l2, ly) a−→
(and vice versa). Suppose (l1, ly) a−→ and (l2, ly) a−→. Take A1 ∈ B∗(X1) and
B ∈ B(Y ). Let A2 be the saturated Borel set of X2 corresponding to A1. We dis-
tinct three cases: If t∗(x1) < t∗(y) (case 1), then, if we define x∗

1 := φ(t∗(x1), x1),
x∗

2 := φ(t∗(x1), x2) and y∗ := φ(t∗(x1), y), we get R(x∗
1, y

∗, a)(A1 × B) =
R(x∗

1, a)(A1)Iy∗(B) = R(x∗
2, a)(A2)Iy∗(B) = R(x∗

2, y
∗, a)(A2 × B). If t∗(x1) >

t∗(y) (case 1), then, if we define x∗
1 := φ(t∗(y), x1), x∗

2 := φ(t∗(y), x2) and
y∗ := φ(t∗(y), y), we get R(x∗

1, y
∗, a)(A1 × B) = Ix∗

1
(A1) × R(y∗, a)(B) =

Ix∗
2
(A2) × R(y∗, a)(B) = R(x∗

2, y
∗, a)(A2 × B). If t∗(x1) = t∗(y) (case 3: dou-

ble boundary point), then both R(x∗
1, y

∗, a) and R(x∗
2, y

∗, a) are undefined. We
can now conclude that R(x∗

1, y
∗, a) and R(x∗

2, y
∗, a) are equivalent probability

measures. This ends the proof.

Corollary 3. If a component of a complex CPDP (consisting of multiple CPDPs
composed with the composition operator ||) is substituted by a different but bisim-
ilar component, then the stochastic behavior of the complex CPDP will not
change.

We now give two examples of bisimular CPDPs. The examples highlight
different aspects of CPDP bisimulation.

Example 1 (State space transformation/reduction). If we have a CPDP which
has linear time invariant dynamics ẋ = Ax,weight(x) = Cx, in (one of) its
locations and T is a state space transformation matrix, then the CPDP that is
obtained by transforming the dynamics into ˙̃x = TAT−1x̃, weight(x̃) = CT−1x̃,
is bisimilar to the original CPDP. Classical state space reduction within a CPDP
with LTI dynamics also results in a bisimilar CPDP.

Example 2 (Combining Poisson processes). Suppose we have a CPDP which has
two spontaneous transitions, with jump rate functions λ1(x) and λ2(x) and reset
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maps R1(x) and R2(x), that have the same label and the same origin and target
location. Replacing these two transitions by one spontaneous transition with the
same origin and target location and with jump rate function λ1 + λ2 and reset
map λ1

λ1+λ2
R1 + λ2

λ1+λ2
R2, will not change the CPDP up to bisimilarity.

7 Conclusions

We introduced the CPDP model for compositional modelling of PDP systems.
We defined a composition operator on CPDPs based on the communication via
active and passive events and we defined a notion of bisimulation. We proved that
the output processes of closed bisimilar CPDPs are indistinguishable stochastic
processes and we also proved that, within a CPDP composition context, substi-
tuting a component by another bisimilar component, does not change the system
up to bisimilarity. This means that we can use bisimulation as a compositional
technique for state reduction. Components that are state-reduced by bisimula-
tion are still of the PDP type and also the composition of these components is
still of the PDP type. This means that both the components and the compos-
ite system can in principle be analyzed by using PDP analysis techniques (as
developed in [2]).

In for example [8] and [10] algorithms are given for finding maximal bis-
mulations for a given system. Since the class of CPDPs is very broad, general
algorithms for bisimulation may be difficult to formulate or may not be very
useful. Instead, an interesting direction for future research is to define subclasses
of CPDPs (such as CPDPs with linear dynamics) that allow development of
automatic bisimulation techniques.
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